1
|
Huang CW, Tsai HY, Lin YH, Lin WW, Lin CH, Tseng MT. Striatal-cortical dysconnectivity underlies somatosensory deficits in Parkinson's disease: Insights from rhythmic auditory-motor training. Neurobiol Dis 2025; 204:106778. [PMID: 39719198 DOI: 10.1016/j.nbd.2024.106778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024] Open
Abstract
Evidence indicates that neurodegenerative diseases spread through distinct brain networks. For Parkinson's disease (PD), somatosensory abnormalities may accompany motor dysfunction in early disease stages when dopaminergic degeneration is limited to the basal ganglia. It remains unclear whether, based on the network-spread account, these abnormalities emanated from aberrant functional connectivity with the basal ganglia, and whether interventions normalizing this connectivity could reverse these abnormalities. Here, we employed functional MRI to record brain responses to tactile stimuli in patients with idiopathic PD and healthy controls before and after three-week rhythmic auditory stimulation-assisted gait (RASg) training. Consistent with the presence of striatal degeneration, patients showed right posterior putamen (pPut) hypoactivation when detecting tactile stimuli of their left leg. They also exhibited reduced functional connectivity from the right pPut to the right parietal somatosensory region (inferior parietal lobule, IPL), whose hypoactivation reflected patients' impaired tactile detectability. Importantly, this dysconnectivity predicted right IPL hypoactivation, indicating that pPut-IPL dysconnectivity underlay patients' impaired tactile detectability. Intriguingly, RASg training normalized patients' tactile detectability, which was mirrored by normalization of right IPL activation and pPut-IPL connectivity. Training-induced changes in pPut-IPL connectivity predicted changes in IPL activation during tactile detection, reinforcing the role of pPut-IPL connectivity in patients' tactile detectability. These findings suggest that somatosensory abnormalities in PD may arise from the spread of striatal pathology to relevant cortical regions. Rhythmic auditory-motor training acts to recover striatal connectivity, improving PD patients' somatosensory deficits.
Collapse
Affiliation(s)
- Cheng-Wei Huang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10048, Taiwan
| | - Hsin-Yun Tsai
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 11574, Taiwan
| | - Yi-Hsuan Lin
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 11574, Taiwan
| | - Wen-Wei Lin
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Ming-Tsung Tseng
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei 10051, Taiwan.
| |
Collapse
|
2
|
Löser AS, Dalla Bella S, Keller PE, Villringer A, Obrig H, Engel A. Inhibitory control and working memory predict rhythm production abilities in patients with neurocognitive deficits. Neuropsychologia 2024; 204:109009. [PMID: 39374857 DOI: 10.1016/j.neuropsychologia.2024.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/12/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Deficits in rhythm perception and production have been reported in a variety of psychiatric, neurodevelopmental and neurologic disorders. Since correlations between rhythmic abilities and cognitive functions have been demonstrated in neurotypical individuals, we here investigate whether and how rhythmic abilities are associated with cognitive functions in 35 participants with neurocognitive deficits due to acquired brain lesions. We systematically assessed a diverse set of rhythm perception and production abilities including time and beat perception and finger-tapping tasks. Neuropsychological tests were applied to assess separable cognitive functions. Using multiple regression analyses we show that lower variability in aligning movements to a pacing sequence was predicted by better inhibitory control and better working memory performance. Working memory performance also predicted lower variability of rhythmic movements in the absence of an external pacing sequence and better anticipatory timing to sequences with gradual tempo changes. Importantly, these predictors remained significant for all regression models when controlling for other cognitive variables (i.e., cognitive flexibility, information processing speed, and verbal learning ability) and potential confounders (i.e., age, symptom strength of depression, manual dexterity, duration of illness, severity of cognitive impairment, and musical experience). Thus, all rhythm production abilities were significantly predicted by measures of executive functions. In contrast, rhythm perception abilities (time perception/beat perception) were not predicted by executive functions in this study. Our results, enhancing the understanding of cognitive underpinnings of rhythmic abilities in individuals with neurocognitive deficits, may be a first mandatory step to further potential therapeutic implications of rhythm-based interventions in neuropsychological rehabilitation.
Collapse
Affiliation(s)
- Alina S Löser
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany.
| | - Simone Dalla Bella
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada; Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada; University of Economics and Human Sciences in Warsaw, Warsaw, Poland
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour & Development, Western Sydney University, Penrith, NSW, Australia; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Arno Villringer
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Hellmuth Obrig
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Annerose Engel
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany.
| |
Collapse
|
3
|
Pranjić M, Braun Janzen T, Vukšić N, Thaut M. From Sound to Movement: Mapping the Neural Mechanisms of Auditory-Motor Entrainment and Synchronization. Brain Sci 2024; 14:1063. [PMID: 39595826 PMCID: PMC11592450 DOI: 10.3390/brainsci14111063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Humans exhibit a remarkable ability to synchronize their actions with external auditory stimuli through a process called auditory-motor or rhythmic entrainment. Positive effects of rhythmic entrainment have been demonstrated in adults with neurological movement disorders, yet the neural substrates supporting the transformation of auditory input into timed rhythmic motor outputs are not fully understood. We aimed to systematically map and synthesize the research on the neural correlates of auditory-motor entrainment and synchronization. METHODS Following the PRISMA-ScR guidelines for scoping reviews, a systematic search was conducted across four databases (MEDLINE, Embase, PsycInfo, and Scopus) for articles published between 2013 and 2023. RESULTS From an initial return of 1430 records, 22 studies met the inclusion criteria and were synthesized based on the neuroimaging modality. There is converging evidence that auditory-motor synchronization engages bilateral cortical and subcortical networks, including the supplementary motor area, premotor cortex, ventrolateral prefrontal cortex, basal ganglia, and cerebellum. Specifically, the supplementary motor area and the basal ganglia are essential for beat-based timing and internally guided rhythmic movements, while the cerebellum plays an important role in tracking and processing complex rhythmic patterns and synchronizing to the external beat. Self-paced tapping is associated with additional activations in the prefrontal cortex and the basal ganglia, suggesting that tapping in the absence of auditory cues requires more neural resources. Lastly, existing studies indicate that movement rate and the type of music further modulate the EEG power in the alpha and beta frequency bands. CONCLUSIONS These findings are discussed in the context of clinical implications and rhythm-based therapies.
Collapse
Affiliation(s)
- Marija Pranjić
- Music and Health Science Research Collaboratory, University of Toronto, Toronto, ON M5S 1C5, Canada
- Division of Developmental Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thenille Braun Janzen
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Sao Paulo 09606-045, Brazil
| | | | - Michael Thaut
- Music and Health Science Research Collaboratory, University of Toronto, Toronto, ON M5S 1C5, Canada
- Faculty of Medicine, Institute of Medical Science and Rehabilitation Research Institute, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
4
|
Cienfuegos M, Maycock J, Naceri A, Düsterhus T, Kõiva R, Schack T, Ritter H. Exploring motor skill acquisition in bimanual coordination: insights from navigating a novel maze task. Sci Rep 2024; 14:18887. [PMID: 39143119 PMCID: PMC11324764 DOI: 10.1038/s41598-024-69200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
In this study, we introduce a novel maze task designed to investigate naturalistic motor learning in bimanual coordination. We developed and validated an extended set of movement primitives tailored to capture the full spectrum of scenarios encountered in a maze game. Over a 3-day training period, we evaluated participants' performance using these primitives and a custom-developed software, enabling precise quantification of performance. Our methodology integrated the primitives with in-depth kinematic analyses and thorough thumb pressure assessments, charting the trajectory of participants' progression from novice to proficient stages. Results demonstrated consistent improvement in maze performance and significant adaptive changes in joint behaviors and strategic recalibrations in thumb pressure distribution. These findings highlight the central nervous system's adaptability in orchestrating sophisticated motor strategies and the crucial role of tactile feedback in precision tasks. The maze platform and setup emerge as a valuable foundation for future experiments, providing a tool for the exploration of motor learning and coordination dynamics. This research underscores the complexity of bimanual motor learning in naturalistic environments, enhancing our understanding of skill acquisition and task efficiency while emphasizing the necessity for further exploration and deeper investigation into these adaptive mechanisms.
Collapse
Affiliation(s)
- Miguel Cienfuegos
- Neurocognition and Action - Biomechanics Group, Bielefeld University, 33615, Bielefeld, Germany.
| | | | - Abdeldjallil Naceri
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992, Munich, Germany
| | - Tobias Düsterhus
- Neuroinformatics Group, Bielefeld University, 33619, Bielefeld, Germany
| | - Risto Kõiva
- Neuroinformatics Group, Bielefeld University, 33619, Bielefeld, Germany
| | - Thomas Schack
- Neurocognition and Action - Biomechanics Group, Bielefeld University, 33615, Bielefeld, Germany
| | - Helge Ritter
- Neuroinformatics Group, Bielefeld University, 33619, Bielefeld, Germany
| |
Collapse
|
5
|
McGuckian TB, Laracas J, Roseboom N, Eichler S, Kardas S, Piantella S, Cole MH, Eldridge R, Duckworth J, Steenbergen B, Green D, Wilson PH. Portable Touchscreen Assessment of Motor Skill: A Registered Report of the Reliability and Validity of EDNA MoTap. Assessment 2024:10731911241266306. [PMID: 39075871 DOI: 10.1177/10731911241266306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Portable and flexible administration of manual dexterity assessments is necessary to monitor recovery from brain injury and the effects of interventions across clinic and home settings, especially when in-person testing is not possible or convenient. This paper aims to assess the concurrent validity and test-retest reliability of a new suite of touchscreen-based manual dexterity tests (called EDNA™MoTap) that are designed for portable and efficient administration. A minimum sample of 49 healthy young adults will be conveniently recruited. The EDNA™MoTap tasks will be assessed for concurrent validity against standardized tools (the Box and Block Test [BBT] and the Purdue Pegboard Test) and for test-retest reliability over a 1- to 2-week interval. Correlation coefficients of r > .6 will indicate acceptable validity, and intraclass correlation coefficient (ICC) values > .75 will indicate acceptable reliability for healthy adults. The sample were primarily right-handed (91%) adults aged 19 and 34 years (M = 24.93, SD = 4.21, 50% female). The MoTap tasks did not demonstrate acceptable validity, with tasks showing weak-to-moderate associations with the criterion assessments. Some outcomes demonstrated acceptable test-retest reliability; however, this was not consistent. Touchscreen-based assessments of dexterity remain relevant; however, there is a need for further development of the EDNA™MoTap task administration.
