1
|
Hourani S, Pouladi MA. Oligodendroglia and myelin pathology in fragile X syndrome. J Neurochem 2024; 168:2214-2226. [PMID: 38898700 DOI: 10.1111/jnc.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Studies of the pathophysiology of fragile X syndrome (FXS) have predominantly focused on synaptic and neuronal disruptions in the disease. However, emerging studies highlight the consistency of white matter abnormalities in the disorder. Recent investigations using animal models of FXS have suggested a role for the fragile X translational regulator 1 protein (FMRP) in the development and function of oligodendrocytes, the myelinating cells of the central nervous system. These studies are starting to uncover FMRP's involvement in the regulation of myelin-related genes, such as myelin basic protein, and its influence on the maturation and functionality of oligodendrocyte precursor cells and oligodendrocytes. Here, we consider evidence of white matter abnormalities in FXS, review our current understanding of FMRP's role in oligodendrocyte development and function, and highlight gaps in our knowledge of the pathogenic mechanisms that may contribute to white matter abnormalities in FXS. Addressing these gaps may help identify new therapeutic strategies aimed at enhancing outcomes for individuals affected by FXS.
Collapse
Affiliation(s)
- Shaima Hourani
- Department of Medical Genetics, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Matsuzaki J, Kagitani-Shimono K, Aoki S, Hanaie R, Kato Y, Nakanishi M, Tatsumi A, Tominaga K, Yamamoto T, Nagai Y, Mohri I, Taniike M. Abnormal cortical responses elicited by audiovisual movies in patients with autism spectrum disorder with atypical sensory behavior: A magnetoencephalographic study. Brain Dev 2022; 44:81-94. [PMID: 34563417 DOI: 10.1016/j.braindev.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Atypical sensory behavior disrupts behavioral adaptation in children with autism spectrum disorder (ASD); however, neural correlates of sensory dysfunction using magnetoencephalography (MEG) remain unclear. METHOD We used MEG to measure the cortical activation elicited by visual (uni)/audiovisual (multisensory) movies in 46 children (7-14 years) were included in final analysis: 13 boys with atypical audiovisual behavior in ASD (AAV+), 10 without this condition, and 23 age-matched typically developing boys. RESULTS The AAV+ group demonstrated an increase in the cortical activation in the bilateral insula in response to unisensory movies and in the left occipital, right superior temporal sulcus (rSTS), and temporal regions to multisensory movies. These increased responses were correlated with severity of the sensory impairment. Increased theta-low gamma oscillations were observed in the rSTS in AAV+. CONCLUSION The findings suggest that AAV is attributed to atypical neural networks centered on the rSTS.
Collapse
Affiliation(s)
- Junko Matsuzaki
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Sho Aoki
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Ryuzo Hanaie
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoko Kato
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Mariko Nakanishi
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Aika Tatsumi
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koji Tominaga
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoka Yamamoto
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yukie Nagai
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Ikuko Mohri
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masako Taniike
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
3
|
Hao K, Chen Y, Yan X, Zhu X. Cilia locally synthesize proteins to sustain their ultrastructure and functions. Nat Commun 2021; 12:6971. [PMID: 34848703 PMCID: PMC8632896 DOI: 10.1038/s41467-021-27298-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
Cilia are microtubule-based hair-like organelles propelling locomotion and extracellular liquid flow or sensing environmental stimuli. As cilia are diffusion barrier-gated subcellular compartments, their protein components are thought to come from the cell body through intraflagellar transport or diffusion. Here we show that cilia locally synthesize proteins to maintain their structure and functions. Multicilia of mouse ependymal cells are abundant in ribosomal proteins, translation initiation factors, and RNA, including 18 S rRNA and tubulin mRNA. The cilia actively generate nascent peptides, including those of tubulin. mRNA-binding protein Fmrp localizes in ciliary central lumen and appears to function in mRNA delivery into the cilia. Its depletion by RNAi impairs ciliary local translation and induces multicilia degeneration. Expression of exogenous Fmrp, but not an isoform tethered to mitochondria, rescues the degeneration defects. Therefore, local translation defects in cilia might contribute to the pathology of ciliopathies and other diseases such as Fragile X syndrome.
Collapse
Affiliation(s)
- Kai Hao
- grid.507739.f0000 0001 0061 254XState Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yawen Chen
- grid.507739.f0000 0001 0061 254XState Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China.
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China.
| |
Collapse
|
4
|
Chen T, Chen Y, Yuan M, Gerstein M, Li T, Liang H, Froehlich T, Lu L. The Development of a Practical Artificial Intelligence Tool for Diagnosing and Evaluating Autism Spectrum Disorder: Multicenter Study. JMIR Med Inform 2020; 8:e15767. [PMID: 32041690 PMCID: PMC7244998 DOI: 10.2196/15767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/01/2019] [Accepted: 02/09/2020] [Indexed: 01/28/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with an unknown etiology. Early diagnosis and intervention are key to improving outcomes for patients with ASD. Structural magnetic resonance imaging (sMRI) has been widely used in clinics to facilitate the diagnosis of brain diseases such as brain tumors. However, sMRI is less frequently used to investigate neurological and psychiatric disorders, such as ASD, owing to the subtle, if any, anatomical changes of the brain. Objective This study aimed to investigate the possibility of identifying structural patterns in the brain of patients with ASD as potential biomarkers in the diagnosis and evaluation of ASD in clinics. Methods We developed a novel 2-level histogram-based morphometry (HBM) classification framework in which an algorithm based on a 3D version of the histogram of oriented gradients (HOG) was used to extract features from sMRI data. We applied this framework to distinguish patients with ASD from healthy controls using 4 datasets from the second edition of the Autism Brain Imaging Data Exchange, including the ETH Zürich (ETH), NYU Langone Medical Center: Sample 1, Oregon Health and Science University, and Stanford University (SU) sites. We used a stratified 10-fold cross-validation method to evaluate the model performance, and we applied the Naive Bayes approach to identify the predictive ASD-related brain regions based on classification contributions of each HOG feature. Results On the basis of the 3D HOG feature extraction method, our proposed HBM framework achieved an area under the curve (AUC) of >0.75 in each dataset, with the highest AUC of 0.849 in the ETH site. We compared the 3D HOG algorithm with the original 2D HOG algorithm, which showed an accuracy improvement of >4% in each dataset, with the highest improvement of 14% (6/42) in the SU site. A comparison of the 3D HOG algorithm with the scale-invariant feature transform algorithm showed an AUC improvement of >18% in each dataset. Furthermore, we identified ASD-related brain regions based on the sMRI images. Some of these regions (eg, frontal gyrus, temporal gyrus, cingulate gyrus, postcentral gyrus, precuneus, caudate, and hippocampus) are known to be implicated in ASD in prior neuroimaging literature. We also identified less well-known regions that may play unrecognized roles in ASD and be worth further investigation. Conclusions Our research suggested that it is possible to identify neuroimaging biomarkers that can distinguish patients with ASD from healthy controls based on the more cost-effective sMRI images of the brain. We also demonstrated the potential of applying data-driven artificial intelligence technology in the clinical setting of neurological and psychiatric disorders, which usually harbor subtle anatomical changes in the brain that are often invisible to the human eye.
Collapse
Affiliation(s)
- Tao Chen
- School of Information Management, Wuhan University, Wuhan, China.,School of Information Technology, Shangqiu Normal University, Shangqiu, China
| | - Ye Chen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Mengxue Yuan
- School of Information Management, Wuhan University, Wuhan, China
| | - Mark Gerstein
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States.,Department of Computer Science, Yale University, New Haven, CT, United States
| | - Tingyu Li
- Children Nutrition Research Center, Chongqing, China.,Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Huiying Liang
- Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Tanya Froehlich
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Long Lu
- School of Information Management, Wuhan University, Wuhan, China.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
5
|
Razak KA, Dominick KC, Erickson CA. Developmental studies in fragile X syndrome. J Neurodev Disord 2020; 12:13. [PMID: 32359368 PMCID: PMC7196229 DOI: 10.1186/s11689-020-09310-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/13/2020] [Indexed: 01/27/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common single gene cause of autism and intellectual disabilities. Humans with FXS exhibit increased anxiety, sensory hypersensitivity, seizures, repetitive behaviors, cognitive inflexibility, and social behavioral impairments. The main purpose of this review is to summarize developmental studies of FXS in humans and in the mouse model, the Fmr1 knockout mouse. The literature presents considerable evidence that a number of early developmental deficits can be identified and that these early deficits chart a course of altered developmental experience leading to symptoms well characterized in adolescents and adults. Nevertheless, a number of critical issues remain unclear or untested regarding the development of symptomology and underlying mechanisms. First, what is the role of FMRP, the protein product of Fmr1 gene, during different developmental ages? Does the absence of FMRP during early development lead to irreversible changes, or could reintroduction of FMRP or therapeutics aimed at FMRP-interacting proteins/pathways hold promise when provided in adults? These questions have implications for clinical trial designs in terms of optimal treatment windows, but few studies have systematically addressed these issues in preclinical and clinical work. Published studies also point to complex trajectories of symptom development, leading to the conclusion that single developmental time point studies are unlikely to disambiguate effects of genetic mutation from effects of altered developmental experience and compensatory plasticity. We conclude by suggesting a number of experiments needed to address these major gaps in the field.
