1
|
Falk J, Eriksson Sörman D, Strandkvist V, Vikman I, Röijezon U. Cognitive functions explain discrete parameters of normal walking and dual-task walking, but not postural sway in quiet stance among physically active older people. BMC Geriatr 2024; 24:849. [PMID: 39427183 PMCID: PMC11490021 DOI: 10.1186/s12877-024-05425-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Postural control is dependent on the central nervous system's accurate interpretation of sensory information to formulate and execute adequate motor actions. Research has shown that cognitive functions are associated with both postural control and fall risk, but specific associations are not established. The aim of this study was to explore how specific components of everyday postural control tasks are associated with both general and specific cognitive functions. METHODS Forty-six community-dwelling older adults reported their age, sex, physical activity level, falls and fall-related concerns. The following cognitive aspects were assessed: global cognition, executive functions, processing speed and intraindividual variability. Postural control was quantified by measuring postural sway in quiet stance, walking at a self-selected pace, and walking while performing a concurrent arithmetical task. Separate orthogonal projections of latent structures models were generated for each postural control outcome using descriptive and cognitive variables as explanatory variables. RESULTS Longer step length and faster gait speed were related to faster processing speed and less intraindividual variability in the choice reaction test. Moreover, longer step length was also related to less fall-related concerns and less severe fall-related injuries, while faster gait speed was also related to female sex and poorer global cognition. Lower dual-task cost for gait speed was explained by the executive function inhibition and faster processing speed. Postural sway in quiet stance was not explained by cognitive functions. CONCLUSIONS Cognitive functions explained gait speed and step length during normal walking, as well as the decrease of gait speed while performing a concurrent cognitive task. The results suggest that different cognitive processes are important for different postural control aspects. Postural sway in quiet stance, step time and gait variability seem to depend more on physical and automatic processes rather than higher cognitive functions among physically active older people. The relationships between cognitive functions and postural control likely vary depending on the specific tasks and the characteristics of different populations.
Collapse
Affiliation(s)
- Jimmy Falk
- Luleå University of Technology, Luleå, 97187, Sweden.
| | | | | | - Irene Vikman
- Luleå University of Technology, Luleå, 97187, Sweden
| | | |
Collapse
|
2
|
Jeyarajan G, Ayaz A, Herold F, Zou L, Heath M. A single bout of aerobic exercise does not alter inhibitory control preparatory set cerebral hemodynamics: Evidence from the antisaccade task. Brain Cogn 2024; 179:106182. [PMID: 38824809 DOI: 10.1016/j.bandc.2024.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
A single bout of exercise improves executive function (EF) and is a benefit - in part -attributed to an exercise-mediated increase in cerebral blood flow enhancing neural efficiency. Limited work has used an event-related protocol to examine postexercise changes in preparatory phase cerebral hemodynamics for an EF task. This is salient given the neural efficiency hypothesis' assertion that improved EF is related to decreased brain activity. Here, event-related transcranial Doppler ultrasound was used to measure pro- (saccade to target) and antisaccades (saccade mirror-symmetrical target) preparatory phase middle cerebral artery velocity (MCAv) prior to and immediately after 15-min of aerobic exercise. Antisaccades produced longer reaction times (RT) and an increased preparatory phase MCAv than prosaccades - a result attributed to greater EF neural activity for antisaccades. Antisaccades selectively produced a postexercise RT reduction (ps < 0.01); however, antisaccade preparatory phase MCAv did not vary from pre- to postexercise (p=0.53) and did not correlate with the antisaccade RT benefit (p = 0.31). Accordingly, results provide no evidence that improved neural efficiency indexed via functional hyperemia is linked to a postexercise EF behavioural benefit. Instead, results support an evolving view that an EF benefit represents the additive interplay between interdependent exercise-mediated neurophysiological changes.
Collapse
Affiliation(s)
- Gianna Jeyarajan
- School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Azar Ayaz
- School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Fabian Herold
- Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Liye Zou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, China
| | - Matthew Heath
- School of Kinesiology, University of Western Ontario, London, ON, Canada; Graduate Program in Neuroscience, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada; Canadian Centre for Activity and Aging, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
3
|
Caparos S, Boissin E. The relationships between urbanicity, general cognitive ability, and susceptibility to the Ebbinghaus illusion. PSYCHOLOGICAL RESEARCH 2024; 88:1540-1549. [PMID: 38581438 DOI: 10.1007/s00426-024-01959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Previous studies have shown that, in samples of non-Western observers, susceptibility to the Ebbinghaus illusion is stronger in urban than rural dwellers. While such relationship between illusion strength and urbanicity has often been ascribed to external factors (such as the visual impact of the environment), the present study explored the possibility that it is instead mediated by general cognitive ability, an internal factor. We recruited a sample of remote Namibians who varied in their level of urbanicity, and measured their susceptibility to the Ebbinghaus illusion, their levels of education and literacy, and their general cognitive ability. The results showed that urbanicity was related to Ebbinghaus susceptibility, and that general cognitive ability, literacy and education did not mediate this effect, which is reassuring with regard to the findings of previous studies that did not control for these variables. However, we found robust relationships between urbanicity, on the one hand, and cognitive ability, education and literacy, on the other, which advocates for careful consideration of the impact of the latter variables in studies about the cognitive effects of urban environments.
Collapse
Affiliation(s)
- Serge Caparos
- Laboratoire DysCo, Université Paris 8, Serge Caparos, 2 Rue de la Liberté, Saint-Denis, 93200, France.
- Institut Universitaire de France, Paris, France.
| | | |
Collapse
|
4
|
Chmiel J, Kurpas D, Rybakowski F, Leszek J. The Effects of Transcranial Direct Current Stimulation (tDCS) in HIV Patients-A Review. J Clin Med 2024; 13:3288. [PMID: 38892999 PMCID: PMC11173062 DOI: 10.3390/jcm13113288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction: HIV is a severe and incurable disease that has a devastating impact worldwide. It affects the immune system and negatively affects the nervous system, leading to various cognitive and behavioral problems. Scientists are actively exploring different therapeutic approaches to combat these issues. One promising method is transcranial direct current stimulation (tDCS), a non-invasive technique that stimulates the brain. Methods: This review aims to examine how tDCS can help HIV patients. Searches were conducted in the Pubmed/Medline, Research Gate, and Cochrane databases. Results: The literature search resulted in six articles focusing on the effects of tDCS on cognitive and behavioral measures in people with HIV. In some cases, tDCS showed positive improvements in the measures assessed, improving executive functions, depression, attention, reaction time, psychomotor speed, speed of processing, verbal learning and memory, and cognitive functioning. Furthermore, the stimulation was safe with no severe side effects. However, the included studies were of low quality, had small sample sizes, and did not use any relevant biomarkers that would help to understand the mechanisms of action of tDCS in HIV. Conclusions: tDCS may help patients with HIV; however, due to the limited number of studies and the diversity of protocols used, caution should be exercised when recommending this treatment option in clinical settings. More high-quality research, preferably involving neurophysiological and neuroimaging measurements, is necessary to better understand how tDCS works in individuals with HIV.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Neurofeedback and tDCS Poland, 70-393 Szczecin, Poland
| | - Donata Kurpas
- Department of Family and Pediatric Nursing, Faculty of Health Sciences, Wrocław Medical University, 51-618 Wrocław, Poland
| | - Filip Rybakowski
- Department and Clinic of Psychiatry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| |
Collapse
|
5
|
Klaassen AL, Michel C, Stüble M, Kaess M, Morishima Y, Kindler J. Reduced anterior callosal white matter in risk for psychosis associated with processing speed as a fundamental cognitive impairment. Schizophr Res 2024; 264:211-219. [PMID: 38157681 DOI: 10.1016/j.schres.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Previous research in psychotic disorders discovered associations between reduced integrity of white matter (WM) in the corpus callosum (CC) and impaired cognitive functions, suggesting processing speed as a central construct. However, it is still largely unexplored to what extent disruption in callosal WM is related to cognitive deficits during the risk stage prior to psychosis. METHODS To address this gap, we measured the WM integrity in CC by fractional anisotropy (FA) and assessed cognition in 60 clinical-high risk for psychosis (CHR) patients during adolescence/young adulthood and 38 healthy control (HC) subjects. We employed tract based spatial statistics to examine group differences and associations between CC-FA and processing speed, executive function, and spatial working memory. RESULTS We revealed deficits in processing speed, executive function, and spatial working memory of CHR patients, and reductions in FA of the genu and the body of the CC (p < 0.05, corrected for multiple comparisons) compared to HC. A mediation analysis using the combined sample (CHR + HC) showed that processing speed mediates the associations between the impaired CC structure and executive function and spatial working memory, respectively. Exploratory analyses between CC-FA and the cognitive domains located associations of processing speed in the genu and the body of CC with distinct spatial distributions of executive function and spatial working memory. CONCLUSION We suggest processing speed as a subordinate cognitive factor contributing to the associations between callosal WM, executive function and working memory. These results extend findings in psychotic disorders to the prior risk stage.
Collapse
Affiliation(s)
- Arndt-Lukas Klaassen
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland.
| | - Chantal Michel
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland
| | - Miriam Stüble
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland; University Hospital Heidelberg, Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Germany
| | - Yosuke Morishima
- University Hospital of Psychiatry Bern, Department of Psychiatric Neurophysiology, University of Bern, Switzerland
| | - Jochen Kindler
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland
| |
Collapse
|
6
|
Uslu S, Tangermann M, Vögele C. Estimating person-specific neural correlates of mental rotation: A machine learning approach. PLoS One 2024; 19:e0289094. [PMID: 38295045 PMCID: PMC10830051 DOI: 10.1371/journal.pone.0289094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
Using neurophysiological measures to model how the brain performs complex cognitive tasks such as mental rotation is a promising way towards precise predictions of behavioural responses. The mental rotation task requires objects to be mentally rotated in space. It has been used to monitor progressive neurological disorders. Up until now, research on neural correlates of mental rotation have largely focused on group analyses yielding models with features common across individuals. Here, we propose an individually tailored machine learning approach to identify person-specific patterns of neural activity during mental rotation. We trained ridge regressions to predict the reaction time of correct responses in a mental rotation task using task-related, electroencephalographic (EEG) activity of the same person. When tested on independent data of the same person, the regression model predicted the reaction times significantly more accurately than when only the average reaction time was used for prediction (bootstrap mean difference of 0.02, 95% CI: 0.01-0.03, p < .001). When tested on another person's data, the predictions were significantly less accurate compared to within-person predictions. Further analyses revealed that considering person-specific reaction times and topographical activity patterns substantially improved a model's generalizability. Our results indicate that a more individualized approach towards neural correlates can improve their predictive performance of behavioural responses, particularly when combined with machine learning.
Collapse
Affiliation(s)
- Sinan Uslu
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael Tangermann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Claus Vögele
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
7
|
Spence JS, Turner MP, Rypma B, D'Esposito M, Chapman SB. Toward precision brain health: accurate prediction of a cognitive index trajectory using neuroimaging metrics. Cereb Cortex 2024; 34:bhad435. [PMID: 37968568 DOI: 10.1093/cercor/bhad435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
The goal of precision brain health is to accurately predict individuals' longitudinal patterns of brain change. We trained a machine learning model to predict changes in a cognitive index of brain health from neurophysiologic metrics. A total of 48 participants (ages 21-65) completed a sensorimotor task during 2 functional magnetic resonance imaging sessions 6 mo apart. Hemodynamic response functions (HRFs) were parameterized using traditional (amplitude, dispersion, latency) and novel (curvature, canonicality) metrics, serving as inputs to a neural network model that predicted gain on indices of brain health (cognitive factor scores) for each participant. The optimal neural network model successfully predicted substantial gain on the cognitive index of brain health with 90% accuracy (determined by 5-fold cross-validation) from 3 HRF parameters: amplitude change, dispersion change, and similarity to a canonical HRF shape at baseline. For individuals with canonical baseline HRFs, substantial gain in the index is overwhelmingly predicted by decreases in HRF amplitude. For individuals with non-canonical baseline HRFs, substantial gain in the index is predicted by congruent changes in both HRF amplitude and dispersion. Our results illustrate that neuroimaging measures can track cognitive indices in healthy states, and that machine learning approaches using novel metrics take important steps toward precision brain health.