Collapse
Affiliation(s)
| | - Jade Laracas
- Australian Catholic University, Fitzroy, Victoria, Australia
| | - Nadine Roseboom
- Australian Catholic University, Fitzroy, Victoria, Australia
| | - Sophie Eichler
- Australian Catholic University, Fitzroy, Victoria, Australia
| | - Szymon Kardas
- Australian Catholic University, Fitzroy, Victoria, Australia
| | | | - Michael H Cole
- Australian Catholic University, Fitzroy, Victoria, Australia
| | | | | | | | | | - Peter H Wilson
- Australian Catholic University, Fitzroy, Victoria, Australia
| |
Collapse
|
6
|
Koike Y, Ogata T, Nozawa T, Miyake Y. Effect of time delay on performance and timing control in dyadic rhythm coordination using finger tapping. Sci Rep 2024; 14:17382. [PMID: 39075177 PMCID: PMC11286935 DOI: 10.1038/s41598-024-68326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
In musical ensembles, people synchronise with each other despite the presence of time delays such as those related to sound transmission. However, the ways in which time delays in synchronisation are overcome remain unclear. This study aimed to investigate the basic characteristics and mechanism of synchronisation with time delays using a dyadic synchronisation-continuation finger-tapping task with time delays ranging from 0 to 240 ms. The results reveal that synchronisation performance improved under time delays of 40-160 ms compared with in the other conditions. This tolerance to the time delay could have been because such a delay allowed both participants in each pair to tap before receiving the stimuli from their partner, as seen in synchronisation with a constant-tempo metronome. In addition, the dependency of the timing control on the partner's previous inter-tap interval decreased at a time delay of 80 ms, relating to the fact that the acceleration and deceleration of the tapping tempo reduced under certain time delays, while the synchronisation performance improved. Uncertainty in the timing of the partner's stimulus could induce greater anticipatory responses, making it possible to tolerate longer time delays in dyadic finger-tapping tasks.
Collapse
Affiliation(s)
- Yuka Koike
- Department of Systems and Control Engineering, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Taiki Ogata
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, 226-8502, Japan.
| | - Takayuki Nozawa
- Department of Intellectual Information Systems Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Yoshihiro Miyake
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| |
Collapse
|
7
|
Demidenko MI, Mumford JA, Poldrack RA. Impact of analytic decisions on test-retest reliability of individual and group estimates in functional magnetic resonance imaging: a multiverse analysis using the monetary incentive delay task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585755. [PMID: 38562804 PMCID: PMC10983911 DOI: 10.1101/2024.03.19.585755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Empirical studies reporting low test-retest reliability of individual blood oxygen-level dependent (BOLD) signal estimates in functional magnetic resonance imaging (fMRI) data have resurrected interest among cognitive neuroscientists in methods that may improve reliability in fMRI. Over the last decade, several individual studies have reported that modeling decisions, such as smoothing, motion correction and contrast selection, may improve estimates of test-retest reliability of BOLD signal estimates. However, it remains an empirical question whether certain analytic decisions consistently improve individual and group level reliability estimates in an fMRI task across multiple large, independent samples. This study used three independent samples (Ns: 60, 81, 119) that collected the same task (Monetary Incentive Delay task) across two runs and two sessions to evaluate the effects of analytic decisions on the individual (intraclass correlation coefficient [ICC(3,1)]) and group (Jaccard/Spearman rho) reliability estimates of BOLD activity of task fMRI data. The analytic decisions in this study vary across four categories: smoothing kernel (five options), motion correction (four options), task parameterizing (three options) and task contrasts (four options), totaling 240 different pipeline permutations. Across all 240 pipelines, the median ICC estimates are consistently low, with a maximum median ICC estimate of .43 - .55 across the three samples. The analytic decisions with the greatest impact on the median ICC and group similarity estimates are the Implicit Baseline contrast, Cue Model parameterization and a larger smoothing kernel. Using an Implicit Baseline in a contrast condition meaningfully increased group similarity and ICC estimates as compared to using the Neutral cue. This effect was largest for the Cue Model parameterization; however, improvements in reliability came at the cost of interpretability. This study illustrates that estimates of reliability in the MID task are consistently low and variable at small samples, and a higher test-retest reliability may not always improve interpretability of the estimated BOLD signal.
Collapse
|
8
|
Bress KS, Cascio CJ. Sensorimotor regulation of facial expression - An untouched frontier. Neurosci Biobehav Rev 2024; 162:105684. [PMID: 38710425 DOI: 10.1016/j.neubiorev.2024.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Facial expression is a critical form of nonverbal social communication which promotes emotional exchange and affiliation among humans. Facial expressions are generated via precise contraction of the facial muscles, guided by sensory feedback. While the neural pathways underlying facial motor control are well characterized in humans and primates, it remains unknown how tactile and proprioceptive information reaches these pathways to guide facial muscle contraction. Thus, despite the importance of facial expressions for social functioning, little is known about how they are generated as a unique sensorimotor behavior. In this review, we highlight current knowledge about sensory feedback from the face and how it is distinct from other body regions. We describe connectivity between the facial sensory and motor brain systems, and call attention to the other brain systems which influence facial expression behavior, including vision, gustation, emotion, and interoception. Finally, we petition for more research on the sensory basis of facial expressions, asserting that incomplete understanding of sensorimotor mechanisms is a barrier to addressing atypical facial expressivity in clinical populations.
Collapse
Affiliation(s)
- Kimberly S Bress
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Carissa J Cascio
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
Luo B, Chang L, Qiu C, Dong W, Zhao L, Lu Y, Sun J, Yan J, Wei X, Yan J, Zhang W. Reorganization of motor network in patients with Parkinson's disease after deep brain stimulation. CNS Neurosci Ther 2024; 30:e14792. [PMID: 38867393 PMCID: PMC11168969 DOI: 10.1111/cns.14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
AIMS Parkinson's disease (PD) patients experience improvement in motor symptoms after deep brain stimulation (DBS) and before initiating stimulation. This is called the microlesion effect. However, the mechanism remains unclear. The study aims to comprehensively explore the changes in functional connectivity (FC) patterns in movement-related brain regions in PD patients during the microlesion phase through seed-based FC analysis. METHODS The study collected the resting functional magnetic resonance imaging data of 49 PD patients before and after DBS surgery (off stimulation). The cortical and subcortical areas related to motor function were selected for seed-based FC analysis. Meanwhile, their relationship with the motor scale was investigated. RESULTS The motor-related brain regions were selected as the seed point, and we observed various FC declines within the motor network brain regions. These declines were primarily in the left middle temporal gyrus, bilateral middle frontal gyrus, right supplementary motor area, left precentral gyrus, left postcentral gyrus, left inferior frontal gyrus, and right superior frontal gyrus after DBS. CONCLUSION The movement-related network was extensively reorganized during the microlesion period. The study provided new information on enhancing motor function from the network level post-DBS.
Collapse
Affiliation(s)
- Bei Luo
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Lei Chang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Chang Qiu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Wenwen Dong
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Liang Zhao
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Yue Lu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Jian Sun
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Jiuqi Yan
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Xiang Wei
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Jun Yan
- Department of Geriatric Neurology, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Wenbin Zhang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
10
|
Holmes M, Aalto D, Cummine J. Opening the dialogue: A preliminary exploration of hair color, hair cleanliness, light, and motion effects on fNIRS signal quality. PLoS One 2024; 19:e0304356. [PMID: 38781258 PMCID: PMC11115287 DOI: 10.1371/journal.pone.0304356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Functional near-infrared spectroscopy (fNIRS) is a promising tool for studying brain activity, offering advantages such as portability and affordability. However, challenges in data collection persist due to factors like participant physiology, environmental light, and gross-motor movements, with limited literature on their impact on fNIRS signal quality. This study addresses four potentially influential factors-hair color, hair cleanliness, environmental light, and gross-motor movements-on fNIRS signal quality. Our aim is to raise awareness and offer insights for future fNIRS research. METHODS Six participants (4 Females, 2 Males) took part in four different experiments investigating the effects of hair color, hair cleanliness, environmental light, and gross-motor movements on fNIRS signal quality. Participants in Experiment 1, categorized by hair color, completed a finger-tapping task in a between-subjects block design. Signal quality was compared between each hair color. Participants in Experiments 2 and 3 completed a finger-tapping task in a within-subjects block design, with signal quality being compared across hair cleanliness (i.e., five consecutive days without washing the hair) and environmental light (i.e., sunlight, artificial light, no light, etc.), respectively. Experiment 4 assessed three gross-motor movements (i.e., walking, turning and nodding the head) in a within-subjects block design. Motor movements were then compared to resting blocks. Signal quality was evaluated using Scalp Coupling Index (SCI) measurements. RESULTS Lighter hair produced better signals than dark hair, while the impact of environmental light remains uncertain. Hair cleanliness showed no significant effects, but gross motor movements notably reduced signal quality. CONCLUSION Our results suggest that hair color, environmental light, and gross-motor movements affect fNIRS signal quality while hair cleanliness does not. Nevertheless, future studies with larger sample sizes are warranted to fully understand these effects. To advance future research, comprehensive documentation of participant demographics and lab conditions, along with signal quality analyses, is essential.
Collapse
Affiliation(s)
- Mitchell Holmes
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Aalto
- Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Rehabilitation Medicine, Department of Communication Sciences and Disorders, University of Alberta, Edmonton, Alberta, Canada
- Institute for Reconstructive Science in Medicine (iRSM), Misericordia Community Hospital, Edmonton, Alberta, Canada
| | - Jacqueline Cummine
- Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Rehabilitation Medicine, Department of Communication Sciences and Disorders, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
de Zwart B, Ruis C. An update on tests used for intraoperative monitoring of cognition during awake craniotomy. Acta Neurochir (Wien) 2024; 166:204. [PMID: 38713405 PMCID: PMC11076349 DOI: 10.1007/s00701-024-06062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Mapping higher-order cognitive functions during awake brain surgery is important for cognitive preservation which is related to postoperative quality of life. A systematic review from 2018 about neuropsychological tests used during awake craniotomy made clear that until 2017 language was most often monitored and that the other cognitive domains were underexposed (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). The field of awake craniotomy and cognitive monitoring is however developing rapidly. The aim of the current review is therefore, to investigate whether there is a change in the field towards incorporation of new tests and more complete mapping of (higher-order) cognitive functions. METHODS We replicated the systematic search of the study from 2018 in PubMed and Embase from February 2017 to November 2023, yielding 5130 potentially relevant articles. We used the artificial machine learning tool ASReview for screening and included 272 papers that gave a detailed description of the neuropsychological tests used during awake craniotomy. RESULTS Comparable to the previous study of 2018, the majority of studies (90.4%) reported tests for assessing language functions (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). Nevertheless, an increasing number of studies now also describe tests for monitoring visuospatial functions, social cognition, and executive functions. CONCLUSIONS Language remains the most extensively tested cognitive domain. However, a broader range of tests are now implemented during awake craniotomy and there are (new developed) tests which received more attention. The rapid development in the field is reflected in the included studies in this review. Nevertheless, for some cognitive domains (e.g., executive functions and memory), there is still a need for developing tests that can be used during awake surgery.
Collapse
Affiliation(s)
- Beleke de Zwart
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands.
| | - Carla Ruis
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
12
|
Papitto G, Friederici AD, Zaccarella E. Distinct neural mechanisms for action access and execution in the human brain: insights from an fMRI study. Cereb Cortex 2024; 34:bhae163. [PMID: 38629799 PMCID: PMC11022341 DOI: 10.1093/cercor/bhae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Goal-directed actions are fundamental to human behavior, whereby inner goals are achieved through mapping action representations to motor outputs. The left premotor cortex (BA6) and the posterior portion of Broca's area (BA44) are two modulatory poles of the action system. However, how these regions support the representation-output mapping within the system is not yet understood. To address this, we conducted a finger-tapping functional magnetic resonance imaging experiment using action categories ranging from specific to general. Our study found distinct neural behaviors in BA44 and BA6 during action category processing and motor execution. During access of action categories, activity in a posterior portion of BA44 (pBA44) decreased linearly as action categories became less specific. Conversely, during motor execution, activity in BA6 increased linearly with less specific categories. These findings highlight the differential roles of pBA44 and BA6 in action processing. We suggest that pBA44 facilitates access to action categories by utilizing motor information from the behavioral context while the premotor cortex integrates motor information to execute the selected action. This finding enhances our understanding of the interplay between prefrontal cortical regions and premotor cortex in mapping action representation to motor execution and, more in general, of the cortical mechanisms underlying human behavior.