Collapse
Affiliation(s)
- Khaleel A Razak
- Department of Psychology and Graduate Neuroscience Program, University of California, Riverside, USA
| | - Kelli C Dominick
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA
| | - Craig A Erickson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA. .,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA.
| |
Collapse
|
6
|
Salcedo-Arellano MJ, Dufour B, McLennan Y, Martinez-Cerdeno V, Hagerman R. Fragile X syndrome and associated disorders: Clinical aspects and pathology. Neurobiol Dis 2020; 136:104740. [PMID: 31927143 PMCID: PMC7027994 DOI: 10.1016/j.nbd.2020.104740] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/23/2022] Open
Abstract
This review aims to assemble many years of research and clinical experience in the fields of neurodevelopment and neuroscience to present an up-to-date understanding of the clinical presentation, molecular and brain pathology associated with Fragile X syndrome, a neurodevelopmental condition that develops with the full mutation of the FMR1 gene, located in the q27.3 loci of the X chromosome, and Fragile X-associated tremor/ataxia syndrome a neurodegenerative disease experienced by aging premutation carriers of the FMR1 gene. It is important to understand that these two syndromes have a very distinct clinical and pathological presentation while sharing the same origin: the mutation of the FMR1 gene; revealing the complexity of expansion genetics.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA.
| | - Brett Dufour
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Yingratana McLennan
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA
| | - Veronica Martinez-Cerdeno
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Randi Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
7
|
Sandoval GM, Shim S, Hong DS, Garrett AS, Quintin EM, Marzelli MJ, Patnaik S, Lightbody AA, Reiss AL. Neuroanatomical abnormalities in fragile X syndrome during the adolescent and young adult years. J Psychiatr Res 2018; 107:138-144. [PMID: 30408626 PMCID: PMC6249038 DOI: 10.1016/j.jpsychires.2018.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Abnormal brain development and cognitive dysfunction have been reported both in children and in adults with fragile X syndrome (FXS). However, few studies have examined neuroanatomical abnormalities in FXS during adolescence. In this study we focus on adolescent subjects with FXS (N = 54) as compared to age- and sex-matched subjects with idiopathic intellectual disability (Comparison Group) (N = 32), to examine neuroanatomical differences during this developmental period. Brain structure was assessed with voxel-based morphometry and independent groups t-test in SPM8 software. Results showed that the FXS group, relative to the comparison group, had significantly larger gray matter volume (GMV) in only one region: the bilateral caudate nucleus, but have smaller GMV in several regions including bilateral medial frontal, pregenual cingulate, gyrus rectus, insula, and superior temporal gyrus. Group differences also were noted in white matter regions. Within the FXS group, lower FMRP levels were associated with less GMV in several regions including cerebellum and gyrus rectus, and less white matter volume (WMV) in pregenual cingulate, middle frontal gyrus, and other regions. Lower full scale IQ within the FXS group was associated with larger right caudate nucleus GMV. In conclusion, adolescents and young adults with FXS demonstrate neuroanatomical abnormalities consistent with those previously reported in children and adults with FXS. These brain variations likely result from reduced FMRP during early neurodevelopment and mediate downstream deleterious effects on cognitive function.
Collapse
|
8
|
Abstract
X-linked cerebellar ataxias (XLCA) are an expanding group of genetically heterogeneous and clinically variable conditions characterized by cerebellar dysgenesis (hypoplasia, atrophy, or dysplasia) caused by gene mutations or genomic imbalances on the X chromosome. The neurologic features of XLCA include hypotonia, developmental delay, intellectual disability, ataxia, and other cerebellar signs. Normal cognitive development has also been reported. Cerebellar defects may be isolated or associated with other brain malformations or extraneurologic involvement. More than 20 genes on the X chromosome, mainly encoding for proteins involved in brain development and synaptic function that have been constantly or occasionally associated with a pathologic cerebellar phenotype, and several families with X-linked inheritance have been reported. Given the excess of males with ataxia, this group of conditions is probably underestimated and families of patients with neuroradiologic and clinical evidence of a cerebellar disorder should be counseled for high risk of X-linked inheritance.
Collapse
Affiliation(s)
- Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy.
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy
| |
Collapse
|
9
|
Klein M, van Donkelaar M, Verhoef E, Franke B. Imaging genetics in neurodevelopmental psychopathology. Am J Med Genet B Neuropsychiatr Genet 2017; 174:485-537. [PMID: 29984470 PMCID: PMC7170264 DOI: 10.1002/ajmg.b.32542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 03/10/2017] [Indexed: 01/27/2023]
Abstract
Neurodevelopmental disorders are defined by highly heritable problems during development and brain growth. Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), and intellectual disability (ID) are frequent neurodevelopmental disorders, with common comorbidity among them. Imaging genetics studies on the role of disease-linked genetic variants on brain structure and function have been performed to unravel the etiology of these disorders. Here, we reviewed imaging genetics literature on these disorders attempting to understand the mechanisms of individual disorders and their clinical overlap. For ADHD and ASD, we selected replicated candidate genes implicated through common genetic variants. For ID, which is mainly caused by rare variants, we included genes for relatively frequent forms of ID occurring comorbid with ADHD or ASD. We reviewed case-control studies and studies of risk variants in healthy individuals. Imaging genetics studies for ADHD were retrieved for SLC6A3/DAT1, DRD2, DRD4, NOS1, and SLC6A4/5HTT. For ASD, studies on CNTNAP2, MET, OXTR, and SLC6A4/5HTT were found. For ID, we reviewed the genes FMR1, TSC1 and TSC2, NF1, and MECP2. Alterations in brain volume, activity, and connectivity were observed. Several findings were consistent across studies, implicating, for example, SLC6A4/5HTT in brain activation and functional connectivity related to emotion regulation. However, many studies had small sample sizes, and hypothesis-based, brain region-specific studies were common. Results from available studies confirm that imaging genetics can provide insight into the link between genes, disease-related behavior, and the brain. However, the field is still in its early stages, and conclusions about shared mechanisms cannot yet be drawn.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Ellen Verhoef
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Bruno JL, Hosseini SMH, Saggar M, Quintin EM, Raman MM, Reiss AL. Altered Brain Network Segregation in Fragile X Syndrome Revealed by Structural Connectomics. Cereb Cortex 2017; 27:2249-2259. [PMID: 27009247 DOI: 10.1093/cercor/bhw055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism spectrum disorder, is associated with significant behavioral, social, and neurocognitive deficits. Understanding structural brain network topology in FXS provides an important link between neurobiological and behavioral/cognitive symptoms of this disorder. We investigated the connectome via whole-brain structural networks created from group-level morphological correlations. Participants included 100 individuals: 50 with FXS and 50 with typical development, age 11-23 years. Results indicated alterations in topological properties of structural brain networks in individuals with FXS. Significantly reduced small-world index indicates a shift in the balance between network segregation and integration and significantly reduced clustering coefficient suggests that reduced local segregation shifted this balance. Caudate and amygdala were less interactive in the FXS network further highlighting the importance of subcortical region alterations in the neurobiological signature of FXS. Modularity analysis indicates that FXS and typically developing groups' networks decompose into different sets of interconnected sub networks, potentially indicative of aberrant local interconnectivity in individuals with FXS. These findings advance our understanding of the effects of fragile X mental retardation protein on large-scale brain networks and could be used to develop a connectome-level biological signature for FXS.
Collapse
Affiliation(s)
- Jennifer Lynn Bruno
- Department of Psychiatry, Center for Interdisciplinary Brain Sciences Research, Stanford, CA 94305-5795, USA
| | - S M Hadi Hosseini
- Department of Psychiatry, Center for Interdisciplinary Brain Sciences Research, Stanford, CA 94305-5795, USA
| | - Manish Saggar
- Department of Psychiatry, Center for Interdisciplinary Brain Sciences Research, Stanford, CA 94305-5795, USA
| | - Eve-Marie Quintin
- School and Applied Child Psychology Program, McGill University, Montreal, QC, CanadaH3A 1Y2
| | - Mira Michelle Raman
- Department of Psychiatry, Center for Interdisciplinary Brain Sciences Research, Stanford, CA 94305-5795, USA
| | - Allan L Reiss
- Department of Psychiatry, Center for Interdisciplinary Brain Sciences Research, Stanford, CA 94305-5795, USA.,Department of Radiology.,Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Biomechanical Analysis of Normal Brain Development during the First Year of Life Using Finite Strain Theory. Sci Rep 2016; 6:37666. [PMID: 27910866 PMCID: PMC5133553 DOI: 10.1038/srep37666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/26/2016] [Indexed: 11/15/2022] Open
Abstract
The first year of life is the most critical time period for structural and functional development of the human brain. Combining longitudinal MR imaging and finite strain theory, this study aimed to provide new insights into normal brain development through a biomechanical framework. Thirty-three normal infants were longitudinally imaged using MRI from 2 weeks to 1 year of age. Voxel-wise Jacobian determinant was estimated to elucidate volumetric changes while Lagrange strains (both normal and shear strains) were measured to reveal directional growth information every 3 months during the first year of life. Directional normal strain maps revealed that, during the first 6 months, the growth pattern of gray matter is anisotropic and spatially inhomogeneous with higher left-right stretch around the temporal lobe and interhemispheric fissure, anterior-posterior stretch in the frontal and occipital lobes, and superior-inferior stretch in right inferior occipital and right inferior temporal gyri. In contrast, anterior lateral ventricles and insula showed an isotropic stretch pattern. Volumetric and directional growth rates were linearly decreased with age for most of the cortical regions. Our results revealed anisotropic and inhomogeneous brain growth patterns of the human brain during the first year of life using longitudinal MRI and a biomechanical framework.
Collapse
|
12
|
Fung LK, Reiss AL. Moving Toward Integrative, Multidimensional Research in Modern Psychiatry: Lessons Learned From Fragile X Syndrome. Biol Psychiatry 2016; 80:100-111. [PMID: 26868443 PMCID: PMC4912939 DOI: 10.1016/j.biopsych.2015.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
The field of psychiatry is approaching a major inflection point. The basic science behind cognition, emotion, behavior, and social processes has been advancing rapidly in the past 20 years. However, clinical research supporting the classification system in psychiatry has not kept up with these scientific advances. To begin organizing the basic science of psychiatry in a comprehensive manner, we begin by selecting fragile X syndrome, a neurogenetic disease with cognitive-behavioral manifestations, to illustrate key concepts in an integrative, multidimensional model. Specifically, we describe key genetic and molecular mechanisms (e.g., gamma-aminobutyric acidergic dysfunction and metabotropic glutamate receptor 5-associated long-term depression) relevant to the pathophysiology of fragile X syndrome as well as neural correlates of cognitive-behavioral symptoms. We then describe what we have learned from fragile X syndrome that may be applicable to other psychiatric disorders. We conclude this review by discussing current and future opportunities in diagnosing and treating psychiatric diseases.
