1
|
Meng L, Rasmussen M, Meng DM, White FA, Wu LJ. Integrated Feedforward and Feedback Mechanisms in Neurovascular Coupling. Anesth Analg 2024; 139:1283-1293. [PMID: 38345932 DOI: 10.1213/ane.0000000000006891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Neurovascular coupling (NVC) is the mechanism that drives the neurovascular response to neural activation, and NVC dysfunction has been implicated in various neurologic diseases. NVC is driven by (1) nonmetabolic feedforward mechanisms that are mediated by various signaling pathways and (2) metabolic feedback mechanisms that involve metabolic factors. However, the interplay between these feedback and feedforward mechanisms remains unresolved. We propose that feedforward mechanisms normally drive a swift, neural activation-induced regional cerebral blood flow (rCBF) overshoot, which floods the tissue beds, leading to local hypocapnia and hyperoxia. The feedback mechanisms are triggered by the resultant hypocapnia (not hyperoxia), which causes cerebral vasoconstriction in the neurovascular unit that counterbalances the rCBF overshoot and returns rCBF to a level that matches the metabolic activity. If feedforward mechanisms function improperly (eg, in a disease state), the rCBF overshoot, tissue-bed flooding, and local hypocapnia fail to occur or occur on a smaller scale. Consequently, the neural activation-related increase in metabolic activity results in local hypercapnia and hypoxia, both of which drive cerebral vasodilation and increase rCBF. Thus, feedback mechanisms ensure the brain milieu's stability when feedforward mechanisms are impaired. Our proposal integrates the feedforward and feedback mechanisms underlying NVC and suggests that these 2 mechanisms work like a fail-safe system, to a certain degree. We also discussed the difference between NVC and cerebral metabolic rate-CBF coupling and the clinical implications of our proposed framework.
Collapse
Affiliation(s)
- Lingzhong Meng
- From the Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mads Rasmussen
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
| | - Deyi M Meng
- Choate Rosemary Hall School, Wallingford, Connecticut
| | - Fletcher A White
- From the Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Long-Jun Wu
- Departments of Neurology and Immunology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
2
|
Wright AM, Wu YC, Yang HC, Risacher SL, Saykin AJ, Tong Y, Wen Q. Coupled pulsatile vascular and paravascular fluid dynamics in the human brain. Fluids Barriers CNS 2024; 21:71. [PMID: 39261910 PMCID: PMC11389319 DOI: 10.1186/s12987-024-00572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Cardiac pulsation propels blood through the cerebrovascular network to maintain cerebral homeostasis. The cerebrovascular network is uniquely surrounded by paravascular cerebrospinal fluid (pCSF), which plays a crucial role in waste removal, and its flow is suspected to be driven by arterial pulsations. Despite its importance, the relationship between vascular and paravascular fluid dynamics throughout the cardiac cycle remains poorly understood in humans. METHODS In this study, we developed a non-invasive neuroimaging approach to investigate the coupling between pulsatile vascular and pCSF dynamics within the subarachnoid space of the human brain. Resting-state functional MRI (fMRI) and dynamic diffusion-weighted imaging (dynDWI) were retrospectively cardiac-aligned to represent cerebral hemodynamics and pCSF motion, respectively. We measured the time between peaks (∆TTP) ind d ϕ f M R I and dynDWI waveforms and measured their coupling by calculating the waveforms correlation after peak alignment (correlation at aligned peaks). We compared the ∆TTP and correlation at aligned peaks between younger [mean age: 27.9 (3.3) years, n = 9] and older adults [mean age: 70.5 (6.6) years, n = 20], and assessed their reproducibility within subjects and across different imaging protocols. RESULTS Hemodynamic changes consistently precede pCSF motion. ∆TTP was significantly shorter in younger adults compared to older adults (-0.015 vs. -0.069, p < 0.05). The correlation at aligned peaks were high and did not differ between younger and older adults (0.833 vs. 0.776, p = 0.153). The ∆TTP and correlation at aligned peaks were robust across fMRI protocols (∆TTP: -0.15 vs. -0.053, p = 0.239; correlation at aligned peaks: 0.813 vs. 0.812, p = 0.985) and demonstrated good to excellent within-subject reproducibility (∆TTP: intraclass correlation coefficient = 0.36; correlation at aligned peaks: intraclass correlation coefficient = 0.89). CONCLUSION This study proposes a non-invasive technique to evaluate vascular and paravascular fluid dynamics. Our findings reveal a consistent and robust cardiac pulsation-driven coupling between cerebral hemodynamics and pCSF dynamics in both younger and older adults.
Collapse
Affiliation(s)
- Adam M Wright
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16 Street, Suite 4100, Indianapolis, IN, 46202, USA
- Weldon School of Biomedical Engineering Department, Purdue University, 206 S Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16 Street, Suite 4100, Indianapolis, IN, 46202, USA
- Weldon School of Biomedical Engineering Department, Purdue University, 206 S Martin Jischke Drive, West Lafayette, IN, 47907, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ho-Ching Yang
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16 Street, Suite 4100, Indianapolis, IN, 46202, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16 Street, Suite 4100, Indianapolis, IN, 46202, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16 Street, Suite 4100, Indianapolis, IN, 46202, USA
| | - Yunjie Tong
- Weldon School of Biomedical Engineering Department, Purdue University, 206 S Martin Jischke Drive, West Lafayette, IN, 47907, USA.
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16 Street, Suite 4100, Indianapolis, IN, 46202, USA.
- Weldon School of Biomedical Engineering Department, Purdue University, 206 S Martin Jischke Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Kóbor A, Janacsek K, Hermann P, Zavecz Z, Varga V, Csépe V, Vidnyánszky Z, Kovács G, Nemeth D. Finding Pattern in the Noise: Persistent Implicit Statistical Knowledge Impacts the Processing of Unpredictable Stimuli. J Cogn Neurosci 2024; 36:1239-1264. [PMID: 38683699 DOI: 10.1162/jocn_a_02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Humans can extract statistical regularities of the environment to predict upcoming events. Previous research recognized that implicitly acquired statistical knowledge remained persistent and continued to influence behavior even when the regularities were no longer present in the environment. Here, in an fMRI experiment, we investigated how the persistence of statistical knowledge is represented in the brain. Participants (n = 32) completed a visual, four-choice, RT task consisting of statistical regularities. Two types of blocks constantly alternated with one another throughout the task: predictable statistical regularities in one block type and unpredictable ones in the other. Participants were unaware of the statistical regularities and their changing distribution across the blocks. Yet, they acquired the statistical regularities and showed significant statistical knowledge at the behavioral level not only in the predictable blocks but also in the unpredictable ones, albeit to a smaller extent. Brain activity in a range of cortical and subcortical areas, including early visual cortex, the insula, the right inferior frontal gyrus, and the right globus pallidus/putamen contributed to the acquisition of statistical regularities. The right insula, inferior frontal gyrus, and hippocampus as well as the bilateral angular gyrus seemed to play a role in maintaining this statistical knowledge. The results altogether suggest that statistical knowledge could be exploited in a relevant, predictable context as well as transmitted to and retrieved in an irrelevant context without a predictable structure.
Collapse
Affiliation(s)
- Andrea Kóbor
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
| | - Karolina Janacsek
- Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, University of Greenwich, United Kingdom
- ELTE Eötvös Loránd University, Hungary
| | - Petra Hermann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
| | | | - Vera Varga
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
- University of Pannonia, Hungary
| | - Valéria Csépe
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
- University of Pannonia, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
| | | | - Dezso Nemeth
- INSERM, CRNL U1028 UMR5292, France
- ELTE Eötvös Loránd University & HUN-REN Research Centre for Natural Sciences, Hungary
- University of Atlántico Medio, Spain
| |
Collapse
|
4
|
Guo B, Mao T, Tao R, Fu S, Deng Y, Liu Z, Wang M, Wang R, Zhao W, Chai Y, Jiang C, Rao H. Test-retest reliability and time-of-day variations of perfusion imaging at rest and during a vigilance task. Cereb Cortex 2024; 34:bhae212. [PMID: 38771245 DOI: 10.1093/cercor/bhae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Arterial spin-labeled perfusion and blood oxygenation level-dependent functional MRI are indispensable tools for noninvasive human brain imaging in clinical and cognitive neuroscience, yet concerns persist regarding the reliability and reproducibility of functional MRI findings. The circadian rhythm is known to play a significant role in physiological and psychological responses, leading to variability in brain function at different times of the day. Despite this, test-retest reliability of brain function across different times of the day remains poorly understood. This study examined the test-retest reliability of six repeated cerebral blood flow measurements using arterial spin-labeled perfusion imaging both at resting-state and during the psychomotor vigilance test, as well as task-induced cerebral blood flow changes in a cohort of 38 healthy participants over a full day. The results demonstrated excellent test-retest reliability for absolute cerebral blood flow measurements at rest and during the psychomotor vigilance test throughout the day. However, task-induced cerebral blood flow changes exhibited poor reliability across various brain regions and networks. Furthermore, reliability declined over longer time intervals within the day, particularly during nighttime scans compared to daytime scans. These findings highlight the superior reliability of absolute cerebral blood flow compared to task-induced cerebral blood flow changes and emphasize the importance of controlling time-of-day effects to enhance the reliability and reproducibility of future brain imaging studies.
Collapse
Affiliation(s)
- Bowen Guo
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Tianxin Mao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Ruiwen Tao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Shanna Fu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Yao Deng
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Zhihui Liu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Mengmeng Wang
- Business School, NingboTech University, Ningbo 315199, China
| | - Ruosi Wang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Weiwei Zhao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Ya Chai
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Caihong Jiang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Hengyi Rao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, United States
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
5
|
Buxton RB. Thermodynamic limitations on brain oxygen metabolism: physiological implications. J Physiol 2024; 602:683-712. [PMID: 38349000 DOI: 10.1113/jp284358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Recent thermodynamic modelling indicates that maintaining the brain tissue ratio of O2 to CO2 (abbreviated tissue O2 /CO2 ) is critical for preserving the entropy increase available from oxidative metabolism of glucose, with a fall of that available entropy leading to a reduction of the phosphorylation potential and impairment of brain energy metabolism. This provides a novel perspective for understanding physiological responses under different conditions in terms of preserving tissue O2 /CO2 . To enable estimation of tissue O2 /CO2 in the human brain, a detailed mathematical model of O2 and CO2 transport was developed, and applied to reported physiological responses to different challenges, asking: how well is tissue O2 /CO2 preserved? Reported experimental results for increased neural activity, hypercapnia and hypoxia due to high altitude are consistent with preserving tissue O2 /CO2 . The results highlight two physiological mechanisms that control tissue O2 /CO2 : cerebral blood flow, which modulates tissue O2 ; and ventilation rate, which modulates tissue CO2 . The hypoxia modelling focused on humans at high altitude, including acclimatized lowlanders and Tibetan and Andean adapted populations, with a primary finding that decreasing CO2 by increasing ventilation rate is more effective for preserving tissue O2 /CO2 than increasing blood haemoglobin content to maintain O2 delivery to tissue. This work focused on the function served by particular physiological responses, and the underlying mechanisms require further investigation. The modelling provides a new framework and perspective for understanding how blood flow and other physiological factors support energy metabolism in the brain under a wide range of conditions. KEY POINTS: Thermodynamic modelling indicates that preserving the O2 /CO2 ratio in brain tissue is critical for preserving the entropy change available from oxidative metabolism of glucose and the phosphorylation potential underlying energy metabolism. A detailed model of O2 and CO2 transport was developed to allow estimation of the tissue O2 /CO2 ratio in the human brain in different physiological states. Reported experimental results during hypoxia, hypercapnia and increased oxygen metabolic rate in response to increased neural activity are consistent with maintaining brain tissue O2 /CO2 ratio. The hypoxia modelling of high-altitude acclimatization and adaptation in humans demonstrates the critical role of reducing CO2 with increased ventilation for preserving tissue O2 /CO2 . Preservation of tissue O2 /CO2 provides a novel perspective for understanding the function of observed physiological responses under different conditions in terms of preserving brain energy metabolism, although the mechanisms underlying these functions are not well understood.