Collapse
Affiliation(s)
- Giorgio Papitto
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103 Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Stephanstraße 1a, 04103 Leipzig, Germany
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Emiliano Zaccarella
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Marten LE, Singh A, Muellen AM, Noack SM, Kozyrev V, Schweizer R, Goya-Maldonado R. Motor performance and functional connectivity between the posterior cingulate cortex and supplementary motor cortex in bipolar and unipolar depression. Eur Arch Psychiatry Clin Neurosci 2024; 274:655-671. [PMID: 37638997 PMCID: PMC10995093 DOI: 10.1007/s00406-023-01671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Although implicated in unsuccessful treatment, psychomotor deficits and their neurobiological underpinnings in bipolar (BD) and unipolar (UD) depression remain poorly investigated. Here, we hypothesized that motor performance deficits in depressed patients would relate to basal functional coupling of the hand primary motor cortex (M1) and the posterior cingulate cortex (PCC) with the supplementary motor area (SMA). We performed a longitudinal, naturalistic study in BD, UD and matched healthy controls comprising of two resting-state functional MRI measurements five weeks apart and accompanying assessments of motor performance using a finger tapping task (FTT). A subject-specific seed-based analysis describing functional connectivity between PCC-SMA as well as M1-SMA was conducted. The basal relationships with motor performance were investigated using linear regression models and all measures were compared across groups. Performance in FTT was impaired in BD in comparison to HC in both sessions. Behavioral performance across groups correlated significantly with resting state functional coupling of PCC-SMA, but not of M1-SMA regions. This relationship was partially reflected in a reduced PCC-SMA connectivity in BD vs HC in the second session. Exploratory evaluation of large-scale networks coupling (SMN-DMN) exhibited no correlation to motor performance. Our results shed new light on the association between the degree of disruption in the SMA-PCC anticorrelation and the level of motor impairment in BD.
Collapse
Affiliation(s)
- Lara E Marten
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Anna M Muellen
- Cognitive Neuroscience Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Sören M Noack
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Vladislav Kozyrev
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Straße 91, 4056, Basel, Switzerland
| | - Renate Schweizer
- Functional Imaging Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
14
|
Prabhu NG, Knodel N, Himmelbach M. The superior colliculus motor region does not respond to finger tapping movements in humans. Sci Rep 2024; 14:1769. [PMID: 38243013 PMCID: PMC10798994 DOI: 10.1038/s41598-024-51835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024] Open
Abstract
Electrophysiological studies in macaques and functional neuroimaging in humans revealed a motor region in the superior colliculus (SC) for upper limb reaching movements. Connectivity studies in macaques reported direct connections between this SC motor region and cortical premotor arm, hand, and finger regions. These findings motivated us to investigate if the human SC is also involved in sequential finger tapping movements. We analyzed fMRI task data of 130 subjects executing finger tapping from the Human Connectome Project. While we found strong signals in the SC for visual cues, we found no signals related to simple finger tapping. In subsequent experimental measurements, we searched for responses in the SC corresponding to complex above simple finger tapping sequences. We observed expected signal increases in cortical motor and premotor regions for complex compared to simple finger tapping, but no signal increases in the motor region of the SC. Despite evidence for direct anatomical connections of the SC motor region and cortical premotor hand and finger areas in macaques, our results suggest that the SC is not involved in simple or complex finger tapping in humans.
Collapse
Affiliation(s)
- Nikhil G Prabhu
- Division of Neuropsychology, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
- International Max Planck Research School in Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nicole Knodel
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
- International Max Planck Research School in Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Marc Himmelbach
- Division of Neuropsychology, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany.
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
15
|
Deng J, Sun B, Scheel N, Renli AB, Zhu DC, Zhu D, Ren J, Li T, Zhang R. Causalized convergent cross-mapping and its approximate equivalence with directed information in causality analysis. PNAS NEXUS 2024; 3:pgad422. [PMID: 38169910 PMCID: PMC10758925 DOI: 10.1093/pnasnexus/pgad422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Convergent cross-mapping (CCM) has attracted increased attention recently due to its capability to detect causality in nonseparable systems under deterministic settings, which may not be covered by the traditional Granger causality. From an information-theoretic perspective, causality is often characterized as the directed information (DI) flowing from one side to the other. As information is essentially nondeterministic, a natural question is: does CCM measure DI flow? Here, we first causalize CCM so that it aligns with the presumption in causality analysis-the future values of one process cannot influence the past of the other, and then establish and validate the approximate equivalence of causalized CCM (cCCM) and DI under Gaussian variables through both theoretical derivations and fMRI-based brain network causality analysis. Our simulation result indicates that, in general, cCCM tends to be more robust than DI in causality detection. The underlying argument is that DI relies heavily on probability estimation, which is sensitive to data size as well as digitization procedures; cCCM, on the other hand, gets around this problem through geometric cross-mapping between the manifolds involved. Overall, our analysis demonstrates that cross-mapping provides an alternative way to evaluate DI and is potentially an effective technique for identifying both linear and nonlinear causal coupling in brain neural networks and other settings, either random or deterministic, or both.
Collapse
Affiliation(s)
- Jinxian Deng
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Boxin Sun
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Norman Scheel
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Alina B Renli
- Department of Neuroscience, Michigan State University, East Lansing, MI 48824, USA
| | - David C Zhu
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Dajiang Zhu
- Department of Computer Science and Engineering, University of Texas, Arlington, TX 76010, USA
| | - Jian Ren
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Tongtong Li
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX 75231, USA
- Departments of Neurology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Tanaka M, Kameda M, Okada KI. Temporal Information Processing in the Cerebellum and Basal Ganglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:95-116. [PMID: 38918348 DOI: 10.1007/978-3-031-60183-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Temporal information processing in the range of a few hundred milliseconds to seconds involves the cerebellum and basal ganglia. In this chapter, we present recent studies on nonhuman primates. In the studies presented in the first half of the chapter, monkeys were trained to make eye movements when a certain amount of time had elapsed since the onset of the visual cue (time production task). The animals had to report time lapses ranging from several hundred milliseconds to a few seconds based on the color of the fixation point. In this task, the saccade latency varied with the time length to be measured and showed stochastic variability from one trial to the other. Trial-to-trial variability under the same conditions correlated well with pupil diameter and the preparatory activity in the deep cerebellar nuclei and the motor thalamus. Inactivation of these brain regions delayed saccades when asked to report subsecond intervals. These results suggest that the internal state, which changes with each trial, may cause fluctuations in cerebellar neuronal activity, thereby producing variations in self-timing. When measuring different time intervals, the preparatory activity in the cerebellum always begins approximately 500 ms before movements, regardless of the length of the time interval being measured. However, the preparatory activity in the striatum persists throughout the mandatory delay period, which can be up to 2 s, with different rate of increasing activity. Furthermore, in the striatum, the visual response and low-frequency oscillatory activity immediately before time measurement were altered by the length of the intended time interval. These results indicate that the state of the network, including the striatum, changes with the intended timing, which lead to different time courses of preparatory activity. Thus, the basal ganglia appear to be responsible for measuring time in the range of several hundred milliseconds to seconds, whereas the cerebellum is responsible for regulating self-timing variability in the subsecond range. The second half of this chapter presents studies related to periodic timing. During eye movements synchronized with alternating targets at regular intervals, different neurons in the cerebellar nuclei exhibit activity related to movement timing, predicted stimulus timing, and the temporal error of synchronization. Among these, the activity associated with target appearance is particularly enhanced during synchronized movements and may represent an internal model of the temporal structure of stimulus sequence. We also considered neural mechanism underlying the perception of periodic timing in the absence of movement. During perception of rhythm, we predict the timing of the next stimulus and focus our attention on that moment. In the missing oddball paradigm, the subjects had to detect the omission of a regularly repeated stimulus. When employed in humans, the results show that the fastest temporal limit for predicting each stimulus timing is about 0.25 s (4 Hz). In monkeys performing this task, neurons in the cerebellar nuclei, striatum, and motor thalamus exhibit periodic activity, with different time courses depending on the brain region. Since electrical stimulation or inactivation of recording sites changes the reaction time to stimulus omission, these neuronal activities must be involved in periodic temporal processing. Future research is needed to elucidate the mechanism of rhythm perception, which appears to be processed by both cortico-cerebellar and cortico-basal ganglia pathways.
Collapse
Affiliation(s)
- Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan.
| | - Masashi Kameda
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| | - Ken-Ichi Okada
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|
17
|
Verschure PFMJ, Páscoa Dos Santos F, Sharma V. Redefining stroke rehabilitation: Mobilizing the embodied goal-oriented brain. Curr Opin Neurobiol 2023; 83:102807. [PMID: 37980804 DOI: 10.1016/j.conb.2023.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/21/2023]
Abstract
Advancements in stroke rehabilitation remain limited and call for a reorientation. Based on recent results, this study proposes a network-centric perspective on stroke, positing that it not only causes localized deficits but also affects the brain's intricate network of networks, transiting it into a pathological state. Translating these system-level insights into interventions requires brain theory, and the Distributed Adaptive Control (DAC) theory offers such a framework. When applied in the rehabilitation gaming system, these principles demonstrate superior results over conventional methods. This impact stems from activating extensive brain networks, particularly the executive control network, focused motor learning, and maintaining excitatory-inhibitory balance, which is essential for neural repair and functional reorganization. The analysis stresses uniting preclinical and clinical research and placing the architecture of the embodied volitional brain at the centre of rehabilitation approaches.
Collapse
Affiliation(s)
- Paul F M J Verschure
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands.
| | - Francisco Páscoa Dos Santos
- Eodyne Systems SL, Barcelona, Spain; Department of Information and Communication Technologies, Universitat Pompeu Fabra (UPF), Barcelona, Spain. https://twitter.com/@francpsantos
| | - Vivek Sharma
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Jordan N, Emanuelle R. Hands off, brain off? A meta-analysis of neuroimaging data during active and passive driving. Brain Behav 2023; 13:e3272. [PMID: 37828722 PMCID: PMC10726911 DOI: 10.1002/brb3.3272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Car driving is more and more automated, to such an extent that driving without active steering control is becoming a reality. Although active driving requires the use of visual information to guide actions (i.e., steering the vehicle), passive driving only requires looking at the driving scene without any need to act (i.e., the human is passively driven). MATERIALS & METHODS After a careful search of the scientific literature, 11 different studies, providing 17 contrasts, were used to run a comprehensive meta-analysis contrasting active driving with passive driving. RESULTS Two brain regions were recruited more consistently for active driving compared to passive driving, the left precentral gyrus (BA3 and BA4) and the left postcentral gyrus (BA4 and BA3/40), whereas a set of brain regions was recruited more consistently in passive driving compared to active driving: the left middle frontal gyrus (BA6), the right anterior lobe and the left posterior lobe of the cerebellum, the right sub-lobar thalamus, the right anterior prefrontal cortex (BA10), the right inferior occipital gyrus (BA17/18/19), the right inferior temporal gyrus (BA37), and the left cuneus (BA17). DISCUSSION From a theoretical perspective, these findings support the idea that the output requirement of the visual scanning process engaged for the same activity can trigger different cerebral pathways, associated with different cognitive processes. A dorsal stream dominance was found during active driving, whereas a ventral stream dominance was obtained during passive driving. From a practical perspective, and contrary to the dominant position in the Human Factors community, our findings support the idea that a transition from passive to active driving would remain challenging as passive and active driving engage distinct neural networks.