Collapse
Affiliation(s)
- Lawrence K. Fung
- Division of Child & Adolescent Psychiatry, Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA
| |
Collapse
|
13
|
Regional brain volumes changes in adult male FMR1-KO mouse on the FVB strain. Neuroscience 2016; 318:12-21. [DOI: 10.1016/j.neuroscience.2016.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/06/2016] [Accepted: 01/09/2016] [Indexed: 11/17/2022]
|
14
|
Dennis EL, Thompson PM. Typical and atypical brain development: a review of neuroimaging studies. DIALOGUES IN CLINICAL NEUROSCIENCE 2014. [PMID: 24174907 PMCID: PMC3811107 DOI: 10.31887/dcns.2013.15.3/edennis] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the course of development, the brain undergoes a remarkable process of restructuring as it adapts to the environment and becomes more efficient in processing information. A variety of brain imaging methods can be used to probe how anatomy, connectivity, and function change in the developing brain. Here we review recent discoveries regarding these brain changes in both typically developing individuals and individuals with neurodevelopmental disorders. We begin with typical development, summarizing research on changes in regional brain volume and tissue density, cortical thickness, white matter integrity, and functional connectivity. Space limits preclude the coverage of all neurodevelopmental disorders; instead, we cover a representative selection of studies examining neural correlates of autism, attention deficit/hyperactivity disorder, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Down syndrome, and Turner syndrome. Where possible, we focus on studies that identify an age by diagnosis interaction, suggesting an altered developmental trajectory. The studies we review generally cover the developmental period from infancy to early adulthood. Great progress has been made over the last 20 years in mapping how the brain matures with MR technology. With ever-improving technology, we expect this progress to accelerate, offering a deeper understanding of brain development, and more effective interventions for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Emily L Dennis
- Imaging Genetics Center, Laboratory of Neuro Imaging, Dept of Neurology & Psychiatry, UCLA School of Medicine, Los Angeles, California, USA
| | | |
Collapse
|
15
|
Medland SE, Jahanshad N, Neale BM, Thompson PM. Whole-genome analyses of whole-brain data: working within an expanded search space. Nat Neurosci 2014; 17:791-800. [PMID: 24866045 PMCID: PMC4300949 DOI: 10.1038/nn.3718] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023]
Abstract
Large-scale comparisons of patients and healthy controls have unearthed genetic risk factors associated with a range of neurological and psychiatric illnesses. Meanwhile, brain imaging studies are increasing in size and scope, revealing disease and genetic effects on brain structure and function, and implicating neural pathways and causal mechanisms. With the advent of global neuroimaging consortia, imaging studies are now well powered to discover genetic variants that reliably affect the brain. Genetic analyses of brain measures from tens of thousands of people are being extended to test genetic associations with signals at millions of locations in the brain, and connectome-wide, genome-wide scans can jointly screen brain circuits and genomes; these analyses and others present new statistical challenges. There is a growing need for the community to establish and enforce standards in this developing field to ensure robust findings. Here we discuss how neuroimagers and geneticists have formed alliances to discover how genetic factors affect the brain. The field is rapidly advancing with ultra-high-resolution imaging and whole-genome sequencing. We recommend a rigorous approach to neuroimaging genomics that capitalizes on its recent successes and ensures the reliability of future discoveries.
Collapse
Affiliation(s)
- Sarah E Medland
- Quantitative Genetics, Queensland Institute of Medical Research Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Benjamin M Neale
- Program in Medical and Population Genetics, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Psychiatric and Neurodevelopmental Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- Department of Neurology, University of Southern California, Los Angeles, California, USA
- Department of Psychiatry, University of Southern California, Los Angeles, California, USA
- Department of Engineering, University of Southern California, Los Angeles, California, USA
- Department of Radiology, University of Southern California, Los Angeles, California, USA
- Department of Pediatrics, University of Southern California, Los Angeles, California, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
16
|
Quintero AI, Beaton EA, Harvey DJ, Ross JL, Simon TJ. Common and specific impairments in attention functioning in girls with chromosome 22q11.2 deletion, fragile X or Turner syndromes. J Neurodev Disord 2014; 6:5. [PMID: 24628892 PMCID: PMC3995552 DOI: 10.1186/1866-1955-6-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 02/26/2014] [Indexed: 12/20/2022] Open
Abstract
Background Chromosome 22q11.2 deletion syndrome (22q11.2DS), fragile X syndrome (FXS), and Turner syndrome (TS) are complex and variable developmental syndromes caused by different genetic abnormalities; yet, they share similar cognitive impairments in the domains of numbers, space, and time. The atypical development of foundational neural networks that underpin the attentional system is thought to result in further impairments in higher-order cognitive functions. The current study investigates whether children with similar higher-order cognitive impairments but different genetic disorders also show similar impairments in alerting, orienting, and executive control of attention. Methods Girls with 22q11.2DS, FXS, or TS and typically developing (TD) girls, aged 7 to 15 years, completed an attention network test, a flanker task with alerting and orienting cues. Exploration of reaction times and accuracy allowed us to test for potential commonalities in attentional functioning in alerting, orienting, and executive control. Linear regression models were used to test whether the predictors of group and chronological age were able to predict differences in attention indices. Results Girls with 22q11.2DS, FXS, or TS demonstrated unimpaired function of the alerting system and impaired function of the executive control system. Diagnosis-specific impairments were found such that girls with FXS made more errors and had a reduced orienting index, while girls with 22q11.2DS showed specific age-related deficits in the executive control system. Conclusions These results suggest that the control but not the implementation of attention is selectively impaired in girls with 22q11.2DS, TS or FXS. Additionally, the age effect on executive control in girls with 22q11.2DS implies a possible altered developmental trajectory.
Collapse
Affiliation(s)
- Andrea I Quintero
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA.
| | | | | | | | | |
Collapse
|
17
|
Geerligs L, Renken RJ, Saliasi E, Maurits NM, Lorist MM. A Brain-Wide Study of Age-Related Changes in Functional Connectivity. Cereb Cortex 2014; 25:1987-99. [PMID: 24532319 DOI: 10.1093/cercor/bhu012] [Citation(s) in RCA: 493] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Linda Geerligs
- Department of Experimental Psychology, Faculty of Behavioural and Social Sciences, University of Groningen, Groningen, The Netherlands Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Current address: MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Remco J Renken
- Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Emi Saliasi
- Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Natasha M Maurits
- Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Monicque M Lorist
- Department of Experimental Psychology, Faculty of Behavioural and Social Sciences, University of Groningen, Groningen, The Netherlands Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Linkersdörfer J, Jurcoane A, Lindberg S, Kaiser J, Hasselhorn M, Fiebach CJ, Lonnemann J. The Association between Gray Matter Volume and Reading Proficiency: A Longitudinal Study of Beginning Readers. J Cogn Neurosci 2014; 27:308-18. [DOI: 10.1162/jocn_a_00710] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abstract
Neural systems involved in the processing of written language have been identified by a number of functional imaging studies. Structural changes in cortical anatomy that occur in the course of literacy acquisition, however, remain largely unknown. Here, we follow elementary school children over their first 2 years of formal reading instruction and use tensor-based morphometry to relate reading proficiency to cortical volume at baseline and follow-up measurement as well as to intraindividual longitudinal volume development between the two measurement time points. A positive relationship was found between baseline gray matter volume in the left superior temporal gyrus and subsequent changes in reading proficiency. Furthermore, a negative relationship was found between reading proficiency at the second measurement time point and intraindividual cortical volume development in the inferior parietal lobule and the precentral and postcentral gyri of the left hemisphere. These results are interpreted as evidence that reading acquisition is associated with preexisting structural differences as well as with experience-dependent structural changes involving dendritic and synaptic pruning.
Collapse
Affiliation(s)
- Janosch Linkersdörfer
- 1Center for Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt am Main, Germany
- 2German Institute for International Educational Research, Frankfurt am Main, Germany
| | - Alina Jurcoane
- 1Center for Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt am Main, Germany
- 3Goethe University, Frankfurt am Main, Germany
| | - Sven Lindberg
- 1Center for Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt am Main, Germany
- 2German Institute for International Educational Research, Frankfurt am Main, Germany
| | | | - Marcus Hasselhorn
- 1Center for Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt am Main, Germany
- 2German Institute for International Educational Research, Frankfurt am Main, Germany
- 3Goethe University, Frankfurt am Main, Germany
| | - Christian J. Fiebach
- 1Center for Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt am Main, Germany
- 3Goethe University, Frankfurt am Main, Germany
- 4Radboud University, Nijmegen, The Netherlands
| | - Jan Lonnemann
- 1Center for Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt am Main, Germany
- 2German Institute for International Educational Research, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Berry-Kravis E, Hessl D, Abbeduto L, Reiss AL, Beckel-Mitchener A, Urv TK. Outcome measures for clinical trials in fragile X syndrome. J Dev Behav Pediatr 2013; 34:508-22. [PMID: 24042082 PMCID: PMC3784007 DOI: 10.1097/dbp.0b013e31829d1f20] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Progress in basic neuroscience has led to identification of molecular targets for treatment in fragile X syndrome (FXS) and other neurodevelopmental disorders; however, there is a gap in translation to targeted therapies in humans. One major obstacle to the demonstration of efficacy in human trials has been the lack of generally accepted endpoints to assess improvement in function in individuals with FXS. To address this problem, the National Institutes of Health convened a meeting of leading scientists and clinicians with the goal of identifying and standardizing outcome measures for use as potential endpoints in clinical trials in FXS. METHODS Participants in the meeting included FXS experts, experts in the design and implementation of clinical trials and measure development, and representatives from advocacy groups, industry, and federal agencies. RESULTS The group generated recommendations for optimal outcome measures in cognitive, behavioral, and biomarker/medical domains, including additional testing and validation of existing measures and development of new measures in areas of need. Although no one endpoint or set of endpoints could be identified that met all criteria as an optimal measure, recommendations are presented in this report. CONCLUSION The report is expected to guide the selection of measures in clinical trials and lead to the use of a more consistent battery of measures across trials. Furthermore, this will help to direct research toward gaps in the development of validated FXS-specific outcome measures and to assist with interpretation of clinical trial data by creating templates for measurement of treatment efficacy.
