1
|
Billot A, Kiran S. Disentangling neuroplasticity mechanisms in post-stroke language recovery. BRAIN AND LANGUAGE 2024; 251:105381. [PMID: 38401381 PMCID: PMC10981555 DOI: 10.1016/j.bandl.2024.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
A major objective in post-stroke aphasia research is to gain a deeper understanding of neuroplastic mechanisms that drive language recovery, with the ultimate goal of enhancing treatment outcomes. Subsequent to recent advances in neuroimaging techniques, we now have the ability to examine more closely how neural activity patterns change after a stroke. However, the way these neural activity changes relate to language impairments and language recovery is still debated. The aim of this review is to provide a theoretical framework to better investigate and interpret neuroplasticity mechanisms underlying language recovery in post-stroke aphasia. We detail two sets of neuroplasticity mechanisms observed at the synaptic level that may explain functional neuroimaging findings in post-stroke aphasia recovery at the network level: feedback-based homeostatic plasticity and associative Hebbian plasticity. In conjunction with these plasticity mechanisms, higher-order cognitive control processes dynamically modulate neural activity in other regions to meet communication demands, despite reduced neural resources. This work provides a network-level neurobiological framework for understanding neural changes observed in post-stroke aphasia and can be used to define guidelines for personalized treatment development.
Collapse
Affiliation(s)
- Anne Billot
- Center for Brain Recovery, Boston University, Boston, USA; Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Swathi Kiran
- Center for Brain Recovery, Boston University, Boston, USA.
| |
Collapse
|
2
|
Campos B, Choi H, DeMarco AT, Seydell-Greenwald A, Hussain SJ, Joy MT, Turkeltaub PE, Zeiger W. Rethinking Remapping: Circuit Mechanisms of Recovery after Stroke. J Neurosci 2023; 43:7489-7500. [PMID: 37940595 PMCID: PMC10634578 DOI: 10.1523/jneurosci.1425-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 11/10/2023] Open
Abstract
Stroke is one of the most common causes of disability, and there are few treatments that can improve recovery after stroke. Therapeutic development has been hindered because of a lack of understanding of precisely how neural circuits are affected by stroke, and how these circuits change to mediate recovery. Indeed, some of the hypotheses for how the CNS changes to mediate recovery, including remapping, redundancy, and diaschisis, date to more than a century ago. Recent technological advances have enabled the interrogation of neural circuits with ever greater temporal and spatial resolution. These techniques are increasingly being applied across animal models of stroke and to human stroke survivors, and are shedding light on the molecular, structural, and functional changes that neural circuits undergo after stroke. Here we review these studies and highlight important mechanisms that underlie impairment and recovery after stroke. We begin by summarizing knowledge about changes in neural activity that occur in the peri-infarct cortex, specifically considering evidence for the functional remapping hypothesis of recovery. Next, we describe the importance of neural population dynamics, disruptions in these dynamics after stroke, and how allocation of neurons into spared circuits can restore functionality. On a more global scale, we then discuss how effects on long-range pathways, including interhemispheric interactions and corticospinal tract transmission, contribute to post-stroke impairments. Finally, we look forward and consider how a deeper understanding of neural circuit mechanisms of recovery may lead to novel treatments to reduce disability and improve recovery after stroke.
Collapse
Affiliation(s)
- Baruc Campos
- Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Hoseok Choi
- Department of Neurology, Weill Institute for Neuroscience, University of California-San Francisco, San Francisco, California 94158
| | - Andrew T DeMarco
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
- Department of Rehabilitation Medicine, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
| | - Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
- MedStar National Rehabilitation Hospital, Washington, DC 20010
| | - Sara J Hussain
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas 78712
| | - Mary T Joy
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | - Peter E Turkeltaub
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
- MedStar National Rehabilitation Hospital, Washington, DC 20010
| | - William Zeiger
- Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| |
Collapse
|
3
|
Papageorgiou G, Kasselimis D, Laskaris N, Potagas C. Unraveling the Thread of Aphasia Rehabilitation: A Translational Cognitive Perspective. Biomedicines 2023; 11:2856. [PMID: 37893229 PMCID: PMC10604624 DOI: 10.3390/biomedicines11102856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Translational neuroscience is a multidisciplinary field that aims to bridge the gap between basic science and clinical practice. Regarding aphasia rehabilitation, there are still several unresolved issues related to the neural mechanisms that optimize language treatment. Although there are studies providing indications toward a translational approach to the remediation of acquired language disorders, the incorporation of fundamental neuroplasticity principles into this field is still in progress. From that aspect, in this narrative review, we discuss some key neuroplasticity principles, which have been elucidated through animal studies and which could eventually be applied in the context of aphasia treatment. This translational approach could be further strengthened by the implementation of intervention strategies that incorporate the idea that language is supported by domain-general mechanisms, which highlights the impact of non-linguistic factors in post-stroke language recovery. Here, we highlight that translational research in aphasia has the potential to advance our knowledge of brain-language relationships. We further argue that advances in this field could lead to improvement in the remediation of acquired language disturbances by remodeling the rationale of aphasia-therapy approaches. Arguably, the complex anatomy and phenomenology of aphasia dictate the need for a multidisciplinary approach with one of its main pillars being translational research.
Collapse
Affiliation(s)
- Georgios Papageorgiou
- Neuropsychology and Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Dimitrios Kasselimis
- Neuropsychology and Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Department of Psychology, Panteion University of Social and Political Sciences, 17671 Athens, Greece
| | - Nikolaos Laskaris
- Neuropsychology and Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Department of Industrial Design and Production Engineering, School of Engineering, University of West Attica, 12241 Athens, Greece
| | - Constantin Potagas
- Neuropsychology and Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
4
|
Simic T, Desjardins MÈ, Courson M, Bedetti C, Houzé B, Brambati SM. Treatment-induced neuroplasticity after anomia therapy in post-stroke aphasia: A systematic review of neuroimaging studies. BRAIN AND LANGUAGE 2023; 244:105300. [PMID: 37633250 DOI: 10.1016/j.bandl.2023.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 05/02/2023] [Accepted: 06/21/2023] [Indexed: 08/28/2023]
Abstract
We systematically reviewed the literature on neural changes following anomia treatment post-stroke. We conducted electronic searches of CINAHL, Cochrane Trials, Embase, Ovid MEDLINE, MEDLINE-in-Process and PsycINFO databases; two independent raters assessed all abstracts and full texts. Accepted studies reported original data on adults with post-stroke aphasia, who received behavioural treatment for anomia, and magnetic resonance brain imaging (MRI) pre- and post-treatment. Search results yielded 2481 citations; 33 studies were accepted. Most studies employed functional MRI and the quality of reporting neuroimaging methodology was variable, particularly for pre-processing steps and statistical analyses. The most methodologically robust data were synthesized, focusing on pre- versus post-treatment contrasts. Studies more commonly reported increases (versus decreases) in activation following naming therapy, primarily in the left supramarginal gyrus, and left/bilateral precunei. Our findings highlight the methodological heterogeneity across MRI studies, and the paucity of robust evidence demonstrating direct links between brain and behaviour in anomia rehabilitation.
Collapse
Affiliation(s)
- Tijana Simic
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), 4545 Queen Mary R.d., Montréal, QC H3W 1W4, Canada; Département de Psychologie, Université de Montréal, 90 Vincent-d'Indy Avenue, Montréal, QC H2V 2S9, Canada; Hôpital du Sacré-Cœur de Montréal (HSCM), 5400 Boul Gouin O, Montréal, QC H4J 1C5, Canada.
| | - Marie-Ève Desjardins
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), 4545 Queen Mary R.d., Montréal, QC H3W 1W4, Canada; Département de Psychologie, Université de Montréal, 90 Vincent-d'Indy Avenue, Montréal, QC H2V 2S9, Canada; Hôpital du Sacré-Cœur de Montréal (HSCM), 5400 Boul Gouin O, Montréal, QC H4J 1C5, Canada
| | - Melody Courson
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), 4545 Queen Mary R.d., Montréal, QC H3W 1W4, Canada; Département de Psychologie, Université de Montréal, 90 Vincent-d'Indy Avenue, Montréal, QC H2V 2S9, Canada
| | - Christophe Bedetti
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), 4545 Queen Mary R.d., Montréal, QC H3W 1W4, Canada
| | - Bérengère Houzé
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), 4545 Queen Mary R.d., Montréal, QC H3W 1W4, Canada; Département de Psychologie, Université de Montréal, 90 Vincent-d'Indy Avenue, Montréal, QC H2V 2S9, Canada
| | - Simona Maria Brambati
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), 4545 Queen Mary R.d., Montréal, QC H3W 1W4, Canada; Département de Psychologie, Université de Montréal, 90 Vincent-d'Indy Avenue, Montréal, QC H2V 2S9, Canada; Hôpital du Sacré-Cœur de Montréal (HSCM), 5400 Boul Gouin O, Montréal, QC H4J 1C5, Canada
| |
Collapse
|
5
|
Altered Spontaneous Brain Activity in Poststroke Aphasia: A Resting-State fMRI Study. Brain Sci 2023; 13:brainsci13020300. [PMID: 36831843 PMCID: PMC9954170 DOI: 10.3390/brainsci13020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
PURPOSE Brain areas frequently implicated in language recovery after stroke comprise perilesional sites in the left hemisphere and homotopic regions in the right hemisphere. However, the neuronal mechanisms underlying language restoration are still largely unclear. METHODS AND MATERIALS In the present study, we investigated the brain function in 15 patients with poststroke aphasia and 30 matched control subjects by combining the regional homogeneity (ReHo) and amplitudes of low-frequency fluctuation (ALFF) analysis methods based on resting-state fMRI. RESULTS Compared to the control subjects, the patients with aphasia exhibited increased ReHo and ALFF values in the ipsilateral perilesional areas and increased ReHo in the contralesional right middle frontal gyrus. CONCLUSIONS The increased spontaneous brain activity in patients with poststroke aphasia during the recovery period, specifically in the ipsilateral perilesional regions and the homologous language regions of the right hemisphere, has potential implications for the treatment of patients with aphasia.
Collapse
|
6
|
Barbieri E, Thompson CK, Higgins J, Caplan D, Kiran S, Rapp B, Parrish T. Treatment-induced neural reorganization in aphasia is language-domain specific: Evidence from a large-scale fMRI study. Cortex 2023; 159:75-100. [PMID: 36610109 PMCID: PMC9931666 DOI: 10.1016/j.cortex.2022.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/14/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Studies investigating the effects of language intervention on the re-organization of language networks in chronic aphasia have resulted in mixed findings, likely related to-among other factors-the language function targeted during treatment. The present study investigated the effects of the type of treatment provided on neural reorganization. Seventy individuals with chronic stroke-induced aphasia, recruited from three research laboratories and meeting criteria for agrammatism, anomia or dysgraphia were assigned to either treatment (N = 51) or control (N = 19) groups. Participants in the treatment group received 12-weeks of language intervention targeting sentence comprehension/production, naming, or spelling. At baseline and post-testing, all participants performed an fMRI story comprehension task, with blocks of auditorily-presented stories alternated with blocks of reversed speech. Participants in the treatment, but not control, group significantly improved in the treated language domain. FMRI region-of-interest (ROI) analyses, conducted within regions that were either active (or homologous to active) regions in a group of 22 healthy participants on the story comprehension task, revealed a significant increase in activation from pre-to post-treatment in right-hemisphere homologues of these regions for participants in the sentence and spelling, but not naming, treatment groups, not predicted by left-hemisphere lesion size. For the sentence (but not the spelling) treatment group, activation changes within right-hemisphere homologues of language regions were positively associated with changes in measures of verb and sentence comprehension. These findings support previous research pointing to recruitment of right hemisphere tissue as a viable route for language recovery and suggest that sentence-level treatment may promote greater neuroplasticity on naturalistic, language comprehension tasks, compared to word-level treatment.