Collapse
Affiliation(s)
- Richard B Buxton
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California, San Diego, California, USA
| |
Collapse
|
6
|
Soloukey S, Vincent AJPE, Smits M, De Zeeuw CI, Koekkoek SKE, Dirven CMF, Kruizinga P. Functional imaging of the exposed brain. Front Neurosci 2023; 17:1087912. [PMID: 36845427 PMCID: PMC9947297 DOI: 10.3389/fnins.2023.1087912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
When the brain is exposed, such as after a craniotomy in neurosurgical procedures, we are provided with the unique opportunity for real-time imaging of brain functionality. Real-time functional maps of the exposed brain are vital to ensuring safe and effective navigation during these neurosurgical procedures. However, current neurosurgical practice has yet to fully harness this potential as it pre-dominantly relies on inherently limited techniques such as electrical stimulation to provide functional feedback to guide surgical decision-making. A wealth of especially experimental imaging techniques show unique potential to improve intra-operative decision-making and neurosurgical safety, and as an added bonus, improve our fundamental neuroscientific understanding of human brain function. In this review we compare and contrast close to twenty candidate imaging techniques based on their underlying biological substrate, technical characteristics and ability to meet clinical constraints such as compatibility with surgical workflow. Our review gives insight into the interplay between technical parameters such sampling method, data rate and a technique's real-time imaging potential in the operating room. By the end of the review, the reader will understand why new, real-time volumetric imaging techniques such as functional Ultrasound (fUS) and functional Photoacoustic Computed Tomography (fPACT) hold great clinical potential for procedures in especially highly eloquent areas, despite the higher data rates involved. Finally, we will highlight the neuroscientific perspective on the exposed brain. While different neurosurgical procedures ask for different functional maps to navigate surgical territories, neuroscience potentially benefits from all these maps. In the surgical context we can uniquely combine healthy volunteer studies, lesion studies and even reversible lesion studies in in the same individual. Ultimately, individual cases will build a greater understanding of human brain function in general, which in turn will improve neurosurgeons' future navigational efforts.
Collapse
Affiliation(s)
- Sadaf Soloukey
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC, Rotterdam, Netherlands
| | | | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
7
|
Hays Weeks CC, Zlatar ZZ, Meloy MJ, Shin DD, Thomas L, Wierenga CE. APOE Genotype Modifies the Association of Fusiform Gyrus Cerebral Metabolic Rate of Oxygen Consumption and Object Naming Performance. J Alzheimers Dis 2023; 91:1371-1383. [PMID: 36641668 DOI: 10.3233/jad-220749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The apolipoprotein E (APOE) ɛ4 allele confers risk for age and Alzheimer's disease related cognitive decline but the mechanistic link remains poorly understood. Blood oxygenation level dependent (BOLD) response in the fusiform gyrus (FG) during object naming appears greater among APOEɛ4 carriers even in the face of equivalent cognitive performance, suggesting neural compensation. However, BOLD is susceptible to known age and APOE-related vascular changes that could confound its interpretation. OBJECTIVE To address this limitation, we used calibrated fMRI during an object naming task and a hypercapnic challenge to obtain a more direct measure of neural function - percent change cerebral metabolic rate of oxygen consumption (%ΔCMRO2). METHODS Participants were 45 older adults without dementia (28 ɛ4-, 17 ɛ4+) between the ages of 65 and 85. We examined APOE-related differences in %ΔCMRO2 in the FG during object naming and the extent to which APOE modified associations between FG %ΔCMRO2 and object naming accuracy. Exploratory analyses also tested the hypothesis that %ΔCMRO2 is less susceptible to vascular compromise than are measures of %ΔCBF and %ΔBOLD. RESULTS We observed a modifying role of APOE on associations between FG %ΔCMRO2 and cognition, with ɛ4 carriers (but not non-carriers) demonstrating a positive association between right FG %ΔCMRO2 and object naming accuracy. CONCLUSION Results suggest that the relationship between neural function and cognition is altered among older adult APOEɛ4 carriers prior to the onset of dementia, implicating CMRO2 response as a potential mechanism to support cognition in APOE-related AD risk.
Collapse
Affiliation(s)
- Chelsea C Hays Weeks
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | | | - M J Meloy
- VA San Diego Healthcare System, San Diego, CA, USA
| | | | - Liu Thomas
- Department of Radiology, UC San Diego, La Jolla, CA, USA
| | - Christina E Wierenga
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Dimick MK, Toma S, MacIntosh BJ, Grigorian A, Fiksenbaum L, Youngstrom EA, Robertson AD, Goldstein BI. Cerebral Blood Flow and Core Mood Symptoms in Youth Bipolar Disorder: Evidence for Region-Symptom Specificity. J Am Acad Child Adolesc Psychiatry 2022; 61:1455-1465. [PMID: 35487335 DOI: 10.1016/j.jaac.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/03/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Building on prior findings in adults, this study investigated regional cerebral blood flow (CBF) in relation to DSM-5 criterion A symptoms of depression and mania in youth with bipolar disorder (BD). METHOD The study recruited 81 youths with BD and 75 healthy controls 13-20 years old. CBF was ascertained using pseudocontinuous arterial spin labeling magnetic resonance imaging. Region-of-interest analyses examined the amygdala, anterior cingulate cortex (ACC), middle frontal gyrus, and global gray matter CBF. The association of criterion A depression and mania symptoms with CBF was examined dimensionally in youth with BD in regression analyses with continuous symptom severity scores. Age and sex were included as covariates. False discovery rate (FDR) was used to correct for 28 tests (4 regions by 7 symptoms; α < .0017). CBF for BD and healthy control groups was compared to give context for findings. RESULTS In youth with BD, depressed mood inversely correlated with ACC (β = -0.31, puncorrected = .004, pFDR = .056) and global (β = -0.27, puncorrected = .013, pFDR = .09) CBF. The same pattern was observed for anhedonia (ACC CBF: β = -0.33, puncorrected = .004, pFDR = .056; global CBF: β = -0.29, puncorrected = .008, pFDR = .07). There were no significant findings for manic symptoms or in BD vs healthy control contrasts. CONCLUSION The present findings, while not significant after correction for multiple testing, highlight the potential value of focusing on ACC in relation to depressed mood and anhedonia, and demonstrate that CBF is sensitive to depression symptom severity in youth. Lack of findings regarding manic symptoms may relate to the exclusion of fully manic participants in this outpatient sample.
Collapse
Affiliation(s)
- Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health (CAMH), Toronto, Canada; University of Toronto, Canada
| | - Simina Toma
- University of Toronto, Canada; Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Bradley J MacIntosh
- University of Toronto, Canada; Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Anahit Grigorian
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | | | - Eric A Youngstrom
- University of North Carolina at Chapel Hill and Helping Give Away Psychological Science, Inc., Chapel Hill, North Carolina
| | | | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health (CAMH), Toronto, Canada; University of Toronto, Canada.
| |
Collapse
|
9
|
Murrant CL, Fletcher NM. Capillary communication: the role of capillaries in sensing the tissue environment, coordinating the microvascular, and controlling blood flow. Am J Physiol Heart Circ Physiol 2022; 323:H1019-H1036. [PMID: 36149771 DOI: 10.1152/ajpheart.00088.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Historically, capillaries have been viewed as the microvascular site for flux of nutrients to cells and removal of waste products. Capillaries are the most numerous blood vessel segment within the tissue, whose vascular wall consists of only a single layer of endothelial cells and are situated within microns of each cell of the tissue, all of which optimizes capillaries for the exchange of nutrients between the blood compartment and the interstitial space of tissues. There is, however, a growing body of evidence to support that capillaries play an important role in sensing the tissue environment, coordinating microvascular network responses, and controlling blood flow. Much of our growing understanding of capillaries stems from work in skeletal muscle and more recent work in the brain, where capillaries can be stimulated by products released from cells of the tissue during increased activity and are able to communicate with upstream and downstream vascular segments, enabling capillaries to sense the activity levels of the tissue and send signals to the microvascular network to coordinate the blood flow response. This review will focus on the emerging role that capillaries play in communication between cells of the tissue and the vascular network required to direct blood flow to active cells in skeletal muscle and the brain. We will also highlight the emerging central role that disruptions in capillary communication may play in blood flow dysregulation, pathophysiology, and disease.
Collapse
Affiliation(s)
- Coral L Murrant
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicole M Fletcher
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Kim JH, Taylor AJ, Himmelbach M, Hagberg GE, Scheffler K, Ress D. Characterization of the blood oxygen level dependent hemodynamic response function in human subcortical regions with high spatiotemporal resolution. Front Neurosci 2022; 16:1009295. [PMID: 36303946 PMCID: PMC9592726 DOI: 10.3389/fnins.2022.1009295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Subcortical brain regions are absolutely essential for normal human function. These phylogenetically early brain regions play critical roles in human behaviors such as the orientation of attention, arousal, and the modulation of sensory signals to cerebral cortex. Despite the critical health importance of subcortical brain regions, there has been a dearth of research on their neurovascular responses. Blood oxygen level dependent (BOLD) functional MRI (fMRI) experiments can help fill this gap in our understanding. The BOLD hemodynamic response function (HRF) evoked by brief (<4 s) neural activation is crucial for the interpretation of fMRI results because linear analysis between neural activity and the BOLD response relies on the HRF. Moreover, the HRF is a consequence of underlying local blood flow and oxygen metabolism, so characterization of the HRF enables understanding of neurovascular and neurometabolic coupling. We measured the subcortical HRF at 9.4T and 3T with high spatiotemporal resolution using protocols that enabled reliable delineation of HRFs in individual subjects. These results were compared with the HRF in visual cortex. The HRF was faster in subcortical regions than cortical regions at both field strengths. There was no significant undershoot in subcortical areas while there was a significant post-stimulus undershoot that was tightly coupled with its peak amplitude in cortex. The different BOLD temporal dynamics indicate different vascular dynamics and neurometabolic responses between cortex and subcortical nuclei.
Collapse
Affiliation(s)
- Jung Hwan Kim
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Amanda J. Taylor
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Marc Himmelbach
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Gisela E. Hagberg
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, Eberhard Karl’s University of Tübingen and University Hospital, Tübingen, Germany
| | - Klaus Scheffler
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, Eberhard Karl’s University of Tübingen and University Hospital, Tübingen, Germany
| | - David Ress
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
11
|
Multi-Echo Investigations of Positive and Negative CBF and Concomitant BOLD Changes: Positive and negative CBF and BOLD changes. Neuroimage 2022; 263:119661. [PMID: 36198353 DOI: 10.1016/j.neuroimage.2022.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
Unlike the positive blood oxygenation level-dependent (BOLD) response (PBR), commonly taken as an indication of an 'activated' brain region, the physiological origin of negative BOLD signal changes (i.e. a negative BOLD response, NBR), also referred to as 'deactivation' is still being debated. In this work, an attempt was made to gain a better understanding of the underlying mechanism by obtaining a comprehensive measure of the contributing cerebral blood flow (CBF) and its relationship to the NBR in the human visual cortex, in comparison to a simultaneously induced PBR in surrounding visual regions. To overcome the low signal-to-noise ratio (SNR) of CBF measurements, a newly developed multi-echo version of a center-out echo planar-imaging (EPI) readout was employed with pseudo-continuous arterial spin labeling (pCASL). It achieved very short echo and inter-echo times and facilitated a simultaneous detection of functional CBF and BOLD changes at 3 T with improved sensitivity. Evaluations of the absolute and relative changes of CBF and the effective transverse relaxation rate,R2* the coupling ratios, and their dependence on CBF at rest, CBFrest indicated differences between activated and deactivated regions. Analysis of the shape of the respective functional responses also revealed faster negative responses with more pronounced post-stimulus transients. Resulting differences in the flow-metabolism coupling ratios were further examined for potential distinctions in the underlying neuronal contributions.