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences and Biochemistry Rush University Medical Center, Chicago, IL
| | - David Hessl
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, Sacramento, CA
- MIND Institute, University of California, Davis Medical Center, Sacramento, CA
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, Sacramento, CA
- MIND Institute, University of California, Davis Medical Center, Sacramento, CA
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research and Departments of Psychiatry and Behavioral Sciences, Radiology and Pediatrics Stanford University School of Medicine, Stanford, CA
| | | | - Tiina K. Urv
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
20
|
Bruno JL, Shelly EW, Quintin EM, Rostami M, Patnaik S, Spielman D, Mayer D, Gu M, Lightbody AA, Reiss AL. Aberrant basal ganglia metabolism in fragile X syndrome: a magnetic resonance spectroscopy study. J Neurodev Disord 2013; 5:20. [PMID: 23981510 PMCID: PMC3766683 DOI: 10.1186/1866-1955-5-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/14/2013] [Indexed: 11/30/2022] Open
Abstract
Background The profile of cognitive and behavioral variation observed in individuals with fragile X syndrome (FXS), the most common known cause of inherited intellectual impairment, suggests aberrant functioning of specific brain systems. Research investigating animal models of FXS, characterized by limited or lack of fragile X mental retardation protein, (FMRP), has linked brain dysfunction to deficits in the cholinergic and glutamatergic systems. Thus, we sought to examine in vivo levels of neurometabolites related to cholinergic and glutamatergic functioning in males and females with FXS. Methods The study participants included 18 adolescents and young adults with FXS, and a comparison group of 18 individuals without FXS matched for age, sex and general intellectual functioning. Proton magnetic resonance spectroscopy (MRS) was used to assess neurometabolite levels in the caudate nucleus, a region known to be greatly enlarged and involved in abnormal brain circuitry in individuals with FXS. A general linear model framework was used to compare group differences in metabolite concentration. Results We observed a decrease in choline (P = 0.027) and in glutamate + glutamine (P = 0.032) in the caudate nucleus of individuals with FXS, relative to individuals in the comparison group. Conclusions This study provides evidence of metabolite differences in the caudate nucleus, a brain region of potential importance to our understanding of the neural deficits underlying FXS. These metabolic differences may be related to aberrant receptor signaling seen in animal models. Furthermore, identification of the specific neurometabolites involved in FXS dysfunction could provide critical biomarkers for the design and efficacy tracking of disease-specific pharmacological treatments.
Collapse
Affiliation(s)
- Jennifer Lynn Bruno
- Center for Interdisciplinary Brain Sciences Research, Stanford University, 401 Quarry Road, Stanford, CA 94305-5795, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Villalon-Reina J, Jahanshad N, Beaton E, Toga AW, Thompson PM, Simon TJ. White matter microstructural abnormalities in girls with chromosome 22q11.2 deletion syndrome, Fragile X or Turner syndrome as evidenced by diffusion tensor imaging. Neuroimage 2013; 81:441-454. [PMID: 23602925 DOI: 10.1016/j.neuroimage.2013.04.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 04/03/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022] Open
Abstract
Children with chromosome 22q11.2 deletion syndrome (22q11.2DS), Fragile X syndrome (FXS), or Turner syndrome (TS) are considered to belong to distinct genetic groups, as each disorder is caused by separate genetic alterations. Even so, they have similar cognitive and behavioral dysfunctions, particularly in visuospatial and numerical abilities. To assess evidence for common underlying neural microstructural alterations, we set out to determine whether these groups have partially overlapping white matter abnormalities, relative to typically developing controls. We scanned 101 female children between 7 and 14years old: 25 with 22q11.2DS, 18 with FXS, 17 with TS, and 41 aged-matched controls using diffusion tensor imaging (DTI). Anisotropy and diffusivity measures were calculated and all brain scans were nonlinearly aligned to population and site-specific templates. We performed voxel-based statistical comparisons of the DTI-derived metrics between each disease group and the controls, while adjusting for age. Girls with 22q11.2DS showed lower fractional anisotropy (FA) than controls in the association fibers of the superior and inferior longitudinal fasciculi, the splenium of the corpus callosum, and the corticospinal tract. FA was abnormally lower in girls with FXS in the posterior limbs of the internal capsule, posterior thalami, and precentral gyrus. Girls with TS had lower FA in the inferior longitudinal fasciculus, right internal capsule and left cerebellar peduncle. Partially overlapping neurodevelopmental anomalies were detected in all three neurogenetic disorders. Altered white matter integrity in the superior and inferior longitudinal fasciculi and thalamic to frontal tracts may contribute to the behavioral characteristics of all of these disorders.
Collapse
Affiliation(s)
- Julio Villalon-Reina
- Imaging Genetics Center, Laboratory of Neuro Imaging, Dept. of Neurology, University of California Los Angeles, School of Medicine, Los Angeles, CA 90095, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Laboratory of Neuro Imaging, Dept. of Neurology, University of California Los Angeles, School of Medicine, Los Angeles, CA 90095, USA
| | - Elliott Beaton
- Stress, Cognition, and Affective Neuroscience Laboratory, Department of Psychology, University of New Orleans, New Orleans, LA, 70148
| | - Arthur W Toga
- Laboratory of Neuro Imaging, Dept. of Neurology, University of California Los Angeles, School of Medicine, Los Angeles, CA 90095, USA
| | - Paul M Thompson
- Imaging Genetics Center, Laboratory of Neuro Imaging, Dept. of Neurology, University of California Los Angeles, School of Medicine, Los Angeles, CA 90095, USA.
| | - Tony J Simon
- Dept. of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, 95618, USA; MIND Institute, Dept. of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, 95618, USA
| |
Collapse
|
22
|
Lewitus E, Kalinka AT. Neocortical development as an evolutionary platform for intragenomic conflict. Front Neuroanat 2013; 7:2. [PMID: 23576960 PMCID: PMC3620502 DOI: 10.3389/fnana.2013.00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/18/2013] [Indexed: 12/21/2022] Open
Abstract
Embryonic development in mammals has evolved a platform for genomic conflict between mothers and embryos and, by extension, between maternal and paternal genomes. The evolutionary interests of the mother and embryo may be maximized through the promotion of sex-chromosome genes and imprinted alleles, resulting in the rapid evolution of postzygotic phenotypes preferential to either the maternal or paternal genome. In eutherian mammals, extraordinary in utero maternal investment in the brain, and neocortex especially, suggests that convergent evolution of an expanded mammalian neocortex along divergent lineages may be explained, in part, by parent-of-origin-linked gene expression arising from parent-offspring conflict. The influence of this conflict on neocortical development and evolution, however, has not been investigated at the genomic level. In this hypothesis and theory article, we provide preliminary evidence for positive selection in humans in the regions of two platforms of intragenomic conflict—chromosomes 15q11-q13 and X—and explore the potential relevance of cis-regulated imprinted domains to neocortical expansion in mammalian evolution. We present the hypothesis that maternal- and paternal-specific pressures on the developing neocortex compete intragenomically to influence neocortical expansion in mammalian evolution.
Collapse
Affiliation(s)
- Eric Lewitus
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | | |
Collapse
|
23
|
Yang Y, Nuechterlein KH, Phillips OR, Gutman B, Kurth F, Dinov I, Thompson PM, Asarnow RF, Toga AW, Narr KL. Disease and genetic contributions toward local tissue volume disturbances in schizophrenia: a tensor-based morphometry study. Hum Brain Mapp 2012; 33:2081-91. [PMID: 22241649 DOI: 10.1002/hbm.21349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Structural brain deficits, especially frontotemporal volume reduction and ventricular enlargement, have been repeatedly reported in patients with schizophrenia. However, it remains unclear whether brain structural deformations may be attributable to disease-related or genetic factors. In this study, the structural magnetic resonance imaging data of 48 adult-onset schizophrenia patients, 65 first-degree nonpsychotic relatives of schizophrenia patients, 27 community comparison (CC) probands, and 73 CC relatives were examined using tensor-based morphometry (TBM) to isolate global and localized differences in tissue volume across the entire brain between groups. We found brain tissue contractions most prominently in frontal and temporal regions and expansions in the putamen/pallidum, and lateral and third ventricles in schizophrenia patients when compared with unrelated CC probands. Results were similar, though less prominent when patients were compared with their nonpsychotic relatives. Structural deformations observed in unaffected patient relatives compared to age-similar CC relatives were suggestive of schizophrenia-related genetic liability and were pronounced in the putamen/pallidum and medial temporal regions. Schizophrenia and genetic liability effects for the putamen/pallidum were confirmed by regions-of-interest analysis. In conclusion, TBM findings complement reports of frontal, temporal, and ventricular dysmorphology in schizophrenia and further indicate that putamen/pallidum enlargements, originally linked mainly with medication exposure in early studies, also reflect a genetic predisposition for schizophrenia. Thus, brain deformation profiles revealed in this study may help to clarify the role of specific genetic or environmental risk factors toward altered brain morphology in schizophrenia.