Collapse
Affiliation(s)
- Navarro Jordan
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082)Université de LyonBron Cedex, LyonFrance
- Institut Universitaire de FranceParisFrance
| | - Reynaud Emanuelle
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082)Université de LyonBron Cedex, LyonFrance
| |
Collapse
|
19
|
Simpson MW, Mak M. Modulating Cortical Hemodynamic Activity in Parkinson's Disease Using Focal Transcranial Direct Current Stimulation: A Pilot Functional Near-infrared Spectroscopy Study. Brain Topogr 2023; 36:926-935. [PMID: 37676389 DOI: 10.1007/s10548-023-01002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
Reduced thalamocortical facilitation of the motor cortex in PD leads to characteristic motor deficits such as bradykinesia. Recent research has highlighted improved motor function following tDCS, but a lack of neurophysiological evidence limits the progress of tDCS as an adjunctive therapy. Here, we tested the hypothesis that tDCS may modulate M1 hemodynamic activity in PD and healthy using functional near-infrared spectroscopy (fNIRS). In this randomized crossover experiment, fourteen PD and twelve healthy control participants attended three laboratory sessions and performed a regulated (3 Hz) right index finger tapping task before and after receiving tDCS. On each visit, participants received either anodal, cathodal, or sham tDCS applied over M1. Hemodynamic activity of M1 was quantified using fNIRS. Significant task related activity was observed in M1 and the inferior parietal lobe in PD and healthy (p < 0.05). PD additionally recruited the dorsal premotor cortex. During tDCS, while at rest, anodal and cathodal tDCS significantly increased the oxygenated hemoglobin concentration of M1 compared to sham (t62 = 4.09 and t62 = 4.25, respectively). Task related hemodynamic activity was unchanged following any tDCS intervention (p > 0.05). Task related hemodynamic activity of M1 is not modulated by tDCS in PD or healthy. During tDCS, both anodal and cathodal stimulation cause a significant increase of M1 oxygenation, the clinical significance of which remains to be clarified.
Collapse
Affiliation(s)
- Michael W Simpson
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Margaret Mak
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
20
|
Madsen SS, Hvidsten S, Andersen TL. Functional FDG-PET: Measurement of Task Related Neural Activity in Humans-A Compartment Model Approach and Comparison to fMRI. Diagnostics (Basel) 2023; 13:3121. [PMID: 37835864 PMCID: PMC10572846 DOI: 10.3390/diagnostics13193121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Neuroimaging holds an essential position in global healthcare, as brain-related disorders are a substantial and growing burden. Non-degenerative disorders such as stress, depression and anxiety share common function related traits of diffuse and fluctuating changes, such as change in brain-based functions of mood, behavior and cognitive abilities, where underlying physiological mechanism remain unresolved. In this study we developed a novel application for studying intra-subject task-activated brain function by the quantitative physiological measurement of the change in glucose metabolism in a single scan setup. Data were acquired on a PET/MR-scanner. We implemented a functional [18F]-FDG PET-scan with double boli-tracer administration and finger-tapping activation, as proof-of-concept, in five healthy participants. The [18F]-FDG data were analyzed using a two-tissue compartment double boli kinetic model with an image-derived input function. For stand-alone visual reference, blood oxygenation level dependent (BOLD) functional MRI (fMRI) was acquired in the same session and analyzed separately. We were able to measure the cerebral glucose metabolic rate during baseline as well as activation. Results showed increased glucose metabolic rate during activation by 36.3-87.9% mean 62.0%, locally in the peak seed region of M1 in the brain, on an intra-subject level, as well as very good spatial accuracy on group level, and localization compared to the BOLD fMRI result at subject and group level. Our novel method successfully determined the relative increase in the cerebral metabolic rate of glucose on a voxel level with good visual association to fMRI at the subject-level, holding promise for future individual clinical application. This approach will be easily adapted in future clinical perspectives and pharmacological interventions studies.
Collapse
Affiliation(s)
- Saga Steinmann Madsen
- Center for Neuropsychiatric Depression (CNDR), Mental Health Center Glostrup, Capital Region of Denmark, 2600 Glostrup, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
| | - Svend Hvidsten
- Department of Nuclear Medicine, Odense University Hospital (OUH), 5000 Odense, Denmark;
| | - Thomas Lund Andersen
- Department of Clinical Physiology & Nuclear Medicine, Rigshospitalet, 2300 København Ø, Denmark;
| |
Collapse
|
21
|
Pollok B, Depperschmidt C, Koester M, Schmidt-Wilcke T, Krause V. Cathodal high-definition transcranial direct current stimulation (HD-tDCS) of the left ventral prefrontal cortex (vPFC) interferes with conscious error correction. Behav Brain Res 2023; 454:114661. [PMID: 37696453 DOI: 10.1016/j.bbr.2023.114661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Precise motor timing requires the ability to flexibly adapt one's own movements with respect to changes in the environment. Previous studies suggest that the correction of perceived as compared to non-perceived timing errors involves at least partially distinct brain networks. The dorsolateral prefrontal cortex (dPFC) has been linked to the correction of perceived timing errors and evidence for a contribution of the ventrolateral PFC (vPFC) specifically to the correction of non-perceived errors exists. The present study aimed at clarifying the functional contribution of the left vPFC for the correction of timing errors by adopting high-definition transcranial direct current stimulation (HD-tDCS). Twenty-one young healthy volunteers synchronized their right index finger taps with respect to an isochronous auditory pacing signal. Perceivable and non-perceivable step-changes of the metronome were interspersed, and error correction was analyzed by means of the phase-correction response (PCR). In subsequent sessions anodal and cathodal HD-tDCS was applied to the left vPFC to establish a brain-behavior relationship. Sham stimulation served as control condition. Synchronization accuracy as well as error correction were determined immediately prior to and after HD-tDCS. The analysis suggests a detrimental effect of cathodal HD-tDCS distinctively on error correction in trials with perceived timing errors. The data support the significance of the left vPFC for error correction in the temporal domain but contradicts the view of a role in the correction of non-perceived errors.
Collapse
Affiliation(s)
- Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany.
| | - Carina Depperschmidt
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Maximilian Koester
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Tobias Schmidt-Wilcke
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; Center of Neurology, District Hospital Mainkofen, 94469 Deggendorf, Germany
| | - Vanessa Krause
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; Department of Neuropsychology, Mauritius Hospital and Neurorehabilitation Center Meerbusch, 40670 Meerbusch, Germany
| |
Collapse
|
22
|
Andronoglou C, Konstantakopoulos G, Simoudi C, Kasselimis D, Evdokimidis I, Tsoukas E, Tsolakopoulos D, Angelopoulou G, Potagas C. Is There a Role of Inferior Frontal Cortex in Motor Timing? A Study of Paced Finger Tapping in Patients with Non-Fluent Aphasia. NEUROSCI 2023; 4:235-246. [PMID: 39483196 PMCID: PMC11523711 DOI: 10.3390/neurosci4030020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/16/2023] [Accepted: 08/22/2023] [Indexed: 11/03/2024] Open
Abstract
The aim of the present study was to investigate the deficits in timing reproduction in individuals with non-fluent aphasia after a left hemisphere lesion including the inferior frontal gyrus, in which Broca's region is traditionally localised. Eighteen stroke patients with non-fluent aphasia and twenty-two healthy controls were recruited. We used a finger-tapping Test, which consisted of the synchronisation and the continuation phase with three fixed intervals (450 ms, 650 ms and 850 ms). Participants firstly had to tap simultaneously with the device's auditory stimuli (clips) (synchronisation phase) and then continue their tapping in the same pace when the stimuli were absent (continuation phase). Patients with aphasia demonstrated less accuracy and greater variability during reproduction in both phases, compared to healthy participants. More specifically, in the continuation phase, individuals with aphasia reproduced longer intervals than the targets, whereas healthy participants displayed accelerated responses. Moreover, patients' timing variability was greater in the absence of the auditory stimuli. This could possibly be attributed to deficient mental representation of intervals and not experiencing motor difficulties (due to left hemisphere stroke), as the two groups did not differ in tapping reproduction with either hand. Given that previous findings suggest a potential link between the IFG, timing and working memory, we argue that patients' extra-linguistic cognitive impairments should be accounted for, as possible contributing factors to timing disturbances.
Collapse
Affiliation(s)
- Chrysanthi Andronoglou
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| | - George Konstantakopoulos
- First Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, Greece
- Research Department of Clinical, Education and Health Psychology, University College London, London WC1E 6JB, UK
| | - Christina Simoudi
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
- Multisensory and Temporal Processing Laboratory (MultiTimeLab), Department of Psychology, Panteion University of Social and Political Sciences, 136 Syngrou Ave., 176 71 Athens, Greece
| | - Dimitrios Kasselimis
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
- Department of Psychology, Panteion University of Social and Political Sciences, 176 71 Athens, Greece
| | - Ioannis Evdokimidis
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| | - Evangelos Tsoukas
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| | - Dimitrios Tsolakopoulos
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| | - Georgia Angelopoulou
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| | - Constantin Potagas
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| |
Collapse
|
23
|
Nishida T, Suzumura N, Nakanishi Y, Maki N, Komeda H, Kawasaki M, Funabiki Y. Measurements of the lateral cerebellar hemispheres using near-infrared spectroscopy through comparison between autism spectrum disorder and typical development. Neurosci Lett 2023; 812:137381. [PMID: 37419305 DOI: 10.1016/j.neulet.2023.137381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
The cerebellum plays a vital role in cognition, communication with the cerebral cortex, and fine motor coordination. Near-infrared spectroscopy (NIRS) is a portable, less restrictive, and noninvasive functional brain imaging method that can capture brain activity during movements by measuring the relative oxyhemoglobin (oxy-Hb) concentrations in the blood. However, the feasibility of using NIRS to measure cerebellar activity requires discussion. We compared NIRS responses between areas assumed to be the cerebellum and the occipital lobe during a fine motor task (tying a bow knot) and a visual task. Our results showed that the oxy-Hb concentration increased more in the occipital lobe than in the cerebellum during the visual task (p =.034). In contrast, during the fine motor task, the oxy-Hb concentration decreased in the occipital lobe but increased significantly in the cerebellum, indicating a notable difference (p =.015). These findings suggest that we successfully captured cerebellar activity associated with processing, particularly fine motor coordination. Moreover, the observed responses did not differ between individuals with autism spectrum disorder and those with typical development. Our study demonstrates the meaningful utility of NIRS as a method for measuring cerebellar activity during movements.