Collapse
Affiliation(s)
- Jeffrey S Spence
- Center for BrainHealth, 2200 West Mockingbird Road, Dallas, TX 75235, United States
| | - Monroe P Turner
- Center for BrainHealth, 2200 West Mockingbird Road, Dallas, TX 75235, United States
| | - Bart Rypma
- Center for BrainHealth, 2200 West Mockingbird Road, Dallas, TX 75235, United States
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California Berkeley, 175 Li Ka Shing Center, MC#3370, Berkeley, CA 94720, United States
| | - Sandra Bond Chapman
- Center for BrainHealth, 2200 West Mockingbird Road, Dallas, TX 75235, United States
| |
Collapse
|
8
|
Mizuno A, Karim HT, Ly MJ, Lopresti BJ, Cohen AD, Ali AA, Mathis CA, Klunk WE, Aizenstein HJ, Snitz BE. Low thalamic activity during a digit-symbol substitution task is associated with symptoms of subjective cognitive decline. Front Psychiatry 2023; 14:1242822. [PMID: 37743995 PMCID: PMC10511647 DOI: 10.3389/fpsyt.2023.1242822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Subjective cognitive decline (SCD) may represent the earliest preclinical stage of Alzheimer's Disease (AD) for some older adults. However, the underlying neurobiology of SCD is not completely understood. Since executive function may be affected earlier than memory function in the progression of AD, we aimed to characterize SCD symptoms in terms of fMRI brain activity during the computerized digit-symbol substitution task (DSST), an executive function task. We also explored associations of DSST task performance with brain activation, SCD severity, and amyloid-ß (Aß) load. Methods We analyzed data from 63 cognitively normal older individuals (mean age 73.6 ± 7.2) with varying degree of SCD symptoms. Participants completed a computerized version of DSST in the MR scanner and a Pittsburgh Compound-B (PiB)-PET scan to measure global cerebral Aß load. Results A voxel-wise analysis revealed that greater SCD severity was associated with lower dorsomedial thalamus activation. While task performance was not associated with brain activation nor Aß load, slower reaction time was associated with greater SCD severity. Discussion The observed lower dorsomedial thalamus activation may reflect declining familiarity-based working memory and the trans-thalamic executive function pathway in SCD. SCD symptoms may reflect altered neural function and subtle decline of executive function, while Aß load may have an indirect impact on neural function and performance. Self-perceived cognitive decline may serve as a psychological/subjective marker reflecting subtle brain changes.
Collapse
Affiliation(s)
- Akiko Mizuno
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Helmet Talib Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Maria J. Ly
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian J. Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ann D. Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Areej A. Ali
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chester A. Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - William E. Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Howard J. Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Beth E. Snitz
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Ferrario R, Giovagnoli AR. Processing speed in temporal lobe epilepsy. A scoping review. Epilepsy Behav 2023; 142:109169. [PMID: 36963317 DOI: 10.1016/j.yebeh.2023.109169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Impaired processing speed (PS) can affect patients with temporal lobe epilepsy (TLE). However, it is usually considered a nonspecific clinical feature and is not measured, but this raises lexical and methodological problems. This review aims to evaluate the existing terminology and assessment methods of PS in patients with TLE. METHODS A scoping review was conducted based on the extended guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis. The electronic literature search was conducted on Medline-PubMed, American Psychological Association-PsycINFO, Elton Bryson Stephens Company, and Google Scholar, using the keywords "temporal lobe epilepsy" and "speed" or "slowing" plus "processing," "cognitive," "psychomotor," or "mental." Peer-reviewed articles published before December 2022 were analyzed if they were in English, including patients older than 14 years and at least one neuropsychological measure, reported original research focused on PS and had the selected keywords in the title, keywords, and abstract. RESULTS Seven articles published between December 2004 and September 2021 were selected. The terms "processing speed," "psychomotor speed," and "information processing speed," based on similar theoretical constructs, were the most frequently used. Assessment methods included non-computerized or paper-and-pencil tests (WAIS-III Digit Symbol and Symbol Search subtests, Purdue Pegboard and Grooved Pegboard Tests, Trail Making Test and Stroop Color-Word Test) and computerized tests (Sternberg Memory Scanning Test, Pattern Comparison Processing Speed, Computerized Visual Searching). In some studies, impairment was associated with white and gray matter damage in the brain, independent of clinical and treatment variables. CONCLUSION Clinical research on TLE has focused inconsistently on PS. Different evaluation terms and methods have been used while referring to similar theoretical constructs. These findings highlight a gap between the clinical importance of PS and its assessment. Studies are needed to share terms and tools among clinical centers and clarify the position of PS in the TLE phenotype.
Collapse
Affiliation(s)
- Rosalba Ferrario
- Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy
| | - Anna Rita Giovagnoli
- Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy.
| |
Collapse
|
10
|
Agoalikum E, Klugah-Brown B, Wu H, Hu P, Jing J, Biswal B. Structural differences among children, adolescents, and adults with attention-deficit/hyperactivity disorder and abnormal Granger causality of the right pallidum and whole-brain. Front Hum Neurosci 2023; 17:1076873. [PMID: 36866118 PMCID: PMC9971633 DOI: 10.3389/fnhum.2023.1076873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a childhood mental health disorder that often persists to adulthood and is characterized by inattentive, hyperactive, or impulsive behaviors. This study investigated structural and effective connectivity differences through voxel-based morphometry (VBM) and Granger causality analysis (GCA) across child, adolescent, and adult ADHD patients. Structural and functional MRI data consisting of 35 children (8.64 ± 0.81 years), 40 adolescents (14.11 ± 1.83 years), and 39 adults (31.59 ± 10.13 years) was obtained from New York University Child Study Center for the ADHD-200 and UCLA dataset. Structural differences in the bilateral pallidum, bilateral thalamus, bilateral insula, superior temporal cortex, and the right cerebellum were observed among the three ADHD groups. The right pallidum was positively correlated with disease severity. The right pallidum as a seed precedes and granger causes the right middle occipital cortex, bilateral fusiform, left postcentral gyrus, left paracentral lobule, left amygdala, and right cerebellum. Also, the anterior cingulate cortex, prefrontal cortex, left cerebellum, left putamen, left caudate, bilateral superior temporal pole, middle cingulate cortex, right precentral gyrus, and the left supplementary motor area demonstrated causal effects on the seed region. In general, this study showed the structural differences and the effective connectivity of the right pallidum amongst the three ADHD age groups. Our work also highlights the evidence of the frontal-striatal-cerebellar circuits in ADHD and provides new insights into the effective connectivity of the right pallidum and the pathophysiology of ADHD. Our results further demonstrated that GCA could effectively explore the interregional causal relationship between abnormal regions in ADHD.
Collapse
Affiliation(s)
- Elijah Agoalikum
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hongzhou Wu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Peng Hu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Junlin Jing
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
11
|
Barber AD, Gallego JA, DeRosse P, Birnbaum ML, Lencz T, Ali SA, Moyett A, Malhotra AK. Contributions of Parasympathetic Arousal-Related Activity to Cognitive Performance in Patients With First-Episode Psychosis and Control Subjects. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:181-188. [PMID: 34728433 PMCID: PMC9054940 DOI: 10.1016/j.bpsc.2021.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cognitive impairment is integral to the pathophysiology of psychosis. Recent findings implicate autonomic arousal-related activity in both momentary fluctuations and individual differences in cognitive performance. Although altered autonomic arousal is common in patients with first-episode psychosis (FEP), its contribution to cognitive performance is unknown. METHODS A total of 24 patients with FEP (46% male, age = 24.31 [SD 4.27] years) and 24 control subjects (42% male, age = 27.06 [3.44] years) performed the Multi-Source Interference Task in-scanner with simultaneous pulse oximetry. First-level models included the cardiac-blood oxygen level-dependent regressor, in addition to task (congruent, interference, and error) and nuisance (motion and CompCor physiology) regressors. The cardiac-blood oxygen level-dependent regressor reflected parasympathetic arousal-related activity and was created by convolving the interbeat interval at each heartbeat with the hemodynamic response function. Group models examined the effect of group or cognitive performance (reaction times × error rate) on arousal-related and task activity, while controlling for sex, age, and framewise displacement. RESULTS Parasympathetic arousal-related activity was robust in both groups but localized to different regions for patients with FEP and healthy control subjects. Within both groups, arousal-related activity was significantly associated with cognitive performance across occipital and temporal cortical regions. Greater arousal-related activity in the bilateral prefrontal cortex (Brodmann area 9) was related to better performance in healthy control subjects but not patients with FEP. CONCLUSIONS Autonomic arousal circuits contribute to cognitive performance and the pathophysiology of FEP. Arousal-related functional activity is a novel indicator of cognitive ability and should be incorporated into neurobiological models of cognition in psychosis.
Collapse
Affiliation(s)
- Anita D Barber
- Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, New York; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, New York.
| | - Juan A Gallego
- Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, New York; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, New York
| | - Pamela DeRosse
- Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, New York; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, New York
| | - Michael L Birnbaum
- Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, New York; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, New York
| | - Todd Lencz
- Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, New York; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, New York
| | - Sana A Ali
- Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, New York; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York
| | - Ashley Moyett
- Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, New York; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York
| | - Anil K Malhotra
- Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, New York; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, New York
| |
Collapse
|
12
|
Argiris G, Stern Y, Habeck C. Neural similarity across task load relates to cognitive reserve and brain maintenance measures on the Letter Sternberg task: a longitudinal study. Brain Imaging Behav 2023; 17:100-113. [PMID: 36484923 PMCID: PMC9925407 DOI: 10.1007/s11682-022-00746-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
The aging process is characterized by change across several measures that index cognitive status and brain integrity. In the present study, 54 cognitively-healthy younger and older adults, were analyzed, longitudinally, on a verbal working memory task to investigate the effect of brain maintenance (i.e., cortical thickness) and cognitive reserve (i.e., NART IQ as proxy) factors on a derived measure of neural efficiency. Participants were scanned using fMRI while presented with the Letter Sternberg task, a verbal working memory task consisting of encoding, maintenance and retrieval phases, where cognitive load is manipulated by varying the number of presented items (i.e., between one and six letters). Via correlation analysis, we looked at region-level and whole-brain relationships between load levels within each phase and then computed a global task measure, what we term phase specificity, to analyze how similar neural responses were across load levels within each phase compared to between each phase. We found that longitudinal change in phase specificity was positively related to longitudinal change in cortical thickness, at both the whole-brain and regional level. Additionally, baseline NART IQ was positively related to longitudinal change in phase specificity over time. Furthermore, we found a longitudinal effect of sex on change in phase specificity, such that females displayed higher phase specificity over time. Cross-sectional findings aligned with longitudinal findings, with the notable exception of behavioral performance being positively linked to phase specificity cross-sectionally at baseline. Taken together, our findings suggest that phase specificity positively relates to brain maintenance and reserve factors and should be better investigated as a measure of neural efficiency.
Collapse
Affiliation(s)
- Georgette Argiris
- Cognitive Neuroscience Division, Columbia University, New York, NY, USA
- Taub Institute, Columbia University, New York, NY, USA
- Columbia University Irving Medical Center, Neurological Institute, 710 West 168th Street, 3rd floor, NY, 10032, New York, USA
| | - Yaakov Stern
- Cognitive Neuroscience Division, Columbia University, New York, NY, USA
- Taub Institute, Columbia University, New York, NY, USA
- Columbia University Irving Medical Center, Neurological Institute, 710 West 168th Street, 3rd floor, NY, 10032, New York, USA
| | - Christian Habeck
- Cognitive Neuroscience Division, Columbia University, New York, NY, USA.
- Taub Institute, Columbia University, New York, NY, USA.
- Columbia University Irving Medical Center, Neurological Institute, 710 West 168th Street, 3rd floor, NY, 10032, New York, USA.
| |
Collapse
|
13
|
Leisman G. On the Application of Developmental Cognitive Neuroscience in Educational Environments. Brain Sci 2022; 12:1501. [PMID: 36358427 PMCID: PMC9688360 DOI: 10.3390/brainsci12111501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 09/29/2023] Open
Abstract
The paper overviews components of neurologic processing efficiencies to develop innovative methodologies and thinking to school-based applications and changes in educational leadership based on sound findings in the cognitive neurosciences applied to schools and learners. Systems science can allow us to better manage classroom-based learning and instruction on the basis of relatively easily evaluated efficiencies or inefficiencies and optimization instead of simply examining achievement. "Medicalizing" the learning process with concepts such as "learning disability" or employing grading methods such as pass-fail does little to aid in understanding the processes that learners employ to acquire, integrate, remember, and apply information learned. The paper endeavors to overview and provided reference to tools that can be employed that allow a better focus on nervous system-based strategic approaches to classroom learning.