Collapse
Affiliation(s)
- Yaling Yang
- Laboratory of Neuro Imaging, Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Van der Molen MJW, Van der Molen MW, Ridderinkhof KR, Hamel BCJ, Curfs LMG, Ramakers GJA. Attentional set-shifting in fragile X syndrome. Brain Cogn 2012; 78:206-17. [PMID: 22261226 DOI: 10.1016/j.bandc.2011.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 12/17/2011] [Accepted: 12/20/2011] [Indexed: 01/18/2023]
Abstract
The ability to flexibly adapt to the changing demands of the environment is often reported as a core deficit in fragile X syndrome (FXS). However, the cognitive processes that determine this attentional set-shifting deficit remain elusive. The present study investigated attentional set-shifting ability in fragile X syndrome males with the well-validated intra/extra dimensional set-shifting paradigm (IED) which offers detailed assessment of rule learning, reversal learning, and attentional set-shifting ability within and between stimulus dimensions. A novel scoring method for IED stage errors was employed to interpret set-shifting failure in terms of repetitive decision-making, distraction to irrelevance, and set-maintenance failure. Performance of FXS males was compared to typically developing children matched on mental age, adults matched on chronological age, and individuals with Down syndrome matched on both mental and chronological age. Results revealed that a significant proportion of FXS males already failed prior to the intra-dimensional set-shift stage, whereas all control participants successfully completed the stages up to the crucial extra-dimensional set-shift. FXS males showed a specific weakness in reversal learning, which was characterized by repetitive decision-making during the reversal of newly acquired stimulus-response associations in the face of simple stimulus configurations. In contrast, when stimulus configurations became more complex, FXS males displayed increased distraction to irrelevant stimuli. These findings are interpreted in terms of the cognitive demands imposed by the stages of the IED in relation to the alleged neural deficits in FXS.
Collapse
|
25
|
Brain structure in healthy adults is related to serum transferrin and the H63D polymorphism in the HFE gene. Proc Natl Acad Sci U S A 2012; 109:E851-9. [PMID: 22232660 DOI: 10.1073/pnas.1105543109] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Control of iron homeostasis is essential for healthy central nervous system function: iron deficiency is associated with cognitive impairment, yet iron overload is thought to promote neurodegenerative diseases. Specific genetic markers have been previously identified that influence levels of transferrin, the protein that transports iron throughout the body, in the blood and brain. Here, we discovered that transferrin levels are related to detectable differences in the macro- and microstructure of the living brain. We collected brain MRI scans from 615 healthy young adult twins and siblings, of whom 574 were also scanned with diffusion tensor imaging at 4 Tesla. Fiber integrity was assessed by using the diffusion tensor imaging-based measure of fractional anisotropy. In bivariate genetic models based on monozygotic and dizygotic twins, we discovered that partially overlapping additive genetic factors influenced transferrin levels and brain microstructure. We also examined common variants in genes associated with transferrin levels, TF and HFE, and found that a commonly carried polymorphism (H63D at rs1799945) in the hemochromatotic HFE gene was associated with white matter fiber integrity. This gene has a well documented association with iron overload. Our statistical maps reveal previously unknown influences of the same gene on brain microstructure and transferrin levels. This discovery may shed light on the neural mechanisms by which iron affects cognition, neurodevelopment, and neurodegeneration.
Collapse
|
26
|
Meguid NA, Fahim C, Sami R, Nashaat NH, Yoon U, Anwar M, El-Dessouky HM, Shahine EA, Ibrahim AS, Mancini-Marie A, Evans AC. Cognition and lobar morphology in full mutation boys with fragile X syndrome. Brain Cogn 2011; 78:74-84. [PMID: 22070923 DOI: 10.1016/j.bandc.2011.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 01/05/2023]
Abstract
The aims of the present study are twofold: (1) to examine cortical morphology (CM) associated with alterations in cognition in fragile X syndrome (FXS); (2) to characterize the CM profile of FXS versus FXS with an autism diagnosis (FXS+Aut) as a preliminary attempt to further elucidate the behavioral distinctions between the two sub-groups. We used anatomical magnetic resonance imaging surface-based morphometry in 21 male children (FXS N=11 and age [2.27-13.3] matched controls [C] N=10). We found (1) increased whole hemispheric and lobar cortical volume, cortical thickness and cortical complexity bilaterally, yet insignificant changes in hemispheric surface area and gyrification index in FXS compared to C; (2) linear regression analyses revealed significant negative correlations between CM and cognition; (3) significant CM differences between FXS and FXS+Aut associated with their distinctive behavioral phenotypes. These findings are critical in understanding the neuropathophysiology of one of the most common intellectual deficiency syndromes associated with altered cognition as they provide human in vivo information about genetic control of CM and cognition.
Collapse
Affiliation(s)
- Nagwa A Meguid
- Department of Research on Children with Special Needs, Medical Genetics Division, The National Research Centre, Cairo, Egypt
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bray S, Hirt M, Jo B, Hall SS, Lightbody AA, Walter E, Chen K, Patnaik S, Reiss AL. Aberrant frontal lobe maturation in adolescents with fragile X syndrome is related to delayed cognitive maturation. Biol Psychiatry 2011; 70:852-8. [PMID: 21802660 PMCID: PMC3191299 DOI: 10.1016/j.biopsych.2011.05.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/21/2011] [Accepted: 05/24/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common known heritable cause of intellectual disability. Prior studies in FXS have observed a plateau in cognitive and adaptive behavioral development in early adolescence, suggesting that brain development in FXS may diverge from typical development during this period. METHODS In this study, we examined adolescent brain development using structural magnetic resonance imaging data acquired from 59 individuals with FXS and 83 typically developing control subjects aged 9 to 22, a subset of whom were followed up longitudinally (1-5 years; typically developing: 17, FXS: 19). Regional volumes were modeled to obtain estimates of age-related change. RESULTS We found that while structures such as the caudate showed consistent volume differences from control subjects across adolescence, prefrontal cortex (PFC) gyri showed significantly aberrant maturation. Furthermore, we found that PFC-related measures of cognitive functioning followed a similarly aberrant developmental trajectory in FXS. CONCLUSIONS Our findings suggest that aberrant maturation of the PFC during adolescence may contribute to persistent or increasing intellectual deficits in FXS.
Collapse
Affiliation(s)
- Signe Bray
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, 1403 - 29 Street NW Calgary, Alberta, T2N 2T9, Canada,Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Palo Alto, CA, 94305, USA
| | - Melissa Hirt
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Palo Alto, CA, 94305, USA
| | - Booil Jo
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Palo Alto, CA, 94305, USA
| | - Scott S. Hall
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Palo Alto, CA, 94305, USA
| | - Amy A. Lightbody
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Palo Alto, CA, 94305, USA
| | - Elizabeth Walter
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Palo Alto, CA, 94305, USA
| | - Kelly Chen
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Palo Alto, CA, 94305, USA
| | - Swetapadma Patnaik
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Palo Alto, CA, 94305, USA
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Palo Alto, CA, 94305, USA,Corresponding Author: Allan L. Reiss, Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, 401 Quarry Rd., Palo Alto, CA, 94305, Phone: 650 498 4538, Fax: 650 724 4761,
| |
Collapse
|
28
|
Budimirovic DB, Kaufmann WE. What can we learn about autism from studying fragile X syndrome? Dev Neurosci 2011; 33:379-94. [PMID: 21893949 PMCID: PMC3254037 DOI: 10.1159/000330213] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/20/2011] [Indexed: 11/19/2022] Open
Abstract
Despite early controversy, it is now accepted that a substantial proportion of children with fragile X syndrome (FXS) meets diagnostic criteria for autism spectrum disorder (ASD). This change has led to an increased interest in studying the association of FXS and ASD because of the clinical consequences of their co-occurrence and the implications for a better understanding of ASD in the general population. Here, we review the current knowledge on the behavioral, neurobiological (i.e., neuroimaging), and molecular features of ASD in FXS, as well as the insight into ASD gained from mouse models of FXS. This review covers critical issues such as the selectivity of ASD in disorders associated with intellectual disability, differences between autistic features and ASD diagnosis, and the relationship between ASD and anxiety in FXS patients and animal models. While solid evidence supporting ASD in FXS as a distinctive entity is emerging, neurobiological and molecular data are still scarce. Animal model studies have not been particularly revealing about ASD in FXS either. Nevertheless, recent studies provide intriguing new leads and suggest that a better understanding of the bases of ASD will require the integration of multidisciplinary data from FXS and other genetic disorders.
Collapse
Affiliation(s)
- Dejan B. Budimirovic
- Center for Genetic Disorders of Cognition and Behavior, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Walter E. Kaufmann
- Center for Genetic Disorders of Cognition and Behavior, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| |
Collapse
|
29
|
Callan MA, Zarnescu DC. Heads-up: new roles for the fragile X mental retardation protein in neural stem and progenitor cells. Genesis 2011; 49:424-40. [PMID: 21404421 DOI: 10.1002/dvg.20745] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 02/23/2011] [Accepted: 02/27/2011] [Indexed: 11/12/2022]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited mental retardation and is caused by the loss of function for Fragile X Mental Retardation Protein (FMRP), a selective RNA-binding protein with a demonstrated role in the localized translation of target mRNAs at synapses. Several recent studies provide compelling evidence for a new role of FMRP in the development of the nervous system, during neurogenesis. Using a multi-faceted approach and a variety of model systems ranging from cultured neurospheres and progenitor cells to in vivo Drosophila and mouse models these reports indicate that FMRP is required for neural stem and progenitor cell proliferation, differentiation, survival, as well as regulation of gene expression. Here we compare and contrast these recent reports and discuss the implications of FMRP's new role in embryonic and adult neurogenesis, including the development of novel therapeutic approaches to FXS and related neurological disorders such as autism.