Collapse
Affiliation(s)
- Toshiki Nishida
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Nao Suzumura
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Yuto Nakanishi
- Department of Psychiatry, Kyoto University Hospital, 54, Shogoin-kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Nao Maki
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Hidetsugu Komeda
- Department of Education, College of Education, Psychology and Human Studies, Aoyama Gakuin University, 4 4 25, Shibuya, Shibuya-ku, Tokyo, Japan
| | - Masahiro Kawasaki
- Department of Intelligent Interaction Technology, Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1, Tennodai, Tsukuba-shi, Ibaraki, Japan
| | - Yasuko Funabiki
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
24
|
Iida S, Kanouchi T, Hattori T, Kanai K, Nakazato T, Hattori N, Yokota T. Verification of propagation hypothesis in patients with sporadic hand onset amyotrophic lateral sclerosis. Acta Neurol Belg 2023:10.1007/s13760-023-02297-9. [PMID: 37273142 DOI: 10.1007/s13760-023-02297-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
OBJECTIVE If lesions in sporadic amyotrophic lateral sclerosis (ALS) originate from a single focal onset site and spread contiguously by prion-like cell-to-cell propagation at a constant speed, the lesion spread time should be proportional to the anatomical distance. We verify this model in the patients. METHODS In 29 sporadic ALS patients with hand onset followed by spread to shoulder and leg, we retrospectively evaluated the inter/intra-regional spread time ratio: time interval of symptoms from hand-to-leg divided by that from hand-to-shoulder. We also obtained the corresponding inter-/intra-regional distance ratios of spinal cord from magnetic resonance imaging of 12 patients, and those of primary motor cortex from coordinates using neuroimaging software. RESULTS Inter-/intra-regional spread time ratios ranged from 0.29 to 6.00 (median 1.20). Distance ratios ranged from 1.85 to 2.86 in primary motor cortex and from 5.79 to 8.67 in spinal cord. Taken together with clinical manifestations, of 27 patients with the requisite information available, lesion spreading was consistent with the model in primary motor cortex in 4 (14.8%) patients, and in spinal cord in only 1 (3.7%) patient. However, in more patients (12 of 29 patients: 41.4%), the inter-regional spread times in a long anatomical distance of hand-to-leg were shorter than or equal to the intra-regional spread times in a short anatomical distance of hand-to-shoulder. CONCLUSION Contiguous cell-to-cell propagation at a constant speed might not play a major role at least in distant lesion spreading of ALS. Several mechanisms can be responsible for progression in ALS.
Collapse
Affiliation(s)
- Shintaro Iida
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, Japan.
| | - Tadashi Kanouchi
- Department of Laboratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takaaki Hattori
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, Japan
| | - Kazuaki Kanai
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Tomoko Nakazato
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, Japan
| |
Collapse
|
25
|
Lu Y, Kim J, Kim T. A neurophysiological approach to the distinction between motor and cognitive skills: a functional magnetic resonance imaging study. Front Neurosci 2023; 17:1178800. [PMID: 37274191 PMCID: PMC10235625 DOI: 10.3389/fnins.2023.1178800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
This study investigated the neurophysiological differences underpinning motor and cognitive skills by measuring the brain activity via functional magnetic resonance imaging. Twenty-five healthy adults (11 women, 25.8 ± 3.5 years of age) participated in the study. We developed three types of tasks, namely, simple motor task (SMT), complex motor task (CMT), and cognitive task (CT), using two-dimensional images of Gomoku, a traditional game known as five in a row. When shown the stimulus, participants were instructed to identify the best spot to win the game and to perform motor imagery of placing the stone for the SMT and CMT but not for the CT. Accordingly, we found significant activation from the CMT minus SMT contrast in the dorsolateral prefrontal cortex, posterior parietal cortex, precentral gyrus, and superior frontal cortex, which reflected increased visuospatial attention, working memory, and motor planning. From the CT minus SMT contrast, we observed significant activation in the left caudate nucleus, right medial prefrontal cortex, and right primary somatosensory cortex, responsible for visuospatial working memory, error detection, and cognitive imagery, respectively. The present findings indicate that adopting a conventional classification of cognitive and motor tasks focused on the extent of decision making and motor control involved in task performance might not be ideal.
Collapse
Affiliation(s)
- Yunhang Lu
- Department of Physical Education, Kyungpook National University, Daegu, Republic of Korea
- Institute of Sports Science, Kyungpook National University, Daegu, Republic of Korea
| | - Jingu Kim
- Department of Physical Education, Kyungpook National University, Daegu, Republic of Korea
| | - Teri Kim
- Institute of Sports Science, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
26
|
Turesky TK, Luetje MM, Eden GF. An fMRI study of finger movements in children with and without dyslexia. Front Neurosci 2023; 17:1135437. [PMID: 37274202 PMCID: PMC10233035 DOI: 10.3389/fnins.2023.1135437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Developmental dyslexia is a language-based reading disability, yet some have reported motor impairments, usually attributed to cerebellar dysfunction. Methods Using fMRI, we compared children with and without dyslexia during irregularly paced, left or right-hand finger tapping. Next, we examined seed-to-voxel intrinsic functional connectivity (iFC) using six seed regions of the motor system (left and right anterior lobe of the cerebellum, SM1 and SMA). Results A whole-brain task-evoked analysis revealed relatively less activation in the group with dyslexia in right anterior cerebellum during right hand tapping. For iFC, we found the group with dyslexia to have greater iFC between the right SM1 seed and a medial aspect of right postcentral gyrus for left hand tapping; and greater iFC between the left SM1 seed and left thalamus, as well as weaker local iFC around the left SM1 seed region for right hand tapping. Lastly, extracted activity and connectivity values that had been identified in these between-group comparisons were not correlated with measures of reading. Discussion We conclude that there are some aberrations in motor system function in children with dyslexia, but these are not tied to reading ability.
Collapse
Affiliation(s)
| | | | - Guinevere F. Eden
- Center for the Study of Learning, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
27
|
Messing A, Apthorp D. Autistic traits are associated with individual differences in finger tapping: an online study. PeerJ 2023; 11:e15406. [PMID: 37214091 PMCID: PMC10198151 DOI: 10.7717/peerj.15406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
In a novel online study, we explored whether finger tapping differences are evident in people with autistic traits in the general population. We hypothesised that those with higher autistic traits would show more impairment in finger tapping, and that age would moderate tapping output. The study included a non-diagnosed population of 159 participants aged 18-78 who completed an online measure of autistic traits (the AQ-10) and a measure of finger tapping (the FTT). Results showed those with higher AQ-10 scores recorded lower tapping scores in both hands. Moderation analysis showed younger participants with more autistic traits recorded lower tapping scores for the dominant hand. This suggests motor differences seen in autism studies are evident in the general population.
Collapse
Affiliation(s)
- Alycia Messing
- School of Psychology, University of New England, Armidale, New South Wales, Australia
| | - Deborah Apthorp
- School of Psychology, University of New England, Armidale, New South Wales, Australia
- School of Computing, Australian National University, Canberra, New South Wales, Australia
| |
Collapse
|
28
|
Rahimpour Jounghani A, Lanka P, Pollonini L, Proksch S, Balasubramaniam R, Bortfeld H. Multiple levels of contextual influence on action-based timing behavior and cortical activation. Sci Rep 2023; 13:7154. [PMID: 37130838 PMCID: PMC10154340 DOI: 10.1038/s41598-023-33780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Procedures used to elicit both behavioral and neurophysiological data to address a particular cognitive question can impact the nature of the data collected. We used functional near-infrared spectroscopy (fNIRS) to assess performance of a modified finger tapping task in which participants performed synchronized or syncopated tapping relative to a metronomic tone. Both versions of the tapping task included a pacing phase (tapping with the tone) followed by a continuation phase (tapping without the tone). Both behavioral and brain-based findings revealed two distinct timing mechanisms underlying the two forms of tapping. Here we investigate the impact of an additional-and extremely subtle-manipulation of the study's experimental design. We measured responses in 23 healthy adults as they performed the two versions of the finger-tapping tasks either blocked by tapping type or alternating from one to the other type during the course of the experiment. As in our previous study, behavioral tapping indices and cortical hemodynamics were monitored, allowing us to compare results across the two study designs. Consistent with previous findings, results reflected distinct, context-dependent parameters of the tapping. Moreover, our results demonstrated a significant impact of study design on rhythmic entrainment in the presence/absence of auditory stimuli. Tapping accuracy and hemodynamic responsivity collectively indicate that the block design context is preferable for studying action-based timing behavior.
Collapse
Affiliation(s)
- Ali Rahimpour Jounghani
- Department of Psychiatry and Behavioral Sciences, C-Brain Lab, Stanford University School of Medicine, Stanford, CA, USA
- Psychological Sciences & Cognitive and Information Sciences, University of California, Merced, CA, USA
| | - Pradyumna Lanka
- Psychological Sciences & Cognitive and Information Sciences, University of California, Merced, CA, USA
| | - Luca Pollonini
- Department of Engineering Technology, Electrical and Computer Engineering, and Biomedical Engineering, University of Houston, Houston, TX, USA
- Basque Center On Cognition, Brain and Language, San Sebastian, Spain
| | - Shannon Proksch
- Department of Psychology, Augustana University, Sioux Falls, SD, USA
- Cognitive & Information Sciences, University of California, 5200 N Lake Rd, School of Social Sciences, Humanities and Arts, Room SSM 247B, Merced, CA, 95343, USA
| | - Ramesh Balasubramaniam
- Cognitive & Information Sciences, University of California, 5200 N Lake Rd, School of Social Sciences, Humanities and Arts, Room SSM 247B, Merced, CA, 95343, USA
| | - Heather Bortfeld
- Psychological Sciences & Cognitive and Information Sciences, University of California, Merced, CA, USA.
- Cognitive & Information Sciences, University of California, 5200 N Lake Rd, School of Social Sciences, Humanities and Arts, Room SSM 247B, Merced, CA, 95343, USA.
| |
Collapse
|
29
|
Dang Q, Ma F, Yuan Q, Fu Y, Chen K, Zhang Z, Lu C, Guo T. Processing negative emotion in two languages of bilinguals: Accommodation and assimilation of the neural pathways based on a meta-analysis. Cereb Cortex 2023:7133665. [PMID: 37083264 DOI: 10.1093/cercor/bhad121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/22/2023] Open
Abstract
Numerous functional magnetic resonance imaging (fMRI) studies have examined the neural mechanisms of negative emotional words, but scarce evidence is available for the interactions among related brain regions from the functional brain connectivity perspective. Moreover, few studies have addressed the neural networks for negative word processing in bilinguals. To fill this gap, the current study examined the brain networks for processing negative words in the first language (L1) and the second language (L2) with Chinese-English bilinguals. To identify objective indicators associated with negative word processing, we first conducted a coordinate-based meta-analysis on contrasts between negative and neutral words (including 32 contrasts from 1589 participants) using the activation likelihood estimation method. Results showed that the left medial prefrontal cortex (mPFC), the left inferior frontal gyrus (IFG), the left posterior cingulate cortex (PCC), the left amygdala, the left inferior temporal gyrus (ITG), and the left thalamus were involved in processing negative words. Next, these six clusters were used as regions of interest in effective connectivity analyses using extended unified structural equation modeling to pinpoint the brain networks for bilingual negative word processing. Brain network results revealed two pathways for negative word processing in L1: a dorsal pathway consisting of the left IFG, the left mPFC, and the left PCC, and a ventral pathway involving the left amygdala, the left ITG, and the left thalamus. We further investigated the similarity and difference between brain networks for negative word processing in L1 and L2. The findings revealed similarities in the dorsal pathway, as well as differences primarily in the ventral pathway, indicating both neural assimilation and accommodation across processing negative emotion in two languages of bilinguals.