Collapse
|
12
|
Guilbert J, Légaré A, De Koninck P, Desrosiers P, Desjardins M. Toward an integrative neurovascular framework for studying brain networks. NEUROPHOTONICS 2022; 9:032211. [PMID: 35434179 PMCID: PMC8989057 DOI: 10.1117/1.nph.9.3.032211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/11/2022] [Indexed: 05/28/2023]
Abstract
Brain functional connectivity based on the measure of blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals has become one of the most widely used measurements in human neuroimaging. However, the nature of the functional networks revealed by BOLD fMRI can be ambiguous, as highlighted by a recent series of experiments that have suggested that typical resting-state networks can be replicated from purely vascular or physiologically driven BOLD signals. After going through a brief review of the key concepts of brain network analysis, we explore how the vascular and neuronal systems interact to give rise to the brain functional networks measured with BOLD fMRI. This leads us to emphasize a view of the vascular network not only as a confounding element in fMRI but also as a functionally relevant system that is entangled with the neuronal network. To study the vascular and neuronal underpinnings of BOLD functional connectivity, we consider a combination of methodological avenues based on multiscale and multimodal optical imaging in mice, used in combination with computational models that allow the integration of vascular information to explain functional connectivity.
Collapse
Affiliation(s)
- Jérémie Guilbert
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Université Laval, Centre de recherche du CHU de Québec, Québec, Canada
| | - Antoine Légaré
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
- Université Laval, Department of Biochemistry, Microbiology, and Bioinformatics, Québec, Canada
| | - Paul De Koninck
- Centre de recherche CERVO, Québec, Canada
- Université Laval, Department of Biochemistry, Microbiology, and Bioinformatics, Québec, Canada
| | - Patrick Desrosiers
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| | - Michèle Desjardins
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Université Laval, Centre de recherche du CHU de Québec, Québec, Canada
| |
Collapse
|
13
|
Chen JJ, Uthayakumar B, Hyder F. Mapping oxidative metabolism in the human brain with calibrated fMRI in health and disease. J Cereb Blood Flow Metab 2022; 42:1139-1162. [PMID: 35296177 PMCID: PMC9207484 DOI: 10.1177/0271678x221077338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Conventional functional MRI (fMRI) with blood-oxygenation level dependent (BOLD) contrast is an important tool for mapping human brain activity non-invasively. Recent interest in quantitative fMRI has renewed the importance of oxidative neuroenergetics as reflected by cerebral metabolic rate of oxygen consumption (CMRO2) to support brain function. Dynamic CMRO2 mapping by calibrated fMRI require multi-modal measurements of BOLD signal along with cerebral blood flow (CBF) and/or volume (CBV). In human subjects this "calibration" is typically performed using a gas mixture containing small amounts of carbon dioxide and/or oxygen-enriched medical air, which are thought to produce changes in CBF (and CBV) and BOLD signal with minimal or no CMRO2 changes. However non-human studies have demonstrated that the "calibration" can also be achieved without gases, revealing good agreement between CMRO2 changes and underlying neuronal activity (e.g., multi-unit activity and local field potential). Given the simpler set-up of gas-free calibrated fMRI, there is evidence of recent clinical applications for this less intrusive direction. This up-to-date review emphasizes technological advances for such translational gas-free calibrated fMRI experiments, also covering historical progression of the calibrated fMRI field that is impacting neurological and neurodegenerative investigations of the human brain.
Collapse
Affiliation(s)
- J Jean Chen
- Medical Biophysics, University of Toronto, Toronto, Canada.,Rotman Research Institute, Baycrest, Toronto, Canada
| | - Biranavan Uthayakumar
- Medical Biophysics, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Toronto, Canada
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, USA.,Department of Radiology, Yale University, New Haven, Connecticut, USA.,Quantitative Neuroscience with Magnetic Resonance (QNMR) Research Program, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Herculano-Houzel S, Rothman DL. From a Demand-Based to a Supply-Limited Framework of Brain Metabolism. Front Integr Neurosci 2022; 16:818685. [PMID: 35431822 PMCID: PMC9012138 DOI: 10.3389/fnint.2022.818685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
What defines the rate of energy use by the brain, as well as per neurons of different sizes in different structures and animals, is one fundamental aspect of neuroscience for which much has been theorized, but very little data are available. The prevalent theories and models consider that energy supply from the vascular system to different brain regions is adjusted both dynamically and in the course of development and evolution to meet the demands of neuronal activity. In this perspective, we offer an alternative view: that regional rates of energy use might be mostly constrained by supply, given the properties of the brain capillary network, the highly stable rate of oxygen delivery to the whole brain under physiological conditions, and homeostatic constraints. We present evidence that these constraints, based on capillary density and tissue oxygen homeostasis, are similar between brain regions and mammalian species, suggesting they derive from fundamental biophysical limitations. The same constraints also determine the relationship between regional rates of brain oxygen supply and usage over the full physiological range of brain activity, from deep sleep to intense sensory stimulation, during which the apparent uncoupling of blood flow and oxygen use is still a predicted consequence of supply limitation. By carefully separating "energy cost" into energy supply and energy use, and doing away with the problematic concept of energetic "demands," our new framework should help shine a new light on the neurovascular bases of metabolic support of brain function and brain functional imaging. We speculate that the trade-offs between functional systems and even the limitation to a single attentional spot at a time might be consequences of a strongly supply-limited brain economy. We propose that a deeper understanding of brain energy supply constraints will provide a new evolutionary understanding of constraints on brain function due to energetics; offer new diagnostic insight to disturbances of brain metabolism; lead to clear, testable predictions on the scaling of brain metabolic cost and the evolution of brains of different sizes; and open new lines of investigation into the microvascular bases of progressive cognitive loss in normal aging as well as metabolic diseases.
Collapse
Affiliation(s)
- Suzana Herculano-Houzel
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Douglas L. Rothman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| |
Collapse
|
15
|
Oelschlägel M, Polanski WH, Morgenstern U, Steiner G, Kirsch M, Koch E, Schackert G, Sobottka SB. Characterization of cortical hemodynamic changes following sensory, visual, and speech activation by intraoperative optical imaging utilizing phase-based evaluation methods. Hum Brain Mapp 2022; 43:598-615. [PMID: 34590384 PMCID: PMC8720199 DOI: 10.1002/hbm.25674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 11/12/2022] Open
Abstract
Alterations within cerebral hemodynamics are the intrinsic signal source for a wide variety of neuroimaging techniques. Stimulation of specific functions leads due to neurovascular coupling, to changes in regional cerebral blood flow, oxygenation and volume. In this study, we investigated the temporal characteristics of cortical hemodynamic responses following electrical, tactile, visual, and speech activation for different stimulation paradigms using Intraoperative Optical Imaging (IOI). Image datasets from a total of 22 patients that underwent surgical resection of brain tumors were evaluated. The measured reflectance changes at different light wavelength bands, representing alterations in regional cortical blood volume (CBV), and deoxyhemoglobin (HbR) concentration, were assessed by using Fourier-based evaluation methods. We found a decrease of CBV connected to an increase of HbR within the contralateral primary sensory cortex (SI) in patients that were prolonged (30 s/15 s) electrically stimulated. Additionally, we found differences in amplitude as well as localization of activated areas for different stimulation patterns. Contrary to electrical stimulation, prolonged tactile as well as prolonged visual stimulation are provoking increases in CBV within the corresponding activated areas (SI, visual cortex). The processing of the acquired data from awake patients performing speech tasks reveals areas with increased, as well as areas with decreased CBV. The results lead us to the conclusion, that the CBV decreases in connection with HbR increases in SI are associated to processing of nociceptive stimuli and that stimulation type, as well as paradigm have a nonnegligible impact on the temporal characteristics of the following hemodynamic response.
Collapse
Affiliation(s)
- Martin Oelschlägel
- Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Clinical Sensoring and Monitoring, Dresden, Saxony, Germany
| | - Witold H Polanski
- Department of Neurosurgery, Technische Universität Dresden, Carl Gustav Carus University Hospital Dresden, Dresden, Saxony, Germany
| | - Ute Morgenstern
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Institute of Biomedical Engineering, Dresden, Saxony, Germany
| | - Gerald Steiner
- Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Clinical Sensoring and Monitoring, Dresden, Saxony, Germany
| | - Matthias Kirsch
- Department of Neurosurgery, Technische Universität Dresden, Carl Gustav Carus University Hospital Dresden, Dresden, Saxony, Germany.,Department of Neurosurgery, Asklepios Kliniken Schildautal Seesen, Seesen, Saxony, Germany
| | - Edmund Koch
- Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Clinical Sensoring and Monitoring, Dresden, Saxony, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Technische Universität Dresden, Carl Gustav Carus University Hospital Dresden, Dresden, Saxony, Germany
| | - Stephan B Sobottka
- Department of Neurosurgery, Technische Universität Dresden, Carl Gustav Carus University Hospital Dresden, Dresden, Saxony, Germany
| |
Collapse
|
16
|
Xu L, Li Q, Ke Y, Yung WH. Chronic Intermittent Hypoxia-Induced Aberrant Neural Activities in the Hippocampus of Male Rats Revealed by Long-Term in vivo Recording. Front Cell Neurosci 2022; 15:784045. [PMID: 35126057 PMCID: PMC8813782 DOI: 10.3389/fncel.2021.784045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) occurs in obstructive sleep apnea (OSA), a common sleep-disordered breathing associated with malfunctions in multiple organs including the brain. How OSA-associated CIH impacts on brain activities and functions leading to neurocognitive impairment is virtually unknown. Here, by means of in vivo electrophysiological recordings via chronically implanted multi-electrode arrays in male rat model of OSA, we found that both putative pyramidal neurons and putative interneurons in the hippocampal CA1 subfield were hyper-excitable during the first week of CIH treatment and followed by progressive suppression of neural firing in the longer term. Partial recovery of the neuronal activities was found after normoxia treatment but only in putative pyramidal neurons. These findings correlated well to abnormalities in dendritic spine morphogenesis of these neurons. The results reveal that hippocampal neurons respond to CIH in a complex biphasic and bidirectional manner eventually leading to suppression of firing activities. Importantly, these changes are attributed to a larger extent to impaired functions of putative interneurons than putative pyramidal neurons. Our findings therefore revealed functional and structural damages in central neurons in OSA subjects.
Collapse
Affiliation(s)
- Linhao Xu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Wing-Ho Yung
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Ya Ke
| |
Collapse
|
17
|
The Longitudinal Effect of Meditation on Resting-State Functional Connectivity Using Dynamic Arterial Spin Labeling: A Feasibility Study. Brain Sci 2021; 11:brainsci11101263. [PMID: 34679328 PMCID: PMC8533789 DOI: 10.3390/brainsci11101263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
We aimed to assess whether dynamic arterial spin labeling (dASL), a novel quantitative MRI technique with minimal contamination of subject motion and physiological noises, could detect the longitudinal effect of focused attention meditation (FAM) on resting-state functional connectivity (rsFC). A total of 10 novice meditators who recorded their FAM practice time were scanned at baseline and at the 2-month follow-up. Two-month meditation practice caused significantly increased rsFC between the left medial temporal (LMT) seed and precuneus area and between the right frontal eye (RFE) seed and medial prefrontal cortex. Meditation practice time was found to be positively associated with longitudinal changes of rsFC between the default mode network (DMN) and dorsal attention network (DAN), between DMN and insula, and between DAN and the frontoparietal control network (FPN) but negatively associated with changes of rsFC between DMN and FPN, and between DAN and visual regions. These findings demonstrate the capability of dASL in identifying the FAM-induced rsFC changes and suggest that the practice of FAM can strengthen the efficient control of FPN on fast switching between DMN and DAN and enhance the utilization of attentional resources with reduced focus on visual processing.