Collapse
Affiliation(s)
- Matthew A Callan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
30
|
Zanni G, Bertini ES. X-linked disorders with cerebellar dysgenesis. Orphanet J Rare Dis 2011; 6:24. [PMID: 21569638 PMCID: PMC3115841 DOI: 10.1186/1750-1172-6-24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 05/15/2011] [Indexed: 12/15/2022] Open
Abstract
X-linked disorders with cerebellar dysgenesis (XLCD) are a genetically heterogeneous and clinically variable group of disorders in which the hallmark is a cerebellar defect (hypoplasia, atrophy or dysplasia) visible on brain imaging, caused by gene mutations or genomic imbalances on the X-chromosome. The neurological features of XLCD include hypotonia, developmental delay, intellectual disability, ataxia and/or other cerebellar signs. Normal cognitive development has also been reported. Cerebellar dysgenesis may be isolated or associated with other brain malformations or multiorgan involvement. There are at least 15 genes on the X-chromosome that have been constantly or occasionally associated with a pathological cerebellar phenotype. 8 XLCD loci have been mapped and several families with X-linked inheritance have been reported. Recently, two recurrent duplication syndromes in Xq28 have been associated with cerebellar hypoplasia. Given the report of several forms of XLCD and the excess of males with ataxia, this group of conditions is probably underestimated and families of patients with neuroradiological and clinical evidence of a cerebellar disorder should be counseled for high risk of X-linked inheritance.
Collapse
Affiliation(s)
- Ginevra Zanni
- Unit of Molecular Medicine, Departement of Neurosciences, Bambino Gesù ediatric Research Hospital, 4 Piazza S. Onofrio, 00165 Rome, Italy.
| | | |
Collapse
|
31
|
Affiliation(s)
- Moriah E. Thomason
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan 48202-3897
- Merrill Palmer Skillman Institute on Child and Family Development, Wayne State University, Detroit, Michigan 48202
| | - Paul M. Thompson
- Department of Neurology, School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1769;
| |
Collapse
|
32
|
Paul LK. Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement. J Neurodev Disord 2011; 3:3-27. [PMID: 21484594 PMCID: PMC3163989 DOI: 10.1007/s11689-010-9059-y] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/13/2010] [Indexed: 12/11/2022] Open
Abstract
This review provides an overview of the involvement of the corpus callosum (CC) in a variety of developmental disorders that are currently defined exclusively by genetics, developmental insult, and/or behavior. I begin with a general review of CC development, connectivity, and function, followed by discussion of the research methods typically utilized to study the callosum. The bulk of the review concentrates on specific developmental disorders, beginning with agenesis of the corpus callosum (AgCC)-the only condition diagnosed exclusively by callosal anatomy. This is followed by a review of several genetic disorders that commonly result in social impairments and/or psychopathology similar to AgCC (neurofibromatosis-1, Turner syndrome, 22q11.2 deletion syndrome, Williams yndrome, and fragile X) and two forms of prenatal injury (premature birth, fetal alcohol syndrome) known to impact callosal development. Finally, I examine callosal involvement in several common developmental disorders defined exclusively by behavioral patterns (developmental language delay, dyslexia, attention-deficit hyperactive disorder, autism spectrum disorders, and Tourette syndrome).
Collapse
Affiliation(s)
- Lynn K Paul
- Division of Humanities and Social Sciences, California Institute of Technology, HSS 228-77, Caltech, Pasadena, CA, 91125, USA,
| |
Collapse
|
33
|
Brun CC, Lepore N, Pennec X, Chou YY, Lee AD, de Zubicaray G, McMahon KL, Wright MJ, Gee JC, Thompson PM. A nonconservative Lagrangian framework for statistical fluid registration-SAFIRA. IEEE TRANSACTIONS ON MEDICAL IMAGING 2011; 30:184-202. [PMID: 20813636 DOI: 10.1109/tmi.2010.2067451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this paper, we used a nonconservative Lagrangian mechanics approach to formulate a new statistical algorithm for fluid registration of 3-D brain images. This algorithm is named SAFIRA, acronym for statistically-assisted fluid image registration algorithm. A nonstatistical version of this algorithm was implemented , where the deformation was regularized by penalizing deviations from a zero rate of strain. In , the terms regularizing the deformation included the covariance of the deformation matrices (Σ) and the vector fields (q) . Here, we used a Lagrangian framework to reformulate this algorithm, showing that the regularizing terms essentially allow nonconservative work to occur during the flow. Given 3-D brain images from a group of subjects, vector fields and their corresponding deformation matrices are computed in a first round of registrations using the nonstatistical implementation. Covariance matrices for both the deformation matrices and the vector fields are then obtained and incorporated (separately or jointly) in the nonconservative terms, creating four versions of SAFIRA. We evaluated and compared our algorithms' performance on 92 3-D brain scans from healthy monozygotic and dizygotic twins; 2-D validations are also shown for corpus callosum shapes delineated at midline in the same subjects. After preliminary tests to demonstrate each method, we compared their detection power using tensor-based morphometry (TBM), a technique to analyze local volumetric differences in brain structure. We compared the accuracy of each algorithm variant using various statistical metrics derived from the images and deformation fields. All these tests were also run with a traditional fluid method, which has been quite widely used in TBM studies. The versions incorporating vector-based empirical statistics on brain variation were consistently more accurate than their counterparts, when used for automated volumetric quantification in new brain images. This suggests the advantages of this approach for large-scale neuroimaging studies.
Collapse
Affiliation(s)
- Caroline C Brun
- Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Imaging genomics is an emerging field that is rapidly identifying genes that influence the brain, cognition, and risk for disease. Worldwide, thousands of individuals are being scanned with high-throughput genotyping (genome-wide scans), and new imaging techniques [high angular resolution diffusion imaging and resting state functional magnetic resonance imaging (MRI)] that provide fine-grained measures of the brain's structural and functional connectivity. Along with clinical diagnosis and cognitive testing, brain imaging offers highly reproducible measures that can be subjected to genetic analysis. RECENT FINDINGS Recent studies of twin, pedigree, and population-based datasets have discovered several candidate genes that consistently show small to moderate effects on brain measures. Many studies measure single phenotypes from the images, such as hippocampal volume, but voxel-wise genomic methods can plot the profile of genetic association at each 3D point in the brain. This exploits the full arsenal of imaging statistics to discover and replicate gene effects. SUMMARY Imaging genomics efforts worldwide are now working together to discover and replicate many promising leads. By studying brain phenotypes closer to causative gene action, larger gene effects are detectable with realistic sample sizes obtainable from meta-analysis of smaller studies. Imaging genomics has broad applications to dementia, mental illness, and public health.
Collapse
Affiliation(s)
- Paul M Thompson
- Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095-7332, USA.
| | | | | |
Collapse
|
35
|
Bossa M, Zacur E, Olmos S. Tensor-based morphometry with stationary velocity field diffeomorphic registration: application to ADNI. Neuroimage 2010; 51:956-69. [PMID: 20211269 PMCID: PMC3068621 DOI: 10.1016/j.neuroimage.2010.02.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 01/25/2010] [Accepted: 02/22/2010] [Indexed: 11/16/2022] Open
Abstract
Tensor-based morphometry (TBM) is an analysis technique where anatomical information is characterized by means of the spatial transformations mapping a customized template with the observed images. Therefore, accurate inter-subject non-rigid registration is an essential prerequisite for both template estimation and image warping. Subsequent statistical analysis on the spatial transformations is performed to highlight voxel-wise differences. Most of previous TBM studies did not explore the influence of the registration parameters, such as the parameters defining the deformation and the regularization models. In this work performance evaluation of TBM using stationary velocity field (SVF) diffeomorphic registration was performed in a subset of subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) study. A wide range of values of the registration parameters that define the transformation smoothness and the balance between image matching and regularization were explored in the evaluation. The proposed methodology provided brain atrophy maps with very detailed anatomical resolution and with a high significance level compared with results recently published on the same data set using a non-linear elastic registration method.
Collapse
Affiliation(s)
- Matias Bossa
- GTC, Aragon Institute of Engineering Research, Universidad de Zaragoza, Spain
| | - Ernesto Zacur
- GTC, Aragon Institute of Engineering Research, Universidad de Zaragoza, Spain
| | - Salvador Olmos
- GTC, Aragon Institute of Engineering Research, Universidad de Zaragoza, Spain
| | | |
Collapse
|
36
|
Tensor-based morphometry with mappings parameterized by stationary velocity fields in Alzheimer's disease neuroimaging initiative. ACTA ACUST UNITED AC 2010. [PMID: 20426118 DOI: 10.1007/978-3-642-04271-3_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Tensor-based morphometry (TBM) is an analysis technique where anatomical information is characterized by means of the spatial transformations between a customized template and observed images. Therefore, accurate inter-subject non-rigid registration is an essential prerrequisite. Further statistical analysis of the spatial transformations is used to highlight some useful information, such as local statistical differences among populations. With the new advent of recent and powerful non-rigid registration algorithms based on the large deformation paradigm, TBM is being increasingly used. In this work we evaluate the statistical power of TBM using stationary velocity field diffeomorphic registration in a large population of subjects from Alzheimer's Disease Neuroimaging Initiative project. The proposed methodology provided atrophy maps with very detailed anatomical resolution and with a high significance compared with results published recently on the same data set.
Collapse
|
37
|
Differentiating prenatal exposure to methamphetamine and alcohol versus alcohol and not methamphetamine using tensor-based brain morphometry and discriminant analysis. J Neurosci 2010; 30:3876-85. [PMID: 20237258 DOI: 10.1523/jneurosci.4967-09.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here we investigate the effects of prenatal exposure to methamphetamine (MA) on local brain volume using magnetic resonance imaging. Because many who use MA during pregnancy also use alcohol, a known teratogen, we examined whether local brain volumes differed among 61 children (ages 5-15 years), 21 with prenatal MA exposure, 18 with concomitant prenatal alcohol exposure (the MAA group), 13 with heavy prenatal alcohol but not MA exposure (ALC group), and 27 unexposed controls. Volume reductions were observed in both exposure groups relative to controls in striatal and thalamic regions bilaterally and in right prefrontal and left occipitoparietal cortices. Striatal volume reductions were more severe in the MAA group than in the ALC group, and, within the MAA group, a negative correlation between full-scale intelligence quotient (FSIQ) scores and caudate volume was observed. Limbic structures, including the anterior and posterior cingulate, the inferior frontal gyrus (IFG), and ventral and lateral temporal lobes bilaterally, were increased in volume in both exposure groups. Furthermore, cingulate and right IFG volume increases were more pronounced in the MAA than ALC group. Discriminant function analyses using local volume measurements and FSIQ were used to predict group membership, yielding factor scores that correctly classified 72% of participants in jackknife analyses. These findings suggest that striatal and limbic structures, known to be sites of neurotoxicity in adult MA abusers, may be more vulnerable to prenatal MA exposure than alcohol exposure and that more severe striatal damage is associated with more severe cognitive deficit.