Collapse
Affiliation(s)
- Qinpu Dang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Fengyang Ma
- School of Education, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Qiming Yuan
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yongben Fu
- The Psychological Education and Counseling Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Keyue Chen
- Division of Psychology and Language Sciences, University College London, London WC1E 6BT, UK
| | - Zhaoqi Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| | - Taomei Guo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
30
|
Kröll JP, Friedrich P, Li X, Patil KR, Mochalski L, Waite L, Qian X, Chee MW, Zhou JH, Eickhoff S, Weis S. Naturalistic viewing increases individual identifiability based on connectivity within functional brain networks. Neuroimage 2023; 273:120083. [PMID: 37015270 DOI: 10.1016/j.neuroimage.2023.120083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/06/2023] Open
Abstract
Naturalistic viewing (NV) is currently considered a promising paradigm for studying individual differences in functional brain organization. While whole brain functional connectivity (FC) under NV has been relatively well characterized, so far little work has been done on a network level. Here, we extend current knowledge by characterizing the influence of NV on FC in fourteen meta-analytically derived brain networks considering three different movie stimuli in comparison to resting-state (RS). We show that NV increases identifiability of individuals over RS based on functional connectivity in certain, but not all networks. Furthermore, movie stimuli including a narrative appear more distinct from RS. In addition, we assess individual variability in network FC by comparing within- and between-subject similarity during NV and RS. We show that NV can evoke individually distinct NFC patterns by increasing inter-subject variability while retaining within-subject similarity. Crucially, our results highlight that this effect is not observable across all networks, but rather dependent on the network-stimulus combination. Our results confirm that NV can improve the detection of individual differences over RS and underline the importance of selecting the appropriate combination of movie and cognitive network for the research question at hand.
Collapse
Affiliation(s)
- Jean-Philippe Kröll
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich 52428, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Patrick Friedrich
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich 52428, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Xuan Li
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich 52428, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich 52428, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Lisa Mochalski
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich 52428, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Laura Waite
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich 52428, Germany
| | - Xing Qian
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore
| | - Michael Wl Chee
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
| | - Simon Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich 52428, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Susanne Weis
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich 52428, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
31
|
Harry BB, Margulies DS, Falkiewicz M, Keller PE. Brain networks for temporal adaptation, anticipation, and sensory-motor integration in rhythmic human behavior. Neuropsychologia 2023; 183:108524. [PMID: 36868500 DOI: 10.1016/j.neuropsychologia.2023.108524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Human interaction often requires the precise yet flexible interpersonal coordination of rhythmic behavior, as in group music making. The present fMRI study investigates the functional brain networks that may facilitate such behavior by enabling temporal adaptation (error correction), prediction, and the monitoring and integration of information about 'self' and the external environment. Participants were required to synchronize finger taps with computer-controlled auditory sequences that were presented either at a globally steady tempo with local adaptations to the participants' tap timing (Virtual Partner task) or with gradual tempo accelerations and decelerations but without adaptation (Tempo Change task). Connectome-based predictive modelling was used to examine patterns of brain functional connectivity related to individual differences in behavioral performance and parameter estimates from the adaptation and anticipation model (ADAM) of sensorimotor synchronization for these two tasks under conditions of varying cognitive load. Results revealed distinct but overlapping brain networks associated with ADAM-derived estimates of temporal adaptation, anticipation, and the integration of self-controlled and externally controlled processes across task conditions. The partial overlap between ADAM networks suggests common hub regions that modulate functional connectivity within and between the brain's resting-state networks and additional sensory-motor regions and subcortical structures in a manner reflecting coordination skill. Such network reconfiguration might facilitate sensorimotor synchronization by enabling shifts in focus on internal and external information, and, in social contexts requiring interpersonal coordination, variations in the degree of simultaneous integration and segregation of these information sources in internal models that support self, other, and joint action planning and prediction.
Collapse
Affiliation(s)
- Bronson B Harry
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia.
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France; Max Planck Research Group for Neuroanatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Marcel Falkiewicz
- Max Planck Research Group for Neuroanatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
| |
Collapse
|
32
|
Pollok B, Hagedorn A, Krause V, Kotz SA. Age interferes with sensorimotor timing and error correction in the supra-second range. Front Aging Neurosci 2023; 14:1048610. [PMID: 36704500 PMCID: PMC9871492 DOI: 10.3389/fnagi.2022.1048610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Precise motor timing including the ability to adjust movements after changes in the environment is fundamental to many daily activities. Sensorimotor timing in the sub-and supra-second range might rely on at least partially distinct brain networks, with the latter including the basal ganglia (BG) and the prefrontal cortex (PFC). Since both structures are particularly vulnerable to age-related decline, the present study investigated whether age might distinctively affect sensorimotor timing and error correction in the supra-second range. Methods A total of 50 healthy right-handed volunteers with 22 older (age range: 50-60 years) and 28 younger (age range: 20-36 years) participants synchronized the tap-onsets of their right index finger with an isochronous auditory pacing signal. Stimulus onset asynchronies were either 900 or 1,600 ms. Positive or negative step-changes that were perceivable or non-perceivable were occasionally interspersed to the fixed intervals to induce error correction. A simple reaction time task served as control condition. Results and Discussion In line with our hypothesis, synchronization variability in trials with supra-second intervals was larger in the older group. While reaction times were not affected by age, the mean negative asynchrony was significantly smaller in the elderly in trials with positive step-changes, suggesting more pronounced tolerance of positive deviations at older age. The analysis of error correction by means of the phase correction response (PCR) suggests reduced error correction in the older group. This effect emerged in trials with supra-second intervals and large positive step-changes, only. Overall, these results support the hypothesis that sensorimotor synchronization in the sub-second range is maintained but synchronization accuracy and error correction in the supra-second range is reduced in the elderly as early as in the fifth decade of life suggesting that these measures are suitable for the early detection of age-related changes of the motor system.
Collapse
Affiliation(s)
- Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,*Correspondence: Bettina Pollok,
| | - Amelie Hagedorn
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Vanessa Krause
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Department of Neuropsychology, Mauritius Hospital and Neurorehabilitation Center Meerbusch, Meerbusch, Germany
| | - Sonja A. Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
33
|
Wüthrich F, Lefebvre S, Nadesalingam N, Bernard JA, Mittal VA, Shankman SA, Walther S. Test-retest reliability of a finger-tapping fMRI task in a healthy population. Eur J Neurosci 2023; 57:78-90. [PMID: 36382406 PMCID: PMC9990175 DOI: 10.1111/ejn.15865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Measuring brain activity during functional MRI (fMRI) tasks is one of the main tools to identify brain biomarkers of disease or neural substrates associated with specific symptoms. However, identifying correct biomarkers relies on reliable measures. Recently, poor reliability was reported for task-based fMRI measures. The present study aimed to demonstrate the reliability of a finger-tapping fMRI task across two sessions in healthy participants. Thirty-one right-handed healthy participants aged 18-60 years took part in two MRI sessions 3 weeks apart during which we acquired finger-tapping task-fMRI. We examined the overlap of activations between sessions using Dice similarity coefficients, assessing their location and extent. Then, we compared amplitudes calculating intraclass correlation coefficients (ICCs) in three sets of regions of interest (ROIs) in the motor network: literature-based ROIs (10-mm-radius spheres centred on peaks of an activation likelihood estimation), anatomical ROIs (regions as defined in an atlas) and ROIs based on conjunction analyses (superthreshold voxels in both sessions). Finger tapping consistently activated expected regions, for example, left primary sensorimotor cortices, premotor area and right cerebellum. We found good-to-excellent overlap of activations for most contrasts (Dice coefficients: .54-.82). Across time, ICCs showed large variability in all ROI sets (.04-.91). However, ICCs in most ROIs indicated fair-to-good reliability (mean = .52). The least specific contrast consistently yielded the best reliability. Overall, the finger-tapping task showed good spatial overlap and fair reliability of amplitudes on group level. Although caution is warranted in interpreting correlations of activations with other variables, identification of activated regions in response to a task and their between-group comparisons are still valid and important modes of analysis in neuroimaging to find population tendencies and differences.
Collapse
Affiliation(s)
- Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| | - Vijay A Mittal
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, Illinois, USA.,Department of Psychology, Northwestern University, Evanston, Illinois, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Evanston/Chicago, Illinois, USA.,Institute for Policy Research, Northwestern University, Evanston, Illinois, USA.,Medical Social Sciences, Northwestern University, Chicago, Illinois, USA
| | - Stewart A Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, Illinois, USA.,Department of Psychology, Northwestern University, Evanston, Illinois, USA
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
34
|
Shimizu Y, Tanikawa M, Horiba M, Sahashi K, Kawashima S, Kandori A, Yamanaka T, Nishikawa Y, Matsukawa N, Ueki Y, Mase M. Clinical utility of paced finger tapping assessment in idiopathic normal pressure hydrocephalus. Front Hum Neurosci 2023; 17:1109670. [PMID: 36908708 PMCID: PMC9996087 DOI: 10.3389/fnhum.2023.1109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Background The Finger Tapping (F-T) test is useful for assessing motor function of the upper limbs in patients with idiopathic normal pressure hydrocephalus (iNPH). However, quantitative evaluation of F-T for iNPH has not yet been established. The purpose of this study was to investigate the usefulness of the quantitative F-T test and optimal measurement conditions as a motor evaluation and screening test for iNPH. Methods Sixteen age-matched healthy controls (mean age 73 ± 5 years; 7/16 male) and fifteen participants with a diagnosis of definitive iNPH (mean age 76 ± 5 years; 8/15 male) completed the study (mean ± standard deviation). F-T performance of the index finger and thumb was quantified using a magnetic sensing device. The performance of repetitive F-T by participants was recorded in both not timing-regulated and timing-regulated conditions. The mean value of the maximum amplitude of F-T was defined as M-Amplitude, and the mean value of the maximum velocity of closure of F-T was defined as cl-Velocity. Results Finger Tapping in the iNPH group, with or without timing control, showed a decrease in M-Amplitude and cl-Velocity compared to the control group. We found the only paced F-T with 2.0 Hz auditory stimuli was found to improve both M-Amplitude and cl-Velocity after shunt surgery. Conclusion The quantitative assessment of F-T with auditory stimuli at the rate of 2.0 Hz may be a useful and potentially supplemental screening method for motor assessment in patients with iNPH.