Collapse
|
18
|
Zhang H, Chiu PW, Ip I, Liu T, Wong GHY, Song YQ, Wong SWH, Herrup K, Mak HKF. Asymmetric left-right hippocampal glutamatergic modulation of cognitive control in ApoE-isoform subjects is unrelated to neuroinflammation. Eur J Neurosci 2021; 54:5310-5326. [PMID: 34309092 PMCID: PMC9290961 DOI: 10.1111/ejn.15399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/03/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
The glutamatergic cycle is essential in modulating memory processing by the hippocampal circuitry. Our combined proton magnetic resonance spectroscopy (1H‐MRS) and task‐based functional magnetic resonance imaging (fMRI) study (using face‐name paired‐associates encoding and retrieval task) of a cognitively normal cohort of 67 healthy adults (18 ApoE4 carriers and 49 non‐ApoE4 carriers) found altered patterns of relationships between glutamatergic‐modulated synaptic signalling and neuronal activity or functional hyperaemia in the ApoE4 isoforms. Our study highlighted the asymmetric left–right hippocampal glutamatergic system in modulating neuronal activities in ApoE4 carriers versus non‐carriers. Such brain differentiation might be developmental cognitive advantages or compensatory due to impaired synaptic integrity and plasticity in ApoE4 carriers. As there was no difference in myoinositol levels measured by MRS between the ApoE4 and non‐ApoE4 subgroups, the mechanism is unlikely to be a response to neuroinflammation.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong.,Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong
| | - Pui Wai Chiu
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Isaac Ip
- Department of Educational Psychology, Chinese University of Hong Kong, Hong Kong
| | - Tianyin Liu
- Department of Social Work and Administration, The University of Hong Kong, Hong Kong
| | - Gloria Hoi Yan Wong
- Department of Social Work and Administration, The University of Hong Kong, Hong Kong
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Savio Wai Ho Wong
- Department of Educational Psychology, Chinese University of Hong Kong, Hong Kong
| | - Karl Herrup
- Alzheimer Disease Research Centre, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Henry Ka Fung Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong.,Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
19
|
Zhang YD, Dong Z, Wang SH, Yu X, Yao X, Zhou Q, Hu H, Li M, Jiménez-Mesa C, Ramirez J, Martinez FJ, Gorriz JM. Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation. AN INTERNATIONAL JOURNAL ON INFORMATION FUSION 2020; 64:149-187. [PMID: 32834795 PMCID: PMC7366126 DOI: 10.1016/j.inffus.2020.07.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 05/13/2023]
Abstract
Multimodal fusion in neuroimaging combines data from multiple imaging modalities to overcome the fundamental limitations of individual modalities. Neuroimaging fusion can achieve higher temporal and spatial resolution, enhance contrast, correct imaging distortions, and bridge physiological and cognitive information. In this study, we analyzed over 450 references from PubMed, Google Scholar, IEEE, ScienceDirect, Web of Science, and various sources published from 1978 to 2020. We provide a review that encompasses (1) an overview of current challenges in multimodal fusion (2) the current medical applications of fusion for specific neurological diseases, (3) strengths and limitations of available imaging modalities, (4) fundamental fusion rules, (5) fusion quality assessment methods, and (6) the applications of fusion for atlas-based segmentation and quantification. Overall, multimodal fusion shows significant benefits in clinical diagnosis and neuroscience research. Widespread education and further research amongst engineers, researchers and clinicians will benefit the field of multimodal neuroimaging.
Collapse
Affiliation(s)
- Yu-Dong Zhang
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zhengchao Dong
- Department of Psychiatry, Columbia University, USA
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Shui-Hua Wang
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- School of Architecture Building and Civil engineering, Loughborough University, Loughborough, LE11 3TU, UK
- School of Mathematics and Actuarial Science, University of Leicester, LE1 7RH, UK
| | - Xiang Yu
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
| | - Xujing Yao
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
| | - Qinghua Zhou
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
| | - Hua Hu
- Department of Psychiatry, Columbia University, USA
- Department of Neurology, The Second Affiliated Hospital of Soochow University, China
| | - Min Li
- Department of Psychiatry, Columbia University, USA
- School of Internet of Things, Hohai University, Changzhou, China
| | - Carmen Jiménez-Mesa
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Javier Ramirez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Francisco J Martinez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Juan Manuel Gorriz
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
- Department of Psychiatry, University of Cambridge, Cambridge CB21TN, UK
| |
Collapse
|
20
|
Buxton RB. The thermodynamics of thinking: connections between neural activity, energy metabolism and blood flow. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190624. [PMID: 33190604 DOI: 10.1098/rstb.2019.0624] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several current functional neuroimaging methods are sensitive to cerebral metabolism and cerebral blood flow (CBF) rather than the underlying neural activity itself. Empirically, the connections between metabolism, flow and neural activity are complex and somewhat counterintuitive: CBF and glycolysis increase more than seems to be needed to provide oxygen and pyruvate for oxidative metabolism, and the oxygen extraction fraction is relatively low in the brain and decreases when oxygen metabolism increases. This work lays a foundation for the idea that this unexpected pattern of physiological changes is consistent with basic thermodynamic considerations related to metabolism. In the context of this thermodynamic framework, the apparent mismatches in metabolic rates and CBF are related to preserving the entropy change of oxidative metabolism, specifically the O2/CO2 ratio in the mitochondria. However, the mechanism supporting this CBF response is likely not owing to feedback from a hypothetical O2 sensor in tissue, but rather is consistent with feed-forward control by signals from both excitatory and inhibitory neural activity. Quantitative predictions of the thermodynamic framework, based on models of O2 and CO2 transport and possible neural drivers of CBF control, are in good agreement with a wide range of experimental data, including responses to neural activation, hypercapnia, hypoxia and high-altitude acclimatization. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Richard B Buxton
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, MC 0677, La Jolla, CA 92093-0677, USA
| |
Collapse
|
21
|
Ekstrom AD. Regional variation in neurovascular coupling and why we still lack a Rosetta Stone. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190634. [PMID: 33190605 DOI: 10.1098/rstb.2019.0634] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is the dominant tool in cognitive neuroscience although its relation to underlying neural activity, particularly in the human brain, remains largely unknown. A major research goal, therefore, has been to uncover a 'Rosetta Stone' providing direct translation between the blood oxygen level-dependent (BOLD) signal, the local field potential and single-neuron activity. Here, I evaluate the proposal that BOLD signal changes equate to changes in gamma-band activity, which in turn may partially relate to the spiking activity of neurons. While there is some support for this idea in sensory cortices, findings in deeper brain structures like the hippocampus instead suggest both regional and frequency-wise differences. Relatedly, I consider four important factors in linking fMRI to neural activity: interpretation of correlations between these signals, regional variability in local vasculature, distributed neural coding schemes and varying fMRI signal quality. Novel analytic fMRI techniques, such as multivariate pattern analysis (MVPA), employ the distributed patterns of voxels across a brain region to make inferences about information content rather than whether a small number of voxels go up or down relative to baseline in response to a stimulus. Although unlikely to provide a Rosetta Stone, MVPA, therefore, may represent one possible means forward for better linking BOLD signal changes to the information coded by underlying neural activity. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Arne D Ekstrom
- Department of Psychology, University of Arizona, 1503 E. University Boulevard, Tucson, AZ 85721, USA.,Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Boulevard, Tucson, AZ 85721, USA
| |
Collapse
|
22
|
Task-related activity in human visual cortex. PLoS Biol 2020; 18:e3000921. [PMID: 33156829 PMCID: PMC7673548 DOI: 10.1371/journal.pbio.3000921] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/18/2020] [Accepted: 09/21/2020] [Indexed: 01/27/2023] Open
Abstract
The brain exhibits widespread endogenous responses in the absence of visual stimuli, even at the earliest stages of visual cortical processing. Such responses have been studied in monkeys using optical imaging with a limited field of view over visual cortex. Here, we used functional MRI (fMRI) in human participants to study the link between arousal and endogenous responses in visual cortex. The response that we observed was tightly entrained to task timing, was spatially extensive, and was independent of visual stimulation. We found that this response follows dynamics similar to that of pupil size and heart rate, suggesting that task-related activity is related to arousal. Finally, we found that higher reward increased response amplitude while decreasing its trial-to-trial variability (i.e., the noise). Computational simulations suggest that increased temporal precision underlies both of these observations. Our findings are consistent with optical imaging studies in monkeys and support the notion that arousal increases precision of neural activity. The brain exhibits widespread endogenous responses in the absence of visual stimuli, even at the earliest stages of visual cortical processing. This fMRI study characterizes a widespread hemodynamic response in early visual cortex that is not related to visual input but instead reflects a participant’s engagement in a task, is modulated by expected monetary reward, and may reflect neural quenching.
Collapse
|
23
|
Lobo FA, Vacas S, Rossetti AO, Robba C, Taccone FS. Does electroencephalographic burst suppression still play a role in the perioperative setting? Best Pract Res Clin Anaesthesiol 2020; 35:159-169. [PMID: 34030801 DOI: 10.1016/j.bpa.2020.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
With the widespread use of electroencephalogram [EEG] monitoring during surgery or in the Intensive Care Unit [ICU], clinicians can sometimes face the pattern of burst suppression [BS]. The BS pattern corresponds to the continuous quasi-periodic alternation between high-voltage slow waves [the bursts] and periods of low voltage or even isoelectricity of the EEG signal [the suppression] and is extremely rare outside ICU and the operative room. BS can be secondary to increased anesthetic depth or a marker of cerebral damage, as a therapeutic endpoint [i.e., refractory status epilepticus or refractory intracranial hypertension]. In this review, we report the neurophysiological features of BS to better define its role during intraoperative and critical care settings.
Collapse
Affiliation(s)
- Francisco Almeida Lobo
- Anesthesiology Department, Centro Hospitalar de Trás-os-Montes e Alto Douro, Avenida da Noruega, Lordelo, 5000-508, Vila Real, Portugal.
| | - Susana Vacas
- Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Reagan UCLA Medical Center, 757 Westwood Plaza #3325, Los Angeles, CA, 90095, USA.
| | - Andrea O Rossetti
- Department of Neurology, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland.
| | - Chiara Robba
- Azienda Ospedaliera Universitaria San Martino di Genova, Largo Rosanna Benzi,15, 16100, Genova, Italy.
| | - Fabio Silvio Taccone
- Hopital Érasme, Université Libre de Bruxelles, Department of Intensive Care Medicine, Route de Lennik, 808 1070, Brussels, Belgium.
| |
Collapse
|
24
|
Abdelkarim D, Zhao Y, Turner MP, Sivakolundu DK, Lu H, Rypma B. A neural-vascular complex of age-related changes in the human brain: Anatomy, physiology, and implications for neurocognitive aging. Neurosci Biobehav Rev 2019; 107:927-944. [DOI: 10.1016/j.neubiorev.2019.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/02/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
|
25
|
Abstract
It is a generally accepted observation that individuals act differently under stress. Recent task-based neuroimaging studies have shown that individuals under stress favor the intuitive and fast system over the deliberative and reflective system. In the present study, using a within-subjects design in thirty young adults, we examined whether and how acute social stress impacts regional neural activity in resting state. The results showed that stress induced lower coherence regional homogeneity (Cohe-ReHo) values in left hippocampus and right superior frontal gyrus, both of which are regions associated with deliberative decision making. Stress-induced cortisol change was significantly and positively correlated with the change in Cohe-ReHo value in the right midbrain, a region involved in habitual decision making. These results extend previous findings by demonstrating that stress modulates local synchrony in brain regions implicated in deliberative and intuitive decision making. Our findings might be useful in understanding the neural mechanisms underlying stress-related mental disorders.