Collapse
|
38
|
Region-specific alterations in brain development in one- to three-year-old boys with fragile X syndrome. Proc Natl Acad Sci U S A 2010; 107:9335-9. [PMID: 20439717 DOI: 10.1073/pnas.1002762107] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Longitudinal neuroimaging investigation of fragile X syndrome (FXS), the most common cause of inherited intellectual disability and autism, provides an opportunity to study the influence of a specific genetic factor on neurodevelopment in the living human brain. We examined voxel-wise gray and white matter volumes (GMV, WMV) over a 2-year period in 1- to 3-year-old boys with FXS (n = 41) and compared these findings to age- and developmentally matched controls (n = 28). We found enlarged GMV in the caudate, thalamus, and fusiform gyri and reduced GMV in the cerebellar vermis in FXS at both timepoints, suggesting early, possibly prenatal, genetically mediated alterations in neurodevelopment. In contrast, regions in which initial GMV was similar, followed by an altered growth trajectory leading to increased size in FXS, such as the orbital gyri, basal forebrain, and thalamus, suggests delayed or otherwise disrupted synaptic pruning occurring postnatally. WMV of striatal-prefrontal regions was greater in FXS compared with controls, and group differences became more exaggerated over time, indicating the possibility that such WM abnormalities are the result of primary FMRP-deficiency-related axonal pathology, as opposed to secondary connectional dysregulation between morphologically atypical brain structures. Our results indicate that structural abnormalities of different brain regions in FXS evolve differently over time reflecting time-dependent effects of FMRP deficiency and provide insight into their neuropathologic underpinnings. The creation of an early and accurate human brain phenotype for FXS in humans will significantly improve our capability to detect whether new disease-specific treatments can "rescue" the FXS phenotype in affected individuals.
Collapse
|
39
|
Filippi M, Ceccarelli A, Pagani E, Gatti R, Rossi A, Stefanelli L, Falini A, Comi G, Rocca MA. Motor learning in healthy humans is associated to gray matter changes: a tensor-based morphometry study. PLoS One 2010; 5:e10198. [PMID: 20419166 PMCID: PMC2855363 DOI: 10.1371/journal.pone.0010198] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 03/25/2010] [Indexed: 11/18/2022] Open
Abstract
We used tensor-based morphometry (TBM) to: 1) map gray matter (GM) volume changes associated with motor learning in young healthy individuals; 2) evaluate if GM changes persist three months after cessation of motor training; and 3) assess whether the use of different schemes of motor training during the learning phase could lead to volume modifications of specific GM structures. From 31 healthy subjects, motor functional assessment and brain 3D T1-weighted sequence were obtained: before motor training (time 0), at the end of training (two weeks) (time 2), and three months later (time 3). Fifteen subjects (group A) were trained with goal-directed motor sequences, and 16 (group B) with non purposeful motor actions of the right hand. At time 1 vs. time 0, the whole sample of subjects had GM volume increase in regions of the temporo-occipital lobes, inferior parietal lobule (IPL) and middle frontal gyrus, while at time 2 vs. time 1, an increased GM volume in the middle temporal gyrus was seen. At time 1 vs. time 0, compared to group B, group A had a GM volume increase of the hippocampi, while the opposite comparison showed greater GM volume increase in the IPL and insula in group B vs. group A. Motor learning results in structural GM changes of different brain areas which are part of specific neuronal networks and tend to persist after training is stopped. The scheme applied during the learning phase influences the pattern of such structural changes.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute and University Hospital San Raffaele, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schneider A, Hagerman RJ, Hessl D. Fragile X syndrome -- from genes to cognition. ACTA ACUST UNITED AC 2010; 15:333-42. [PMID: 20014363 DOI: 10.1002/ddrr.80] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fragile X syndrome (FXS), a single gene disorder with an expanded CGG allele on the X chromosome, is the most common form of inherited cognitive impairment. The cognitive deficit ranges from mild learning disabilities to severe intellectual disability. The phenotype includes hyperactivity, short attention span, emotional problems including anxiety, social avoidance, poor eye contact, and hyperarousal to sensory stimuli. Imaging studies in FXS have clarified the impact of the FMR1 mutation on brain development and function by documenting structural abnormalities, predominantly in the caudate nucleus and cerebellum, and functional deficits in the caudate, frontal-striatal circuits, and the limbic system. On the basis of current research results, a targeted treatment for FXS will be available in the near future. Currently, a number of psychopharmacological agents are helpful in treating many of the problems in FXS including hyperactivity, attention deficits, anxiety, episodic aggression, and hyperarousal. Although the targeted treatments aim at strengthening synaptic connections, it is essential that these treatments are combined with learning programs that address the cognitive deficits in FXS.
Collapse
Affiliation(s)
- A Schneider
- M.I.N.D. Institute, University of California at Davis Medical Center, 2825 50th Street, Sacramento, CA 95817, USA.
| | | | | |
Collapse
|
41
|
Lightbody AA, Reiss AL. Gene, brain, and behavior relationships in fragile X syndrome: evidence from neuroimaging studies. ACTA ACUST UNITED AC 2010; 15:343-52. [PMID: 20014368 DOI: 10.1002/ddrr.77] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fragile X syndrome (FraX) remains the most common inherited cause of intellectual disability and provides a valuable model for studying gene-brain-behavior relationships. Over the past 15 years, structural and functional magnetic resonance imaging studies have emerged with the goal of better understanding the neural pathways contributing to the cognitive and behavioral outcomes seen in individuals with FraX. Specifically, structural MRI studies have established and begun to refine the specific topography of neuroanatomical variation associated with FraX. In addition, functional neuroimaging studies have begun to elucidate the neural underpinnings of many of the unique characteristics of FraX including difficulties with eye gaze, executive functioning, and behavioral inhibition. This review highlights studies with a focus on the relevant gene-brain-behavior connections observed in FraX. The relationship of brain regions and activation patterns to FMRP are discussed as well as the clinical cognitive and behavioral correlates of these neuroimaging findings.
Collapse
Affiliation(s)
- Amy A Lightbody
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road-Room 1369, Stanford, CA 94305-5795, USA.
| | | |
Collapse
|
42
|
Zhang Y, Zhou Y, Yu C, Lin L, Li C, Jiang T. Reduced cortical folding in mental retardation. AJNR Am J Neuroradiol 2010; 31:1063-7. [PMID: 20075096 DOI: 10.3174/ajnr.a1984] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE MR is a developmental disorder associated with impaired cognitive functioning and deficits in adaptive behavior. With a 2D region of interest-based GI, a preliminary study reported significantly reduced gyrification in the prefrontal lobe in MR. The purpose of this study was to further investigate the abnormalities of cortical gyrification in MR and to explore the possible causes of these abnormalities. MATERIALS AND METHODS Thirteen patients with MR and 26 demographically matched healthy controls were included in this study. A 3D surface-based lGI was calculated as a measure to quantify gyrification. Then vertex-by-vertex contrasts of lGI were performed between patients with MR and healthy controls. RESULTS Statistical analysis showed that patients with MR had significantly reduced lGI in multiple brain regions compared with healthy controls. These regions include the lateral and medial prefrontal cortices, the right superior temporal gyrus, the left superior parietal lobe, the bilateral insular and adjacent cortices, and the visual and motor cortices. CONCLUSIONS The observed abnormal pattern of cortical gyrification revealed by significant reduction of lGI in multiple brain regions might reflect the developmental disturbance in intracortical organization and cortical connectivities in MR.
Collapse
Affiliation(s)
- Y Zhang
- Department of Mathematics, Zhejiang University, Hangzhou, P. R. China
| | | | | | | | | | | |
Collapse
|
43
|
Brun CC, Nicolson R, Leporé N, Chou Y, Vidal CN, DeVito TJ, Drost DJ, Williamson PC, Rajakumar N, Toga AW, Thompson PM. Mapping brain abnormalities in boys with autism. Hum Brain Mapp 2009; 30:3887-900. [PMID: 19554561 PMCID: PMC2790012 DOI: 10.1002/hbm.20814] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 02/02/2009] [Accepted: 04/02/2009] [Indexed: 11/09/2022] Open
Abstract
Children with autism spectrum disorder (ASD) exhibit characteristic cognitive and behavioral differences, but no systematic pattern of neuroanatomical differences has been consistently found. Recent neurodevelopmental models posit an abnormal early surge in subcortical white matter growth in at least some autistic children, perhaps normalizing by adulthood, but other studies report subcortical white matter deficits. To investigate the profile of these alterations in 3D, we mapped brain volumetric differences using a relatively new method, tensor-based morphometry. 3D T1-weighted brain MRIs of 24 male children with ASD (age: 9.5 years +/- 3.2 SD) and 26 age-matched healthy controls (age: 10.3 +/- 2.4 SD) were fluidly registered to match a common anatomical template. Autistic children had significantly enlarged frontal lobes (by 3.6% on the left and 5.1% on the right), and all other lobes of the brain were enlarged significantly, or at trend level. By analyzing the applied deformations statistically point-by-point, we detected significant gray matter volume deficits in bilateral parietal, left temporal and left occipital lobes (P = 0.038, corrected), trend-level cerebral white matter volume excesses, and volume deficits in the cerebellar vermis, adjacent to volume excesses in other cerebellar regions. This profile of excesses and deficits in adjacent regions may (1) indicate impaired neuronal connectivity, resulting from aberrant myelination and/or an inflammatory process, and (2) help to understand inconsistent findings of regional brain tissue excesses and deficits in autism.