Collapse
Affiliation(s)
- Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa 3498838, Israel; or
- Department of Neurology, Universidad de Ciencias Médicas de la Habana, Havana 11300, Cuba
| |
Collapse
|
14
|
Prigatano GP, Novak A, Narayanan V. Neuropsychological and Social Characteristics of a 7 Year Old Child with Hypomelanosis of Ito Followed for 11 Years. Dev Neuropsychol 2022; 47:314-325. [PMID: 36371727 DOI: 10.1080/87565641.2022.2141746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hypomelanosis of Ito (HI) is a neurocutaneous disorder associated with central nervous system abnormalities, including speech delay and intellectual disability. The long term neuropsychological and social characteristics of these children are unknown. Neuropsychological observations and parental reports were obtained yearly on a child with HI from ages 7 to 18 years. Serial measures of intelligence revealed stable verbal and perceptual reasoning scores with later improvements in working memory and processing speed performance. Speech articulation improved at age 12, as did the speed of right-hand finger tapping. Improved social integration occurred, but anxiety persisted throughout this developmental period.
Collapse
Affiliation(s)
- George P Prigatano
- Department of Clinical Neuropsychology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Alexandra Novak
- Department of Clinical Neuropsychology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Vinodh Narayanan
- The Translational Genomics Research Institute, Phoenix, Arizona, USA
| |
Collapse
|
15
|
Dakwar-Kawar O, Berger I, Barzilay S, Grossman ES, Cohen Kadosh R, Nahum M. Examining the Effect of Transcranial Electrical Stimulation and Cognitive Training on Processing Speed in Pediatric Attention Deficit Hyperactivity Disorder: A Pilot Study. Front Hum Neurosci 2022; 16:791478. [PMID: 35966992 PMCID: PMC9363890 DOI: 10.3389/fnhum.2022.791478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveProcessing Speed (PS), the ability to perceive and react fast to stimuli in the environment, has been shown to be impaired in children with attention deficit hyperactivity disorder (ADHD). However, it is unclear whether PS can be improved following targeted treatments for ADHD. Here we examined potential changes in PS following application of transcranial electric stimulation (tES) combined with cognitive training (CT) in children with ADHD. Specifically, we examined changes in PS in the presence of different conditions of mental fatigue.MethodsWe used a randomized double-blind active-controlled crossover study of 19 unmedicated children with ADHD. Participants received either anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (dlPFC) or transcranial random noise stimulation (tRNS), while completing CT, and the administration order was counterbalanced. PS was assessed before and after treatment using the MOXO-CPT, which measures PS in the presence of various conditions of mental fatigue and cognitive load.ResultstRNS combined with CT yielded larger improvements in PS compared to tDCS combined with CT, mainly under condition of increased mental fatigue. Further improvements in PS were also seen in a 1-week follow up testing.ConclusionThis study provides initial support for the efficacy of tRNS combined with CT in improving PS in the presence of mental fatigue in pediatric ADHD.
Collapse
Affiliation(s)
- Ornella Dakwar-Kawar
- School of Occupational Therapy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itai Berger
- Pediatric Neurology, Assuta-Ashdod University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Paul Baerwald School of Social Work and Social Welfare, Hebrew University, Jerusalem, Israel
| | - Snir Barzilay
- School of Occupational Therapy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ephraim S. Grossman
- School of Occupational Therapy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Mor Nahum
- School of Occupational Therapy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Mor Nahum,
| |
Collapse
|
16
|
Shechter A, Hershman R, Share DL. A pupillometric study of developmental and individual differences in cognitive effort in visual word recognition. Sci Rep 2022; 12:10764. [PMID: 35750700 PMCID: PMC9232497 DOI: 10.1038/s41598-022-14536-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022] Open
Abstract
Throughout the history of modern psychology, the neural basis of cognitive performance, and particularly its efficiency, has been assumed to be an essential determinant of developmental and individual differences in a wide range of human behaviors. Here, we examine one aspect of cognitive efficiency—cognitive effort, using pupillometry to examine differences in word reading among adults (N = 34) and children (N = 34). The developmental analyses confirmed that children invested more effort in reading than adults, as indicated by larger and sustained pupillary responses. The within-age (individual difference) analyses comparing faster (N = 10) and slower (N = 10) performers revealed that in both age groups, the faster readers demonstrated accelerated pupillary responses compared to slower readers, although both groups invested a similar overall degree of cognitive effort. These findings have the potential to open up new avenues of research in the study of skill growth in word recognition and many other domains of skill learning.
Collapse
Affiliation(s)
- Adi Shechter
- Department of Learning Disabilities, Faculty of Education and Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
| | - Ronen Hershman
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - David L Share
- Department of Learning Disabilities, Faculty of Education and Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel.
| |
Collapse
|
17
|
Turner MP, Zhao Y, Abdelkarim D, Liu P, Spence JS, Hutchison JL, Sivakolundu DK, Thomas BP, Hubbard NA, Xu C, Taneja K, Lu H, Rypma B. Altered linear coupling between stimulus-evoked blood flow and oxygen metabolism in the aging human brain. Cereb Cortex 2022; 33:135-151. [PMID: 35388407 PMCID: PMC9758587 DOI: 10.1093/cercor/bhac057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Neural-vascular coupling (NVC) is the process by which oxygen and nutrients are delivered to metabolically active neurons by blood vessels. Murine models of NVC disruption have revealed its critical role in healthy neural function. We hypothesized that, in humans, aging exerts detrimental effects upon the integrity of the neural-glial-vascular system that underlies NVC. To test this hypothesis, calibrated functional magnetic resonance imaging (cfMRI) was used to characterize age-related changes in cerebral blood flow (CBF) and oxygen metabolism during visual cortex stimulation. Thirty-three younger and 27 older participants underwent cfMRI scanning during both an attention-controlled visual stimulation task and a hypercapnia paradigm used to calibrate the blood-oxygen-level-dependent signal. Measurement of stimulus-evoked blood flow and oxygen metabolism permitted calculation of the NVC ratio to assess the integrity of neural-vascular communication. Consistent with our hypothesis, we observed monotonic NVC ratio increases with increasing visual stimulation frequency in younger adults but not in older adults. Age-related changes in stimulus-evoked cerebrovascular and neurometabolic signal could not fully explain this disruption; increases in stimulus-evoked neurometabolic activity elicited corresponding increases in stimulus-evoked CBF in younger but not in older adults. These results implicate age-related, demand-dependent failures of the neural-glial-vascular structures that comprise the NVC system.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Peiying Liu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jeffrey S Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Binu P Thomas
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Nicholas A Hubbard
- Department of Psychology, Center for Brain, Biology, and Behavior, University of Nebraska, Lincoln, NE 68588, USA
| | - Cuimei Xu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kamil Taneja
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Hanzhang Lu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Bart Rypma
- Corresponding author: School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
| |
Collapse
|
18
|
Neto EDM, da Silva EA, Nunes HRDC, Bazan R, de Souza LAPS, Luvizutto GJ. Effect of transcranial direct current stimulation in addition to visuomotor training on choice reaction time and cognition function in amateur soccer players (FAST trial): A randomized control trial. Neurosci Lett 2022; 766:136346. [PMID: 34785310 DOI: 10.1016/j.neulet.2021.136346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/18/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES This study aimed to evaluate the effect of anodal transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) in addition to visuomotor training (VMT) on choice reaction time (CRT) and cognitive function in amateur soccer players. DESIGN Single-center, randomized, placebo-controlled, double-blind, parallel-group study. SETTING Neuroscience and Motor Control Laboratory. PARTICIPANTS Thirty Brazilian male amateur soccer players, aged 18-30 years. MAIN OUTCOME MEASURES Participants were allocated to the intervention or control groups. Both groups performed VMT, but the intervention group additionally underwent anodal tDCS over the left dorsolateral prefrontal cortex (DLPFC; F3). The cathodal electrode was positioned in the right supraorbital region (Fp2). The tDCS was applied at 2 mA for 20 min for five consecutive sessions (24 h intervals). The VMT protocol was delivered during the application of tDCS and was composed of kicking a ball for 10 min (between the fifth and fifteenth minutes of the 20 min of tDCS application). The primary outcome was assessed based on changes in CRT during reaching (non-trained limb) and kicking (trained limb) tasks. Secondary outcomes were overall cognitive function measured by the Trail Making Test part A (TMT-A) and part B (TMT-B), and Digit Span Test forward (DSF) and backward (DSB) scores. All outcomes were evaluated before and after the intervention. RESULTS In the primary outcomes, compared with the control group, the anodal tDCS combined with VMT group had greater reduction in CRT for the rectus femoris (p = 0.007) adjusted for age and baseline performance (F (1,26) = 22,23; p < 0,001) and for the triceps (p = 0.039) adjusted for training frequency (days/week) and baseline performance (F (1,26) = 5,70; p = 0,016). No differences were observed in the CRT of other muscles (anterior deltoid [p = 0.181], brachial biceps [p = 0.130], and vastus medialis [p = 0.074]). And, there were no differences between the groups in terms of cognitive function (TMT-A [p = 0.062]; TMT-B [p = 0.320]; DSF [p = 0.102]; DSB [p = 0.345]). CONCLUSION Anodal tDCS over the left DLPFC in addition to visuomotor training of a functional task can be an efficient tool for athletes to decrease the CRT of the rectus femoris (trained limb) and triceps (non-trained limb); however, there were no differences between the groups in the others muscles (anterior deltoid, brachial biceps, and vastus medialis), and in terms of cognitive function.
Collapse
Affiliation(s)
- Eduardo de Moura Neto
- Master Student of Physical Education, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Edilaine Aparecida da Silva
- Master Student of Physical Education, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | | | - Rodrigo Bazan
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School (UNESP), Botucatu, São Paulo, Brazil
| | | | - Gustavo José Luvizutto
- Department of Applied Physical Therapy, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
19
|
Zhang BBB, Kan RLD, Giron CG, Lin TTZ, Yau SY, Kranz GS. Dose-response relationship between iTBS and prefrontal activation during executive functioning: A fNIRS study. Front Psychiatry 2022; 13:1049130. [PMID: 36606127 PMCID: PMC9807664 DOI: 10.3389/fpsyt.2022.1049130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Intermittent theta-burst stimulation (iTBS) is a non-invasive brain stimulation paradigm that has demonstrated promising therapeutic benefits for a variety of neuropsychiatric disorders. It has recently garnered widespread favor among researchers and clinicians, owing to its comparable potentiation effects as conventional high-frequency repetitive transcranial magnetic stimulation (rTMS), but administered in a much shorter time frame. However, there is still a lack of agreement over the optimal stimulation intensity, particularly when targeting the prefrontal regions. The objective of this study was to systematically investigate the influence of different stimulation intensities of iTBS, applied over the left dorsolateral prefrontal cortex (DLPFC), on brain activity and executive function in healthy adults. METHODS Twenty young healthy adults were enrolled in this randomized cross-over experiment. All participants received a single session iTBS over the left DLPFC at intensities of 50, 70, or 100% of their individual resting motor threshold (RMT), each on separate visits. Functional near-infrared spectroscopy (fNIRS) was used to measure changes of hemoglobin concentrations in prefrontal areas during the verbal fluency task (VFT) before and after stimulation. RESULTS After stimulation, iTBS to the left DLPFC with 70% RMT maintained the concentration change of oxyhemoglobin (HbO) in the target area during the VFT. In contrast, 50% [t (17) = 2.203, P = 0.042, d = 0.523] and 100% iTBS [t (17) = 2.947, P = 0.009, d = 0.547] significantly decreased change of HbO concentration, indicating an inverse U-shape relationship between stimulation intensity and prefrontal hemodynamic response in healthy young adults. Notably, improved VFT performance was only observed after 70% RMT stimulation [t (17) = 2.511, P = 0.022, d = 0.592]. Moreover, a significant positive correlation was observed between task performance and the difference in HbO concentration change in the targeted area after 70% RMT stimulation (r = 0.496, P = 0.036) but not after 50 or 100% RMT stimulation. CONCLUSION The linear relationship between stimulation intensity and behavioral outcomes reported in previous conventional rTMS studies may not be translated to iTBS. Instead, iTBS at 70% RMT may be more efficacious than 100% RMT.