Collapse
Affiliation(s)
- Elena Barbieri
- Center for the Neurobiology of Language Recovery, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA; Department of Communication Sciences and Disorders, School of Communication, Northwestern University, 70 Arts Circle Drive, Evanston, IL 60208, USA.
| | - Cynthia K Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA; Department of Communication Sciences and Disorders, School of Communication, Northwestern University, 70 Arts Circle Drive, Evanston, IL 60208, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - James Higgins
- Center for the Neurobiology of Language Recovery, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA; Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N Michigan Avenue, Chicago, IL 60611, USA
| | - David Caplan
- Center for the Neurobiology of Language Recovery, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, Boston, MA 02114, USA
| | - Swathi Kiran
- Center for the Neurobiology of Language Recovery, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA; Department of Speech, Language, And Hearing, College of Health & Rehabilitation, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA
| | - Brenda Rapp
- Center for the Neurobiology of Language Recovery, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA; Department of Cognitive Science, Krieger School of Arts & Sciences, Johns Hopkins Univeristy, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Todd Parrish
- Center for the Neurobiology of Language Recovery, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA; Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N Michigan Avenue, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Low TA, Lindland K, Kirton A, Carlson HL, Harris AD, Goodyear BG, Monchi O, Hill MD, Dukelow SP. Repetitive transcranial magnetic stimulation (rTMS) combined with multi-modality aphasia therapy for chronic post-stroke non-fluent aphasia: A pilot randomized sham-controlled trial. BRAIN AND LANGUAGE 2023; 236:105216. [PMID: 36525719 DOI: 10.1016/j.bandl.2022.105216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/22/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) shows promise in improving speech production in post-stroke aphasia. Limited evidence suggests pairing rTMS with speech therapy may result in greater improvements. Twenty stroke survivors (>6 months post-stroke) were randomized to receive either sham rTMS plus multi-modality aphasia therapy (M-MAT) or rTMS plus M-MAT. For the first time, we demonstrate that rTMS combined with M-MAT is feasible, with zero adverse events and minimal attrition. Both groups improved significantly over time on all speech and language outcomes. However, improvements did not differ between rTMS or sham. We found that rTMS and sham groups differed in lesion location, which may explain speech and language outcomes as well as unique patterns of BOLD signal change within each group. We offer practical considerations for future studies and conclude that while combination therapy of rTMS plus M-MAT in chronic post-stroke aphasia is safe and feasible, personalized intervention may be necessary.
Collapse
Affiliation(s)
- Trevor A Low
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kevin Lindland
- Department of Allied Health, Alberta Health Services, Calgary, Alberta, Canada
| | - Adam Kirton
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Helen L Carlson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ashley D Harris
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Oury Monchi
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael D Hill
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Division of Physical Medicine and Rehabilitation, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
Marchina S, Norton A, Schlaug G. Effects of melodic intonation therapy in patients with chronic nonfluent aphasia. Ann N Y Acad Sci 2023; 1519:173-185. [PMID: 36349876 PMCID: PMC10262915 DOI: 10.1111/nyas.14927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Patients with large left-hemisphere lesions and post-stroke aphasia often remain nonfluent. Melodic intonation therapy (MIT) may be an effective alternative to traditional speech therapy for facilitating recovery of fluency in those patients. In an open-label, proof-of-concept study, 14 subjects with nonfluent aphasia with large left-hemisphere lesions (171 ± 76 cc) underwent two speech/language assessments before, one at the midpoint, and two after the end of 75 sessions (1.5 h/session) of MIT. Functional MR imaging was done before and after therapy asking subjects to vocalize the same set of 10 bi-syllabic words. We found significant improvements in speech output after a period of intensive MIT (75 sessions for a total of 112.5 h) compared to two pre-therapy assessments. Therapy-induced gains were maintained 4 weeks post-treatment. Imaging changes were seen in a right-hemisphere network that included the posterior superior temporal and inferior frontal gyri, inferior pre- and postcentral gyri, pre-supplementary motor area, and supramarginal gyrus. Functional changes in the posterior right inferior frontal gyri significantly correlated with changes in a measure of fluency. Intense training of intonation-supported auditory-motor coupling and engaging feedforward/feedback control regions in the unaffected hemisphere improves speech-motor functions in subjects with nonfluent aphasia and large left-hemisphere lesions.
Collapse
Affiliation(s)
- Sarah Marchina
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea Norton
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Gottfried Schlaug
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Music, Neuroimaging and Stroke Recovery Laboratories, University of Massachusetts Chan Medical School – Baystate Campus, Springfield, Massachusetts, USA
- Department of Biomedical Engineering and Institute of Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
9
|
Johnston PR, McIntosh AR, Meltzer JA. Spectral slowing in chronic stroke reflects abnormalities in both periodic and aperiodic neural dynamics. Neuroimage Clin 2022; 37:103277. [PMID: 36495856 PMCID: PMC9758570 DOI: 10.1016/j.nicl.2022.103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Decades of electrophysiological work have demonstrated the presence of "spectral slowing" in stroke patients - a prominent shift in the power spectrum towards lower frequencies, most evident in the vicinity of the lesion itself. Despite the reliability of this slowing as a marker of dysfunctional tissue across patient groups as well as animal models, it has yet to be explained in terms of the pathophysiological processes of stroke. To do so requires clear understanding of the neural dynamics that these differences represent, acknowledging the often overlooked fact that spectral power reflects more than just the amplitude of neural oscillations. To accomplish this, we used a combination of frequency domain and time domain measures to disambiguate and quantify periodic (oscillatory) and aperiodic (non-oscillatory) neural dynamics in resting state magnetoencephalography (MEG) recordings from chronic stroke patients. We found that abnormally elevated low frequency power in these patients was best explained by a steepening of the aperiodic component of the power spectrum, rather than an enhancement of low frequency oscillations, as is often assumed. However, genuine oscillatory activity at higher frequencies was also found to be abnormal, with patients showing alpha slowing and diminished oscillatory activity in the beta band. These aperiodic and periodic abnormalities were found to covary, and could be detected even in the un-lesioned hemisphere, however they were most prominent in perilesional tissue, where their magnitude was predictive of cognitive impairment. This work redefines spectral slowing as a pattern of changes involving both aperiodic and periodic neural dynamics and narrows the gap in understanding between non-invasive markers of dysfunctional tissue and disease processes responsible for altered neural dynamics.
Collapse
Affiliation(s)
- Phillip R Johnston
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada.
| | - Anthony R McIntosh
- Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive E K9625, Burnaby, BC V5A 1S6, Canada; Institute for Neuroscience and Neurotechnology, Simon Fraser University, 8888 University Drive E K9625, Burnaby, BC V5A 1S6, Canada
| | - Jed A Meltzer
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada; Department of Speech-Language Pathology, University of Toronto, 500 University Avenue, Toronto, ON M5G 1V7, Canada
| |
Collapse
|
10
|
DeMarco AT, van der Stelt C, Paul S, Dvorak E, Lacey E, Snider S, Turkeltaub PE. Absence of Perilesional Neuroplastic Recruitment in Chronic Poststroke Aphasia. Neurology 2022; 99:e119-e128. [PMID: 35508398 PMCID: PMC9280993 DOI: 10.1212/wnl.0000000000200382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES A prominent theory proposes that neuroplastic recruitment of perilesional tissue supports aphasia recovery, especially when language-capable cortex is spared by smaller lesions. This theory has rarely been tested directly and findings have been inconclusive. We tested the perilesional plasticity hypothesis using 2 fMRI tasks in 2 groups of patients with previous aphasia diagnosis. METHODS Two cohorts totaling 82 patients with chronic left-hemisphere stroke with previous aphasia diagnosis and 82 control participants underwent fMRI using either a naming task or a reliable semantic decision task. Individualized perilesional tissue was defined by dilating anatomical lesions and language regions were defined using meta-analyses. Mixed modeling examined differences in activity between groups. Relationships with lesion size and aphasia severity were examined. RESULTS Patients exhibited reduced activity in perilesional language tissue relative to controls in both tasks. Although a few cortical regions exhibited greater activity irrespective of distance from the lesion, or only when distant from the lesion, no regions exhibited increased activity only when near the lesion. Larger lesions were associated with reduced language activity irrespective of distance from the lesion. Using the reliable fMRI task, reduced language activity was related to aphasia severity independent of lesion size. DISCUSSION We found no evidence for neuroplastic recruitment of perilesional tissue in aphasia beyond its typical role in language. Rather, our findings are consistent with alternative hypotheses that changes in left-hemisphere activation during recovery relate to normalization of language network dysfunction and possibly recruitment of alternate cortical processors. These findings clarify left-hemisphere neuroplastic mechanisms supporting language recovery after stroke.
Collapse
Affiliation(s)
- Andrew Tesla DeMarco
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Candace van der Stelt
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Sachi Paul
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Elizabeth Dvorak
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Elizabeth Lacey
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Sarah Snider
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Peter E Turkeltaub
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC.
| |
Collapse
|
11
|
Shah-Basak P, Sivaratnam G, Teti S, Deschamps T, Kielar A, Jokel R, Meltzer JA. Electrophysiological connectivity markers of preserved language functions in post-stroke aphasia. Neuroimage Clin 2022; 34:103036. [PMID: 35561556 PMCID: PMC9111985 DOI: 10.1016/j.nicl.2022.103036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
Post-stroke aphasia is a consequence of localized stroke-related damage as well as global disturbances in a highly interactive and bilaterally-distributed language network. Aphasia is increasingly accepted as a network disorder and it should be treated as such when examining the reorganization and recovery mechanisms after stroke. In the current study, we sought to investigate reorganized patterns of electrophysiological connectivity, derived from resting-state magnetoencephalography (rsMEG), in post-stroke chronic (>6 months after onset) aphasia. We implemented amplitude envelope correlations (AEC), a metric of connectivity commonly used to describe slower aspects of interregional communication in resting-state electrophysiological data. The main focus was on identifying the oscillatory frequency bands and frequency-specific spatial topology of connections associated with preserved language abilities after stroke. RsMEG was recorded for 5 min in 21 chronic stroke survivors with aphasia and in 20 matched healthy controls. Source-level MEG activity was reconstructed and summarized within 72 atlas-defined brain regions (or nodes). A 72 × 72 leakage-corrected connectivity (of AEC) matrix was obtained for frequencies from theta to low-gamma (4–50 Hz). Connectivity was compared between groups, and, the correlations between connectivity and subscale scores from the Western Aphasia Battery (WAB) were evaluated in the stroke group, using partial least squares analyses. Posthoc multiple regression analyses were also conducted on a graph theory measure of node strengths, derived from significant connectivity results, to control for node-wise properties (local spectral power and lesion sizes) and demographic and stroke-related variables. Connectivity among the left hemisphere regions, i.e. those ipsilateral to the stroke lesion, was greatly reduced in stroke survivors with aphasia compared to matched healthy controls in the alpha (8–13 Hz; p = 0.011) and beta (15–30 Hz; p = 0.001) bands. The spatial topology of hypoconnectivity in the alpha vs. beta bands was distinct, revealing a greater involvement of ventral frontal, temporal and parietal areas in alpha, and dorsal frontal and parietal areas in beta. The node strengths from alpha and beta group differences remained significant after controlling for nodal spectral power. AEC correlations with WAB subscales of object naming and fluency were significant. Greater alpha connectivity was associated with better naming performance (p = 0.045), and greater connectivity in both the alpha (p = 0.033) and beta (p = 0.007) bands was associated with better speech fluency performance. The spatial topology was distinct between these frequency bands. The node strengths remained significant after controlling for age, time post stroke onset, nodal spectral power and nodal lesion sizes. Our findings provide important insights into the electrophysiological connectivity profiles (frequency and spatial topology) potentially underpinning preserved language abilities in stroke survivors with aphasia.
Collapse
Affiliation(s)
- Priyanka Shah-Basak
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada.
| | - Gayatri Sivaratnam
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Selina Teti
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Tiffany Deschamps
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Aneta Kielar
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, AZ, USA
| | - Regina Jokel
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada; Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada
| | - Jed A Meltzer
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada; Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Li L, Ma J, Hua X, Zhou Y, Qiu Y, Zhu Z, Zheng Y, Xie Q, Liang Z, Xu J. Altered Intra- and Inter-Network Functional Connectivity in Patients With Crohn’s Disease: An Independent Component Analysis-Based Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2022; 16:855470. [PMID: 35310085 PMCID: PMC8926075 DOI: 10.3389/fnins.2022.855470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMany studies have reported changes in the structure and function of several brain areas in patients with Crohn’s disease (CD). However, little is known about whether the possible functional connectivity of resting-state networks (RSNs) is altered in CD patients.PurposeAim to investigate the intra- and inter-network alterations between related RSNs in patients with CD and the potential relationships between altered neuroimaging and CD clinical indices.Materials and MethodsIn this study, 20 CD patients and 22 age- and sex-matched healthy controls were included. All participants underwent functional magnetic resonance imaging examination. We used independent component analysis (ICA) to explore the changes in RSNs and evaluated functional connectivity between different RSNs using functional network connectivity (FNC) analysis, and Pearson correlation analysis was performed between altered intra- and inter-network functional connectivity and CD clinical index.ResultsSix CD-related RSNs were identified via ICA, namely the high visual, prime visual, language, dorsal default mode, posterior insula, and precuneus networks. Compared to healthy controls, patients with CD showed significant changes in prime visual and language networks. Additionally, the functional connectivity (FC) values of the left calcarine within the prime visual network were negatively correlated with CD duration. The inter-alterations showed that a significantly increased FNC existed between the language and dorsal default mode networks.ConclusionThe results showed CD-related changes in brain functional networks. This evidence provides more insights into the pathophysiological mechanisms of brain plasticity in CD.