Collapse
Affiliation(s)
- Yoko Shimizu
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Motoki Tanikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuya Horiba
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kento Sahashi
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shoji Kawashima
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akihiko Kandori
- Hitachi, Ltd., Research and Development Group, Center for Exploratory Research, Tokyo, Japan
| | - Tomoyasu Yamanaka
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yusuke Nishikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshino Ueki
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
35
|
Koppelmans V, Ruitenberg MF, Schaefer SY, King JB, Hoffman JM, Mejia AF, Tasdizen T, Duff K. Delayed and More Variable Unimanual and Bimanual Finger Tapping in Alzheimer's Disease: Associations with Biomarkers and Applications for Classification. J Alzheimers Dis 2023; 95:1233-1252. [PMID: 37694362 PMCID: PMC10578230 DOI: 10.3233/jad-221297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Despite reports of gross motor problems in mild cognitive impairment (MCI) and Alzheimer's disease (AD), fine motor function has been relatively understudied. OBJECTIVE We examined if finger tapping is affected in AD, related to AD biomarkers, and able to classify MCI or AD. METHODS Forty-seven cognitively normal, 27 amnestic MCI, and 26 AD subjects completed unimanual and bimanual computerized tapping tests. We tested 1) group differences in tapping with permutation models; 2) associations between tapping and biomarkers (PET amyloid-β, hippocampal volume, and APOEɛ4 alleles) with linear regression; and 3) the predictive value of tapping for group classification using machine learning. RESULTS AD subjects had slower reaction time and larger speed variability than controls during all tapping conditions, except for dual tapping. MCI subjects performed worse than controls on reaction time and speed variability for dual and non-dominant hand tapping. Tapping speed and variability were related to hippocampal volume, but not to amyloid-β deposition or APOEɛ4 alleles. Random forest classification (overall accuracy = 70%) discriminated control and AD subjects, but poorly discriminated MCI from controls or AD. CONCLUSIONS MCI and AD are linked to more variable finger tapping with slower reaction time. Associations between finger tapping and hippocampal volume, but not amyloidosis, suggest that tapping deficits are related to neuropathology that presents later during the disease. Considering that tapping performance is able to differentiate between control and AD subjects, it can offer a cost-efficient tool for augmenting existing AD biomarkers.
Collapse
Affiliation(s)
- Vincent Koppelmans
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Marit F.L. Ruitenberg
- Department of Health, Medical and Neuropsychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Sydney Y. Schaefer
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jace B. King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - John M. Hoffman
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Amanda F. Mejia
- Department of Statistics, University of Indiana, Bloomington, IN, USA
| | - Tolga Tasdizen
- School of Computing, University of Utah, Salt Lake City, UT, USA
| | - Kevin Duff
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
36
|
Beta rhythmicity in human motor cortex reflects neural population coupling that modulates subsequent finger coordination stability. Commun Biol 2022; 5:1375. [PMID: 36522455 PMCID: PMC9755311 DOI: 10.1038/s42003-022-04326-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Human behavior is not performed completely as desired, but is influenced by the inherent rhythmicity of the brain. Here we show that anti-phase bimanual coordination stability is regulated by the dynamics of pre-movement neural oscillations in bi-hemispheric primary motor cortices (M1) and supplementary motor area (SMA). In experiment 1, pre-movement bi-hemispheric M1 phase synchrony in beta-band (M1-M1 phase synchrony) was online estimated from 129-channel scalp electroencephalograms. Anti-phase bimanual tapping preceded by lower M1-M1 phase synchrony exhibited significantly longer duration than tapping preceded by higher M1-M1 phase synchrony. Further, the inter-individual variability of duration was explained by the interaction of pre-movement activities within the motor network; lower M1-M1 phase synchrony and spectral power at SMA were associated with longer duration. The necessity of cortical interaction for anti-phase maintenance was revealed by sham-controlled repetitive transcranial magnetic stimulation over SMA in another experiment. Our results demonstrate that pre-movement cortical oscillatory coupling within the motor network unknowingly influences bimanual coordination performance in humans after consolidation, suggesting the feasibility of augmenting human motor ability by covertly monitoring preparatory neural dynamics.
Collapse
|
37
|
Ma X, Liu P, Law S, Ravindran N, Xu B, Fan T, Feng K. Characteristics of psychomotor retardation distinguishes patients with depression using multichannel near-infrared spectroscopy and finger tapping task. J Affect Disord 2022; 318:255-262. [PMID: 36087791 DOI: 10.1016/j.jad.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Psychomotor retardation (PMR) is frequently noted as a characteristic feature of major depressive disorder (MDD). In patients with depression, it is characterized by retardation of speech, emotion, thinking, and cognition. This study explored the activation pattern of the prefrontal cortex (PFC) during the finger-tapping task (FTT) in subjects with MDD, aiming to provide additional understanding on the connection between PMR and PFC activation pattern in depression through the use of near-Infrared Spectroscopy (NIRS). We hypothesized that, through use of NIRS during the FTT, motor retardation in depression would generate a distinct PFC activation pattern, allowing for differentiation between patients with MDD and healthy controls (HCs). METHODS Thirty-five patients with MDD and thirty-nine HCs underwent NIRS evaluation during performance of the FTT. The FTT included both left-finger tapping and right-finger tapping performed by a computer screen. Each participant was assessed using a 45-channel NIRS and various clinical scales. FINDINGS During the left-FTT, the left orbitofrontal cortex (OFC) showed higher oxy-hemoglobin (Oxy-Hb) activation in the MDD group when compared to the HCs. During the right-FTT, the right dorsolateral prefrontal cortex (DLPFC) demonstrated lower Oxy-Hb activation, and the dorsomedial prefrontal cortex (DMPFC) showed higher Oxy-Hb activation in the MDD group versus the HC group. CONCLUSION Our results demonstrated different activation patterns of the PFC between the MDD and HC groups, using FTT as a motor performance task. In particular, the OFC, the DLPFC and the DMPFC areas hold promise as new useful sites for such differentiation in future investigations.
Collapse
Affiliation(s)
- Xiangyun Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Pozi Liu
- YuQuan Hospital, Tsinghua University, Beijing 10000, China
| | - Samuel Law
- Department of Psychiatry, University of Toronto, Canada
| | | | - Bo Xu
- YuQuan Hospital, Tsinghua University, Beijing 10000, China
| | - Tengteng Fan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Kun Feng
- YuQuan Hospital, Tsinghua University, Beijing 10000, China.
| |
Collapse
|
38
|
The rediscovered motor-related area 55b emerges as a core hub of music perception. Commun Biol 2022; 5:1104. [PMID: 36257973 PMCID: PMC9579133 DOI: 10.1038/s42003-022-04009-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Passive listening to music, without sound production or evident movement, is long known to activate motor control regions. Nevertheless, the exact neuroanatomical correlates of the auditory-motor association and its underlying neural mechanisms have not been fully determined. Here, based on a NeuroSynth meta-analysis and three original fMRI paradigms of music perception, we show that the long-ignored pre-motor region, area 55b, an anatomically unique and functionally intriguing region, is a core hub of music perception. Moreover, results of a brain-behavior correlation analysis implicate neural entrainment as the underlying mechanism of area 55b’s contribution to music perception. In view of the current results and prior literature, area 55b is proposed as a keystone of sensorimotor integration, a fundamental brain machinery underlying simple to hierarchically complex behaviors. Refining the neuroanatomical and physiological understanding of sensorimotor integration is expected to have a major impact on various fields, from brain disorders to artificial general intelligence. Functional magnetic resonance imaging data acquired during passive listening to music suggest that pre-motor area 55b acts as a core hub of music processing in humans.
Collapse
|
39
|
Cai Z, Pellegrino G, Lina J, Benali H, Grova C. Hierarchical Bayesian modeling of the relationship between task-related hemodynamic responses and cortical excitability. Hum Brain Mapp 2022; 44:876-900. [PMID: 36250709 PMCID: PMC9875942 DOI: 10.1002/hbm.26107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/10/2022] [Accepted: 09/18/2022] [Indexed: 01/28/2023] Open
Abstract
Investigating the relationship between task-related hemodynamic responses and cortical excitability is challenging because it requires simultaneous measurement of hemodynamic responses while applying noninvasive brain stimulation. Moreover, cortical excitability and task-related hemodynamic responses are both associated with inter-/intra-subject variability. To reliably assess such a relationship, we applied hierarchical Bayesian modeling. This study involved 16 healthy subjects who underwent simultaneous Paired Associative Stimulation (PAS10, PAS25, Sham) while monitoring brain activity using functional Near-Infrared Spectroscopy (fNIRS), targeting the primary motor cortex (M1). Cortical excitability was measured by Motor Evoked Potentials (MEPs), and the motor task-related hemodynamic responses were measured using fNIRS 3D reconstructions. We constructed three models to investigate: (1) PAS effects on the M1 excitability, (2) PAS effects on fNIRS hemodynamic responses to a finger tapping task, and (3) the correlation between PAS effects on M1 excitability and PAS effects on task-related hemodynamic responses. Significant increase in cortical excitability was found following PAS25, whereas a small reduction of the cortical excitability was shown after PAS10 and a subtle increase occurred after sham. Both HbO and HbR absolute amplitudes increased after PAS25 and decreased after PAS10. The probability of the positive correlation between modulation of cortical excitability and hemodynamic activity was 0.77 for HbO and 0.79 for HbR. We demonstrated that PAS stimulation modulates task-related cortical hemodynamic responses in addition to M1 excitability. Moreover, the positive correlation between PAS modulations of excitability and hemodynamics brought insight into understanding the fundamental properties of cortical function and cortical excitability.
Collapse
Affiliation(s)
- Zhengchen Cai
- Multimodal Functional Imaging Lab, Department of PhysicsConcordia UniversityMontréalQuébecCanada,PERFORM CentreConcordia UniversityMontréalQuébecCanada
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada,Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontréalQuébecCanada
| | - Jean‐Marc Lina
- Département de Génie ElectriqueÉcole de Technologie SupérieureMontréalQuébecCanada,Centre De Recherches En MathématiquesMontréalQuébecCanada
| | - Habib Benali
- PERFORM CentreConcordia UniversityMontréalQuébecCanada,Centre De Recherches En MathématiquesMontréalQuébecCanada,Electrical and Computer Engineering Department, Concordia UniversityMontréalCanada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Department of PhysicsConcordia UniversityMontréalQuébecCanada,PERFORM CentreConcordia UniversityMontréalQuébecCanada,Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontréalQuébecCanada,Centre De Recherches En MathématiquesMontréalQuébecCanada
| |
Collapse
|
40
|
Uehara K, Togo H, Hanakawa T. Precise motor rhythmicity relies on motor network responsivity. Cereb Cortex 2022; 33:4432-4447. [PMID: 36218995 DOI: 10.1093/cercor/bhac353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/14/2022] Open
Abstract
Rhythmic movements are the building blocks of human behavior. However, given that rhythmic movements are achieved through complex interactions between neural modules, it remains difficult to clarify how the central nervous system controls motor rhythmicity. Here, using a novel tempo-precision trade-off paradigm, we first modeled interindividual behavioral differences in tempo-dependent rhythmicity for various external tempi. We identified 2 behavioral extremes: conventional and paradoxical tempo-precision trade-off types. We then explored the neural substrates of these behavioral differences using task and resting-state functional magnetic resonance imaging. We found that the responsibility of interhemispheric motor network connectivity to tempi was a key to the behavioral repertoire. In the paradoxical trade-off type, interhemispheric connectivity was low at baseline but increased in response to increasing tempo; in the conventional trade-off type, strong baseline connectivity was coupled with low responsivity. These findings suggest that tunable interhemispheric connectivity underlies tempo-dependent rhythmicity control.