Collapse
Affiliation(s)
- Jingjing Chang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Rongjun Yu
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China.
- Department of Psychology, National University of Singapore, 9 Arts Link, Singapore, 117570, Singapore.
| |
Collapse
|
26
|
BOLD signal physiology: Models and applications. Neuroimage 2019; 187:116-127. [DOI: 10.1016/j.neuroimage.2018.03.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/14/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022] Open
|
27
|
Toma S, MacIntosh BJ, Swardfager W, Goldstein BI. Cerebral blood flow in bipolar disorder: A systematic review. J Affect Disord 2018; 241:505-513. [PMID: 30149339 DOI: 10.1016/j.jad.2018.08.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/01/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Neuroimaging of cerebral blood flow (CBF) can inform our understanding of the pathophysiology of bipolar disorder (BD) as there is increasing support for the concept that BD is in part a vascular disease. Despite numerous studies examining CBF in BD, there has not yet been a review of the literature on the topic of CBF in BD. METHODS A systematic review of the literature on CBF in BD was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Studies included measured CBF by single-photon emission computerized tomography (SPECT), positron emission tomography (PET), arterial spin labelling (ASL) or perfusion weighted imaging (PWI) in a group of BD patients. RESULTS Thirty-three studies with a total of 508 subjects with BD and 538 controls were included (n = 15 SPECT; n = 8 PET; n = 7 ASL; n = 1 PWI; n = 2 other). The majority of studies in BD depression and mania reported widespread resting hypoperfusion in cingulate gyrus, frontal, and anterior temporal regions in comparison to healthy controls (HC). Findings in euthymic BD subjects and in symptomatically heterogeneous groups were less consistent. Studies that examined CBF responses to cognitive or emotional stimuli in BD subjects have reported hypoperfusion or different regions involved in comparison to HC. LIMITATIONS Important methodological heterogeneity between studies, and small number of subjects per study. CONCLUSIONS The most consistent findings to date are hypoperfusion in BD mood episodes, and hypoactive CBF responses to emotional or cognitive challenges. Future studies examining CBF are warranted, including prospective studies, studies examining CBF as a treatment target, and multimodal imaging studies.
Collapse
Affiliation(s)
- Simina Toma
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Bradley J MacIntosh
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Department of Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Walter Swardfager
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada.
| |
Collapse
|
28
|
Wright ME, Wise RG. Can Blood Oxygenation Level Dependent Functional Magnetic Resonance Imaging Be Used Accurately to Compare Older and Younger Populations? A Mini Literature Review. Front Aging Neurosci 2018; 10:371. [PMID: 30483117 PMCID: PMC6243068 DOI: 10.3389/fnagi.2018.00371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/25/2018] [Indexed: 11/17/2022] Open
Abstract
A wealth of research has investigated the aging brain using blood oxygenation level dependent functional MRI [Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI)]. However, many studies do not consider the aging of the cerebrovascular system, which can influence the BOLD signal independently from neural activity, limiting what can be inferred when comparing age groups. Here, we discuss the ways in which the aging neurovascular system can impact BOLD fMRI, the consequences for age-group comparisons and possible strategies for mitigation. While BOLD fMRI is a valuable tool in this context, this review highlights the importance of consideration of vascular confounds.
Collapse
Affiliation(s)
- Melissa E Wright
- Cardiff University Brain Imaging Research Center, School of Psychology, Cardiff University, Cardiff, United Kingdom.,School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Richard G Wise
- Cardiff University Brain Imaging Research Center, School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
29
|
Chiacchiaretta P, Cerritelli F, Bubbico G, Perrucci MG, Ferretti A. Reduced Dynamic Coupling Between Spontaneous BOLD-CBF Fluctuations in Older Adults: A Dual-Echo pCASL Study. Front Aging Neurosci 2018; 10:115. [PMID: 29740310 PMCID: PMC5925323 DOI: 10.3389/fnagi.2018.00115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Abstract
Measurement of the dynamic coupling between spontaneous Blood Oxygenation Level Dependent (BOLD) and cerebral blood flow (CBF) fluctuations has been recently proposed as a method to probe resting-state brain physiology. Here we investigated how the dynamic BOLD-CBF coupling during resting-state is affected by aging. Fifteen young subjects and 17 healthy elderlies were studied using a dual-echo pCASL sequence. We found that the dynamic BOLD-CBF coupling was markedly reduced in elderlies, in particular in the left supramarginal gyrus, an area known to be involved in verbal working memory and episodic memory. Moreover, correcting for temporal shift between BOLD and CBF timecourses resulted in an increased correlation of the two signals for both groups, but with a larger increase for elderlies. However, even after temporal shift correction, a significantly decreased correlation was still observed for elderlies in the left supramarginal gyrus, indicating that the age-related dynamic BOLD-CBF uncoupling in this region is more pronounced and can be only partially explained with a simple time-shift between the two signals. Interestingly, these results were observed in a group of elderlies with normal cognitive functions, suggesting that the study of dynamic BOLD-CBF coupling during resting-state is a promising technique, potentially able to provide early biomarkers of functional changes in the aging brain.
Collapse
Affiliation(s)
- Piero Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy
| | - Francesco Cerritelli
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy.,Clinical-Based Human Research Department-C.O.M.E. Collaboration ONLUS, Pescara, Italy
| | - Giovanna Bubbico
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy
| |
Collapse
|
30
|
Bright MG, Croal PL, Blockley NP, Bulte DP. Multiparametric measurement of cerebral physiology using calibrated fMRI. Neuroimage 2017; 187:128-144. [PMID: 29277404 DOI: 10.1016/j.neuroimage.2017.12.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
The ultimate goal of calibrated fMRI is the quantitative imaging of oxygen metabolism (CMRO2), and this has been the focus of numerous methods and approaches. However, one underappreciated aspect of this quest is that in the drive to measure CMRO2, many other physiological parameters of interest are often acquired along the way. This can significantly increase the value of the dataset, providing greater information that is clinically relevant, or detail that can disambiguate the cause of signal variations. This can also be somewhat of a double-edged sword: calibrated fMRI experiments combine multiple parameters into a physiological model that requires multiple steps, thereby providing more opportunity for error propagation and increasing the noise and error of the final derived values. As with all measurements, there is a trade-off between imaging time, spatial resolution, coverage, and accuracy. In this review, we provide a brief overview of the benefits and pitfalls of extracting multiparametric measurements of cerebral physiology through calibrated fMRI experiments.
Collapse
Affiliation(s)
- Molly G Bright
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Paula L Croal
- IBME, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Nicholas P Blockley
- FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel P Bulte
- IBME, Department of Engineering Science, University of Oxford, Oxford, UK; FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
31
|
Scarapicchia V, Brown C, Mayo C, Gawryluk JR. Functional Magnetic Resonance Imaging and Functional Near-Infrared Spectroscopy: Insights from Combined Recording Studies. Front Hum Neurosci 2017; 11:419. [PMID: 28867998 PMCID: PMC5563305 DOI: 10.3389/fnhum.2017.00419] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 08/04/2017] [Indexed: 11/26/2022] Open
Abstract
Although blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a widely available, non-invasive technique that offers excellent spatial resolution, it remains limited by practical constraints imposed by the scanner environment. More recently, functional near infrared spectroscopy (fNIRS) has emerged as an alternative hemodynamic-based approach that possesses a number of strengths where fMRI is limited, most notably in portability and higher tolerance for motion. To date, fNIRS has shown promise in its ability to shed light on the functioning of the human brain in populations and contexts previously inaccessible to fMRI. Notable contributions include infant neuroimaging studies and studies examining full-body behaviors, such as exercise. However, much like fMRI, fNIRS has technical constraints that have limited its application to clinical settings, including a lower spatial resolution and limited depth of recording. Thus, by combining fMRI and fNIRS in such a way that the two methods complement each other, a multimodal imaging approach may allow for more complex research paradigms than is feasible with either technique alone. In light of these issues, the purpose of the current review is to: (1) provide an overview of fMRI and fNIRS and their associated strengths and limitations; (2) review existing combined fMRI-fNIRS recording studies; and (3) discuss how their combined use in future research practices may aid in advancing modern investigations of human brain function.
Collapse
Affiliation(s)
| | - Cassandra Brown
- Department of Psychology, University of VictoriaVictoria, BC, Canada
| | - Chantel Mayo
- Department of Psychology, University of VictoriaVictoria, BC, Canada
| | - Jodie R Gawryluk
- Department of Psychology, University of VictoriaVictoria, BC, Canada
| |
Collapse
|
32
|
Hubbard NA, Turner MP, Ouyang M, Himes L, Thomas BP, Hutchison JL, Faghihahmadabadi S, Davis SL, Strain JF, Spence J, Krawczyk DC, Huang H, Lu H, Hart J, Frohman TC, Frohman EM, Okuda DT, Rypma B. Calibrated imaging reveals altered grey matter metabolism related to white matter microstructure and symptom severity in multiple sclerosis. Hum Brain Mapp 2017; 38:5375-5390. [PMID: 28815879 DOI: 10.1002/hbm.23727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/13/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) involves damage to white matter microstructures. This damage has been related to grey matter function as measured by standard, physiologically-nonspecific neuroimaging indices (i.e., blood-oxygen-level dependent signal [BOLD]). Here, we used calibrated functional magnetic resonance imaging and diffusion tensor imaging to examine the extent to which specific, evoked grey matter physiological processes were associated with white matter diffusion in MS. Evoked changes in BOLD, cerebral blood flow (CBF), and oxygen metabolism (CMRO2 ) were measured in visual cortex. Individual differences in the diffusion tensor measure, radial diffusivity, within occipital tracts were strongly associated with MS patients' BOLD and CMRO2 . However, these relationships were in opposite directions, complicating the interpretation of the relationship between BOLD and white matter microstructural damage in MS. CMRO2 was strongly associated with individual differences in patients' fatigue and neurological disability, suggesting that alterations to evoked oxygen metabolic processes may be taken as a marker for primary symptoms of MS. This work demonstrates the first application of calibrated and diffusion imaging together and details the first application of calibrated functional MRI in a neurological population. Results lend support for neuroenergetic hypotheses of MS pathophysiology and provide an initial demonstration of the utility of evoked oxygen metabolism signals for neurology research. Hum Brain Mapp 38:5375-5390, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas A Hubbard
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Minhui Ouyang
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lyndahl Himes
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Binu P Thomas
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | | | - Scott L Davis
- Department of Applied Physiology and Wellness, Southern Methodist University, Dallas, Texas
| | - Jeremy F Strain
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Jeffrey Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Daniel C Krawczyk
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hao Huang
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John Hart
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Teresa C Frohman
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, Texas
| | - Elliot M Frohman
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, Texas
| | - Darin T Okuda
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
33
|
Polyanska L, Critchley HD, Rae CL. Centrality of prefrontal and motor preparation cortices to Tourette Syndrome revealed by meta-analysis of task-based neuroimaging studies. NEUROIMAGE-CLINICAL 2017; 16:257-267. [PMID: 28831377 PMCID: PMC5554925 DOI: 10.1016/j.nicl.2017.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/31/2023]
Abstract
Tourette Syndrome (TS) is a neurodevelopmental condition characterized by chronic multiple tics, which are experienced as compulsive and 'unwilled'. Patients with TS can differ markedly in the frequency, severity, and bodily distribution of tics. Moreover, there are high comorbidity rates with attention deficit hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), anxiety disorders, and depression. This complex clinical profile may account for apparent variability of findings across neuroimaging studies that connect neural function to cognitive and motor behavior in TS. Here we crystalized information from neuroimaging regarding the functional circuitry of TS, and furthermore, tested specifically for neural determinants of tic severity, by applying activation likelihood estimation (ALE) meta-analyses to neuroimaging (activation) studies of TS. Fourteen task-based studies (13 fMRI and one H2O-PET) met rigorous inclusion criteria. These studies, encompassing 25 experiments and 651 participants, tested for differences between TS participants and healthy controls across cognitive, motor, perceptual and somatosensory domains. Relative to controls, TS participants showed distributed differences in the activation of prefrontal (inferior, middle, and superior frontal gyri), anterior cingulate, and motor preparation cortices (lateral premotor cortex and supplementary motor area; SMA). Differences also extended into sensory (somatosensory cortex and the lingual gyrus; V4); and temporo-parietal association cortices (posterior superior temporal sulcus, supramarginal gyrus, and retrosplenial cortex). Within TS participants, tic severity (reported using the Yale Global Tic Severity Scale; YGTSS) selectively correlated with engagement of SMA, precentral gyrus, and middle frontal gyrus across tasks. The dispersed involvement of multiple cortical regions with differences in functional reactivity may account for heterogeneity in the symptomatic expression of TS and its comorbidities. More specifically for tics and tic severity, the findings reinforce previously proposed contributions of premotor and lateral prefrontal cortices to tic expression.