Collapse
Affiliation(s)
- Bella B B Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Rebecca L D Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Cristian G Giron
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Tim T Z Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.,Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.,Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.,Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
20
|
Cermakova P, Chlapečka A, Andrýsková L, Brázdil M, Marečková K. Socioeconomic and Cognitive Roots of Trait Anxiety in Young Adults. Soc Cogn Affect Neurosci 2021; 17:703-711. [PMID: 34915569 PMCID: PMC9340106 DOI: 10.1093/scan/nsab135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
In 54 participants (41% women) from the Czech arm of the European Longitudinal Study of Pregnancy and Childhood, a national birth cohort with prospectively collected data from their birth until young adulthood, we aimed to study the association between early-life socioeconomic deprivation (ELSD), cognitive ability in adolescence, trait anxiety and resting state functional connectivity of the lateral prefrontal cortex (LPFC) in young adulthood. We found that ELSD was associated with lower cognitive ability in adolescence (at age 13) as well as higher trait anxiety in young adulthood (at age 23/24). Higher cognitive ability in adolescence predicted lower trait anxiety in young adulthood. Resting state functional connectivity between the right LPFC and a cluster of voxels including left precentral gyrus, left postcentral gyrus and superior frontal gyrus mediated the relationship between lower cognitive ability in adolescence and higher trait anxiety in young adulthood. These findings indicate that lower cognitive ability and higher trait anxiety may be both consequences of socioeconomic deprivation in early life. The recruitment of the right LPFC may be the underlying mechanism, through which higher cognitive ability may ameliorate trait anxiety.
Collapse
Affiliation(s)
- Pavla Cermakova
- Second Faculty of Medicine, Charles University Prague, Czech Republic.,National Institute of Mental Health, Klecany, Czech Republlic
| | - Adam Chlapečka
- Third Faculty of Medicine, Charles University Prague, Czech Republic.,Centre of Clinical Neuroscience, Department of Neurology, First Faculty of Medicine, General University Hospital, Charles University in Prague, Czech Republic
| | | | - Milan Brázdil
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Klára Marečková
- Second Faculty of Medicine, Charles University Prague, Czech Republic.,Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
21
|
Zhao Y, Liu P, Turner MP, Abdelkarim D, Lu H, Rypma B. The neural-vascular basis of age-related processing speed decline. Psychophysiology 2021; 58:e13845. [PMID: 34115388 DOI: 10.1111/psyp.13845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Most studies examining neurocognitive aging are based on the blood-oxygen level-dependent signal obtained during functional magnetic resonance imaging (fMRI). The physiological basis of this signal is neural-vascular coupling, the process by which neurons signal cerebrovasculature to dilate in response to an increase in active neural metabolism due to stimulation. These fMRI studies of aging rely on the hemodynamic equivalence assumption that this process is not disrupted by physiologic deterioration associated with aging. Studies of neural-vascular coupling challenge this assumption and show that neural-vascular coupling is closely related to cognition. In this review, we put forward a theory of processing speed decline in aging and how it is related to age-related neural-vascular coupling changes based on the results of studies elucidating the relationships between cognition, cerebrovascular dynamics, and aging.
Collapse
Affiliation(s)
- Yuguang Zhao
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Peiying Liu
- School of Medicine, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Monroe P Turner
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Hanzhang Lu
- School of Medicine, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
22
|
Meyer K, Sommer W, Hildebrandt A. Reflections and New Perspectives on Face Cognition as a Specific Socio-Cognitive Ability. J Intell 2021; 9:30. [PMID: 34207993 PMCID: PMC8293405 DOI: 10.3390/jintelligence9020030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/11/2021] [Accepted: 06/08/2021] [Indexed: 01/07/2023] Open
Abstract
The study of socio-cognitive abilities emerged from intelligence research, and their specificity remains controversial until today. In recent years, the psychometric structure of face cognition (FC)-a basic facet of socio-cognitive abilities-was extensively studied. In this review, we summarize and discuss the divergent psychometric structures of FC in easy and difficult tasks. While accuracy in difficult tasks was consistently shown to be face-specific, the evidence for easy tasks was inconsistent. The structure of response speed in easy tasks was mostly-but not always-unitary across object categories, including faces. Here, we compare studies to identify characteristics leading to face specificity in easy tasks. The following pattern emerges: in easy tasks, face specificity is found when modeling speed in a single task; however, when modeling speed across multiple, different easy tasks, only a unitary factor structure is reported. In difficult tasks, however, face specificity occurs in both single task approaches and task batteries. This suggests different cognitive mechanisms behind face specificity in easy and difficult tasks. In easy tasks, face specificity relies on isolated cognitive sub-processes such as face identity recognition. In difficult tasks, face-specific and task-independent cognitive processes are employed. We propose a descriptive model and argue for FC to be integrated into common taxonomies of intelligence.
Collapse
Affiliation(s)
- Kristina Meyer
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Psychiatric University Hospital Charité at St. Hedwig Hospital, Große Hamburger Str. 5-11, 10115 Berlin, Germany
| | - Werner Sommer
- Institut für Psychologie, Humboldt-Universität zu Berlin and Department of Psychology, Zhejiang Normal University, Jinhua 321004, China;
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg and the Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany;
| |
Collapse
|
23
|
Malykh S, Kuzmina Y, Tikhomirova T. Developmental Changes in ANS Precision Across Grades 1-9: Different Patterns of Accuracy and Reaction Time. Front Psychol 2021; 12:589305. [PMID: 33841232 PMCID: PMC8024480 DOI: 10.3389/fpsyg.2021.589305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/03/2021] [Indexed: 01/29/2023] Open
Abstract
The main aim of this study was to analyze the patterns of changes in Approximate Number Sense (ANS) precision from grade 1 (mean age: 7.84 years) to grade 9 (mean age: 15.82 years) in a sample of Russian schoolchildren. To fulfill this aim, the data from a longitudinal study of two cohorts of children were used. The first cohort was assessed at grades 1-5 (elementary school education plus the first year of secondary education), and the second cohort was assessed at grades 5-9 (secondary school education). ANS precision was assessed by accuracy and reaction time (RT) in a non-symbolic comparison test ("blue-yellow dots" test). The patterns of change were estimated via mixed-effect growth models. The results revealed that in the first cohort, the average accuracy increased from grade 1 to grade 5 following a non-linear pattern and that the rate of growth slowed after grade 3 (7-9 years old). The non-linear pattern of changes in the second cohort indicated that accuracy started to increase from grade 7 to grade 9 (13-15 years old), while there were no changes from grade 5 to grade 7. However, the RT in the non-symbolic comparison test decreased evenly from grade 1 to grade 7 (7-13 years old), and the rate of processing non-symbolic information tended to stabilize from grade 7 to grade 9. Moreover, the changes in the rate of processing non-symbolic information were not explained by the changes in general processing speed. The results also demonstrated that accuracy and RT were positively correlated across all grades. These results indicate that accuracy and the rate of non-symbolic processing reflect two different processes, namely, the maturation and development of a non-symbolic representation system.
Collapse
Affiliation(s)
- Sergey Malykh
- Department of Psychology, Lomonosov Moscow State University, Moscow, Russia.,Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - Yulia Kuzmina
- Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - Tatiana Tikhomirova
- Department of Psychology, Lomonosov Moscow State University, Moscow, Russia.,Psychological Institute of Russian Academy of Education, Moscow, Russia
| |
Collapse
|
24
|
Wohl TR, Criss CR, Grooms DR. Visual Perturbation to Enhance Return to Sport Rehabilitation after Anterior Cruciate Ligament Injury: A Clinical Commentary. Int J Sports Phys Ther 2021; 16:552-564. [PMID: 33842051 PMCID: PMC8016421 DOI: 10.26603/001c.21251] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/10/2020] [Indexed: 01/13/2023] Open
Abstract
Anterior cruciate ligament (ACL) tears are common traumatic knee injuries causing joint instability, quadriceps muscle weakness and impaired motor coordination. The neuromuscular consequences of injury are not limited to the joint and surrounding musculature, but may modulate central nervous system reorganization. Neuroimaging data suggest patients with ACL injuries may require greater levels of visual-motor and neurocognitive processing activity to sustain lower limb control relative to healthy matched counterparts. Therapy currently fails to adequately address these nuanced consequences of ACL injury, which likely contributes to impaired neuromuscular control when visually or cognitively challenged and high rates of re-injury. This gap in rehabilitation may be filled by visual perturbation training, which may reweight sensory neural processing toward proprioception and reduce the dependency on vision to perform lower extremity motor tasks and/or increase visuomotor processing efficiency. This clinical commentary details a novel approach to supplement the current standard of care for ACL injury by incorporating stroboscopic glasses with key motor learning principles customized to target visual and cognitive dependence for motor control after ACL injury. LEVEL OF EVIDENCE 5.
Collapse
Affiliation(s)
- Timothy R Wohl
- Honors Tutorial College, Ohio University, Athens, OH, USA; Division of Physical Therapy, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, USA
| | - Cody R Criss
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Grover Center, Athens, OH, USA; Translational Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Dustin R Grooms
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Grover Center, Athens, OH, USA; Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, USA; Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, USA
| |
Collapse
|
25
|
Eichenbaum A, Pappas I, Lurie D, Cohen JR, D’Esposito M. Differential contributions of static and time-varying functional connectivity to human behavior. Netw Neurosci 2021; 5:145-165. [PMID: 33688610 PMCID: PMC7935045 DOI: 10.1162/netn_a_00172] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Measures of human brain functional connectivity acquired during the resting-state track critical aspects of behavior. Recently, fluctuations in resting-state functional connectivity patterns-typically averaged across in traditional analyses-have been considered for their potential neuroscientific relevance. There exists a lack of research on the differences between traditional "static" measures of functional connectivity and newly considered "time-varying" measures as they relate to human behavior. Using functional magnetic resonance imagining (fMRI) data collected at rest, and a battery of behavioral measures collected outside the scanner, we determined the degree to which each modality captures aspects of personality and cognitive ability. Measures of time-varying functional connectivity were derived by fitting a hidden Markov model. To determine behavioral relationships, static and time-varying connectivity measures were submitted separately to canonical correlation analysis. A single relationship between static functional connectivity and behavior existed, defined by measures of personality and stable behavioral features. However, two relationships were found when using time-varying measures. The first relationship was similar to the static case. The second relationship was unique, defined by measures reflecting trialwise behavioral variability. Our findings suggest that time-varying measures of functional connectivity are capable of capturing unique aspects of behavior to which static measures are insensitive.
Collapse
Affiliation(s)
- Adam Eichenbaum
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Ioannis Pappas
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Daniel Lurie
- Department of Psychology, University of California, Berkeley
| | - Jessica R. Cohen
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley
- Department of Psychology, University of California, Berkeley
| |
Collapse
|
26
|
Nęcka E, Gruszka A, Hampshire A, Sarzyńska-Wawer J, Anicai AE, Orzechowski J, Nowak M, Wójcik N, Sandrone S, Soreq E. The Effects of Working Memory Training on Brain Activity. Brain Sci 2021; 11:brainsci11020155. [PMID: 33503877 PMCID: PMC7911688 DOI: 10.3390/brainsci11020155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate if two weeks of working memory (WM) training on a progressive N-back task can generate changes in the activity of the underlying WM neural network. Forty-six healthy volunteers (23 training and 23 controls) were asked to perform the N-back task during three fMRI scanning sessions: (1) before training, (2) after the half of training sessions, and (3) at the end. Between the scanning sessions, the experimental group underwent a 10-session training of working memory with the use of an adaptive version of the N-back task, while the control group did not train anything. The N-back task in the scanning sessions was relatively easy (n = 2) in order to ensure high accuracy and a lack of between-group differences at the behavioral level. Such training-induced differences in neural efficiency were expected. Behavioral analyses revealed improved performance of both groups on the N-back task. However, these improvements resulted from the test-retest effect, not the training outside scanner. Performance on the non-trained stop-signal task did not demonstrate any transfer effect. Imaging analysis showed changes in activation in several significant clusters, with overlapping regions of interest in the frontal and parietal lobes. However, patterns of between-session changes of activation did not show any effect of training. The only finding that can be linked with training consists in strengthening the correlation between task performance accuracy and activation of the parietal regions of the neural network subserving working memory (left superior parietal lobule and right supramarginal gyrus posterior). These results suggest that the effects of WM training consist in learning that, in order to ensure high accuracy in the criterion task, activation of the parietal regions implicated in working memory updating must rise.