Collapse
Affiliation(s)
- Lu Li
- Department of Radiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuyun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yage Qiu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhu
- Department of Radiology, Putuo People’s Hospital, Tongji University, Shanghai, China
| | - Yanling Zheng
- Department of Radiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qian Xie
- Department of Radiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zonghui Liang
- Department of Radiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
- *Correspondence: Zonghui Liang,
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Jianguang Xu,
| |
Collapse
|
13
|
Li R, Mukadam N, Kiran S. Functional MRI evidence for reorganization of language networks after stroke. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:131-150. [PMID: 35078595 DOI: 10.1016/b978-0-12-823384-9.00007-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this chapter, we review fMRI evidence for language reorganization in individuals with poststroke aphasia. Several studies in the current literature have utilized fMRI as a tool to understand patterns of functional reorganization in poststroke aphasia. Consistent with previous models that have been proposed to explain the trajectory of language recovery, differential patterns of language processing and language recovery have been identified across individuals with poststroke aphasia in different stages of recovery. Overall, a global network breakdown typically occurs in the early stages of aphasia recovery, followed by normalization in "traditional" left hemisphere language networks. Depending on individual characteristics, right hemisphere regions and bilateral domain-general regions may be further recruited. The main takeaway of this chapter is that poststroke aphasia recovery does not depend on individual neural regions, but rather involves a complex interaction among regions in larger networks. Many of the unresolved issues and contrastive findings in the literature warrant further research with larger groups of participants and standard protocols of fMRI implementation.
Collapse
Affiliation(s)
- Ran Li
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA, United States
| | - Nishaat Mukadam
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA, United States
| | - Swathi Kiran
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA, United States.
| |
Collapse
|
14
|
Harvey DY, Hamilton R. Noninvasive brain stimulation to augment language therapy for poststroke aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:241-250. [PMID: 35078601 DOI: 10.1016/b978-0-12-823384-9.00012-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Behavioral language treatment approaches represent the standard of care for persons with aphasia (PWA), but the benefits of these treatments are variable. Moreover, due to the logistic and financial limitations on the amount of behavioral therapy available to patients, it is often infeasible for PWA to receive behavioral interventions with the level of frequency, intensity, or duration that would provide significant and lasting benefit, underscoring the need for novel, effective treatment approaches. Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), have emerged as promising neurally-based tools to enhance language abilities for PWA following stroke. This chapter first provides an overview of the methods and physiologic basis motivating the use of NIBS to enhance aphasia recovery followed by a selective review of the growing evidence of its potential as a novel therapeutic tool. Subsequent sections discuss some of the principles that may prove most useful in guiding and optimizing the effects of NIBS on aphasia recovery, focusing on how the functional state of the brain at the time of stimulation interacts with the behavioral aftereffects of neuromodulation. We conclude with a discussion of current challenges and future directions for NIBS in aphasia treatment.
Collapse
Affiliation(s)
- Denise Y Harvey
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Roy Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
15
|
LaCroix AN, James E, Rogalsky C. Neural Resources Supporting Language Production vs. Comprehension in Chronic Post-stroke Aphasia: A Meta-Analysis Using Activation Likelihood Estimates. Front Hum Neurosci 2021; 15:680933. [PMID: 34759804 PMCID: PMC8572938 DOI: 10.3389/fnhum.2021.680933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/22/2021] [Indexed: 02/04/2023] Open
Abstract
In post-stroke aphasia, language tasks recruit a combination of residual regions within the canonical language network, as well as regions outside of it in the left and right hemispheres. However, there is a lack of consensus as to how the neural resources engaged by language production and comprehension following a left hemisphere stroke differ from one another and from controls. The present meta-analysis used activation likelihood estimates to aggregate across 44 published fMRI and PET studies to characterize the functional reorganization patterns for expressive and receptive language processes in persons with chronic post-stroke aphasia (PWA). Our results in part replicate previous meta-analyses: we find that PWA activate residual regions within the left lateralized language network, regardless of task. Our results extend this work to show differential recruitment of the left and right hemispheres during language production and comprehension in PWA. First, we find that PWA engage left perilesional regions during language comprehension, and that the extent of this activation is likely driven by stimulus type and domain-general cognitive resources needed for task completion. In contrast to comprehension, language production was associated with activation of the right frontal and temporal cortices. Further analyses linked right hemisphere regions involved in motor speech planning for language production with successful naming in PWA, while unsuccessful naming was associated with the engagement of the right inferior frontal gyrus, a region often implicated in domain-general cognitive processes. While the within-group findings indicate that the engagement of the right hemisphere during language tasks in post-stroke aphasia differs for expressive vs. receptive tasks, the overall lack of major between-group differences between PWA and controls implies that PWA rely on similar cognitive-linguistic resources for language as controls. However, more studies are needed that report coordinates for PWA and controls completing the same tasks in order for future meta-analyses to characterize how aphasia affects the neural resources engaged during language, particularly for specific tasks and as a function of behavioral performance.
Collapse
Affiliation(s)
- Arianna N LaCroix
- College of Health Sciences, Midwestern University, Glendale, AZ, United States
| | - Eltonnelle James
- College of Health Sciences, Midwestern University, Glendale, AZ, United States
| | - Corianne Rogalsky
- College of Health Solutions, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
16
|
DeMarco AT, Dvorak E, Lacey E, Stoodley CJ, Turkeltaub PE. An Exploratory Study of Cerebellar Transcranial Direct Current Stimulation in Individuals With Chronic Stroke Aphasia. Cogn Behav Neurol 2021; 34:96-106. [PMID: 34074864 PMCID: PMC8186819 DOI: 10.1097/wnn.0000000000000270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/11/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Aphasia is a common, debilitating consequence of stroke, and speech therapy is often inadequate to achieve a satisfactory outcome. Neuromodulation techniques have emerged as a potential augmentative treatment for improving aphasia outcomes. Most studies have targeted the cerebrum, but there are theoretical and practical reasons that stimulation over the cerebral hemispheres might not be ideal. On the other hand, the right cerebellum is functionally and anatomically linked to major language areas in the left hemisphere, making it a promising alternative target site for stimulation. OBJECTIVE To provide preliminary effect sizes for the ability of a short course of anodal transcranial direct current stimulation (tDCS) targeted over the right cerebellum to enhance language processing in individuals with chronic poststroke aphasia. METHOD Ten individuals received five sessions of open-label anodal tDCS targeting the right cerebellum. The effects of the tDCS were compared with the effects of sham tDCS on 14 controls from a previous clinical trial. In total, 24 individuals with chronic poststroke aphasia participated in the study. Behavioral testing was conducted before treatment, immediately following treatment, and at the 3-month follow-up. RESULTS Cerebellar tDCS did not significantly enhance language processing measured either immediately following treatment or at the 3-month follow-up. The effect sizes of tDCS over sham treatment were generally nil or small, except for the mean length of utterance on the picture description task, for which medium to large effects were observed. CONCLUSION These results may provide guidance for investigators who are planning larger trials of tDCS for individuals with chronic poststroke aphasia.
Collapse
Affiliation(s)
- Andrew T DeMarco
- Departments of Rehabilitation Medicine
- Neurology, Georgetown University, Washington, DC
| | | | - Elizabeth Lacey
- Neurology, Georgetown University, Washington, DC
- MedStar National Rehabilitation Hospital, Washington, DC
| | | | - Peter E Turkeltaub
- Neurology, Georgetown University, Washington, DC
- MedStar National Rehabilitation Hospital, Washington, DC
| |
Collapse
|
17
|
Li Q, Pasquini L, Del Ferraro G, Gene M, Peck KK, Makse HA, Holodny AI. Monolingual and bilingual language networks in healthy subjects using functional MRI and graph theory. Sci Rep 2021; 11:10568. [PMID: 34012006 PMCID: PMC8134560 DOI: 10.1038/s41598-021-90151-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
Bilingualism requires control of multiple language systems, and may lead to architectural differences in language networks obtained from clinical fMRI tasks. Emerging connectivity metrics such as k-core may capture these differences, highlighting crucial network components based on resiliency. We investigated the influence of bilingualism on clinical fMRI language tasks and characterized bilingual networks using connectivity metrics to provide a patient care benchmark. Sixteen right-handed subjects (mean age 42-years; nine males) without neurological history were included: eight native English-speaking monolinguals and eight native Spanish-speaking (L1) bilinguals with acquired English (L2). All subjects underwent fMRI with gold-standard clinical language tasks. Starting from active clusters on fMRI, we inferred the persistent functional network across subjects and ran centrality measures to characterize differences. Our results demonstrated a persistent network "core" consisting of Broca's area, the pre-supplementary motor area, and the premotor area. K-core analysis showed that Wernicke's area was engaged by the "core" with weaker connection in L2 than L1.
Collapse
Affiliation(s)
- Qiongge Li
- grid.254250.40000 0001 2264 7145Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA ,grid.253482.a0000 0001 0170 7903Department of Physics, Graduate Center of City University of New York, New York, NY 10016 USA ,grid.21107.350000 0001 2171 9311Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Luca Pasquini
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.7841.aNeuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, RM Italy
| | - Gino Del Ferraro
- grid.254250.40000 0001 2264 7145Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA ,grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY 10003 USA
| | - Madeleine Gene
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Kyung K. Peck
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.51462.340000 0001 2171 9952Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Hernán A. Makse
- grid.254250.40000 0001 2264 7145Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA
| | - Andrei I. Holodny
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.137628.90000 0004 1936 8753New York University School of Medicine, New York, NY 10016 USA ,grid.5386.8000000041936877XDepartment of Neuroscience, Weill Medical College of Cornell University, New York, NY 10065 USA
| |
Collapse
|
18
|
Abbott NT, Baker CJ, Chen C, Liu TT, Love TE. Defining Hypoperfusion in Chronic Aphasia: An Individualized Thresholding Approach. Brain Sci 2021; 11:491. [PMID: 33924446 PMCID: PMC8070458 DOI: 10.3390/brainsci11040491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Within the aphasia literature, it is common to link location of lesioned brain tissue to specific patterns of language impairment. This has provided valuable insight into the relationship between brain structure and function, but it does not capture important underlying alterations in function of regions that remain structurally intact. Research has demonstrated that in the chronic stage of aphasia, variable patterns of reduced cerebral blood flow (CBF; hypoperfusion) in structurally intact regions of the brain contribute to persisting language impairments. However, one consistent issue in this literature is a lack of clear consensus on how to define hypoperfusion, which may lead to over- or underestimation of tissue functionality. In the current study, we conducted an exploratory analysis in six individuals with chronic aphasia (>1 year post-onset) using perfusion imaging to (1) suggest a new, individualized metric for defining hypoperfusion; (2) identify the extent of hypoperfused tissue in perilesional bands; and (3) explore the relationship between hypoperfusion and language impairment. Results indicated that our individualized metric for defining hypoperfusion provided greater precision when identifying functionally impaired tissue and its effects on language function in chronic aphasia. These results have important implications for intervention approaches that target intact (or impaired) brain tissue.
Collapse
Affiliation(s)
- Noelle T. Abbott
- San Diego State University and University of California San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA 92182, USA; (C.J.B.); (T.E.L.)
| | - Carolyn J. Baker
- San Diego State University and University of California San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA 92182, USA; (C.J.B.); (T.E.L.)
| | - Conan Chen
- Center for Functional MRI and Department of Radiology, University of California San Diego, San Diego, CA 92093, USA; (C.C.); (T.T.L.)
| | - Thomas T. Liu
- Center for Functional MRI and Department of Radiology, University of California San Diego, San Diego, CA 92093, USA; (C.C.); (T.T.L.)
| | - Tracy E. Love
- San Diego State University and University of California San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA 92182, USA; (C.J.B.); (T.E.L.)
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
19
|
Dreyer FR, Doppelbauer L, Büscher V, Arndt V, Stahl B, Lucchese G, Hauk O, Mohr B, Pulvermüller F. Increased Recruitment of Domain-General Neural Networks in Language Processing Following Intensive Language-Action Therapy: fMRI Evidence From People With Chronic Aphasia. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2021; 30:455-465. [PMID: 32830988 PMCID: PMC7613191 DOI: 10.1044/2020_ajslp-19-00150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Purpose This study aimed to provide novel insights into the neural correlates of language improvement following intensive language-action therapy (ILAT; also known as constraint-induced aphasia therapy). Method Sixteen people with chronic aphasia underwent clinical aphasia assessment (Aachen Aphasia Test [AAT]), as well as functional magnetic resonance imaging (fMRI), both administered before (T1) and after ILAT (T2). The fMRI task included passive reading of single written words, with hashmark strings as visual baseline. Results Behavioral results indicated significant improvements of AAT scores across therapy, and fMRI results showed T2-T1 blood oxygenation-level-dependent (BOLD) signal change in the left precuneus to be modulated by the degree of AAT score increase. Subsequent region-of-interest analysis of this precuneus cluster confirmed a positive correlation of T2-T1 BOLD signal change and improvement on the clinical aphasia test. Similarly, the entire default mode network revealed a positive correlation between T2-T1 BOLD signal change and clinical language improvement. Conclusion These results are consistent with a more efficient recruitment of domain-general neural networks in language processing, including those involved in attentional control, following aphasia therapy with ILAT. Supplemental Material https://doi.org/10.23641/asha.12765755.