Collapse
Affiliation(s)
- Liliana Polyanska
- Sackler Centre for Consciousness Science, University of Sussex, Falmer BN1 9RY, UK.,Department of Neuroscience, Brighton & Sussex Medical School, Falmer BN1 9RY, UK.,Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany
| | - Hugo D Critchley
- Sackler Centre for Consciousness Science, University of Sussex, Falmer BN1 9RY, UK.,Department of Neuroscience, Brighton & Sussex Medical School, Falmer BN1 9RY, UK
| | - Charlotte L Rae
- Sackler Centre for Consciousness Science, University of Sussex, Falmer BN1 9RY, UK.,Department of Neuroscience, Brighton & Sussex Medical School, Falmer BN1 9RY, UK
| |
Collapse
|
34
|
Mullinger KJ, Cherukara MT, Buxton RB, Francis ST, Mayhew SD. Post-stimulus fMRI and EEG responses: Evidence for a neuronal origin hypothesised to be inhibitory. Neuroimage 2017; 157:388-399. [PMID: 28610902 DOI: 10.1016/j.neuroimage.2017.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 12/26/2022] Open
Abstract
Post-stimulus undershoots, negative responses following cessation of stimulation, are widely observed in functional magnetic resonance (fMRI) blood oxygenation level dependent (BOLD) data. However, the debate surrounding whether the origin of this response phase is neuronal or vascular, and whether it provides functionally relevant information, that is additional to what is contained in the primary response, means that undershoots are widely overlooked. We simultaneously recorded electroencephalography (EEG), BOLD and cerebral blood-flow (CBF) [obtained from arterial spin labelled (ASL) fMRI] fMRI responses to hemifield checkerboard stimulation to test the potential neural origin of the fMRI post-stimulus undershoot. The post-stimulus BOLD and CBF signal amplitudes in both contralateral and ipsilateral visual cortex depended on the post-stimulus power of the occipital 8-13Hz (alpha) EEG neuronal activity, such that trials with highest EEG power showed largest fMRI undershoots in contralateral visual cortex. This correlation in post-stimulus EEG-fMRI responses was not predicted by the primary response amplitude. In the contralateral visual cortex we observed a decrease in both cerebral rate of oxygen metabolism (CMRO2) and CBF during the post-stimulus phase. In addition, the coupling ratio (n) between CMRO2 and CBF was significantly lower during the positive contralateral primary response phase compared with the post-stimulus phase and we propose that this reflects an altered balance of excitatory and inhibitory neuronal activity. Together our data provide strong evidence that the post-stimulus phase of the BOLD response has a neural origin which reflects, at least partially, an uncoupling of the neuronal responses driving the primary and post-stimulus responses, explaining the uncoupling of the signals measured in the two response phases. We suggest our results are consistent with inhibitory processes driving the post-stimulus EEG and fMRI responses. We therefore propose that new methods are required to model the post-stimulus and primary responses independently, enabling separate investigation of response phases in cognitive function and neurological disease.
Collapse
Affiliation(s)
- K J Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Birmingham University Imaging Centre, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK.
| | - M T Cherukara
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - R B Buxton
- Department of Radiology, Center for Functional MRI, University of California, San Diego, La Jolla, CA, USA
| | - S T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - S D Mayhew
- Birmingham University Imaging Centre, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
35
|
Chen Z, An Y, Zhao B, Yang W, Yu Q, Cai L, Ni H, Yin J. The value of resting-state functional magnetic resonance imaging for detecting epileptogenic zones in patients with focal epilepsy. PLoS One 2017; 12:e0172094. [PMID: 28199371 PMCID: PMC5310782 DOI: 10.1371/journal.pone.0172094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/31/2017] [Indexed: 02/03/2023] Open
Abstract
Objective To determine the value of resting-state functional magnetic resonance imaging (RS-fMRI) based on the local analysis methods regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), and fractional ALFF (fALFF), for detecting epileptogenic zones (EZs). Methods A total of 42 consecutive patients with focal epilepsy were enrolled. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of visually assessed RS-fMRI, MRI, magnetic resonance spectroscopy (MRS), video electroencephalography (VEEG), and positron-emission tomography computed tomography (PET-CT) in EZ localization were evaluated to assess their diagnostic abilities. ReHo, ALFF, and fALFF were also compared for their diagnostic values. Results RS-fMRI showed comparable sensitivity to PET (83.3%) and specificity to VEEG (66.7%), respectively, for EZ localization in patients with focal epilepsy. There were no significant differences between RS-fMRI and the other localization techniques in terms of sensitivity, specificity, PPV, and NPV. The sensitivities of ReHo, ALFF, and fALFF were 69.4%, 52.8%, and 38.9%, respectively, and for specificities of 66.7%, 83.3%, and 66.7%, respectively. There were no significant differences among ReHo, ALFF, and fALFF, except that ReHo was more sensitive than fALFF. Conclusions RS-fMRI may be an efficient tool for detecting EZs in focal epilepsy patients.
Collapse
Affiliation(s)
- Zhijuan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang An
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Bofeng Zhao
- Radiology Department, Tianjin First Central Hospital, Tianjin, China
| | - Weidong Yang
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Qing Yu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Cai
- Clinical PET-CT Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyan Ni
- Radiology Department, Tianjin First Central Hospital, Tianjin, China
| | - Jianzhong Yin
- Radiology Department, Tianjin First Central Hospital, Tianjin, China
- * E-mail:
| |
Collapse
|
36
|
Lajoie I, Tancredi FB, Hoge RD. Regional Reproducibility of BOLD Calibration Parameter M, OEF and Resting-State CMRO2 Measurements with QUO2 MRI. PLoS One 2016; 11:e0163071. [PMID: 27649493 PMCID: PMC5029886 DOI: 10.1371/journal.pone.0163071] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/01/2016] [Indexed: 11/18/2022] Open
Abstract
The current generation of calibrated MRI methods goes beyond simple localization of task-related responses to allow the mapping of resting-state cerebral metabolic rate of oxygen (CMRO2) in micromolar units and estimation of oxygen extraction fraction (OEF). Prior to the adoption of such techniques in neuroscience research applications, knowledge about the precision and accuracy of absolute estimates of CMRO2 and OEF is crucial and remains unexplored to this day. In this study, we addressed the question of methodological precision by assessing the regional inter-subject variance and intra-subject reproducibility of the BOLD calibration parameter M, OEF, O2 delivery and absolute CMRO2 estimates derived from a state-of-the-art calibrated BOLD technique, the QUantitative O2 (QUO2) approach. We acquired simultaneous measurements of CBF and R2* at rest and during periods of hypercapnia (HC) and hyperoxia (HO) on two separate scan sessions within 24 hours using a clinical 3 T MRI scanner. Maps of M, OEF, oxygen delivery and CMRO2, were estimated from the measured end-tidal O2, CBF0, CBFHC/HO and R2*HC/HO. Variability was assessed by computing the between-subject coefficients of variation (bwCV) and within-subject CV (wsCV) in seven ROIs. All tests GM-averaged values of CBF0, M, OEF, O2 delivery and CMRO2 were: 49.5 ± 6.4 mL/100 g/min, 4.69 ± 0.91%, 0.37 ± 0.06, 377 ± 51 μmol/100 g/min and 143 ± 34 μmol/100 g/min respectively. The variability of parameter estimates was found to be the lowest when averaged throughout all GM, with general trends toward higher CVs when averaged over smaller regions. Among the MRI measurements, the most reproducible across scans was R2*0 (wsCVGM = 0.33%) along with CBF0 (wsCVGM = 3.88%) and R2*HC (wsCVGM = 6.7%). CBFHC and R2*HO were found to have a higher intra-subject variability (wsCVGM = 22.4% and wsCVGM = 16% respectively), which is likely due to propagation of random measurement errors, especially for CBFHC due to the low contrast-to-noise ratio intrinsic to ASL. Reproducibility of the QUO2 derived estimates were computed, yielding a GM intra-subject reproducibility of 3.87% for O2 delivery, 16.8% for the M value, 13.6% for OEF and 15.2% for CMRO2. Although these results focus on the precision of the QUO2 method, rather than the accuracy, the information will be useful for calculation of statistical power in future validation studies and ultimately for research applications of the method. The higher test-retest variability for the more extensively modeled parameters (M, OEF, and CMRO2) highlights the need for further improvement of acquisition methods to reduce noise levels.
Collapse
Affiliation(s)
- Isabelle Lajoie
- Département de physiologie moléculaire et intégrative, Institut de génie biomédical, Université de Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | - Felipe B. Tancredi
- Departamento de Radiologia, Centro de Pesquisa em Imagem, Hospital Israelita Albert Einstein, São Palo, SP, Brazil
| | - Richard D. Hoge
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Rodgers ZB, Detre JA, Wehrli FW. MRI-based methods for quantification of the cerebral metabolic rate of oxygen. J Cereb Blood Flow Metab 2016; 36:1165-85. [PMID: 27089912 PMCID: PMC4929705 DOI: 10.1177/0271678x16643090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/22/2016] [Indexed: 11/16/2022]
Abstract
The brain depends almost entirely on oxidative metabolism to meet its significant energy requirements. As such, the cerebral metabolic rate of oxygen (CMRO2) represents a key measure of brain function. Quantification of CMRO2 has helped elucidate brain functional physiology and holds potential as a clinical tool for evaluating neurological disorders including stroke, brain tumors, Alzheimer's disease, and obstructive sleep apnea. In recent years, a variety of magnetic resonance imaging (MRI)-based CMRO2 quantification methods have emerged. Unlike positron emission tomography - the current "gold standard" for measurement and mapping of CMRO2 - MRI is non-invasive, relatively inexpensive, and ubiquitously available in modern medical centers. All MRI-based CMRO2 methods are based on modeling the effect of paramagnetic deoxyhemoglobin on the magnetic resonance signal. The various methods can be classified in terms of the MRI contrast mechanism used to quantify CMRO2: T2*, T2', T2, or magnetic susceptibility. This review article provides an overview of MRI-based CMRO2 quantification techniques. After a brief historical discussion motivating the need for improved CMRO2 methodology, current state-of-the-art MRI-based methods are critically appraised in terms of their respective tradeoffs between spatial resolution, temporal resolution, and robustness, all of critical importance given the spatially heterogeneous and temporally dynamic nature of brain energy requirements.