Collapse
Affiliation(s)
- Edward Nęcka
- Faculty of Philosophy, Institute of Psychology, Jagiellonian University in Kraków, 31-007 Krakow, Poland; (A.G.); (M.N.); (N.W.)
- Correspondence: ; Tel.: +48-126-332-432
| | - Aleksandra Gruszka
- Faculty of Philosophy, Institute of Psychology, Jagiellonian University in Kraków, 31-007 Krakow, Poland; (A.G.); (M.N.); (N.W.)
| | - Adam Hampshire
- The C3NL Lab, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London SW7 2BU, UK; (A.H.); (A.-E.A.); (S.S.); (E.S.)
| | | | - Andreea-Elena Anicai
- The C3NL Lab, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London SW7 2BU, UK; (A.H.); (A.-E.A.); (S.S.); (E.S.)
| | - Jarosław Orzechowski
- Department of Cognitive Psychology and Psychology of Individual Differences, Wroclaw Faculty of Psychology, SWPS University of Social Sciences and Humanities, 53-238 Wrocław, Poland;
| | - Michał Nowak
- Faculty of Philosophy, Institute of Psychology, Jagiellonian University in Kraków, 31-007 Krakow, Poland; (A.G.); (M.N.); (N.W.)
| | - Natalia Wójcik
- Faculty of Philosophy, Institute of Psychology, Jagiellonian University in Kraków, 31-007 Krakow, Poland; (A.G.); (M.N.); (N.W.)
| | - Stefano Sandrone
- The C3NL Lab, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London SW7 2BU, UK; (A.H.); (A.-E.A.); (S.S.); (E.S.)
| | - Eyal Soreq
- The C3NL Lab, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London SW7 2BU, UK; (A.H.); (A.-E.A.); (S.S.); (E.S.)
| |
Collapse
|
27
|
Cardoso FDSL, Afonso J, Roca A, Teoldo I. The association between perceptual-cognitive processes and response time in decision making in young soccer players. J Sports Sci 2020; 39:926-935. [PMID: 33287653 DOI: 10.1080/02640414.2020.1851901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In soccer, it is relevant to understand the roles of Systems 1 (intuitive) and 2 (deliberative) in perceptual-cognitive processes and how they influence response time when making decisions. The aim of this study was to analyse how response time in decision making managed by Systems 1 and 2 is associated to the perceptual-cognitive processes of young soccer players. Ninety young soccer players participated. Perceptual-cognitive processes were assessed through visual search strategies, cognitive effort, and verbal reports. Participants wore a mobile-eye tracking system while viewing 11-a-side match play video-based soccer simulations. Response time in decision making was used to create two sub-groups: faster and slower decision-makers. Results indicated that players with faster response time in decision making employed more fixations of shorter duration, displayed less cognitive effort, as well as a greater number of thought processes associated with planning. These results reinforce that there are differences in the way of using the perceptive-cognitive processes from the priority system in the decision-making process. It is concluded that faster decision making, managed by System 1, implies greater ability to employ visual search strategies and to process information, thus enabling increased cognitive efficiency.
Collapse
Affiliation(s)
- Felippe da Silva Leite Cardoso
- Department of Physical Education, Centre of Research and Studies in Soccer (NUPEF) - Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - André Roca
- Expert Performance and Skill Acquisition Research Group, Faculty of Sport, Allied Health and Performance Science, St Mary's University, London, UK
| | - Israel Teoldo
- Department of Physical Education, Centre of Research and Studies in Soccer (NUPEF) - Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
28
|
Wong CHY, Liu J, Lee TMC, Tao J, Wong AWK, Chau BKH, Chen L, Chan CCH. Fronto-cerebellar connectivity mediating cognitive processing speed. Neuroimage 2020; 226:117556. [PMID: 33189930 DOI: 10.1016/j.neuroimage.2020.117556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022] Open
Abstract
Processing speed is an important construct in understanding cognition. This study was aimed to control task specificity for understanding the neural mechanisms underlying cognitive processing speed. Forty young adult subjects performed attention tasks of two modalities (auditory and visual) and two levels of task rules (compatible and incompatible). Block-design fMRI captured BOLD signals during the tasks. Thirteen regions of interest were defined with reference to publicly available activation maps for processing speed tasks. Cognitive speed was derived from task reaction times, which yielded six sets of connectivity measures. Mixed-effect LASSO regression revealed six significant paths suggestive of a cerebello-frontal network predicting the cognitive speed. Among them, three are long range (two fronto-cerebellar, one cerebello-frontal), and three are short range (fronto-frontal, cerebello-cerebellar, and cerebello-thalamic). The long-range connections are likely to relate to cognitive control, and the short-range connections relate to rule-based stimulus-response processes. The revealed neural network suggests that automaticity, acting on the task rules and interplaying with effortful top-down attentional control, accounts for cognitive speed.
Collapse
Affiliation(s)
- Clive H Y Wong
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| | - Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou, Fujian 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, United States; Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of Traditional Chinese Medicine), Ministry of Education.
| | - Tatia M C Lee
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China.
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou, Fujian 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of Traditional Chinese Medicine), Ministry of Education.
| | - Alex W K Wong
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, United States; Department of Neurology, Washington University School of Medicine, St. Louis, United States.
| | - Bolton K H Chau
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong.
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou, Fujian 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of Traditional Chinese Medicine), Ministry of Education.
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
29
|
Assem M, Blank IA, Mineroff Z, Ademoğlu A, Fedorenko E. Activity in the fronto-parietal multiple-demand network is robustly associated with individual differences in working memory and fluid intelligence. Cortex 2020; 131:1-16. [PMID: 32777623 PMCID: PMC7530021 DOI: 10.1016/j.cortex.2020.06.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/11/2020] [Accepted: 06/09/2020] [Indexed: 01/04/2023]
Abstract
Numerous brain lesion and fMRI studies have linked individual differences in executive abilities and fluid intelligence to brain regions of the fronto-parietal "multiple-demand" (MD) network. Yet, fMRI studies have yielded conflicting evidence as to whether better executive abilities are associated with stronger or weaker MD activations and whether this relationship is restricted to the MD network. Here, in a large-sample (n = 216) fMRI investigation, we found that stronger activity in MD regions - functionally defined in individual participants - was robustly associated with more accurate and faster responses on a spatial working memory task performed in the scanner, as well as fluid intelligence measured independently (n = 114). In line with some prior claims about a relationship between language and fluid intelligence, we also found a weak association between activity in the brain regions of the left fronto-temporal language network during an independent passive reading task, and performance on the working memory task. However, controlling for the level of MD activity abolished this relationship, whereas the MD activity-behavior association remained highly reliable after controlling for the level of activity in the language network. Finally, we demonstrate how unreliable MD activity measures, coupled with small sample sizes, could falsely lead to the opposite, negative, association that has been reported in some prior studies. Taken together, these results demonstrate that a core component of individual differences variance in executive abilities and fluid intelligence is selectively and robustly positively associated with the level of activity in the MD network, a result that aligns well with lesion studies.
Collapse
Affiliation(s)
- Moataz Assem
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Idan A Blank
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Zachary Mineroff
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ahmet Ademoğlu
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Evelina Fedorenko
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, USA.
| |
Collapse
|
30
|
Koshiyama D, Fukunaga M, Okada N, Morita K, Nemoto K, Yamashita F, Yamamori H, Yasuda Y, Matsumoto J, Fujimoto M, Kudo N, Azechi H, Watanabe Y, Kasai K, Hashimoto R. Association between the superior longitudinal fasciculus and perceptual organization and working memory: A diffusion tensor imaging study. Neurosci Lett 2020; 738:135349. [PMID: 32889005 DOI: 10.1016/j.neulet.2020.135349] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Abstract
The superior longitudinal fasciculus (SLF) is a white matter structure that has long bidirectional projections among the prefrontal, temporal, occipital, and parietal cortices and extends over a wide area in a human brain. Recently, anatomical details of the SLF have been clarified using a diffusion tensor imaging (DTI) template of subjects from the Human Connectome Project. However, the neurobehavioral functions of the SLF have not been fully elucidated. It is speculated that the SLF contributes to a broad cognitive domain including visuospatial nonverbal cognitive ability and verbal memory ability because of its anatomical location; however, previous findings in imaging studies are inconsistent. Showing the contribution of the SLF to cognitive function may be important for improving our understanding of the functional role of white matter structures in the human brain. This study aimed to identify the relationship between DTI indices of the SLF and the Verbal Comprehension, Perceptual Organization, Working Memory and Processing Speed Indices of the Wechsler Adult Intelligence Scale-Third Edition using regression analysis, accounting for the effects of age, sex and scanner type in 583 healthy volunteers. We showed significant correlations between the fractional anisotropy of the left SLF and the Perceptual Organization Index (β = 0.21, p = 4.5×10-4) and Working Memory Index (β = 0.19, p = 4.0×10-4). These findings may have implications for the rehabilitation of cognitive function in patients with neurological disorders.
Collapse
Affiliation(s)
- Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Kentaro Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Fumio Yamashita
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan; Japan Community Health Care Organization, Osaka Hospital, Osaka, Japan; Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Life Grow Brilliant Mental Clinic, Medical Corporation Foster, Osaka, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Michiko Fujimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriko Kudo
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hirotsugu Azechi
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Shiga, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan.
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| |
Collapse
|
31
|
Mitchell TJ, Seitzman BA, Ballard N, Petersen SE, Shimony JS, Leuthardt EC. Human Brain Functional Network Organization Is Disrupted After Whole-Brain Radiation Therapy. Brain Connect 2020; 10:29-38. [PMID: 31964163 DOI: 10.1089/brain.2019.0713] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy (RT) plays a vital role in the treatment of brain cancers, but it frequently results in cognitive decline in the patients who receive it. Because the underlying mechanisms for this decline remain poorly understood, the brain is typically treated as a single, uniform volume when evaluating the toxic effects of RT plans. This ignorance represents a significant deficit in the field of radiation oncology, as the technology exists to manipulate dose distributions to spare regions of the brain, but there exists no body of knowledge regarding what is critical to spare. This deficit exists due to the numerous confounding factors that are frequently associated with radiotherapy, including the tumors themselves, other treatments such as surgery and chemotherapy, and dose gradients across the brain. Here, we present a case in which a 57-year-old male patient received a uniform dose of radiation across the whole brain, did not receive concurrent chemotherapy, had minimal surgical intervention and a small tumor burden, and received resting-state functional magnetic resonance imaging (fMRI) scans both before and after RT. To our knowledge, this is the first study on the effects of whole-brain radiotherapy on functional network organization, and this patient's treatment regimen represents a rare and non-replicable opportunity to isolate the effects of radiation on functional connectivity. We observed substantial changes in the subject's behavior and functional network organization over a 12-month timeframe. Interestingly, the homogenous radiation dose to the brain had a heterogeneous effect on cortical networks, and the functional networks most affected correspond with observed cognitive behavioral deficits. This novel study suggests that the cognitive decline that occurs after whole-brain radiation therapy may be network specific and related to the disruption of large-scale distributed functional systems, and it indicates that fMRI is a promising avenue of study for optimizing cognitive outcomes after RT.