Collapse
Affiliation(s)
- Caroline C. Brun
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, California
| | - Rob Nicolson
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | - Natasha Leporé
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, California
| | - Yi‐Yu Chou
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, California
| | - Christine N. Vidal
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, California
| | | | - Dick J. Drost
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Peter C. Williamson
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | - Nagalingam Rajakumar
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, California
| | - Paul M. Thompson
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, California
| |
Collapse
|
44
|
A voxel-based morphometry comparison of regional gray matter between fragile X syndrome and autism. Psychiatry Res 2009; 174:138-45. [PMID: 19853418 PMCID: PMC2783567 DOI: 10.1016/j.pscychresns.2009.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 03/02/2009] [Accepted: 04/27/2009] [Indexed: 11/21/2022]
Abstract
The phenotypic association between fragile X syndrome (FXS) and autism is well established, but no studies have directly compared whole-brain anatomy between the two disorders. We performed voxel-based morphometry analyses of magnetic resonance imaging (MRI) scans on 10 individuals with FXS, 10 individuals with autism, and 10 healthy comparison subjects to identify volumetric changes in each disorder. Regional gray matter volumes within frontal, parietal, temporal, and cingulate gyri, as well as in the caudate nuclei and cerebellum, were larger in the FXS group relative to the autism group. In addition, volume increases in FXS were observed in frontal gyri and caudate nuclei compared to controls. The autism group exhibited volume increases in frontal and temporal gyri relative to the FXS group, and no volume increases relative to controls. Volumetric deficits relative to controls were observed in regions of the cerebellum for both groups, with additional deficits in parietal and temporal gyri for the FXS group. Our caudate nuclei and frontal gyri results may implicate dysfunction of frontostriatal circuitry in FXS. Cerebellar deficits suggest atypical development of the cerebellum contributing to the phenotype of both disorders, but further imply that unique cerebellar regions contribute to the phenotype of each disorder.
Collapse
|
45
|
Bray S, Chang C, Hoeft F. Applications of multivariate pattern classification analyses in developmental neuroimaging of healthy and clinical populations. Front Hum Neurosci 2009; 3:32. [PMID: 19893761 PMCID: PMC2773173 DOI: 10.3389/neuro.09.032.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/29/2009] [Indexed: 11/21/2022] Open
Abstract
Analyses of functional and structural imaging data typically involve testing hypotheses at each voxel in the brain. However, it is often the case that distributed spatial patterns may be a more appropriate metric for discriminating between conditions or groups. Multivariate pattern analysis has been gaining traction in neuroimaging of adult healthy and clinical populations; studies have shown that information present in neuroimaging data can be used to decode intentions and perceptual states, as well as discriminate between healthy and diseased brains. While few studies to date have applied these methods in pediatric populations, in this review we discuss exciting potential applications for studying both healthy, and aberrant, brain development. We include an overview of methods and discussion of challenges and limitations.
Collapse
Affiliation(s)
- Signe Bray
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine Palo Alto, CA 94301, USA.
| | | | | |
Collapse
|
46
|
Ceccarelli A, Rocca MA, Pagani E, Falini A, Comi G, Filippi M. Cognitive learning is associated with gray matter changes in healthy human individuals: a tensor-based morphometry study. Neuroimage 2009; 48:585-9. [PMID: 19615452 DOI: 10.1016/j.neuroimage.2009.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/18/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022] Open
Abstract
Longitudinal voxel-based morphometry studies have demonstrated morphological changes in cortical structures following motor and cognitive learning. In this study, we applied, for the first time, tensor-based morphometry (TBM) to assess the short-term structural brain gray matter (GM) changes associated with cognitive learning in healthy subjects. Using a 3 T scanner, a 3D T1-weighted sequence was acquired from 32 students at baseline and after two weeks. Students were separated into two groups: 13 defined as "students in cognitive training", who underwent a two-week cognitive learning period, and 19 "students not in cognitive training", who were not involved in any teaching activity. GM changes were assessed using TBM and statistical parametric mapping. Baseline regional GM volume did not differ between the two groups. At follow up, compared to "students not in cognitive training", the "students in cognitive training" had a significant GM volume increase in the dorsomedial frontal cortex, the orbitofrontal cortex, and the precuneus (p<0.001). These results suggest that cognitive learning results in short-term structural GM changes of neuronal networks of the human brain, which are known to be involved in cognition. This may have important implications for the development of rehabilitation strategies in patients with neurological diseases.
Collapse
Affiliation(s)
- Antonia Ceccarelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Brun CC, Leporé N, Pennec X, Lee AD, Barysheva M, Madsen SK, Avedissian C, Chou YY, de Zubicaray GI, McMahon KL, Wright MJ, Toga AW, Thompson PM. Mapping the regional influence of genetics on brain structure variability--a tensor-based morphometry study. Neuroimage 2009; 48:37-49. [PMID: 19446645 DOI: 10.1016/j.neuroimage.2009.05.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 11/29/2022] Open
Abstract
Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8+/-1.8 SD years). All 92 twins' 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject's anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions that have a more protracted maturational time-course.
Collapse
Affiliation(s)
- Caroline C Brun
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, 635 Charles Young Drive South Suite 225, Los Angeles, CA 90095-7334, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chou YY, Leporé N, Chiang MC, Avedissian C, Barysheva M, McMahon KL, de Zubicaray GI, Meredith M, Wright MJ, Toga AW, Thompson PM. Mapping genetic influences on ventricular structure in twins. Neuroimage 2009; 44:1312-23. [PMID: 19041405 PMCID: PMC2773138 DOI: 10.1016/j.neuroimage.2008.10.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 10/15/2008] [Accepted: 10/21/2008] [Indexed: 11/16/2022] Open
Abstract
Despite substantial progress in measuring the anatomical and functional variability of the human brain, little is known about the genetic and environmental causes of these variations. Here we developed an automated system to visualize genetic and environmental effects on brain structure in large brain MRI databases. We applied our multi-template segmentation approach termed "Multi-Atlas Fluid Image Alignment" to fluidly propagate hand-labeled parameterized surface meshes, labeling the lateral ventricles, in 3D volumetric MRI scans of 76 identical (monozygotic, MZ) twins (38 pairs; mean age=24.6 (SD=1.7)); and 56 same-sex fraternal (dizygotic, DZ) twins (28 pairs; mean age=23.0 (SD=1.8)), scanned as part of a 5-year research study that will eventually study over 1000 subjects. Mesh surfaces were averaged within subjects to minimize segmentation error. We fitted quantitative genetic models at each of 30,000 surface points to measure the proportion of shape variance attributable to (1) genetic differences among subjects, (2) environmental influences unique to each individual, and (3) shared environmental effects. Surface-based statistical maps, derived from path analysis, revealed patterns of heritability, and their significance, in 3D. Path coefficients for the 'ACE' model that best fitted the data indicated significant contributions from genetic factors (A=7.3%), common environment (C=38.9%) and unique environment (E=53.8%) to lateral ventricular volume. Earlier-maturing occipital horn regions may also be more genetically influenced than later-maturing frontal regions. Maps visualized spatially-varying profiles of environmental versus genetic influences. The approach shows promise for automatically measuring gene-environment effects in large image databases.
Collapse
Affiliation(s)
- Yi-Yu Chou
- Department of Neurology, UCLA School of Medicine, Laboratory of Neuro Imaging, Los Angeles, CA 90095-7332, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kale SC, Lerch JP, Henkelman RM, Chen XJ. Optimization of the SNR-resolution tradeoff for registration of magnetic resonance images. Hum Brain Mapp 2008; 29:1147-58. [PMID: 17957707 DOI: 10.1002/hbm.20453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Image registration serves many applications in medical imaging, including longitudinal studies, treatment verification, and more recently, morphometry. Registration processing is regularly applied in magnetic resonance (MR) images, where imaging is highly adaptable in capturing soft tissue contrast. To obtain the greatest registration accuracy in MR imaging, the inherent imaging tradeoff between SNR and resolution at a given scan time should be optimized for computational accuracy, rather than human viewing. We investigated this SNR-resolution tradeoff to optimize registration for digital morphometry. Tradeoff images were simulated from acquired gold standard MR images to emulate a shorter, constant acquisition time, but at the expense of SNR, resolution, or both. The group of images from each tradeoff was nonlinearly registered toward an average atlas producing deformation fields, useful for identifying differences in morphology. The gold standard data were also registered. The deformation fields were used to evaluate registration performance of each tradeoff relative to the gold standard. For fixed scan times, the optimal SNR for registration with MR imaging was found to be approximately 20. Image resolution should be adjusted to produce this target voxel SNR when registration is a central processing task.
Collapse
Affiliation(s)
- Shoan C Kale
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
50
|
Brun C, Leporé N, Pennec X, Chou YY, Lee AD, Barysheva M, de Zubicaray G, Meredith M, McMahon K, Wright MJ, Toga AW, Thompson PM. A tensor-based morphometry study of genetic influences on brain structure using a new fluid registration method. ACTA ACUST UNITED AC 2008; 11:914-21. [PMID: 18982692 DOI: 10.1007/978-3-540-85990-1_110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
We incorporated a new Riemannian fluid registration algorithm into a general MRI analysis method called tensor-based morphometry to map the heritability of brain morphology in MR images from 23 monozygotic and 23 dizygotic twin pairs. All 92 3D scans were fluidly registered to a common template. Voxelwise Jacobian determinants were computed from the deformation fields to assess local volumetric differences across subjects. Heritability maps were computed from the intraclass correlations and their significance was assessed using voxelwise permutation tests. Lobar volume heritability was also studied using the ACE genetic model. The performance of this Riemannian algorithm was compared to a more standard fluid registration algorithm: 3D maps from both registration techniques displayed similar heritability patterns throughout the brain. Power improvements were quantified by comparing the cumulative distribution functions of the p-values generated from both competing methods. The Riemannian algorithm outperformed the standard fluid registration.
Collapse
Affiliation(s)
- Caroline Brun
- Laboratory of Neuro Imaging, UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|