Collapse
Affiliation(s)
- Zachary B Rodgers
- University of Pennsylvania Medical Center, Philadelphia, PA, USA Laboratory for Structural, Physiologic, and Functional Imaging, Department of Radiology, Philadelphia, PA, USA
| | - John A Detre
- University of Pennsylvania Medical Center, Philadelphia, PA, USA Center for Functional Neuroimaging, Department of Neurology, Philadelphia, PA, USA
| | - Felix W Wehrli
- University of Pennsylvania Medical Center, Philadelphia, PA, USA
| |
Collapse
|
38
|
Shu CY, Sanganahalli BG, Coman D, Herman P, Hyder F. New horizons in neurometabolic and neurovascular coupling from calibrated fMRI. PROGRESS IN BRAIN RESEARCH 2016; 225:99-122. [PMID: 27130413 DOI: 10.1016/bs.pbr.2016.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurovascular coupling relates changes in neuronal activity to constriction/dilation of microvessels. However neurometabolic coupling, which is less well known, relates alterations in neuronal activity with metabolic demands. The link between the blood oxygenation level dependent (BOLD) signal and neural activity opened doors for functional MRI (fMRI) to be a powerful neuroimaging tool in the neurosciences. But due to the complex makeup of BOLD contrast, researchers began to investigate the relationship between BOLD signal and blood flow and/or volume changes during functional brain activation, which together provided the tools to measure oxygen consumption on the basis of the biophysical model of BOLD. This field is called calibrated fMRI, thereby allowed probing of both neurometabolic and neurovascular couplings for a variety of health conditions in animals and humans. Calibrated fMRI may provide brain disorder biomarkers that could be used for monitoring effective therapies.
Collapse
Affiliation(s)
- C Y Shu
- Yale University, New Haven, CT, United States
| | - B G Sanganahalli
- Yale University, New Haven, CT, United States; Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, United States
| | - D Coman
- Yale University, New Haven, CT, United States; Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, United States
| | - P Herman
- Yale University, New Haven, CT, United States; Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, United States
| | - F Hyder
- Yale University, New Haven, CT, United States; Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, United States.
| |
Collapse
|
39
|
Stojanovic-Radic J, Wylie G, Voelbel G, Chiaravalloti N, DeLuca J. Neuroimaging and cognition using functional near infrared spectroscopy (fNIRS) in multiple sclerosis. Brain Imaging Behav 2016; 9:302-11. [PMID: 24916919 DOI: 10.1007/s11682-014-9307-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study utilized functional near infrared spectroscopy (fNIRS) to detect neural activation differences in the orbitofrontal brain region between individuals with multiple sclerosis (MS) and healthy controls (HCs) during a working memory (WM) task. Thirteen individuals with MS and 12 HCs underwent fNIRS recording while performing the n-back WM task with four levels of difficulty (0-, 1-, 2-, and 3-back). Subjects were fitted with the fNIRS cap consisting of 30 'optodes' positioned over the forehead. The results revealed different patterns of brain activation in MS and HCs. The MS group showed an increase in brain activation, as measured by the concentration of oxygenated hemoglobin (oxyHb), in the left superior frontal gyrus (LSFG) at lower task difficulty levels (i.e. 1-back), followed by a decrease at higher task difficulty (2- and 3-back) as compared with the HC group. HC group achieved higher accuracy than the MS group on the lower task loads (i.e. 0- and 1-back), however there were no performance differences between the groups at the higher task loads (i.e. 2- and 3-back). Taken together, the results suggest that individuals with MS experience a task with the lower cognitive load as more difficult than the HC group, and the brain activation patterns observed during the task confirm some of the previous findings from functional magnetic resonance imaging (fMRI) studies. This study is the first to investigate brain activation by utilizing the method of fNIRS in MS during the performance of a cognitive task.
Collapse
Affiliation(s)
- Jelena Stojanovic-Radic
- Kessler Foundation, Neuropsychology and Neuroscience Laboratory, 300 Executive Drive, Suite 70, West Orange, NJ, 07052, USA
| | | | | | | | | |
Collapse
|
40
|
Blank I, Balewski Z, Mahowald K, Fedorenko E. Syntactic processing is distributed across the language system. Neuroimage 2016; 127:307-323. [PMID: 26666896 PMCID: PMC4755877 DOI: 10.1016/j.neuroimage.2015.11.069] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 10/23/2015] [Accepted: 11/28/2015] [Indexed: 11/30/2022] Open
Abstract
Language comprehension recruits an extended set of regions in the human brain. Is syntactic processing localized to a particular region or regions within this system, or is it distributed across the entire ensemble of brain regions that support high-level linguistic processing? Evidence from aphasic patients is more consistent with the latter possibility: damage to many different language regions and to white-matter tracts connecting them has been shown to lead to similar syntactic comprehension deficits. However, brain imaging investigations of syntactic processing continue to focus on particular regions within the language system, often parts of Broca's area and regions in the posterior temporal cortex. We hypothesized that, whereas the entire language system is in fact sensitive to syntactic complexity, the effects in some regions may be difficult to detect because of the overall lower response to language stimuli. Using an individual-subjects approach to localizing the language system, shown in prior work to be more sensitive than traditional group analyses, we indeed find responses to syntactic complexity throughout this system, consistent with the findings from the neuropsychological patient literature. We speculate that such distributed nature of syntactic processing could perhaps imply that syntax is inseparable from other aspects of language comprehension (e.g., lexico-semantic processing), in line with current linguistic and psycholinguistic theories and evidence. Neuroimaging investigations of syntactic processing thus need to expand their scope to include the entire system of high-level language processing regions in order to fully understand how syntax is instantiated in the human brain.
Collapse
Affiliation(s)
- Idan Blank
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| | - Zuzanna Balewski
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Kyle Mahowald
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Evelina Fedorenko
- Department of Psychiatry, Massachusetts General Hospital, East 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
41
|
Whittaker JR, Driver ID, Bright MG, Murphy K. The absolute CBF response to activation is preserved during elevated perfusion: Implications for neurovascular coupling measures. Neuroimage 2016; 125:198-207. [PMID: 26477657 PMCID: PMC4692513 DOI: 10.1016/j.neuroimage.2015.10.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) techniques in which the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) response to a neural stimulus are measured, can be used to estimate the fractional increase in the cerebral metabolic rate of oxygen consumption (CMRO2) that accompanies evoked neural activity. A measure of neurovascular coupling is obtained from the ratio of fractional CBF and CMRO2 responses, defined as n, with the implicit assumption that relative rather than absolute changes in CBF and CMRO2 adequately characterise the flow-metabolism response to neural activity. The coupling parameter n is important in terms of its effect on the BOLD response, and as potential insight into the flow-metabolism relationship in both normal and pathological brain function. In 10 healthy human subjects, BOLD and CBF responses were measured to test the effect of baseline perfusion (modulated by a hypercapnia challenge) on the coupling parameter n during graded visual stimulation. A dual-echo pulsed arterial spin labelling (PASL) sequence provided absolute quantification of CBF in baseline and active states as well as relative BOLD signal changes, which were used to estimate CMRO2 responses to the graded visual stimulus. The absolute CBF response to the visual stimuli were constant across different baseline CBF levels, meaning the fractional CBF responses were reduced at the hyperperfused baseline state. For the graded visual stimuli, values of n were significantly reduced during hypercapnia induced hyperperfusion. Assuming the evoked neural responses to the visual stimuli are the same for both baseline CBF states, this result has implications for fMRI studies that aim to measure neurovascular coupling using relative changes in CBF. The coupling parameter n is sensitive to baseline CBF, which would confound its interpretation in fMRI studies where there may be significant differences in baseline perfusion between groups. The absolute change in CBF, as opposed to the change relative to baseline, may more closely match the underlying increase in neural activity in response to a stimulus.
Collapse
Affiliation(s)
- Joseph R Whittaker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF10 3AT Cardiff, UK
| | - Ian D Driver
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF10 3AT Cardiff, UK
| | - Molly G Bright
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF10 3AT Cardiff, UK; Sir Peter Mansfield Imaging Centre, Clinical Neurology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF10 3AT Cardiff, UK.
| |
Collapse
|
42
|
Li J, Schwarz AJ, Gilmour G. Relating Translational Neuroimaging and Amperometric Endpoints: Utility for Neuropsychiatric Drug Discovery. Curr Top Behav Neurosci 2016; 28:397-421. [PMID: 27023366 DOI: 10.1007/7854_2016_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Measures of neuronal activation are a natural and parsimonious translational biomarker to consider in the context of neuropsychiatric drug discovery studies. In this regard, functional neuroimaging using the BOLD fMRI technique is becoming more frequently employed to not only probe aberrant brain regions and circuits in disease, but also to assess the effects of novel pharmacological agents on these processes. In the ideal situation, these types of studies would first be conducted pre-clinically in rodents to confirm a measurable functional response on relevant brain circuits before seeking to replicate the findings in an analogous fMRI paradigm in humans. However, the need for animal immobilization during the scanning procedure precludes all but the simplest behavioural task-based paradigms in rodent BOLD fMRI. This chapter considers how in vivo oxygen amperometry may represent a viable and valid proxy for BOLD fMRI in freely moving rodents engaged in behavioural tasks. The amperometric technique and several examples of emerging evidence are described to show how the technique can deliver results that translate to pharmacological, event-related and functional connectivity variants of fMRI. In vivo oxygen amperometry holds great promise as a technique that may help to bridge the gap between basic drug discovery research in rodents and applied efficacy testing in humans.
Collapse
Affiliation(s)
- Jennifer Li
- In Vivo Pharmacology, Eli Lilly and Company, Erl Wood Manor, Sunninghill Road, Windlesham, UK
| | - Adam J Schwarz
- Translational Imaging, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Gary Gilmour
- In Vivo Pharmacology, Eli Lilly and Company, Erl Wood Manor, Sunninghill Road, Windlesham, UK.
| |
Collapse
|
43
|
Shu CY, Sanganahalli BG, Coman D, Herman P, Rothman DL, Hyder F. Quantitative β mapping for calibrated fMRI. Neuroimage 2015; 126:219-28. [PMID: 26619788 DOI: 10.1016/j.neuroimage.2015.11.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 11/27/2022] Open
Abstract
The metabolic and hemodynamic dependencies of the blood oxygenation level-dependent (BOLD) signal form the basis for calibrated fMRI, where the focus is on oxidative energy demanded by neural activity. An important part of calibrated fMRI is the power-law relationship between the BOLD signal and the deoxyhemoglobin concentration, which in turn is related to the ratio between oxidative demand (CMRO2) and blood flow (CBF). The power-law dependence between BOLD signal and deoxyhemoglobin concentration is signified by a scaling exponent β. Until recently most studies assumed a β value of 1.5, which is based on numerical simulations of the extravascular BOLD component. Since the basal value of CMRO2 and CBF can vary from subject-to-subject and/or region-to-region, a method to independently measure β in vivo should improve the accuracy of calibrated fMRI results. We describe a new method for β mapping through characterizing R2' - the most sensitive relaxation component of BOLD signal (i.e., the reversible magnetic susceptibility component that is predominantly of extravascular origin at high magnetic field) - as a function of intravascular magnetic susceptibility induced by an FDA-approved superparamagnetic contrast agent. In α-chloralose anesthetized rat brain, at 9.4 T, we measured β values of ~0.8 uniformly across large neocortical swathes, with lower magnitude and more heterogeneity in subcortical areas. Comparison of β maps in rats anesthetized with medetomidine and α-chloralose revealed that β is independent of neural activity levels at these resting states. We anticipate that this method for β mapping can help facilitate calibrated fMRI for clinical studies.