Collapse
Affiliation(s)
- Timothy J Mitchell
- Department of Radiation Oncology and Washington University in St. Louis-School of Medicine, St. Louis, Missouri
| | - Benjamin A Seitzman
- Department of Neurology, Washington University in St. Louis-School of Medicine, St. Louis, Missouri
| | - Nicholas Ballard
- Department of Radiation Oncology and Washington University in St. Louis-School of Medicine, St. Louis, Missouri
| | - Steven E Petersen
- Department of Neurology, Washington University in St. Louis-School of Medicine, St. Louis, Missouri.,Mallinckrodt Institute of Radiology, Washington University in St. Louis-School of Medicine, St. Louis, Missouri.,Department of Neuroscience, Washington University in St. Louis-School of Medicine, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University in St. Louis-School of Engineering and Applied Science, St. Louis, Missouri.,Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University in St. Louis-School of Medicine, St. Louis, Missouri
| | - Eric C Leuthardt
- Department of Neuroscience, Washington University in St. Louis-School of Medicine, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University in St. Louis-School of Engineering and Applied Science, St. Louis, Missouri.,Department of Mechanical Engineering and Materials Science, Washington University in St. Louis-School of Engineering and Applied Science, St. Louis, Missouri.,Center for Innovation in Neuroscience and Technology and Washington University in St. Louis-School of Medicine, St. Louis, Missouri.,Brain Laser Center, Washington University in St. Louis-School of Medicine, St. Louis, Missouri.,Department of Neurological Surgery, Washington University in St. Louis-School of Medicine, St. Louis, Missouri
| |
Collapse
|
32
|
Helmlinger B, Sommer M, Feldhammer-Kahr M, Wood G, Arendasy ME, Kober SE. Programming experience associated with neural efficiency during figural reasoning. Sci Rep 2020; 10:13351. [PMID: 32770065 PMCID: PMC7415147 DOI: 10.1038/s41598-020-70360-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/17/2020] [Indexed: 11/08/2022] Open
Abstract
In the present study, we investigated neural processes underlying programming experience. Individuals with high programming experience might develop a form of computational thinking, which they can apply on complex problem-solving tasks such as reasoning tests. Therefore, N = 20 healthy young participants with previous programming experience and N = 21 participants without any programming experience performed three reasoning tests: Figural Inductive Reasoning (FIR), Numerical Inductive Reasoning (NIR), Verbal Deductive Reasoning (VDR). Using multi-channel EEG measurements, task-related changes in alpha and theta power as well as brain connectivity were investigated. Group differences were only observed in the FIR task. Programmers showed an improved performance in the FIR task as compared to non-programmers. Additionally, programmers exhibited a more efficient neural processing when solving FIR tasks, as indicated by lower brain activation and brain connectivity especially in easy tasks. Hence, behavioral and neural measures differed between groups only in tasks that are similar to mental processes required during programming, such as pattern recognition and algorithmic thinking by applying complex rules (FIR), rather than in tasks that require more the application of mathematical operations (NIR) or verbal tasks (VDR). Our results provide new evidence for neural efficiency in individuals with higher programming experience in problem-solving tasks.
Collapse
Affiliation(s)
- Birgit Helmlinger
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Markus Sommer
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | | | - Guilherme Wood
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Martin E Arendasy
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Silvia E Kober
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
33
|
Cotelli M, Manenti R, Gobbi E, Enrici I, Rusich D, Ferrari C, Adenzato M. Theory of Mind Performance Predicts tDCS-Mediated Effects on the Medial Prefrontal Cortex: A Pilot Study to Investigate the Role of Sex and Age. Brain Sci 2020; 10:brainsci10050257. [PMID: 32353992 PMCID: PMC7288024 DOI: 10.3390/brainsci10050257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) has become an increasingly promising tool for understanding the relationship between brain and behavior. The purpose of this study was to investigate whether the magnitude of sex- and age-related tDCS effects previously found in the medial prefrontal cortex (mPFC) during a Theory of Mind (ToM) task correlates with social cognition performance; in particular, we explored whether different patterns of activity would be detected in high- and low-performing participants. For this, young and elderly, male and female participants were categorized as a low- or high-performer according to their score on the Reading the Mind in the Eyes task. Furthermore, we explored whether sex- and age-related effects associated with active tDCS on the mPFC were related to cognitive functioning. We observed the following results: (i) elderly participants experience a significant decline in ToM performance compared to young participants; (ii) low-performing elderly females report slowing of reaction time when anodal tDCS is applied over the mPFC during a ToM task; and (iii) low-performing elderly females are characterized by lower scores in executive control functions, verbal fluency and verbal short-term memory. The relationship between tDCS results and cognitive functioning is discussed in light of the neuroscientific literature on sex- and age-related differences.
Collapse
Affiliation(s)
- Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125 Brescia, BS, Italy
| | - Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125 Brescia, BS, Italy
- Correspondence: ; Tel.: +39-030-3501457; Fax: +39-030-3533513
| | - Elena Gobbi
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125 Brescia, BS, Italy
| | - Ivan Enrici
- Department of Philosophy and Educational Sciences, University of Turin, 10124 Turin, TO, Italy
| | - Danila Rusich
- Department of Human Science, LUMSA University (Libera Università Maria Santissima Assunta), 00193 Rome, RM, Italy
| | - Clarissa Ferrari
- Statistics Service, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, BS, Italy
| | - Mauro Adenzato
- Department of Psychology, University of Turin, 10124 Turin, TO, Italy
| |
Collapse
|
34
|
Sivakolundu DK, West KL, Zuppichini M, Turner MP, Abdelkarim D, Zhao Y, Spence JS, Lu H, Okuda DT, Rypma B. The neurovascular basis of processing speed differences in humans: A model-systems approach using multiple sclerosis. Neuroimage 2020; 215:116812. [PMID: 32276075 DOI: 10.1016/j.neuroimage.2020.116812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 12/29/2022] Open
Abstract
Behavioral studies investigating fundamental cognitive abilities provide evidence that processing speed accounts for large proportions of performance variability between individuals. Processing speed decline is a hallmark feature of the cognitive disruption observed in healthy aging and in demyelinating diseases such as multiple sclerosis (MS), neuromyelitis optica, and Wilson's disease. Despite the wealth of evidence suggesting a central role for processing speed in cognitive decline, the neural mechanisms of this fundamental ability remain unknown. Intact neurovascular coupling, acute localized blood flow increases following neural activity, is essential for optimal neural function. We hypothesized that efficient coupling forms the neural basis of processing speed. Because MS features neural-glial-vascular system disruption, we used it as a model to test this hypothesis. To assess the integrity of the coupling system, we measured blood-oxygen-level-dependent (BOLD) signal in healthy controls (HCs) and MS patients using a 3T MRI scanner while they viewed radial checkerboards that flickered periodically at 8 Hz. To assess processing speed and cognitive function, we administered a battery of neuropsychological tests. While MS patients exhibited reduced ΔBOLD with reductions in processing speed, no such relationships were observed in HCs. To further investigate the mechanisms that underlie ΔBOLD-processing speed relationships, we assessed the physiologic components that constitute ΔBOLD signal (i.e., cerebral blood flow, ΔCBF; cerebral metabolic rate of oxygen, ΔCMRO2; neurovascular coupling ratio) in speed-preserved and -impaired MS patients. While ΔCBF and ΔCMRO2 showed no group-differences, the neurovascular coupling ratio was significantly reduced in speed-impaired MS patients compared to speed-preserved MS patients. Together, these results suggest that neurovascular uncoupling might underlie cognitive slowing in MS and might be the central pathogenic mechanism governing processing speed decline.
Collapse
Affiliation(s)
- Dinesh K Sivakolundu
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA; Department of Biological Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Kathryn L West
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Mark Zuppichini
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Monroe P Turner
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Dema Abdelkarim
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Yuguang Zhao
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Jeffrey S Spence
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Darin T Okuda
- Clinical Center for Multiple Sclerosis, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bart Rypma
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
35
|
Chen X, Hu N, Wang Y, Gao X. Validation of a brain-computer interface version of the digit symbol substitution test in healthy subjects. Comput Biol Med 2020; 120:103729. [PMID: 32250858 DOI: 10.1016/j.compbiomed.2020.103729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
Abstract
Digit symbol substitution test (DSST), which is a valid and sensitive tool to assess human cognitive dysfunction, has been widely used in clinical neuropsychology. Although several versions of DSST are currently available, most of the existing DSST versions rely on examinees' intact motor function. This limits their utility in severely motor-impaired individuals. A brain-computer interface (BCI) version of DSST was implemented in this study. Steady-state visual evoked potential (SSVEP) was adopted to build the BCI. Nine symbols in the proposed SSVEP BCI-based DSST were designed with clearly different shapes for decreasing measurement errors due to misidentified symbols. To reduce practice effect, furthermore, the digit-symbol pairs of each trial were different. A two-target SSVEP BCI was designed to judge whether the digit-symbol probe in the center of the user interface matched one of the nine digit-symbol pairs above the user interface. All 12 examinees were able to perform the tasks using the proposed SSVEP BCI-based DSST with 96.17 ± 4.18% averaged accuracy, which was comparable with that of computerized DSST. Furthermore, for examinees participating in both offline and online experiment, the accuracies of the online and offline experiments were comparable, supporting that the proposed BCI-DSST was reliable for repeatedly evaluating examinees' cognitive function over time. These results verified that the proposed SSVEP BCI-based DSST was feasible and effective for healthy subjects.
Collapse
Affiliation(s)
- Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Nan Hu
- Rehabilitation Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yijun Wang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
36
|
Peven JC, Litz GA, Brown B, Xie X, Grove GA, Watt JC, Erickson KI. Higher Cardiorespiratory Fitness is Associated with Reduced Functional Brain Connectivity During Performance of the Stroop Task. Brain Plast 2019; 5:57-67. [PMID: 31970060 PMCID: PMC6971823 DOI: 10.3233/bpl-190085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Although higher cardiorespiratory fitness (CRF) has been linked to better executive function, the mechanisms by which this occurs remain a matter of speculation. One hypothesis is that higher CRF is associated with elevated top-down control in which brain regions processing task-relevant information are up-regulated and brain regions processing task-irrelevant information are down-regulated. Methods: We tested this top-down hypothesis in 50 young adults (μ age = 25.22 ± 5.17 years) by measuring CRF via a graded maximal exercise test and performing functional Magnetic Resonance Imaging (fMRI) during a color-word Stroop task. We used task-evoked functional connectivity, quantified from a psychophysiological interaction analysis (PPI), to test our hypotheses that (a) higher CRF would be associated with greater connectivity between control centers (i.e., prefrontal and parietal areas) and visual feature centers (i.e., occipital areas) that are involved with processing task-relevant stimulus dimensions (i.e., color), and (b) higher CRF would be associated with lower connectivity between control centers and visual feature centers that are involved with processing task-irrelevant dimensions of the stimuli (i.e., word processing areas). Results: Controlling for sex and BMI, we found, consistent with our second hypothesis, that higher CRF was associated with reduced functional connectivity between parietal and occipital areas involved in the task-irrelevant dimension of the task (i.e., word form areas). There were no associations between CRF and functional connectivity with the prefrontal cortex or evidence of heightened connectivity between attentional control and visual feature centers. Conclusions: These results suggest that CRF associations with executive functioning might be explained by CRF-mediated differences between brain regions involved with attentional control (parietal regions) and the down-regulation of regions involved with processing task-irrelevant stimulus features (occipital regions).
Collapse
Affiliation(s)
- Jamie C Peven
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Geneva A Litz
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Belinda Brown
- School of Psychology and Exercise Science, Murdoch University, Perth, WA, Australia
| | - Xiaofeng Xie
- Department of Neurology, Hwa Mei Hospital, University of Chinese Academy of Science, Beijing, China
| | - George A Grove
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer C Watt
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Moriarty TA, Mermier C, Kravitz L, Gibson A, Beltz N, Zuhl M. Acute Aerobic Exercise Based Cognitive and Motor Priming: Practical Applications and Mechanisms. Front Psychol 2019; 10:2790. [PMID: 31920835 PMCID: PMC6920172 DOI: 10.3389/fpsyg.2019.02790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Acute exercise stimulates brain regions involved in motor and cognitive processes. Recent research efforts have explored the benefits of aerobic exercise on brain health and cognitive functioning with positive results reported for both healthy and neurocognitively impaired individuals. Specifically, exercise positioned near therapeutic (both behavioral and physical) activities may enhance outcomes associated with treatment outcomes (e.g., depression or motor skill) through neural plasticity promoting mechanisms (e.g., increased brain flow and oxygenation). This approach has been termed "exercise priming" and is a relatively new topic of exploration in the fields of exercise science and motor control. The authors report on physiological mechanisms that are related to the priming effect. In addition, parameters related to the exercise bout (e.g., intensity, duration) and the idea of combining exercise and therapeutic rehabilitation are explored. This exercise-based priming concept has the potential to be applied to many areas such as education, cognitive therapy, and motor rehabilitation.