Collapse
Affiliation(s)
- Felix R. Dreyer
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Germany
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt Universität zu Berlin, Germany
| | - Lea Doppelbauer
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Germany
- Einstein Center for Neurosciences Berlin, Germany
- Berlin School of Mind and Brain, Humboldt University Berlin, Germany
| | - Verena Büscher
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Germany
| | - Verena Arndt
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Germany
| | - Benjamin Stahl
- Department of Neurology, University Medicine Greifswald, Germany
- Department of Neurology, Charité Universitätsmedizin Berlin, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Psychologische Hochschule Berlin, Germany
| | | | - Olaf Hauk
- Medical Research Council Cognition and Brain Science Unit, Cambridge, United Kingdom
| | - Bettina Mohr
- ZeNIS-Centre for Neuropsychology and Intensive Language Therapy, Berlin, Germany
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Germany
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Germany
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt Universität zu Berlin, Germany
- Einstein Center for Neurosciences Berlin, Germany
- Berlin School of Mind and Brain, Humboldt University Berlin, Germany
| |
Collapse
|
20
|
Freire AMN, Gagliardi RJ, Santos MDD. Effect of speech therapy intervention program for non-fluent aphasic patients after stroke. Codas 2021; 32:e20190124. [PMID: 33503209 DOI: 10.1590/2317-1782/20202019124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/30/2019] [Indexed: 11/22/2022] Open
Abstract
PURPOSE the objective of this paper is to verify the effect of speech therapy intervention program in patients with non-fluent aphasia due to stroke in language tasks related to verbal fluency in semantic and phonological categories. METHODS Patients with aphasia due to stroke were selected to take part in this study. Two groups were formed: diagnosed patients with Broca/transcortical motor aphasia (GA), and a control group (healthy individuals). GA took a fluency verbal task (FAS, other complementary categories: phonological /p/ /l/ and semantic: "fruits" and "names"). These patients were all engaged in a language intervention program developed by the authors of this study. GA received speech therapy sessions (ten sessions lasting for an hour once a week), following a specific language program. After the sessions, the patients were re-evaluated. RESULTS GA had statistical significant improvement in the verbal fluency task after the speech therapy program (p-value < 0,001). CONCLUSION The speech language therapy program we proposed was efficient enough to show improvement in the results for GA in the verbal fluency task.
Collapse
|
21
|
Wilson SM, Schneck SM. Neuroplasticity in post-stroke aphasia: A systematic review and meta-analysis of functional imaging studies of reorganization of language processing. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 2:22-82. [PMID: 33884373 PMCID: PMC8057712 DOI: 10.1162/nol_a_00025] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/11/2020] [Indexed: 04/23/2023]
Abstract
Recovery from aphasia is thought to depend on neural plasticity, that is, functional reorganization of surviving brain regions such that they take on new or expanded roles in language processing. We carried out a systematic review and meta-analysis of all articles published between 1995 and early 2020 that have described functional imaging studies of six or more individuals with post-stroke aphasia, and have reported analyses bearing on neuroplasticity of language processing. Each study was characterized and appraised in detail, with particular attention to three critically important methodological issues: task performance confounds, contrast validity, and correction for multiple comparisons. We identified 86 studies describing a total of 561 relevant analyses. We found that methodological limitations related to task performance confounds, contrast validity, and correction for multiple comparisons have been pervasive. Only a few claims about language processing in individuals with aphasia are strongly supported by the extant literature: first, left hemisphere language regions are less activated in individuals with aphasia than neurologically normal controls, and second, in cohorts with aphasia, activity in left hemisphere language regions, and possibly a temporal lobe region in the right hemisphere, is positively correlated with language function. There is modest, equivocal evidence for the claim that individuals with aphasia differentially recruit right hemisphere homotopic regions, but no compelling evidence for differential recruitment of additional left hemisphere regions or domain-general networks. There is modest evidence that left hemisphere language regions return to function over time, but no compelling longitudinal evidence for dynamic reorganization of the language network.
Collapse
Affiliation(s)
- Stephen M. Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah M. Schneck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
High definition transcranial direct current stimulation modulates abnormal neurophysiological activity in post-stroke aphasia. Sci Rep 2020; 10:19625. [PMID: 33184382 PMCID: PMC7665190 DOI: 10.1038/s41598-020-76533-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Recent findings indicate that measures derived from resting-state magnetoencephalography (rsMEG) are sensitive to cortical dysfunction in post-stroke aphasia. Spectral power and multiscale entropy (MSE) measures show that left-hemispheric areas surrounding the stroke lesion (perilesional) exhibit pathological oscillatory slowing and alterations in signal complexity. In the current study, we tested whether individually-targeted high-definition transcranial direct current stimulation (HD-tDCS) can reduce MEG abnormalities and transiently improve language performance. In eleven chronic aphasia survivors, we devised a method to localize perilesional areas exhibiting peak MSE abnormalities, and subsequently targeted these areas with excitatory/anodal-tDCS, or targeted the contralateral homolog areas with inhibitory/cathodal-tDCS, based on prominent theories of stroke recovery. Pathological MEG slowing in these patients was correlated with aphasia severity. Sentence/phrase repetition accuracy was assessed before and after tDCS. A delayed word reading task was administered inside MEG to assess tDCS-induced neurophysiological changes in relative power and MSE computed on the pre-stimulus and delay task time windows. Results indicated increases in repetition accuracy, decreases in contralateral theta (4–7 Hz) and coarse-scale MSE (slow activity), and increases in perilesional low-gamma (25–50 Hz) and fine-scale MSE (fast activity) after anodal-tDCS, indicating reversal of pathological abnormalities. RsMEG may be a sensitive measure for guiding therapeutic tDCS.
Collapse
|
23
|
Harvey SR, Carragher M, Dickey MW, Pierce JE, Rose ML. Treatment dose in post-stroke aphasia: A systematic scoping review. Neuropsychol Rehabil 2020; 31:1629-1660. [PMID: 32631143 DOI: 10.1080/09602011.2020.1786412] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Little is known about how the amount of treatment a person with aphasia receives impacts aphasia recovery following stroke, yet this information is vital to ensure effective treatments are delivered efficiently. Furthermore, there is no standard dose terminology in the stroke rehabilitation or aphasia literature. This scoping review aims to systematically map the evidence regarding dose in treatments for post-stroke aphasia and to explore how treatment dose is conceptualized, measured and reported in the literature. A comprehensive search was undertaken in June 2019. One hundred and twelve intervention studies were reviewed. Treatment dose (amount of treatment) has been conceptualized as both a measure of time and a count of discrete therapeutic elements. Doses ranged from one to 100 hours, while some studies reported session doses of up to 420 therapeutic inputs per session. Studies employ a wide variety of treatment schedules (i.e., session dose, session frequency, and intervention duration) and the interaction of dose parameters may impact the dose-response relationship. High dose interventions delivered over short periods may improve treatment efficiency while maintaining efficacy. Person- and treatment-level factors that mediate tolerance of high dose interventions require further investigation. Systematic exploration of dose-response relationships in post-stroke aphasia treatment is required.
Collapse
Affiliation(s)
- Sam R Harvey
- Discipline of Speech Pathology, School of Allied Health, Human Services and Sport, College of Science, Health and Engineering, La Trobe University, Bundoora, Australia.,Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Bundoora, Australia
| | - Marcella Carragher
- Discipline of Speech Pathology, School of Allied Health, Human Services and Sport, College of Science, Health and Engineering, La Trobe University, Bundoora, Australia.,Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Bundoora, Australia
| | - Michael Walsh Dickey
- Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Bundoora, Australia.,Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.,Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - John E Pierce
- Discipline of Speech Pathology, School of Allied Health, Human Services and Sport, College of Science, Health and Engineering, La Trobe University, Bundoora, Australia.,Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Bundoora, Australia
| | - Miranda L Rose
- Discipline of Speech Pathology, School of Allied Health, Human Services and Sport, College of Science, Health and Engineering, La Trobe University, Bundoora, Australia.,Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Bundoora, Australia
| |
Collapse
|
24
|
Stockert A, Wawrzyniak M, Klingbeil J, Wrede K, Kümmerer D, Hartwigsen G, Kaller CP, Weiller C, Saur D. Dynamics of language reorganization after left temporo-parietal and frontal stroke. Brain 2020; 143:844-861. [PMID: 32068789 DOI: 10.1093/brain/awaa023] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/25/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
The loss and recovery of language functions are still incompletely understood. This longitudinal functional MRI study investigated the neural mechanisms underlying language recovery in patients with post-stroke aphasia putting particular emphasis on the impact of lesion site. To identify patterns of language-related activation, an auditory functional MRI sentence comprehension paradigm was administered to patients with circumscribed lesions of either left frontal (n = 17) or temporo-parietal (n = 17) cortex. Patients were examined repeatedly during the acute (≤1 week, t1), subacute (1-2 weeks, t2) and chronic phase (>6 months, t3) post-stroke; healthy age-matched control subjects (n = 17) were tested once. The separation into two patient groups with circumscribed lesions allowed for a direct comparison of the contributions of distinct lesion-dependent network components to language reorganization between both groups. We hypothesized that activation of left hemisphere spared and perilesional cortex as well as lesion-homologue cortex in the right hemisphere varies between patient groups and across time. In addition, we expected that domain-general networks serving cognitive control independently contribute to language recovery. First, we found a global network disturbance in the acute phase that is characterized by reduced functional MRI language activation including areas distant to the lesion (i.e. diaschisis) and subsequent subacute network reactivation (i.e. resolution of diaschisis). These phenomena were driven by temporo-parietal lesions. Second, we identified a lesion-independent sequential activation pattern with increased activity of perilesional cortex and bilateral domain-general networks in the subacute phase followed by reorganization of left temporal language areas in the chronic phase. Third, we observed involvement of lesion-homologue cortex only in patients with frontal but not temporo-parietal lesions. Fourth, irrespective of lesion location, language reorganization predominantly occurred in pre-existing networks showing comparable activation in healthy controls. Finally, we detected different relationships of performance and activation in language and domain-general networks demonstrating the functional relevance for language recovery. Our findings highlight that the dynamics of language reorganization clearly depend on lesion location and hence open new perspectives for neurobiologically motivated strategies of language rehabilitation, such as individually-tailored targeted application of neuro-stimulation.
Collapse
Affiliation(s)
- Anika Stockert
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Max Wawrzyniak
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Julian Klingbeil
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Katrin Wrede
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Dorothee Kümmerer
- Department of Neurology, University of Freiburg, 79106 Freiburg, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group, Cognition and Plasticity, Max Planck Institute of Human and Cognitive Brain Sciences, 04103 Leipzig, Germany
| | - Christoph P Kaller
- Department of Neurology, University of Freiburg, 79106 Freiburg, Germany
| | - Cornelius Weiller
- Department of Neurology, University of Freiburg, 79106 Freiburg, Germany
| | - Dorothee Saur
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
25
|
Purcell JJ, Wiley RW, Rapp B. Re-learning to be different: Increased neural differentiation supports post-stroke language recovery. Neuroimage 2019; 202:116145. [PMID: 31479754 DOI: 10.1016/j.neuroimage.2019.116145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/31/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022] Open
Abstract
Identifying the neural changes that support recovery of cognitive functions after a brain lesion is important to advance our understanding of human neuroplasticity, which, in turn, forms the basis for the development of effective treatments. To date, the preponderance of neuroimaging studies has focused on localizing changes in average brain activity associated with functional recovery. Here, we took a novel approach by evaluating whether cognitive recovery in chronic stroke is related to increases in the differentiation of local neural response patterns. This approach is supported by research indicating that, in the intact brain, local neural representations become more differentiated (dissimilar) with learning (Glezer et al., 2015). We acquired fMRI data before and after 21 individuals received approximately 12 weeks of behavioral treatment for written language impairment due to a left-hemisphere stroke. We used Local-Heterogeneity Regression Analysis (Purcell and Rapp, 2018) to measure local neural response differentiation associated with written language processing, assuming that greater heterogeneity in the pattern of activity across adjacent neural areas indicates more well-differentiated neural representations. First, we observed pre to post-treatment increases in local neural differentiation (Local-Hreg) in the ventral occipital-temporal cortex of the left hemisphere. Second, we found that, in this region, higher local neural response differentiation prior to treatment was associated with less severe written language impairment, and that it also predicted greater future responsiveness to treatment. Third, we observed that changes in neural differentiation were systematically related to performance changes for trained and untrained items. Fourth, we did not observe these brain-behavior relationships for mean BOLD responses, only for Local-Hreg. Thus, this is the first investigation to quantify changes in local neural differentiation in the recovery of a cognitive function and the first to demonstrate the clear behavioral relevance of these changes. We conclude that the findings provide strong support for the novel hypothesis that the local re-differentiation of neural representations can play a significant role in functional recovery after brain lesion.