Collapse
Affiliation(s)
- Christina Y Shu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Basavaraju G Sanganahalli
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
44
|
Zhang J, Liu T, Gupta A, Spincemaille P, Nguyen TD, Wang Y. Quantitative mapping of cerebral metabolic rate of oxygen (CMRO2 ) using quantitative susceptibility mapping (QSM). Magn Reson Med 2015; 74:945-52. [PMID: 25263499 PMCID: PMC4375095 DOI: 10.1002/mrm.25463] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/17/2014] [Accepted: 08/20/2014] [Indexed: 12/29/2022]
Abstract
PURPOSE To quantitatively map cerebral metabolic rate of oxygen ( CMRO2) and oxygen extraction fraction ( OEF) in human brains using quantitative susceptibility mapping (QSM) and arterial spin labeling-measured cerebral blood flow (CBF) before and after caffeine vasoconstriction. METHODS Using the multiecho, three-dimensional gradient echo sequence and an oral bolus of 200 mg caffeine, whole brain CMRO2 and OEF were mapped at 3-mm isotropic resolution on 13 healthy subjects. The QSM-based CMRO2 was compared with an R2*-based CMRO2 to analyze the regional consistency within cortical gray matter (CGM) with the scaling in the R2* method set to provide same total CMRO2 as the QSM method for each subject. RESULTS Compared to precaffeine, susceptibility increased (5.1 ± 1.1 ppb; P < 0.01) and CBF decreased (-23.6 ± 6.7 ml/100 g/min; P < 0.01) at 25-min postcaffeine in CGM. This corresponded to a CMRO2 of 153.0 ± 26.4 μmol/100 g/min with an OEF of 33.9 ± 9.6% and 54.5 ± 13.2% (P < 0.01) pre- and postcaffeine, respectively, at CGM, and a CMRO2 of 58.0 ± 26.6 μmol/100 g/min at white matter. CMRO2 from both QSM- and R2*-based methods showed good regional consistency (P > 0.05), but quantitation of R2*-based CMRO2 required an additional scaling factor. CONCLUSION QSM can be used with perfusion measurements pre- and postcaffeine vascoconstriction to map CMRO2 and OEF.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States Address: 301 Weill Hall, Cornell University, Ithaca, NY14853
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States Address: 515 East 71 St, Suite 104, New York, NY, 10021
| | - Tian Liu
- Medimagemetric, LLC, New York, NY, NY, United States Address: 455 Main Street, New York, NY, 10044
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States Address: 515 East 71 St, Suite 104, New York, NY, 10021
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States Address: 515 East 71 St, Suite 104, New York, NY, 10021
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States Address: 515 East 71 St, Suite 104, New York, NY, 10021
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States Address: 301 Weill Hall, Cornell University, Ithaca, NY14853
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States Address: 515 East 71 St, Suite 104, New York, NY, 10021
| |
Collapse
|
45
|
Abstract
Human neuroimaging studies of reward processing typically involve tasks that engage decision-making processes in the dorsal striatum or focus upon the ventral striatum's response to feedback expectancy. These studies are often compared to the animal literature; however, some animal studies include both feedback and nonfeedback events that activate the dorsal striatum during feedback expectancy. Differences in task parameters, movement complexity, and motoric effort to attain rewards may partly explain ventral and dorsal striatal response differences across species. We, therefore, used a target capture task during functional neuroimaging that was inspired by a study of single cell modulation in the internal globus pallidus during reward-cued, rotational arm movements in nonhuman primates. In this functional magnetic resonance imaging study, participants used a fiberoptic joystick to make a rotational response to an instruction stimulus that indicated both a target location for a capture movement and whether or not the trial would end with feedback indicating either a small financial gain or a neutral outcome. Portions of the dorsal striatum and pallidum demonstrated greater neural activation to visual cues predicting potential gains relative to cues with no associated outcome. Furthermore, both striatal and pallidal regions displayed a greater response to financial gains relative to neutral outcomes. This reward-dependent modulation of dorsal striatal and pallidal activation in a target-capture task is consistent with findings from reward studies in animals, supporting the use of motorically complex tasks as translational paradigms to investigate the neural substrates of reward expectancy and outcome in humans.
Collapse
|
46
|
Simon AB, Buxton RB. Understanding the dynamic relationship between cerebral blood flow and the BOLD signal: Implications for quantitative functional MRI. Neuroimage 2015; 116:158-67. [PMID: 25862267 DOI: 10.1016/j.neuroimage.2015.03.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 10/23/2022] Open
Abstract
Calibrated BOLD imaging, in which traditional measurements of the BOLD signal are combined with measurements of cerebral blood flow (CBF) within a BOLD biophysical model to estimate changes in oxygen metabolism (CMRO2), has been a valuable tool for untangling the physiological processes associated with neural stimulus-induced BOLD activation. However, to date this technique has largely been applied to the study of essentially steady-state physiological changes (baseline to activation) associated with block-design stimuli, and it is unclear whether this approach may be directly extended to the study of more dynamic, naturalistic experimental designs. In this study we tested an assumption underlying this technique whose validity is critical to the application of calibrated BOLD to the study of more dynamic stimuli, that information about fluctuations in venous cerebral blood volume (CBVv) can be captured indirectly by measuring fluctuations in CBF, making the independent measurement of CBVv unnecessary. To accomplish this, simultaneous arterial spin labeling and BOLD imaging were used to measure the CBF and BOLD responses to flickering checkerboards with contrasts that oscillated continuously with frequencies of ~0.02-0.16Hz. The measurements were then fit to a dynamic physiological model of the BOLD response in order to explore the range of consistent CMRO2 and CBVv responses. We found that the BOLD and CBF responses were most consistent with relatively tight dynamic coupling between CBF and CMRO2 and a CBVv response that was an order of magnitude slower than either CBF or CMRO2. This finding suggests that the assumption of tight flow-volume coupling may not be strictly valid, complicating the extension of calibrated BOLD to more naturalistic experimental designs.
Collapse
Affiliation(s)
- Aaron B Simon
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Richard B Buxton
- Department of Radiology and Center for Functional Magnetic Resonance Imaging, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
47
|
Hare HV, Blockley NP, Gardener AG, Clare S, Bulte DP. Investigating the field-dependence of the Davis model: Calibrated fMRI at 1.5, 3 and 7T. Neuroimage 2015; 112:189-196. [PMID: 25783207 PMCID: PMC4410945 DOI: 10.1016/j.neuroimage.2015.02.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/16/2015] [Accepted: 02/25/2015] [Indexed: 10/28/2022] Open
Abstract
Gas calibrated fMRI in its most common form uses hypercapnia in conjunction with the Davis model to quantify relative changes in the cerebral rate of oxygen consumption (CMRO2) in response to a functional stimulus. It is most commonly carried out at 3T but, as 7T research scanners are becoming more widespread and the majority of clinical scanners are still 1.5T systems, it is important to investigate whether the model used remains accurate across this range of field strengths. Ten subjects were scanned at 1.5, 3 and 7T whilst performing a bilateral finger-tapping task as part of a calibrated fMRI protocol, and the results were compared to a detailed signal model. Simulations predicted an increase in value and variation in the calibration parameter M with field strength. Two methods of defining experimental regions of interest (ROIs) were investigated, based on (a) BOLD signal and (b) BOLD responses within grey matter only. M values from the latter ROI were in closer agreement with theoretical predictions; however, reassuringly, ROI choice had less impact on CMRO2 than on M estimates. Relative changes in CMRO2 during motor tasks at 3 and 7T were in good agreement but were over-estimated at 1.5T as a result of the lower signal to noise ratio. This result is encouraging for future studies at 7T, but also highlights the impact of imaging and analysis choices (such as ASL sequence and ROI definition) on the calibration parameter M and on the calculation of CMRO2.
Collapse
Affiliation(s)
- Hannah V Hare
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Nicholas P Blockley
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alexander G Gardener
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stuart Clare
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel P Bulte
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Hare HV, Bulte DP. Investigating the dependence of the calibration parameter M on echo time. Magn Reson Med 2015; 75:556-61. [PMID: 25761759 PMCID: PMC4973822 DOI: 10.1002/mrm.25603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/17/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022]
Abstract
PURPOSE The calculation of the calibration parameter M, which represents the maximum theoretically possible blood oxygen level dependent (BOLD) signal increase, is an essential intermediate step in any calibrated fMRI experiment. To better compare M values obtained across different studies, it is common to scale M values from their original BOLD echo time (TE) to a different echo time according to the theory that M is directly proportional to TE. To the best of our knowledge, this relationship has never been directly tested. THEORY AND METHODS A pseudocontinuous arterial spin labeling sequence with five readouts (TE ranging from 20 to 78 ms) was implemented to test the relationship between M and TE, both with and without the application of flow crushing gradients. RESULTS Both M and the BOLD signal were found to be linear functions of TE, but with a nonzero intercept. This intercept was reduced when crusher gradients were added, suggesting that the deviation from theory is a result of nonnegligible intravascular signal. CONCLUSION The linear scaling method introduces some error when comparing M values acquired with different BOLD echo times. However, this error is small compared with other considerations, and would generally not preclude the continued use of this scaling method.
Collapse
Affiliation(s)
- Hannah V Hare
- FMRIB Centre, University of Oxford, Oxford, United Kingdom
| | - Daniel P Bulte
- FMRIB Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Mark CI, Mazerolle EL, Chen JJ. Metabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function. J Magn Reson Imaging 2015; 42:231-46. [DOI: 10.1002/jmri.24786] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/02/2014] [Indexed: 01/08/2023] Open
Affiliation(s)
- Clarisse I. Mark
- Centre for Neuroscience Studies; Queen's University; Kingston ON Canada
| | | | - J. Jean Chen
- Rotman Research Institute, Baycrest, University of Toronto; Toronto ON Canada
| |
Collapse
|
50
|
Speer ME, Soldan A. Cognitive reserve modulates ERPs associated with verbal working memory in healthy younger and older adults. Neurobiol Aging 2014; 36:1424-34. [PMID: 25619663 DOI: 10.1016/j.neurobiolaging.2014.12.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 12/23/2014] [Accepted: 12/23/2014] [Indexed: 11/28/2022]
Abstract
Although many epidemiological studies suggest the beneficial effects of higher cognitive reserve (CR) in reducing age-related cognitive decline and dementia risk, the neural basis of CR is poorly understood. To our knowledge, the present study represents the first electrophysiological investigation of the relationship between CR and neural reserve (i.e., neural efficiency and capacity). Specifically, we examined whether CR modulates event-related potentials associated with performance on a verbal recognition memory task with 3 set sizes (1, 4, or 7 letters) in healthy younger and older adults. Neural data showed that as task difficulty increased, the amplitude of the parietal P3b component during the probe phase decreased and its latency increased. Notably, the degree of these neural changes was negatively correlated with CR in both age groups, such that individuals with higher CR showed smaller changes in P3b amplitude and less slowing in P3b latency (i.e., smaller changes in the speed of neural processing) with increasing task difficulty, suggesting greater neural efficiency. These CR-related differences in neural efficiency may underlie reserve against neuropathology and age-related burden.
Collapse
Affiliation(s)
- Megan E Speer
- Department of Psychology, Rutgers University, Newark, NJ, USA
| | - Anja Soldan
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|