Collapse
Affiliation(s)
- Terence A Moriarty
- Department of Health, Exercise, and Sports Sciences, The University of New Mexico, Albuquerque, NM, United States.,Department of Kinesiology, University of Northern Iowa, Cedar Falls, IA, United States
| | - Christine Mermier
- Department of Health, Exercise, and Sports Sciences, The University of New Mexico, Albuquerque, NM, United States
| | - Len Kravitz
- Department of Health, Exercise, and Sports Sciences, The University of New Mexico, Albuquerque, NM, United States
| | - Ann Gibson
- Department of Health, Exercise, and Sports Sciences, The University of New Mexico, Albuquerque, NM, United States
| | - Nicholas Beltz
- Department of Kinesiology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States
| | - Micah Zuhl
- Department of Health, Exercise, and Sports Sciences, The University of New Mexico, Albuquerque, NM, United States.,School of Health Sciences, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
38
|
Jaušovec N. The neural code of intelligence: From correlation to causation. Phys Life Rev 2019; 31:171-187. [PMID: 31706924 DOI: 10.1016/j.plrev.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/18/2019] [Indexed: 01/03/2023]
Abstract
Research into the neural underpinning of intelligence has mainly adopted a construct perspective: trying to find structural and functional brain characteristics that would accommodate the psychological concept of g. Few attempts have been made to explain intelligence exclusively based on brain characteristics - the brain perspective. From a methodological viewpoint the brain intelligence relation has been studied by means of correlational and interventional studies. The later providing a causal elucidation of the brain - intelligence relation. The best neuro-anatomical predictor of intelligence is brain volume showing a modest positive correlation with g, explaining between 9 to 16% of variance. The most likely explanation was that larger brains, containing more neurons, have a greater computational power and in that way allow more complex cognitive processing. Correlations with brain surface, thickness, convolution and callosal shape showed less consistent patterns. The development of diffusion tensor imaging has allowed researchers to look also into the microstructure of brain tissue. Consistently observed was a positively correlation between white matter integrity and intelligence, supporting the idea that efficient information transfer between hemispheres and brain areas is crucial for higher intellectual competence. Based on functional studies of the brain intelligence relationship three theories have been put forward: the neural efficiency, the P-FIT and the multi demand (MD) system theory. On the other hand, The Network Neuroscience Theory of g, based on methods from mathematics, physics, and computer science, is an example for the brain perspective on neurobiological underpinning of intelligence. In this framework network flexibility and dynamics provide the foundation for general intelligence. With respect to intervention studies the most promising results have been achieved with noninvasive brain stimulation and behavioral training providing tentative support for findings put forward by the correlational approach. To date the best consensus based on the diversity of results reported would be that g is predominantly determined by lateral prefrontal attentional control of structured sensory episodes in posterior brain areas. The capacity of flexible transitions between these network states represents the essence of intelligence - g.
Collapse
|
39
|
Lee JK, De Dios Y, Kofman I, Mulavara AP, Bloomberg JJ, Seidler RD. Head Down Tilt Bed Rest Plus Elevated CO 2 as a Spaceflight Analog: Effects on Cognitive and Sensorimotor Performance. Front Hum Neurosci 2019; 13:355. [PMID: 31680909 PMCID: PMC6811492 DOI: 10.3389/fnhum.2019.00355] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Long duration head down tilt bed rest (HDBR) has been widely used as a spaceflight analog environment to understand the effects of microgravity on human physiology and performance. Reports have indicated that crewmembers onboard the International Space Station (ISS) experience symptoms of elevated CO2 such as headaches at lower levels of CO2 than levels at which symptoms begin to appear on Earth. This suggests there may be combinatorial effects of elevated CO2 and the other physiological effects of microgravity including headward fluid shifts and body unloading. The purpose of the current study was to investigate these effects by evaluating the impact of 30 days of 6° HDBR and 0.5% CO2 (HDBR + CO2) on mission relevant cognitive and sensorimotor performance. We found a facilitation of processing speed and a decrement in functional mobility for subjects undergoing HDBR + CO2 relative to our previous study of HDBR in ambient air. In addition, nearly half of the participants in this study developed signs of Spaceflight Associated Neuro-ocular Syndrome (SANS), a constellation of ocular structural and functional changes seen in approximately one third of long duration astronauts. This allowed us the unique opportunity to compare the two subgroups. We found that participants who exhibited signs of SANS became more visually dependent and shifted their speed-accuracy tradeoff, such that they were slower but more accurate than those that did not incur ocular changes. These small subgroup findings suggest that SANS may have an impact on mission relevant performance inflight via sensory reweighting.
Collapse
Affiliation(s)
- Jessica K Lee
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, United States.,German Aerospace Center, Cologne, Germany
| | | | | | | | | | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, United States.,Department of Neurology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
40
|
Olsen A, Babikian T, Dennis EL, Ellis-Blied MU, Giza C, Marion SD, Mink R, Johnson J, Babbitt CJ, Thompson PM, Asarnow RF. Functional Brain Hyperactivations Are Linked to an Electrophysiological Measure of Slow Interhemispheric Transfer Time after Pediatric Moderate/Severe Traumatic Brain Injury. J Neurotrauma 2019; 37:397-409. [PMID: 31469049 PMCID: PMC6964811 DOI: 10.1089/neu.2019.6532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increased task-related blood oxygen level dependent (BOLD) activation is commonly observed in functional magnetic resonance imaging (fMRI) studies of moderate/severe traumatic brain injury (msTBI), but the functional relevance of these hyperactivations and how they are linked to more direct measures of neuronal function remain largely unknown. Here, we investigated how working memory load (WML)-dependent BOLD activation was related to an electrophysiological measure of interhemispheric transfer time (IHTT) in a sample of 18 msTBI patients and 26 demographically matched controls from the UCLA RAPBI (Recovery after Pediatric Brain Injury) study. In the context of highly similar fMRI task performance, a subgroup of TBI patients with slow IHTT had greater BOLD activation with higher WML than both healthy control children and a subgroup of msTBI patients with normal IHTT. Slower IHTT treated as a continuous variable was also associated with BOLD hyperactivation in the full TBI sample and in controls. Higher WML-dependent BOLD activation was related to better performance on a clinical cognitive performance index, an association that was more pronounced within the patient group with slow IHTT. Our previous work has shown that a subgroup of children with slow IHTT after pediatric msTBI has increased risk for poor white matter organization, long-term neurodegeneration, and poor cognitive outcome. BOLD hyperactivations after msTBI may reflect neuronal compensatory processes supporting higher-order capacity demanding cognitive functions in the context of inefficient neuronal transfer of information. The link between BOLD hyperactivations and slow IHTT adds to the multi-modal validation of this electrophysiological measure as a promising biomarker.
Collapse
Affiliation(s)
- Alexander Olsen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California.,Department of Psychology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California.,UCLA Steve Tisch BrainSPORT Program, Los Angeles, California
| | - Emily L Dennis
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California.,Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, Massachusetts.,Stanford Neurodevelopment, Affect, and Psychopathology Laboratory, Stanford, California.,Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California
| | - Monica U Ellis-Blied
- Fuller Theological Seminary School of Psychology, Pasadena, California.,Loma Linda VA Healthcare System, Loma Linda, California
| | - Christopher Giza
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, California.,UCLA Mattel Children's Hospital, Los Angeles, California.,Departments of Pediatrics and Neurosurgery, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Sarah DeBoard Marion
- Department of Psychology, Northwest Nazarene University, Nampa, Idaho.,Elk's Rehabilitation Hospital, St. Luke's Health System, Boise, Idaho
| | - Richard Mink
- Department of Pediatrics, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, California
| | - Jeffrey Johnson
- Department of Pediatrics LAC+USC Medical Center and Keck School of Medicine, Los Angeles, California
| | | | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California.,Department of Psychology, UCLA, Los Angeles, California.,Brain Research Institute, UCLA, Los Angeles, California
| |
Collapse
|
41
|
Sivakolundu DK, West KL, Maruthy GB, Zuppichini M, Turner MP, Abdelkarim D, Zhao Y, Nguyen D, Spence JS, Lu H, Okuda DT, Rypma B. Reduced arterial compliance along the cerebrovascular tree predicts cognitive slowing in multiple sclerosis: Evidence for a neurovascular uncoupling hypothesis. Mult Scler 2019; 26:1486-1496. [PMID: 31373536 DOI: 10.1177/1352458519866605] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cognitive slowing occurs in ~70% of multiple sclerosis (MS) patients. The pathophysiology of this slowing is unknown. Neurovascular coupling, acute localized blood flow increases following neural activity, is essential for efficient cognition. Loss of vascular compliance along the cerebrovascular tree would result in suboptimal vasodilation, neurovascular uncoupling, and cognitive slowing. OBJECTIVE To assess vascular compliance along the cerebrovascular tree and its relationship to MS-related cognition. METHODS We tested vascular compliance along the cerebrovascular tree by dividing cerebral cortex into nested layers. MS patients and healthy controls were scanned using a dual-echo functional magnetic resonance imaging (fMRI) sequence while they periodically inhaled room air and hypercapnic gas mixture. Cerebrovascular reactivity was calculated from both cerebral blood flow (arterial) and blood-oxygen-level-dependent signal (venous) increases per unit increase in end-tidal CO2. RESULTS Arterial cerebrovascular reactivity changes along the cerebrovascular tree were reduced in cognitively slow MS compared to cognitively normal MS and healthy controls. These changes were fit to exponential functions, the decay constant (arterial compliance index; ACI) of which was associated with individual subjects' reaction time and predicted reaction time after controlling for disease processes. CONCLUSION Such associations suggest prospects for utility of ACI in predicting future cognitive disturbances, monitoring cognitive deficiencies and therapeutic responses, and implicates neurovascular uncoupling as a mechanism of cognitive slowing in MS.
Collapse
Affiliation(s)
- Dinesh K Sivakolundu
- NeuroPsychometric Research Laboratory, Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Kathryn L West
- NeuroPsychometric Research Laboratory, Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Gayathri B Maruthy
- NeuroPsychometric Research Laboratory, Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Mark Zuppichini
- NeuroPsychometric Research Laboratory, Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Monroe P Turner
- NeuroPsychometric Research Laboratory, Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Dema Abdelkarim
- NeuroPsychometric Research Laboratory, Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Yuguang Zhao
- NeuroPsychometric Research Laboratory, Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Dylan Nguyen
- Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, Clinical Center for Multiple Sclerosis, Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey S Spence
- NeuroPsychometric Research Laboratory, Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Darin T Okuda
- Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, Clinical Center for Multiple Sclerosis, Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bart Rypma
- NeuroPsychometric Research Laboratory, Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA/Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
42
|
Kim Y, Kim J, Kim H, Kwon M, Lee M, Park S. Neural mechanism underlying self-controlled feedback on motor skill learning. Hum Mov Sci 2019; 66:198-208. [PMID: 31071612 DOI: 10.1016/j.humov.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/20/2018] [Accepted: 04/20/2019] [Indexed: 11/26/2022]
Abstract
The present study investigated the neural mechanisms of self-controlled (SC) feedback underlying its learning advantages. Forty-two participants, including 24 females (16.43 ± 2.61 years) and 18 males (17.56 ± 0.86 years), were randomly assigned to a SC or yoked (YK) group. The 6-key-pressing task with a goal movement time was adopted as the experimental task. The behavioral results showed that the SC group demonstrated superior performance in transfer; however, the differences in retention did not reach statistical significance. Event-related potential analyses revealed that the SC group exhibited larger post-stimulus and post-feedback P3 amplitudes than the YK group in the frontal regions; these amplitudes were larger in the YK group in the parietal regions. The post-response error positivity amplitude was found to be larger in the YK group than in the SC group. These results suggest that SC feedback may allow the learner to more actively process the task stimuli and feedback information, and contributes to enhancing the learner's motivation and attachment to the task being practiced. The present study provides a neurophysiological explanation for why SC feedback is effective in learning a new motor skill.
Collapse
|
43
|
Brown CA, Schmitt FA, Smith CD, Gold BT. Distinct patterns of default mode and executive control network circuitry contribute to present and future executive function in older adults. Neuroimage 2019; 195:320-332. [PMID: 30953834 PMCID: PMC6536351 DOI: 10.1016/j.neuroimage.2019.03.073] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/16/2019] [Accepted: 03/30/2019] [Indexed: 11/26/2022] Open
Abstract
Executive function (EF) performance in older adults has been linked with functional and structural profiles within the executive control network (ECN) and default mode network (DMN), white matter hyperintensities (WMH) burden and levels of Alzheimer's disease (AD) pathology. Here, we simultaneously explored the unique contributions of these factors to baseline and longitudinal EF performance in older adults. Thirty-two cognitively normal (CN) older adults underwent neuropsychological testing at baseline and annually for three years. Neuroimaging and AD pathology measures were collected at baseline. Separate linear regression models were used to determine which of these variables predicted composite EF scores at baseline and/or average annual change in composite ΔEF scores over the three-year follow-up period. Results demonstrated that low DMN deactivation, high ECN activation and WMH burden were the main predictors of EF scores at baseline. In contrast, poor DMN and ECN WM microstructure and higher AD pathology predicted greater annual decline in EF scores. Subsequent mediation analysis demonstrated that DMN WM microstructure uniquely mediated the relationship between AD pathology and ΔEF. These results suggest that functional activation patterns within the DMN and ECN and WMHs contribute to baseline EF while structural connectivity within these networks impact longitudinal EF performance in older adults.