Collapse
Affiliation(s)
- Jeremy J Purcell
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA; Maryland Neuroimaging Center, University of Maryland, College Park, MD, USA.
| | - Robert W Wiley
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA; Department of Psychology, University of North Carolina, Greensboro, NC, USA
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
26
|
Naeser MA, Ho MD, Martin PI, Hamblin MR, Koo BB. Increased Functional Connectivity Within Intrinsic Neural Networks in Chronic Stroke Following Treatment with Red/Near-Infrared Transcranial Photobiomodulation: Case Series with Improved Naming in Aphasia. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 38:115-131. [PMID: 31621498 DOI: 10.1089/photob.2019.4630] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective: To examine effects of four different transcranial, red/near-infrared (NIR), light-emitting diode (tLED) protocols on naming ability in persons with aphasia (PWA) due to left hemisphere (LH) stroke. This is the first study to report beneficial effects from tLED therapy in chronic stroke, and parallel changes on functional magnetic resonance imaging (fMRI). Materials and methods: Six PWA, 2-18 years poststroke, in whom 18 tLED treatments were applied (3 × /week, 6 weeks) using LED cluster heads: 500 mW, red (633 nm) and NIR (870 nm), 22.48 cm2, 22.2 mW/cm2. Results: After Protocol A with bilateral LED placements, including midline, at scalp vertex over left and right supplementary motor areas (L and R SMAs), picture naming was not improved. P1 underwent pre-/postovert, picture-naming task-fMRI scans; P2 could not. After Protocol A, P1 showed increased activation in LH and right hemisphere, including L and R SMAs. After Protocol B with LEDs only on ipsilesional, LH side, naming ability significantly improved for P1 and P2; the fMRI scans for P1 then showed activation only on the ipsilesional LH side. After Protocol C with LED placements on ipsilesional LH side, plus one midline placement over mesial prefrontal cortex (mPFC) at front hairline, a cortical node of the default mode network (DMN), P3 and P4 had only moderate/poor response, and no increase in functional connectivity on resting-state functional-connectivity MRI. After Protocol D, however, with LED placements on ipsilesional LH side, plus over two midline nodes of DMN, mPFC, and precuneus (high parietal) simultaneously, P5 and P6 each had good response with significant increase in functional connectivity within DMN, p < 0.0005; salience network, p < 0.0005; and central executive network, p < 0.05. Conclusions: NIR photons can affect surface brain cortex areas subjacent to where LEDs are applied on the scalp. Improved naming ability was present with optimal Protocol D. Transcranial photobiomodulation may be an additional noninvasive therapy for stroke.
Collapse
Affiliation(s)
- Margaret A Naeser
- VA Boston Healthcare System (12-A), Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Michael D Ho
- VA Boston Healthcare System (12-A), Boston, Massachusetts
| | - Paula I Martin
- VA Boston Healthcare System (12-A), Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Bang-Bon Koo
- Brain-Imaging and Informatics Lab (BIL), Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
27
|
Johnson JP, Meier EL, Pan Y, Kiran S. Treatment-related changes in neural activation vary according to treatment response and extent of spared tissue in patients with chronic aphasia. Cortex 2019; 121:147-168. [PMID: 31627014 DOI: 10.1016/j.cortex.2019.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 06/21/2019] [Accepted: 08/23/2019] [Indexed: 11/25/2022]
Abstract
Neuroimaging studies of aphasia recovery have linked treatment-related improvements in language processing to changes in functional brain activation in left hemisphere language regions and their right hemisphere homologues. Although there is some consensus that better behavioral outcomes are achieved when activation is restored to the left hemisphere, the circumstances that dictate how and why regions in both hemispheres respond to naming therapy are still unclear. In this study, an fMRI picture-naming task was used to examine 16 regions of interest in 26 patients with chronic aphasia before and after 12 weeks of semantic naming treatment. Ten control patients who did not receive treatment and 17 healthy controls were also scanned. Naming therapy resulted in a significant increase in cortical activation, an effect that was largely driven by patients who responded most favorably to treatment, as patients who responded less favorably (as well as those who did not receive treatment) had little change in activation over time. Relative to healthy controls, patients had higher pre-treatment activation in the bilateral inferior frontal gyri (IFG) and lower activation in the bilateral angular gyri; after treatment, they had higher activation in bilateral IFG, as well as in the right middle frontal gyrus. These results suggest that the predominant effect of beneficial naming treatment was an upregulation of traditional language areas and their right hemisphere homologues and, in particular, regions associated with phonological and semantic/executive semantic processing, as well as broader domain general functions. Additionally, in some left hemisphere regions, post-treatment changes in activation were greater when there was more damage than when there was less damage, indicating that spared tissue in otherwise highly damaged regions can be modulated by treatment.
Collapse
Affiliation(s)
- Jeffrey P Johnson
- Aphasia Research Laboratory, Department of Speech, Language & Hearing Sciences, Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA.
| | - Erin L Meier
- Aphasia Research Laboratory, Department of Speech, Language & Hearing Sciences, Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Yue Pan
- Aphasia Research Laboratory, Department of Speech, Language & Hearing Sciences, Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Swathi Kiran
- Aphasia Research Laboratory, Department of Speech, Language & Hearing Sciences, Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
28
|
Barbieri E, Mack J, Chiappetta B, Europa E, Thompson CK. Recovery of offline and online sentence processing in aphasia: Language and domain-general network neuroplasticity. Cortex 2019; 120:394-418. [PMID: 31419597 DOI: 10.1016/j.cortex.2019.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/09/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022]
Abstract
This paper examined the effects of treatment on both offline and online sentence processing and associated neuroplasticity within sentence processing and dorsal attention networks in chronic stroke-induced agrammatic aphasia. Twenty-three neurotypical adults and 19 individuals with aphasia served as participants. Aphasic individuals were randomly assigned to receive a 12-week course of linguistically-based treatment of passive sentence production and comprehension (N = 14, treatment group) or to serve as control participants (N = 5, natural history group). Both aphasic groups performed two offline tasks at baseline and three months following (at post-testing) to assess production and comprehension of trained passive structures and untrained syntactically related and unrelated structures. The aphasic participants and a healthy age-matched group also performed an online eyetracking comprehension task and a picture-verification fMRI task, which were repeated at post-testing for the aphasic groups. Results showed that individuals in the treatment, but not in the natural history, group improved on production and comprehension of both trained structures and untrained syntactically related structures. Treatment also resulted in a shift toward more normal-like eye movements and a significant increase in neural activation from baseline to post-testing. Upregulation encompassed right hemisphere regions homologs of left hemisphere regions involved in both sentence processing and domain-general functions and was positively correlated with treatment gains, as measured by offline comprehension accuracy, and with changes in processing strategies during sentence comprehension, as measured by eyetracking. These findings provide compelling evidence in favor of the contribution of both networks within the right hemisphere to the restoration of normal-like sentence processing patterns in chronic aphasia.
Collapse
Affiliation(s)
- Elena Barbieri
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA.
| | - Jennifer Mack
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
| | - Brianne Chiappetta
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
| | - Eduardo Europa
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
| | - Cynthia K Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA; Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL, USA; Department of Neurology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
29
|
Mogensen J, Overgaard M. Reorganization of the connectivity between elementary functions as a common mechanism of phenomenal consciousness and working memory: from functions to strategies. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0346. [PMID: 30061460 DOI: 10.1098/rstb.2017.0346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
In the present communication, phenomenal consciousness, access consciousness and the closely related concept of working memory are presented in the context of a neurocognitive model-the REF (reorganization of elementary functions) framework. The REF framework is based on connectionist networks within which the 'units' are advanced processing modules called elementary functions (EFs). In this framework, the focus is on dynamically changeable 'strategies'-based on reorganizations of the connectivity between EFs-rather than on the more traditional 'cognitive functions'. The background for the REF framework and especially how the neural correlate of consciousness is understood within these models is summarized. According to the REF framework, phenomenal consciousness cannot 'overflow' availability of information for action. Phenomenal consciousness may, however, overflow working memory because working memory in the present context is seen as a surface phenomenon reflecting underlying dynamic strategies-influenced by both experience and situational factors.This article is part of the theme issue 'Perceptual consciousness and cognitive access'.
Collapse
Affiliation(s)
- Jesper Mogensen
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Oester Farimagsgade 2A, 1353 Copenhagen K, Denmark
| | - Morten Overgaard
- CNRU, CFIN, MindLab, Aarhus University, Nørrebrogade 44, Building 10 G, 8000 Aarhus C, Denmark
| |
Collapse
|
30
|
Meier EL, Johnson JP, Pan Y, Kiran S. A lesion and connectivity-based hierarchical model of chronic aphasia recovery dissociates patients and healthy controls. NEUROIMAGE-CLINICAL 2019; 23:101919. [PMID: 31491828 PMCID: PMC6702239 DOI: 10.1016/j.nicl.2019.101919] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 06/05/2019] [Accepted: 06/30/2019] [Indexed: 12/28/2022]
Abstract
Traditional models of left hemisphere stroke recovery propose that reactivation of remaining ipsilesional tissue is optimal for language processing whereas reliance on contralesional right hemisphere homologues is less beneficial or possibly maladaptive in the chronic recovery stage. However, neuroimaging evidence for this proposal is mixed. This study aimed to elucidate patterns of effective connectivity in patients with chronic aphasia in light of healthy control connectivity patterns and in relation to damaged tissue within left hemisphere regions of interest and according to performance on a semantic decision task. Using fMRI and dynamic causal modeling, biologically-plausible models within four model families were created to correspond to potential neural recovery patterns, including Family A: Left-lateralized connectivity (i.e., no/minimal damage), Family B: Bilateral anterior-weighted connectivity (i.e., posterior damage), Family C: Bilateral posterior-weighted connectivity (i.e., anterior damage) and Family D: Right-lateralized connectivity (i.e., extensive damage). Controls exhibited a strong preference for left-lateralized network models (Family A) whereas patients demonstrated a split preference for Families A and C. At the level of connections, controls exhibited stronger left intrahemispheric task-modulated connections than did patients. Within the patient group, damage to left superior frontal structures resulted in greater right intrahemispheric connectivity whereas damage to left ventral structures resulted in heightened modulation of left frontal regions. Lesion metrics best predicted accuracy on the fMRI task and aphasia severity whereas left intrahemispheric connectivity predicted fMRI task reaction times. These results are discussed within the context of the hierarchical recovery model of chronic aphasia. The semantic network in neurologically-intact, healthy controls was characterized by left-lateralized connectivity. Patient connectivity was split between left-lateralized and bilateral, posterior-weighted (i.e., anterior damage) models. Controls solely recruited LITG-driven connections whereas patients recruited a distributed network of connections. Within the patient group, intra- and inter-hemispheric connections were related to lesion site and/or size. Lesion size predicted aphasia severity and fMRI task accuracy, and effective connectivity predicted task reaction times.
Collapse
Affiliation(s)
- Erin L Meier
- Department of Speech, Language, & Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Room 326, Boston, MA 02215, United States of America.
| | - Jeffrey P Johnson
- Department of Speech, Language, & Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Room 326, Boston, MA 02215, United States of America
| | - Yue Pan
- Department of Speech, Language, & Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Room 326, Boston, MA 02215, United States of America
| | - Swathi Kiran
- Department of Speech, Language, & Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Room 326, Boston, MA 02215, United States of America
| |
Collapse
|
31
|
Nair VA, Dodd K, Rajan S, Santhanubosu A, Beniwal-Patel P, Saha S, Prabhakaran V. A Verbal Fluency Task-Based Brain Activation fMRI Study in Patients with Crohn's Disease in Remission. J Neuroimaging 2019; 29:630-639. [PMID: 31134699 DOI: 10.1111/jon.12634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE In this pilot study, we investigated functional brain activation changes in patients with Crohn's disease (CD) in remission compared to age and gender-matched healthy controls (HCs). METHODS Data from 20 patients with CD in remission (age range 19-63 years) and 20 HCs (matched in age and gender) were analyzed. Task functional MRI (fMRI) data were collected while participants performed a cognitive (phonemic verbal fluency) task in the scanner. All participants also performed the same task outside the scanner. RESULTS Task fMRI results showed greater bi-hemispheric activation in CD patients compared to controls. Because this pattern is commonly reported with normal aging, we performed further analyses to investigate fMRI responses in a subset of the younger CD patients (N = 12, age < = 35 years) compared to matched young HCs (age < = 35 years), and an older cohort of HCs (age > = 50 years). Results showed that task activation patterns were similar between young CD patients and older HCs, and that both groups differed significantly from younger HCs. Activation intensity in specific brain regions for patients was associated with disease duration. CONCLUSIONS These results suggest that CD patients in remission may show accelerated signs of aging in terms of brain responses to a typical cognitive task. Future work with larger sample size will need to replicate these results as well as investigate the influence of factors, such as chronicity of the disease and medication effects on task-associated brain activation patterns in this patient population.