Collapse
Affiliation(s)
- Christopher A Brown
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA; Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA; Department of Psychiatry, University of Kentucky, Lexington, KY, 40536, USA
| | - Charles D Smith
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA; Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Brian T Gold
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
44
|
Curtin A, Ayaz H, Tang Y, Sun J, Wang J, Tong S. Enhancing neural efficiency of cognitive processing speed via training and neurostimulation: An fNIRS and TMS study. Neuroimage 2019; 198:73-82. [PMID: 31078636 DOI: 10.1016/j.neuroimage.2019.05.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 11/24/2022] Open
Abstract
Speed of Processing (SoP) represents a fundamental limiting step in cognitive performance which may underlie General Intelligence. The measure of SoP is particularly sensitive to aging, neurological or cognitive diseases, and has become a benchmark for diagnosis, cognitive remediation, and enhancement. Neural efficiency of the Dorsolateral Prefrontal Cortex (DLPFC) is proposed to account for individual differences in SoP. However, the mechanisms by which DLPFC efficiency is shaped by training and whether it can be enhanced remain elusive. To address this, we monitored the brain activity of sixteen healthy participants using functional Near Infrared Spectroscopy (fNIRS) while practicing a common SoP task (Symbol Digit Substitution Task) across 4 sessions. Furthermore, in each session, participants received counterbalanced excitatory repetitive transcranial magnetic stimulation (rTMS) during mid-session breaks. Results indicate a significant involvement of the left-DLPFC in SoP, whose neural efficiency is consistently increased through task practice. Active neurostimulation, but not Sham, significantly enhanced the neural efficiency. These findings suggest a common mechanism by which neurostimulation may aid to accelerate learning.
Collapse
Affiliation(s)
- Adrian Curtin
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA; Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai, China
| | - Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA; University of Pennsylvania, Department of Family and Community Health, Philadelphia, PA, USA; Children's Hospital of Philadelphia, Center for Injury Research and Prevention, Philadelphia, PA, USA.
| | - Yingying Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Junfeng Sun
- Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shanbao Tong
- Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai, China.
| |
Collapse
|
45
|
Manca R, Stabile MR, Bevilacqua F, Cadorin C, Piccione F, Sharrack B, Venneri A. Cognitive speed and white matter integrity in secondary progressive multiple sclerosis. Mult Scler Relat Disord 2019; 30:198-207. [DOI: 10.1016/j.msard.2019.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/23/2019] [Accepted: 02/15/2019] [Indexed: 01/28/2023]
|
46
|
Turner MP, Hubbard NA, Sivakolundu DK, Himes LM, Hutchison JL, Hart J, Spence JS, Frohman EM, Frohman TC, Okuda DT, Rypma B. Preserved canonicality of the BOLD hemodynamic response reflects healthy cognition: Insights into the healthy brain through the window of Multiple Sclerosis. Neuroimage 2019; 190:46-55. [PMID: 29454932 DOI: 10.1016/j.neuroimage.2017.12.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022] Open
Abstract
The hemodynamic response function (HRF), a model of brain blood-flow changes in response to neural activity, reflects communication between neurons and the vasculature that supplies these neurons in part by means of glial cell intermediaries (e.g., astrocytes). Intact neural-vascular communication might play a central role in optimal cognitive performance. This hypothesis can be tested by comparing healthy individuals to those with known white-matter damage and impaired performance, as seen in Multiple Sclerosis (MS). Glial cell intermediaries facilitate the ability of neurons to adequately convey metabolic needs to cerebral vasculature for sufficient oxygen and nutrient perfusion. In this study, we isolated measurements of the HRF that could quantify the extent to which white-matter affects neural-vascular coupling and cognitive performance. HRFs were modeled from multiple brain regions during multiple cognitive tasks using piecewise cubic spline functions, an approach that minimized assumptions regarding HRF shape that may not be valid for diseased populations, and were characterized using two shape metrics (peak amplitude and time-to-peak). Peak amplitude was reduced, and time-to-peak was longer, in MS patients relative to healthy controls. Faster time-to-peak was predicted by faster reaction time, suggesting an important role for vasodilatory speed in the physiology underlying processing speed. These results support the hypothesis that intact neural-glial-vascular communication underlies optimal neural and cognitive functioning.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Nicholas A Hubbard
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Lyndahl M Himes
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - John Hart
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey S Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Elliot M Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Teresa C Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darin T Okuda
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
47
|
Blumen HM, Brown LL, Habeck C, Allali G, Ayers E, Beauchet O, Callisaya M, Lipton RB, Mathuranath PS, Phan TG, Pradeep Kumar VG, Srikanth V, Verghese J. Gray matter volume covariance patterns associated with gait speed in older adults: a multi-cohort MRI study. Brain Imaging Behav 2019; 13:446-460. [PMID: 29629501 PMCID: PMC6177326 DOI: 10.1007/s11682-018-9871-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Accelerated gait decline in aging is associated with many adverse outcomes, including an increased risk for falls, cognitive decline, and dementia. Yet, the brain structures associated with gait speed, and how they relate to specific cognitive domains, are not well-understood. We examined structural brain correlates of gait speed, and how they relate to processing speed, executive function, and episodic memory in three non-demented and community-dwelling older adult cohorts (Overall N = 352), using voxel-based morphometry and multivariate covariance-based statistics. In all three cohorts, we identified gray matter volume covariance patterns associated with gait speed that included brain stem, precuneus, fusiform, motor, supplementary motor, and prefrontal (particularly ventrolateral prefrontal) cortex regions. Greater expression of these gray matter volume covariance patterns linked to gait speed were associated with better processing speed in all three cohorts, and with better executive function in one cohort. These gray matter covariance patterns linked to gait speed were not associated with episodic memory in any of the cohorts. These findings suggest that gait speed, processing speed (and to some extent executive functions) rely on shared neural systems that are subject to age-related and dementia-related change. The implications of these findings are discussed within the context of the development of interventions to compensate for age-related gait and cognitive decline.
Collapse
Affiliation(s)
- Helena M Blumen
- Department of Medicine, Albert Einstein College of Medicine, 1225 Morris Park Avenue, Van Etten Building, Room 313B, Bronx, NY, 10461, USA.
- Department of Neurology, Albert Einstein College of Medicine, 1225 Morris Park Avenue, Van Etten Building, Room 313B, Bronx, NY, 10461, USA.
| | - Lucy L Brown
- Department of Neurology, Albert Einstein College of Medicine, 1225 Morris Park Avenue, Van Etten Building, Room 313B, Bronx, NY, 10461, USA
| | - Christian Habeck
- Cognitive Neuroscience Division, Department of Neurology and Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Gilles Allali
- Department of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Emmeline Ayers
- Department of Medicine, Albert Einstein College of Medicine, 1225 Morris Park Avenue, Van Etten Building, Room 313B, Bronx, NY, 10461, USA
| | - Olivier Beauchet
- Joseph Kaufmann Chair in Geriatric Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Michele Callisaya
- Stroke and Ageing Research Group, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Menzies Institute for Medical Research, University of Tasmania (M.L.C.), Hobart, TAS, Australia
| | - Richard B Lipton
- Department of Neurology, Albert Einstein College of Medicine, 1225 Morris Park Avenue, Van Etten Building, Room 313B, Bronx, NY, 10461, USA
| | - P S Mathuranath
- Department of Neurology, National Institute of Mental Health & Neurosciences, Bengaluru, Karnataka, India
| | - Thanh G Phan
- Stroke and Ageing Research Group, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - V G Pradeep Kumar
- Department of Neurology, Baby Memorial Hospital, Kozhikode, Kerala, India
| | - Velandai Srikanth
- Stroke and Ageing Research Group, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Menzies Institute for Medical Research, University of Tasmania (M.L.C.), Hobart, TAS, Australia
| | - Joe Verghese
- Department of Medicine, Albert Einstein College of Medicine, 1225 Morris Park Avenue, Van Etten Building, Room 313B, Bronx, NY, 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, 1225 Morris Park Avenue, Van Etten Building, Room 313B, Bronx, NY, 10461, USA
| |
Collapse
|
48
|
Electrophysiological Assessment of the Impact of Mobile Phone Radiation on Cognition in Persons With Epilepsy. J Clin Neurophysiol 2019; 36:112-118. [DOI: 10.1097/wnp.0000000000000545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
49
|
Gilmour G, Porcelli S, Bertaina-Anglade V, Arce E, Dukart J, Hayen A, Lobo A, Lopez-Anton R, Merlo Pich E, Pemberton DJ, Havenith MN, Glennon JC, Harel BT, Dawson G, Marston H, Kozak R, Serretti A. Relating constructs of attention and working memory to social withdrawal in Alzheimer’s disease and schizophrenia: issues regarding paradigm selection. Neurosci Biobehav Rev 2019; 97:47-69. [DOI: 10.1016/j.neubiorev.2018.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/29/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022]
|
50
|
Babu Henry Samuel I, Barkley C, Marino SE, Wang C, Han SM, Birnbaum AK, Cibula JE, Ding M. Brain's compensatory response to drug-induced cognitive impairment. J Clin Exp Neuropsychol 2018; 40:1000-1012. [PMID: 29720037 PMCID: PMC6141311 DOI: 10.1080/13803395.2018.1458822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Topiramate (TPM), a frequently prescribed antiseizure medication, can cause severe cognitive side-effects. Though these side-effects have been studied behaviorally, the underlying neural mechanisms are unknown. In a double-blind, randomized, placebo-controlled, crossover study of TPM's impact on cognition, nine healthy volunteers completed three study sessions: a no-drug baseline session and two sessions during which they received either TPM or placebo. Electroencephalogram was recorded during each session while subjects performed a working-memory task with three memory-loads. RESULTS Comparing TPM with baseline we found the following results. (a) TPM administration led to declines in behavioral performance. (b) Fronto-central event-related potentials (ERP) elicited by probe stimuli, representing the primary task network activity, showed strong memory-load modulations at baseline, but the magnitude of these load-dependent modulations was significantly reduced during TPM session, suggesting drug-induced impairments of the primary task network. (c) ERP responses over bilateral fronto-temporal electrodes, which were not load sensitive at baseline, showed significant memory-load modulations after TPM administration, suggesting the drug-related recruitment of additional neural resources. (d) At fronto-central scalp sites, there was significant increase in response amplitude for low memory-load during TPM session compared to baseline, and the amplitude increase was dependent on TPM plasma concentration, suggesting that the primary task network became less efficient under TPM impact. (e) At bilateral fronto-temporal electrodes, there were no ERP differences when comparing low memory-load trials, but TPM administration led to an increase in ERP responses to high load, the magnitude of which was positively correlated with task performance, suggesting that the recruited neural resources were beneficial for task performance. Placebo-TPM comparison yielded similar effects albeit with generally reduced significance and effect sizes. CONCLUSION Our findings support the hypothesis that TPM impairs the primary task network by reducing its efficiency, which triggers compensatory recruitment of additional resources to maintain task performance.
Collapse
Affiliation(s)
- Immanuel Babu Henry Samuel
- a J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , Gainesville , FL , USA
| | - Christopher Barkley
- b Center for Clinical and Cognitive Neuropharmacology , University of Minnesota , Minneapolis , MN , USA
| | - Susan E Marino
- b Center for Clinical and Cognitive Neuropharmacology , University of Minnesota , Minneapolis , MN , USA
| | - Chao Wang
- a J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , Gainesville , FL , USA
| | - Sahng-Min Han
- a J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , Gainesville , FL , USA
| | - Angela K Birnbaum
- b Center for Clinical and Cognitive Neuropharmacology , University of Minnesota , Minneapolis , MN , USA
| | - Jean E Cibula
- c Department of Neurology , University of Florida , Gainesville , FL , USA
| | - Mingzhou Ding
- a J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , Gainesville , FL , USA
| |
Collapse
|