Collapse
Affiliation(s)
- Veena A Nair
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Keith Dodd
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| | - Shruti Rajan
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Anu Santhanubosu
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Poonam Beniwal-Patel
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Sumona Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Vivek Prabhakaran
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
32
|
Meier EL, Johnson JP, Kiran S. Left frontotemporal effective connectivity during semantic feature judgments in patients with chronic aphasia and age-matched healthy controls. Cortex 2018; 108:173-192. [PMID: 30243049 PMCID: PMC6234086 DOI: 10.1016/j.cortex.2018.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022]
Abstract
Traditional models of neural reorganization of language skills in patients with chronic stroke-induced aphasia (PWA) propose activation of reperfused or spared left hemisphere tissue results in the most favorable language outcomes. However, these models do not fully explain variable behavioral recovery patterns observed in chronic patients. Instead, investigation of connectivity patterns of critical network nodes may elucidate better-informed recovery models. In the present study, we combined fMRI and dynamic causal modeling (DCM) to examine effective connectivity of a simple three-node left hemisphere network during a semantic feature decision task in 25 PWA and 18 age-matched neurologically intact healthy controls. The DCM model space utilized in Meier, Kapse, & Kiran (2016), which was organized according to exogenous input to one of three regions (i.e., left inferior frontal gyrus, pars triangularis [LIFGtri], left posterior middle temporal gyrus [LpMTG], or left middle frontal gyrus [LMFG]) implicated in various levels of lexical-semantic processing, was interrogated. This model space included all possible combinations of uni- and bidirectional task-modulated connections between LIFGtri, LMFG and LpMTG, resulting in 72 individual models that were partitioned into three separate families (i.e., Family #1: Input to LIFGtri, Family #2: Input to LMFG, Family #3: Input to LpMTG). Family-wise Bayesian model selection revealed Family #2: Input to LMFG best fit both patient and control data at a group level. Both groups relied heavily on LMFG's modulation of the other two model regions. By contrast, between-group differences in task-modulated coupling of LIFGtri and LpMTG were observed. Within the patient group, the strength of activity in LIFGtri and connectivity of LpMTG → LIFGtri were positively associated with lexical-semantic abilities inside and outside of the scanner, whereas greater recruitment of LpMTG was associated with poorer lexical-semantic skills.
Collapse
Affiliation(s)
- Erin L Meier
- Sargent College of Health & Rehabilitation Sciences, Boston University, United States.
| | - Jeffrey P Johnson
- Sargent College of Health & Rehabilitation Sciences, Boston University, United States
| | - Swathi Kiran
- Sargent College of Health & Rehabilitation Sciences, Boston University, United States
| |
Collapse
|
33
|
Marcotte K, Laird L, Bitan T, Meltzer JA, Graham SJ, Leonard C, Rochon E. Therapy-Induced Neuroplasticity in Chronic Aphasia After Phonological Component Analysis: A Matter of Intensity. Front Neurol 2018; 9:225. [PMID: 29686646 PMCID: PMC5900891 DOI: 10.3389/fneur.2018.00225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Despite the growing evidence regarding the importance of intensity and dose in aphasia therapy, few well-controlled studies contrasting the effects of intensive and non-intensive treatment have been conducted to date. Phonological components analysis (PCA) treatment for anomia has been associated with improvements in some patients with chronic aphasia; however, the effect of treatment intensity has not yet been studied with PCA. Thus, the aim of the present study was to identify the effect of intensity on neural processing associated with word retrieval abilities after PCA treatment. We used functional magnetic resonance imaging to examine therapy-induced changes in activation during an overt naming task in two patients who suffered from a stroke in the left middle cerebral artery territory. P1 received intensive PCA treatment whereas P2 received the standard, non-intensive, PCA treatment. Behavioral results indicate that both standard and intensive conditions yielded improved naming performance with treated nouns, but the changes were only significant for the patient who received the intensive treatment. The improvements were found to be long lasting as both patients maintained improved naming at 2-months follow-ups. The associated neuroimaging data indicate that the two treatment conditions were associated with different neural activation changes. The patient who received the standard PCA showed significant increase in activation with treatment in the right anterior cingulate, as well as extensive areas in bilateral posterior and lateral cortices. By contrast, the patient who received intensive PCA showed more decreases in activation following the treatment. Unexpectedly, this patient showed subcortical increase in activation, specifically in the right caudate nucleus. We speculate that the recruitment of the caudate nucleus and the anterior cingulate in these patients reflects the need to suppress errors to improve naming. Thus, both short-term intensive and standard, non-intensive, PCA treatment can improve word retrieval in chronic aphasia, but neuroimaging data suggest that improved naming is associated with different neural activation patterns in the two treatment conditions.
Collapse
Affiliation(s)
- Karine Marcotte
- Centre de recherche de l'Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada.,École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Laura Laird
- Department of Speech-Language Pathology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
| | - Tali Bitan
- Department of Speech-Language Pathology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Psychology, IIPDM, IBBR, University of Haifa, Haifa, Israel
| | - Jed A Meltzer
- Department of Speech-Language Pathology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Rotman Research Institute - Baycrest Centre, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Simon J Graham
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Carol Leonard
- Department of Speech-Language Pathology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada.,Audiology and Speech-Language Pathology Program, School of Rehabilitation Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Elizabeth Rochon
- Department of Speech-Language Pathology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada.,Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Binney RJ, Zuckerman BM, Waller HN, Hung J, Ashaie SA, Reilly J. Cathodal tDCS of the bilateral anterior temporal lobes facilitates semantically-driven verbal fluency. Neuropsychologia 2018; 111:62-71. [PMID: 29337133 DOI: 10.1016/j.neuropsychologia.2018.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/21/2023]
Abstract
In a verbal fluency task, a person is required to produce as many exemplars of a given category (e.g., 'animals', or words starting with 'f') as possible within a fixed duration. Successful verbal fluency performance relies both on the depth of search within semantic/phonological neighborhoods ('clustering') and the ability to flexibly disengage between exhausted clusters ('switching'). Convergent evidence from functional imaging and neuropsychology suggests that cluster-switch behaviors engage dissociable brain regions. Switching has been linked to a frontoparietal network dedicated to executive functioning and controlled lexical retrieval, whereas clustering is more commonly associated with temporal lobe regions dedicated to semantic and phonological processing. Here we attempted to modulate cluster-switch dynamics among neurotypical adults (N = 24) using transcranial direct current stimulation (tDCS) delivered at three sites: a) anterior temporal cortex; b) frontal cortex; and c) temporoparietal cortex. Participants completed letter-guided and semantic category verbal fluency tasks pre/post stimulation. Cathodal stimulation of anterior temporal cortex facilitated the total number of words generated and the number of words generated within clusters during semantic category verbal fluency. These neuromodulatory effects were specific to stimulation of the one anatomical site. Our findings highlight the role of the anterior temporal lobes in representing semantic category structure and support the claim that clustering and switching behaviors have distinct substrates. We discuss implications both for theory and application to neurorehabilitation.
Collapse
Affiliation(s)
- Richard J Binney
- School of Psychology, Bangor University, Gwynedd, Wales, UK; Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA
| | - Bonnie M Zuckerman
- Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA
| | - Hilary N Waller
- Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA
| | - Jinyi Hung
- Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA
| | - Sameer A Ashaie
- Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jamie Reilly
- Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Abstract
BACKGROUND Post-stroke aphasia syndromes as a clinical entity arise from the disruption of brain networks specialized in language production and comprehension due to permanent focal ischemia. This approach to post-stroke aphasia is based on two pathophysiological concepts: 1) Understanding language processing in terms of distributed networks rather than language centers and 2) understanding the molecular pathophysiology of ischemic brain injury as a dynamic process beyond the direct destruction of network centers and their connections. While considerable progress has been made in the past 10 years to develop such models on a systems as well as a molecular level, the influence of these approaches on understanding and treating clinical aphasia syndromes has been limited. OBJECTIVE & METHODS In this article, we review current pathophysiological concepts of ischemic brain injury, their relationship to altered information processing in language networks after ischemic stroke and how these mechanisms may be influenced therapeutically to improve treatment of post-stroke aphasia. CONCLUSION Understanding the pathophysiological mechanism of post-stroke aphasia on a neurophysiological systems level as well as on the molecular level becomes more and more important for aphasia treatment, as the field moves from standardized therapies towards more targeted individualized treatment strategies comprising behavioural therapies as well as non-invasive brain stimulation (NIBS).
Collapse
|
36
|
Harvey DY, Podell J, Turkeltaub PE, Faseyitan O, Coslett HB, Hamilton RH. Functional Reorganization of Right Prefrontal Cortex Underlies Sustained Naming Improvements in Chronic Aphasia via Repetitive Transcranial Magnetic Stimulation. Cogn Behav Neurol 2017; 30:133-144. [PMID: 29256908 PMCID: PMC5797702 DOI: 10.1097/wnn.0000000000000141] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE While noninvasive brain stimulation techniques show promise for language recovery after stroke, the underlying mechanisms remain unclear. We applied inhibitory repetitive transcranial magnetic stimulation (rTMS) to regions of interest in the right inferior frontal gyrus of patients with chronic poststroke aphasia and examined changes in picture naming performance and cortical activation. METHODS Nine patients received 10 days of 1-Hz rTMS (Monday through Friday for 2 weeks). We assessed naming performance before and immediately after stimulation on the first and last days of rTMS therapy, and then again at 2 and 6 months post-rTMS. A subset of six of these patients underwent functional magnetic resonance imaging pre-rTMS (baseline) and at 2 and 6 months post-rTMS. RESULTS Naming accuracy increased from pre- to post-rTMS on both the first and last days of treatment. We also found naming improvements long after rTMS, with the greatest improvements at 6 months post-rTMS. Long-lasting effects were associated with a posterior shift in the recruitment of the right inferior frontal gyrus: from the more anterior Brodmann area 45 to the more posterior Brodmann areas 6, 44, and 46. The number of left hemispheric regions recruited for naming also increased. CONCLUSIONS This study found that rTMS to the right hemisphere Broca area homologue confers long-lasting improvements in picture naming performance. The mechanism involves dynamic bilateral neural network changes in language processing, which take place within the right prefrontal cortex and the left hemisphere more generally. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov (Identifier NCT00608582).
Collapse
Affiliation(s)
- Denise Y. Harvey
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
- Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania
| | - Jamie Podell
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter E. Turkeltaub
- Department of Neurology, Georgetown University, Washington, DC
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC
| | - Olufunsho Faseyitan
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - H. Branch Coslett
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Roy H. Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Hartwigsen G, Saur D. Neuroimaging of stroke recovery from aphasia - Insights into plasticity of the human language network. Neuroimage 2017; 190:14-31. [PMID: 29175498 DOI: 10.1016/j.neuroimage.2017.11.056] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/02/2017] [Accepted: 11/22/2017] [Indexed: 12/15/2022] Open
Abstract
The role of left and right hemisphere brain regions in language recovery after stroke-induced aphasia remains controversial. Here, we summarize how neuroimaging studies increase the current understanding of functional interactions, reorganization and plasticity in the language network. We first discuss the temporal dynamics across the time course of language recovery, with a main focus on longitudinal studies from the acute to the chronic phase after stroke. These studies show that the functional contribution of perilesional and spared left hemisphere as well as contralesional right hemisphere regions to language recovery changes over time. The second section introduces critical variables and recent advances on early prediction of subsequent outcome. In the third section, we outline how multi-method approaches that combine neuroimaging techniques with non-invasive brain stimulation elucidate mechanisms of plasticity and reorganization in the language network. These approaches provide novel insights into general mechanisms of plasticity in the language network and might ultimately support recovery processes during speech and language therapy. Finally, the neurobiological correlates of therapy-induced plasticity are discussed. We argue that future studies should integrate individualized approaches that might vary the combination of language therapy with specific non-invasive brain stimulation protocols across the time course of recovery. The way forward will include the combination of such approaches with large data sets obtained from multicentre studies.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Research Group Modulation of Language Networks, Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Dorothee Saur
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig, Germany.
| |
Collapse
|
38
|
Haldin C, Acher A, Kauffmann L, Hueber T, Cousin E, Badin P, Perrier P, Fabre D, Perennou D, Detante O, Jaillard A, Lœvenbruck H, Baciu M. Speech recovery and language plasticity can be facilitated by Sensori-Motor Fusion training in chronic non-fluent aphasia. A case report study. CLINICAL LINGUISTICS & PHONETICS 2017; 32:595-621. [PMID: 29148845 DOI: 10.1080/02699206.2017.1402090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The rehabilitation of speech disorders benefits from providing visual information which may improve speech motor plans in patients. We tested the proof of concept of a rehabilitation method (Sensori-Motor Fusion, SMF; Ultraspeech player) in one post-stroke patient presenting chronic non-fluent aphasia. SMF allows visualisation by the patient of target tongue and lips movements using high-speed ultrasound and video imaging. This can improve the patient's awareness of his/her own lingual and labial movements, which can, in turn, improve the representation of articulatory movements and increase the ability to coordinate and combine articulatory gestures. The auditory and oro-sensory feedback received by the patient as a result of his/her own pronunciation can be integrated with the target articulatory movements they watch. Thus, this method is founded on sensorimotor integration during speech. The SMF effect on this patient was assessed through qualitative comparison of language scores and quantitative analysis of acoustic parameters measured in a speech production task, before and after rehabilitation. We also investigated cerebral patterns of language reorganisation for rhyme detection and syllable repetition, to evaluate the influence of SMF on phonological-phonetic processes. Our results showed that SMF had a beneficial effect on this patient who qualitatively improved in naming, reading, word repetition and rhyme judgment tasks. Quantitative measurements of acoustic parameters indicate that the patient's production of vowels and syllables also improved. Compared with pre-SMF, the fMRI data in the post-SMF session revealed the activation of cerebral regions related to articulatory, auditory and somatosensory processes, which were expected to be recruited by SMF. We discuss neurocognitive and linguistic mechanisms which may explain speech improvement after SMF, as well as the advantages of using this speech rehabilitation method.
Collapse
Affiliation(s)
- Célise Haldin
- a Laboratoire de Psychologie et NeuroCognition, UMR CNRS 5105 , Université Grenoble Alpes , Grenoble , France
| | - Audrey Acher
- b Unité neuro-vasculaire, Pavillon de Neurologie , CHU Grenoble Alpes, Grenoble , France
| | - Louise Kauffmann
- f Neural Mechanisms of Human Communication Research Group, Max Planck Institute for Human Cognitive and Brain Sciences , Leipzig , Germany
| | - Thomas Hueber
- d GIPSA-lab , UMR CNRS 5216/Université Grenoble Alpes , Grenoble , France
| | - Emilie Cousin
- a Laboratoire de Psychologie et NeuroCognition, UMR CNRS 5105 , Université Grenoble Alpes , Grenoble , France
- c IRMaGE, Plate-forme IRM 3T, CHU Grenoble Alpes , Université Grenoble Alpes, CNRS, INSERM, UMS3552, Grenoble, France; , France
| | - Pierre Badin
- d GIPSA-lab , UMR CNRS 5216/Université Grenoble Alpes , Grenoble , France
| | - Pascal Perrier
- d GIPSA-lab , UMR CNRS 5216/Université Grenoble Alpes , Grenoble , France
| | - Diandra Fabre
- d GIPSA-lab , UMR CNRS 5216/Université Grenoble Alpes , Grenoble , France
| | - Dominic Perennou
- a Laboratoire de Psychologie et NeuroCognition, UMR CNRS 5105 , Université Grenoble Alpes , Grenoble , France
- e Dept of NeuroRehabilitation, CHU Grenoble Alpes, Université Grenoble Alpes , Université Grenoble-Alpes , Grenoble , France
| | - Olivier Detante
- a Laboratoire de Psychologie et NeuroCognition, UMR CNRS 5105 , Université Grenoble Alpes , Grenoble , France
- b Unité neuro-vasculaire, Pavillon de Neurologie , CHU Grenoble Alpes, Grenoble , France
| | - Assia Jaillard
- c IRMaGE, Plate-forme IRM 3T, CHU Grenoble Alpes , Université Grenoble Alpes, CNRS, INSERM, UMS3552, Grenoble, France; , France
| | - Hélène Lœvenbruck
- a Laboratoire de Psychologie et NeuroCognition, UMR CNRS 5105 , Université Grenoble Alpes , Grenoble , France
| | - Monica Baciu
- a Laboratoire de Psychologie et NeuroCognition, UMR CNRS 5105 , Université Grenoble Alpes , Grenoble , France
| |
Collapse
|
39
|
Saxena S, Hillis AE. An update on medications and noninvasive brain stimulation to augment language rehabilitation in post-stroke aphasia. Expert Rev Neurother 2017; 17:1091-1107. [PMID: 28847186 DOI: 10.1080/14737175.2017.1373020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Aphasia is among the most debilitating outcomes of stroke. Aphasia is a language disorder occurring in 10-30% of stroke survivors. Speech and Language Therapy (SLT) is the gold standard, mainstay treatment for aphasia, but gains from SLT may be incomplete. Pharmaceutical and noninvasive brain stimulation (NIBS) techniques may augment the effectiveness of SLT. Areas covered: Herein reviewed are studies of the safety and efficacy of these adjunctive interventions for aphasia, including randomized placebo-controlled and open-label trials, as well as case series from Pubmed, using search terms 'pharmacological,' 'tDCS' or 'TMS' combined with 'aphasia' and 'stroke.' Expert commentary: Relatively small studies have included participants with a range of aphasia types and severities, using inconsistent interventions and outcome measures. Results to-date have provided promising, but weak to moderate evidence that medications and/or NIBS can augment the effects of SLT for improving language outcomes. We end with recommendations for future approaches to studying these interventions, with multicenter, double-blind, randomized controlled trials.
Collapse
Affiliation(s)
- Sadhvi Saxena
- a Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Argye E Hillis
- a Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
40
|
Nenert R, Allendorfer JB, Martin AM, Banks C, Ball A, Vannest J, Dietz AR, Szaflarski JP. Neuroimaging Correlates of Post-Stroke Aphasia Rehabilitation in a Pilot Randomized Trial of Constraint-Induced Aphasia Therapy. Med Sci Monit 2017; 23:3489-3507. [PMID: 28719572 PMCID: PMC5529460 DOI: 10.12659/msm.902301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Recovery from post-stroke aphasia is a long and complex process with an uncertain outcome. Various interventions have been proposed to augment the recovery, including constraint-induced aphasia therapy (CIAT). CIAT has been applied to patients suffering from post-stroke aphasia in several unblinded studies to show mild-to-moderate linguistic gains. The aim of the present study was to evaluate the neuroimaging correlates of CIAT in patients with chronic aphasia related to left middle cerebral artery stroke. Material/Methods Out of 24 patients recruited in a pilot randomized blinded trial of CIAT, 19 patients received fMRI of language. Eleven of them received CIAT (trained) and eight served as a control group (untrained). Each patient participated in three fMRI sessions (before training, after training, and 3 months later) that included semantic decision and verb generation fMRI tasks, and a battery of language tests. Matching healthy control participants were also included (N=38; matching based on age, handedness, and sex). Results Language testing showed significantly improved performance on Boston Naming Test (BNT; p<0.001) in both stroke groups over time and fMRI showed differences in the distribution of the areas involved in language production between groups that were not present at baseline. Further, regression analysis with BNT indicated changes in brain regions correlated with behavioral performance (temporal gyrus, postcentral gyrus, precentral gyrus, thalamus, left middle and superior frontal gyri). Conclusions Overall, our results suggest the possibility of language-related cortical plasticity following stroke-induced aphasia with no specific effect from CIAT training.
Collapse
Affiliation(s)
- Rodolphe Nenert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jane B Allendorfer
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amber M Martin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christi Banks
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Jennifer Vannest
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| |
Collapse
|
41
|
Abstract
The sequelae of post-stroke aphasia are considerable, necessitating an understanding of the functional neuroanatomy of language, cognitive processes underlying various language tasks, and the mechanisms of recovery after stroke. This knowledge is vital in providing optimal care of individuals with aphasia and counseling to their families and caregivers. The standard of care in the rehabilitation of aphasia dictates that treatment be evidence-based and person-centered. Promising techniques, such as cortical stimulation as an adjunct to behavioral therapy, are just beginning to be explored. These topics are discussed in this review.
Collapse
Affiliation(s)
- Donna C. Tippett
- Department of Neurology, Johns Hopkins University School of Medicine, Phipps 446, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Phipps 446, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
42
|
Mohr B. Neuroplasticity and Functional Recovery after Intensive Language Therapy in Chronic Post Stroke Aphasia: Which Factors Are Relevant? Front Hum Neurosci 2017; 11:332. [PMID: 28701937 PMCID: PMC5487528 DOI: 10.3389/fnhum.2017.00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/08/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bettina Mohr
- Department of Psychiatry, Campus Benjamin Franklin, Charité Universitätsmedizin BerlinBerlin, Germany
| |
Collapse
|
43
|
Shahid H, Sebastian R, Schnur TT, Hanayik T, Wright A, Tippett DC, Fridriksson J, Rorden C, Hillis AE. Important considerations in lesion-symptom mapping: Illustrations from studies of word comprehension. Hum Brain Mapp 2017; 38:2990-3000. [PMID: 28317276 PMCID: PMC5426992 DOI: 10.1002/hbm.23567] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 11/06/2022] Open
Abstract
Lesion-symptom mapping is an important method of identifying networks of brain regions critical for functions. However, results might be influenced substantially by the imaging modality and timing of assessment. We tested the hypothesis that brain regions found to be associated with acute language deficits depend on (1) timing of behavioral measurement, (2) imaging sequences utilized to define the "lesion" (structural abnormality only or structural plus perfusion abnormality), and (3) power of the study. We studied 191 individuals with acute left hemisphere stroke with MRI and language testing to identify areas critical for spoken word comprehension. We use the data from this study to examine the potential impact of these three variables on lesion-symptom mapping. We found that only the combination of structural and perfusion imaging within 48 h of onset identified areas where more abnormal voxels was associated with more severe acute deficits, after controlling for lesion volume and multiple comparisons. The critical area identified with this methodology was the left posterior superior temporal gyrus, consistent with other methods that have identified an important role of this area in spoken word comprehension. Results have implications for interpretation of other lesion-symptom mapping studies, as well as for understanding areas critical for auditory word comprehension in the healthy brain. We propose that lesion-symptom mapping at the acute stage of stroke addresses a different sort of question about brain-behavior relationships than lesion-symptom mapping at the chronic stage, but that timing of behavioral measurement and imaging modalities should be considered in either case. Hum Brain Mapp 38:2990-3000, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hinna Shahid
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMaryland21287
| | - Rajani Sebastian
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMaryland21287
| | - Tatiana T. Schnur
- Department of NeurosurgeryBaylor College of MedicineHoustonTexas77030
| | | | - Amy Wright
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMaryland21287
| | - Donna C. Tippett
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMaryland21287
- Department of Physical Medicine & RehabilitationJohns Hopkins University School of MedicineBaltimoreMaryland21287
- Department of Otolaryngology & Head & Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMaryland21287
| | | | - Chris Rorden
- University of South CarolinaColumbiaSouth Carolina29208
| | - Argye E. Hillis
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMaryland21287
- Department of Physical Medicine & RehabilitationJohns Hopkins University School of MedicineBaltimoreMaryland21287
- Department of Cognitive ScienceJohns Hopkins UniversityBaltimoreMaryland21218
| |
Collapse
|
44
|
Lucchese G, Pulvermüller F, Stahl B, Dreyer FR, Mohr B. Therapy-Induced Neuroplasticity of Language in Chronic Post Stroke Aphasia: A Mismatch Negativity Study of (A)Grammatical and Meaningful/less Mini-Constructions. Front Hum Neurosci 2017; 10:669. [PMID: 28111545 PMCID: PMC5216683 DOI: 10.3389/fnhum.2016.00669] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
Clinical language performance and neurophysiological correlates of language processing were measured before and after intensive language therapy in patients with chronic (time post stroke >1 year) post stroke aphasia (PSA). As event-related potential (ERP) measure, the mismatch negativity (MMN) was recorded in a distracted oddball paradigm to short spoken sentences. Critical 'deviant' sentence stimuli where either well-formed and meaningful, or syntactically, or lexico-semantically incorrect. After 4 weeks of speech-language therapy (SLT) delivered with high intensity (10.5 h per week), clinical language assessment with the Aachen Aphasia Test battery demonstrated significant linguistic improvements, which were accompanied by enhanced MMN responses. More specifically, MMN amplitudes to grammatically correct and meaningful mini-constructions and to 'jabberwocky' sentences containing a pseudoword significantly increased after therapy. However, no therapy-related changes in MMN responses to syntactically incorrect strings including agreement violations were observed. While MMN increases to well-formed meaningful strings can be explained both at the word and construction levels, the neuroplastic change seen for 'jabberwocky' sentences suggests an explanation in terms of constructions. The results confirm previous reports that intensive SLT leads to improvements of linguistic skills in chronic aphasia patients and now demonstrate that this clinical improvement is associated with enhanced automatic brain indexes of construction processing, although no comparable change is present for ungrammatical strings. Furthermore, the data confirm that the language-induced MMN is a useful tool to map functional language recovery in PSA.
Collapse
Affiliation(s)
- Guglielmo Lucchese
- Brain Language Laboratory, Department of Philosophy and Humanities Freie Universität Berlin, Berlin Germany
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and HumanitiesFreie Universität Berlin, Berlin Germany; Berlin School of Mind and Brain, Humboldt-Universität zu BerlinBerlin, Germany
| | - Benjamin Stahl
- Brain Language Laboratory, Department of Philosophy and HumanitiesFreie Universität Berlin, Berlin Germany; Department of Neurology, Charité Universitätsmedizin Berlin, Campus MitteBerlin, Germany; Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| | - Felix R Dreyer
- Brain Language Laboratory, Department of Philosophy and Humanities Freie Universität Berlin, Berlin Germany
| | - Bettina Mohr
- Department of Psychiatry, Charité Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin Germany
| |
Collapse
|
45
|
Kurland J, Stanek, EJ, Stokes P, Li M, Andrianopoulos M. Intensive Language Action Therapy in Chronic Aphasia: A Randomized Clinical Trial Examining Guidance by Constraint. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2016; 25:S798-S812. [PMID: 27997954 PMCID: PMC5569621 DOI: 10.1044/2016_ajslp-15-0135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 03/12/2016] [Accepted: 07/19/2016] [Indexed: 05/27/2023]
Abstract
Purpose Intensive language action therapy (ILAT) can be effective in overcoming learned nonuse in chronic aphasia. It is suggested that all three guiding principles (constraint, communication embedding, massed practice) are essential to ILAT's success. We examined whether one of these, guidance by constraint, is critical. Method Twenty-four participants with aphasia (PWAs) were assigned to ILAT or a modified version of promoting aphasic communicative effectiveness (PACE) in a randomized block, single-blind, parallel-group treatment study. Blocking was by severity (mild/moderate, moderate to severe, severe). Both groups received intensive treatment in the context of therapeutic language action games. Whereas the ILAT group was guided toward spoken responses, the PACE group could choose any response modality. Results All participants, whether assigned to ILAT or PACE groups, improved on the primary outcome measure, picture naming. There was a Severity × Treatment interaction, with the largest effects estimated for PWAs with mild/moderate and moderate to severe aphasia. Regardless of severity, the ILAT group outperformed the PACE group on untrained pictures, suggesting some benefit of ILAT to generalization. However, this difference was not statistically significant. Conclusion Although the groups differed in subtle ways, including better generalization to untrained pictures for ILAT, the study was inconclusive on the influence of guidance by constraint.
Collapse
Affiliation(s)
- Jacquie Kurland
- Department of Communication Disorders, University of Massachusetts Amherst
| | - Edward J. Stanek,
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst
| | - Polly Stokes
- Department of Communication Disorders, University of Massachusetts Amherst
| | - Minming Li
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst
| | | |
Collapse
|
46
|
Mohr B, MacGregor LJ, Difrancesco S, Harrington K, Pulvermüller F, Shtyrov Y. Hemispheric contributions to language reorganisation: An MEG study of neuroplasticity in chronic post stroke aphasia. Neuropsychologia 2016; 93:413-424. [PMID: 27063061 DOI: 10.1016/j.neuropsychologia.2016.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/24/2016] [Accepted: 04/06/2016] [Indexed: 01/08/2023]
|
47
|
Carlson HL, Jadavji Z, Mineyko A, Damji O, Hodge J, Saunders J, Hererro M, Nowak M, Patzelt R, Mazur-Mosiewicz A, MacMaster FP, Kirton A. Treatment of dysphasia with rTMS and language therapy after childhood stroke: Multimodal imaging of plastic change. BRAIN AND LANGUAGE 2016; 159:23-34. [PMID: 27262774 DOI: 10.1016/j.bandl.2016.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 02/18/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Expressive dysphasia accompanies left inferior frontal gyrus (IFG/Broca) injury. Recovery may relate to interhemispheric balance with homologous, contralesional IFG but is unexplored in children. We evaluated effects of inhibitory rTMS to contralesional IFG combined with intensive speech therapy (SLT). A 15year-old, right-handed male incurred a left middle cerebral artery stroke. After 30months, severe non-fluent dysphasia impacted quality of life. Language networks, neuronal metabolism and white matter pathways were explored using MRI. Language function was measured longitudinally. An intensive SLT program was combined with contralesional inhibitory rTMS of right pars triangularis. Procedures were well tolerated. Language function improved persisting to four months. Post-treatment fMRI demonstrated increased left perilesional IFG activations and connectivity at rest. Bilateral changes in inositol and glutamate metabolism were observed. Contralesional, inhibitory rTMS appears safe in childhood stroke-induced dysphasia. We observed clinically significant improvements after SLT coupled with rTMS. Advanced neuroimaging can evaluate intervention-induced plasticity.
Collapse
Affiliation(s)
- Helen L Carlson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada.
| | - Zeanna Jadavji
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Aleksandra Mineyko
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada; Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Omar Damji
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada
| | - Jacquie Hodge
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Jenny Saunders
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Mia Hererro
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada
| | - Michele Nowak
- Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada
| | - Rebecca Patzelt
- Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada
| | - Anya Mazur-Mosiewicz
- Department of Clinical Psychology, Chicago School of Professional Psychology, Chicago, IL, USA
| | - Frank P MacMaster
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, University of Calgary, AB, Canada; The Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Child and Adolescent Imaging Research (CAIR) Programs, Alberta Children's Hospital, Calgary, AB, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada; Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
48
|
Marangolo P, Fiori V, Sabatini U, De Pasquale G, Razzano C, Caltagirone C, Gili T. Bilateral Transcranial Direct Current Stimulation Language Treatment Enhances Functional Connectivity in the Left Hemisphere: Preliminary Data from Aphasia. J Cogn Neurosci 2016; 28:724-38. [DOI: 10.1162/jocn_a_00927] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Several studies have already shown that transcranial direct current stimulation (tDCS) is a useful tool for enhancing recovery in aphasia. However, no reports to date have investigated functional connectivity changes on cortical activity because of tDCS language treatment. Here, nine aphasic persons with articulatory disorders underwent an intensive language therapy in two different conditions: bilateral anodic stimulation over the left Broca's area and cathodic contralesional stimulation over the right homologue of Broca's area and a sham condition. The language treatment lasted 3 weeks (Monday to Friday, 15 sessions). In all patients, language measures were collected before (T0) and at the end of treatment (T15). Before and after each treatment condition (real vs. sham), each participant underwent a resting-state fMRI study. Results showed that, after real stimulation, patients exhibited the greatest recovery not only in terms of better accuracy in articulating the treated stimuli but also for untreated items on different tasks of the language test. Moreover, although after the sham condition connectivity changes were confined to the right brain hemisphere, real stimulation yielded to stronger functional connectivity increase in the left hemisphere. In conclusion, our data provide converging evidence from behavioral and functional imaging data that bilateral tDCS determines functional connectivity changes within the lesioned hemisphere, enhancing the language recovery process in stroke patients.
Collapse
Affiliation(s)
- Paola Marangolo
- 1IRCCS Fondazione Santa Lucia, Rome, Italy
- 2Università Federico II, Naples, Italy
| | - Valentina Fiori
- 1IRCCS Fondazione Santa Lucia, Rome, Italy
- 3Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Umberto Sabatini
- 1IRCCS Fondazione Santa Lucia, Rome, Italy
- 4University of Magna Grecia, Catanzaro, Italy
| | | | | | - Carlo Caltagirone
- 1IRCCS Fondazione Santa Lucia, Rome, Italy
- 3Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Tommaso Gili
- 1IRCCS Fondazione Santa Lucia, Rome, Italy
- 5Museo Storico della Fiscia e Ricerche “Enrico Fermi”, Rome, Italy
| |
Collapse
|
49
|
Paggiaro A, Birbaumer N, Cavinato M, Turco C, Formaggio E, Del Felice A, Masiero S, Piccione F. Magnetoencephalography in Stroke Recovery and Rehabilitation. Front Neurol 2016; 7:35. [PMID: 27065338 PMCID: PMC4815903 DOI: 10.3389/fneur.2016.00035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/04/2016] [Indexed: 01/01/2023] Open
Abstract
Magnetoencephalography (MEG) is a non-invasive neurophysiological technique used to study the cerebral cortex. Currently, MEG is mainly used clinically to localize epileptic foci and eloquent brain areas in order to avoid damage during neurosurgery. MEG might, however, also be of help in monitoring stroke recovery and rehabilitation. This review focuses on experimental use of MEG in neurorehabilitation. MEG has been employed to detect early modifications in neuroplasticity and connectivity, but there is insufficient evidence as to whether these methods are sensitive enough to be used as a clinical diagnostic test. MEG has also been exploited to derive the relationship between brain activity and movement kinematics for a motor-based brain–computer interface. In the current body of experimental research, MEG appears to be a powerful tool in neurorehabilitation, but it is necessary to produce new data to confirm its clinical utility.
Collapse
Affiliation(s)
- Andrea Paggiaro
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation , Venice , Italy
| | - Niels Birbaumer
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation, Venice, Italy; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Marianna Cavinato
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation , Venice , Italy
| | - Cristina Turco
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation , Venice , Italy
| | - Emanuela Formaggio
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation , Venice , Italy
| | - Alessandra Del Felice
- Section of Rehabilitation, Department of Neuroscience, University of Padova , Padova , Italy
| | - Stefano Masiero
- Section of Rehabilitation, Department of Neuroscience, University of Padova , Padova , Italy
| | - Francesco Piccione
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation , Venice , Italy
| |
Collapse
|
50
|
Kielar A, Deschamps T, Chu RKO, Jokel R, Khatamian YB, Chen JJ, Meltzer JA. Identifying Dysfunctional Cortex: Dissociable Effects of Stroke and Aging on Resting State Dynamics in MEG and fMRI. Front Aging Neurosci 2016; 8:40. [PMID: 26973515 PMCID: PMC4776400 DOI: 10.3389/fnagi.2016.00040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
Spontaneous signals in neuroimaging data may provide information on cortical health in disease and aging, but the relative sensitivity of different approaches is unknown. In the present study, we compared different but complementary indicators of neural dynamics in resting-state MEG and BOLD fMRI, and their relationship with blood flow. Participants included patients with post-stroke aphasia, age-matched controls, and young adults. The complexity of brain activity at rest was quantified in MEG using spectral analysis and multiscale entropy (MSE) measures, whereas BOLD variability was quantified as the standard deviation (SDBOLD), mean squared successive difference (MSSD), and sample entropy of the BOLD time series. We sought to assess the utility of signal variability and complexity measures as markers of age-related changes in healthy adults and perilesional dysfunction in chronic stroke. The results indicate that reduced BOLD variability is a robust finding in aging, whereas MEG measures are more sensitive to the cortical abnormalities associated with stroke. Furthermore, reduced complexity of MEG signals in perilesional tissue were correlated with hypoperfusion as assessed with arterial spin labeling (ASL), while no such relationship was apparent with BOLD variability. These findings suggest that MEG signal complexity offers a sensitive index of neural dysfunction in perilesional tissue in chronic stroke, and that these effects are clearly distinguishable from those associated with healthy aging.
Collapse
Affiliation(s)
- Aneta Kielar
- Rotman Research Institute, Baycrest Health SciencesToronto, ON, Canada
| | - Tiffany Deschamps
- Rotman Research Institute, Baycrest Health SciencesToronto, ON, Canada
| | - Ron K. O. Chu
- Rotman Research Institute, Baycrest Health SciencesToronto, ON, Canada
- Department of Psychology, University of TorontoToronto, ON, Canada
| | - Regina Jokel
- Rotman Research Institute, Baycrest Health SciencesToronto, ON, Canada
- Department of Speech-Language Pathology, University of TorontoToronto, ON, Canada
| | | | - Jean J. Chen
- Rotman Research Institute, Baycrest Health SciencesToronto, ON, Canada
- Department of Medical Biophysics, University of TorontoToronto, ON, Canada
- Canadian Partnership for Stroke RecoveryOttawa, ON, Canada
| | - Jed A. Meltzer
- Rotman Research Institute, Baycrest Health SciencesToronto, ON, Canada
- Department of Psychology, University of TorontoToronto, ON, Canada
- Department of Speech-Language Pathology, University of TorontoToronto, ON, Canada
- Canadian Partnership for Stroke RecoveryOttawa, ON, Canada
| |
Collapse
|