Collapse
Affiliation(s)
- Kazumasa Uehara
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan.,Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi 4448585, Japan.,Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 4448585, Japan
| | - Hiroki Togo
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan.,Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto 6068501, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan.,Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto 6068501, Japan
| |
Collapse
|
41
|
La Marra M, Messina A, Ilardi CR, Verde G, Amato R, Esposito N, Troise S, Orlando A, Messina G, Monda V, Di Maio G, Villano I. The Neglected Factor in the Relationship between Executive Functioning and Obesity: The Role of Motor Control. Healthcare (Basel) 2022; 10:1775. [PMID: 36141387 PMCID: PMC9498752 DOI: 10.3390/healthcare10091775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The association between obesity and executive functions (EFs) is highly controversial. It has been suggested that waist circumference (WC), compared to body mass index (BMI), is a better indicator of fat mass and EFs in obesity. Moreover, according to the viewpoint that the brain's functional architecture meets the need for interactive behavior, we hypothesize that the relationship between EFs and body weight might be mediated by the motor performance. METHODS General executive functioning (frontal assessment battery-15), additional cognitive subdomains (trail making test and digit span backward), and motor performance (finger tapping task) were assessed in a sample that included 330 volunteers (192 females, M age = 45.98 years, SD = 17.70, range = 18-86 years). RESULTS Hierarchical multiple regression analysis indicated that the FAB15 score and FTT negatively predicted WC but not BMI. A subsequent mediation analysis highlighted that the indirect effect of FAB15 on WC through finger tapping was statistically significant. CONCLUSIONS Our results suggest that WC, as compared to BMI, is a more effective measure for studying the association between EFs and body weight. Still, we found that the motor domain partially mediates the dynamics of such a relationship.
Collapse
Affiliation(s)
- Marco La Marra
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ciro Rosario Ilardi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Department of Psychology, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Giuseppe Verde
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Raffaella Amato
- Neurological Unit, CTO Hospital, AORN “Ospedali dei Colli”, 80131 Naples, Italy
| | - Nadia Esposito
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Simona Troise
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Antonella Orlando
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Vincenzo Monda
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Girolamo Di Maio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ines Villano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
42
|
Wang Y, Zhao J, Inada H, Négyesi J, Nagatomi R. Impact of handedness on interlimb transfer depending on the task complexity combined with motor and cognitive skills. Neurosci Lett 2022; 785:136775. [PMID: 35817313 DOI: 10.1016/j.neulet.2022.136775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Task complexity could affect acquisition efficiency of motor skills and interlimb transfer; however, how task complexity affects interlimb transfer remains unclear. We hypothesized that left- and right-handed participants may have different interlimb transfer efficiency depending on the task complexity. METHODS Left-hand (n = 28) and right-hand (n = 28) dominant participants (age = 24.70 ± 4.02 years, male:female = 28:28) performed a finger sequence test with two levels of complexity (simple: one-digit with four fingers vs. complex: two-digit with five fingers) before and after ten trials of 2-min practice each on the same apparatus. The speed and task errors were measured and analyzed. RESULTS Right-handed participants failed to improve performance on their right hand (non-trained hand) after contralateral left-hand practice in the simple finger sequence task. In contrast, the left-handed participants improved performance on non-trained hands both right and left after contralateral practices. In the complex task, however, both the left- and right-handed participants improved performance on non-trained hands by contralateral practices. CONCLUSION Our results showed that task complexity of skilled practice gave different effects on interlimb transfer between right- and left-handed subjects. It appears that a certain level of appropriate complexity is necessary to detect inter-limb transfers in motor learning in right-handed subjects.
Collapse
Affiliation(s)
- YiFan Wang
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Jun Zhao
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hitoshi Inada
- Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering, 6-6-12, Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - János Négyesi
- Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering, 6-6-12, Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering, 6-6-12, Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
43
|
Draaisma L, Wessel M, Moyne M, Morishita T, Hummel F. Targeting the frontoparietal network using bifocal transcranial alternating current stimulation during a motor sequence learning task in healthy older adults. Brain Stimul 2022; 15:968-979. [DOI: 10.1016/j.brs.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
|
44
|
Anodal Transcranial Direct Current Stimulation (atDCS) of the Primary Motor Cortex (M1) Facilitates Nonconscious Error Correction of Negative Phase Shifts. Neural Plast 2022; 2022:9419154. [PMID: 35662740 PMCID: PMC9159881 DOI: 10.1155/2022/9419154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Accurate motor timing requires the temporally precise coupling between sensory input and motor output including the adjustment of movements with respect to changes in the environment. Such error correction has been related to a cerebello-thalamo-cortical network. At least partially distinct networks for the correction of perceived (i.e., conscious) as compared to nonperceived (i.e., nonconscious) errors have been suggested. While the cerebellum, the premotor, and the prefrontal cortex seem to be involved in conscious error correction, the network subserving nonconscious error correction is less clear. The present study is aimed at investigating the functional contribution of the primary motor cortex (M1) for both types of error correction in the temporal domain. To this end, anodal transcranial direct current stimulation (atDCS) was applied to the left M1 in a group of 18 healthy young volunteers during a resting period of 10 minutes. Sensorimotor synchronization as well as error correction of the right index finger was tested immediately prior to and after atDCS. Sham stimulation served as control condition. To induce error correction, nonconscious and conscious temporal step-changes were interspersed in a sequence of an isochronous auditory pacing signal in either direction (i.e., negative or positive) yielding either shorter or longer intervals. Prior to atDCS, faster error correction in conscious as compared to nonconscious trials was observed replicating previous findings. atDCS facilitated nonconscious error correction, but only in trials with negative step-changes yielding shorter intervals. In contrast to this, neither tapping speed nor synchronization performance with respect to the isochronous pacing signal was significantly modulated by atDCS. The data suggest M1 as part of a network distinctively contributing to the correction of nonconscious negative step-changes going beyond sensorimotor synchronization.
Collapse
|
45
|
Vila‐Villar A, Naya‐Fernández M, Madrid A, Madinabeitia‐Mancebo E, Robles‐García V, Cudeiro J, Arias P. Exploring the role of the left
DLPFC
in fatigue during unresisted rhythmic movements. Psychophysiology 2022; 59:e14078. [PMID: 35428988 PMCID: PMC9539568 DOI: 10.1111/psyp.14078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 10/20/2021] [Accepted: 03/30/2022] [Indexed: 01/17/2023]
Abstract
Understanding central fatigue during motor activities is important in neuroscience and different medical fields. The central mechanisms of motor fatigue are known in depth for isometric muscle contractions; however, current knowledge about rhythmic movements and central fatigue is rather scarce. In this study, we explored the role of an executive area (left dorsolateral prefrontal cortex [DLPFC]) in fatigue development during rhythmic movement execution, finger tapping (FT) at the maximal rate, and fatigue after effects on the stability of rhythmic patterns. Participants (n = 19) performed six sets of unresisted FT (with a 3 min rest in‐between). Each set included four interleaved 30 s repetitions of self‐selected (two repetitions) and maximal rate FT (two repetitions) without rest in‐between. Left DLPFC involvement in the task was perturbed by transcranial static magnetic stimulation (tSMS) in two sessions (one real and one sham). Moreover, half of the self‐selected FT repetitions were performed concurrently with a demanding cognitive task, the Stroop test. Compared with sham stimulation, real tSMS stimulation prevented waning in tapping frequency at the maximal rate without affecting perceived levels of fatigue. Participants' engagement in the Stroop test just prior to maximal FT reduced the movement amplitude during this mode of execution. Movement variability at self‐selected rates increased during Stroop execution, especially under fatigue previously induced by maximal FT. Our results indicate cognitive‐motor interactions and a prominent role of the prefrontal cortex in fatigue and the motor control of simple repetitive movement patterns. We suggest the need to approach motor fatigue including cognitive perspectives. We show the fundamental role of executive areas in fatigue caused by very simple repetitive movements. Fatigue developed less during the maximal frequency of movement production, while the left DLPFC received magnetic stimulation (in right‐handers). The role of cognitive‐motor interaction in fine motor control was also clear when participants engaged in cognitive tasks. At the clinical level, our work reinforces the need to treat fatigue from a comprehensive perspective.
Collapse
Affiliation(s)
- Aranza Vila‐Villar
- Department of Physiotherapy, Medicine and Biomedical Sciences and INEF Galicia Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and Biomedical Institute of A Coruña (INIBIC) A Coruña Spain
| | - Mariña Naya‐Fernández
- Department of Physiotherapy, Medicine and Biomedical Sciences and INEF Galicia Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and Biomedical Institute of A Coruña (INIBIC) A Coruña Spain
| | - Antonio Madrid
- Department of Physiotherapy, Medicine and Biomedical Sciences and INEF Galicia Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and Biomedical Institute of A Coruña (INIBIC) A Coruña Spain
| | - Elena Madinabeitia‐Mancebo
- Department of Physiotherapy, Medicine and Biomedical Sciences and INEF Galicia Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and Biomedical Institute of A Coruña (INIBIC) A Coruña Spain
| | - Verónica Robles‐García
- Department of Physiotherapy, Medicine and Biomedical Sciences and INEF Galicia Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and Biomedical Institute of A Coruña (INIBIC) A Coruña Spain
| | - Javier Cudeiro
- Department of Physiotherapy, Medicine and Biomedical Sciences and INEF Galicia Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and Biomedical Institute of A Coruña (INIBIC) A Coruña Spain
- Centro de Estimulación Cerebral de Galicia A Coruña Spain
| | - Pablo Arias
- Department of Physiotherapy, Medicine and Biomedical Sciences and INEF Galicia Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and Biomedical Institute of A Coruña (INIBIC) A Coruña Spain
| |
Collapse
|
46
|
von Schnehen A, Hobeika L, Huvent-Grelle D, Samson S. Sensorimotor Synchronization in Healthy Aging and Neurocognitive Disorders. Front Psychol 2022; 13:838511. [PMID: 35369160 PMCID: PMC8970308 DOI: 10.3389/fpsyg.2022.838511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Sensorimotor synchronization (SMS), the coordination of physical actions in time with a rhythmic sequence, is a skill that is necessary not only for keeping the beat when making music, but in a wide variety of interpersonal contexts. Being able to attend to temporal regularities in the environment is a prerequisite for event prediction, which lies at the heart of many cognitive and social operations. It is therefore of value to assess and potentially stimulate SMS abilities, particularly in aging and neurocognitive disorders (NCDs), to understand intra-individual communication in the later stages of life, and to devise effective music-based interventions. While a bulk of research exists about SMS and movement-based interventions in Parkinson's disease, a lot less is known about other types of neurodegenerative disorders, such as Alzheimer's disease, vascular dementia, or frontotemporal dementia. In this review, we outline the brain and cognitive mechanisms involved in SMS with auditory stimuli, and how they might be subject to change in healthy and pathological aging. Globally, SMS with isochronous sounds is a relatively well-preserved skill in old adulthood and in patients with NCDs. At the same time, natural tapping speed decreases with age. Furthermore, especially when synchronizing to sequences at slow tempi, regularity and precision might be lower in older adults, and even more so in people with NCDs, presumably due to the fact that this process relies on attention and working memory resources that depend on the prefrontal cortex and parietal areas. Finally, we point out that the effect of the severity and etiology of NCDs on sensorimotor abilities is still unclear: More research is needed with moderate and severe NCD, comparing different etiologies, and using complex auditory signals, such as music.
Collapse
Affiliation(s)
- Andres von Schnehen
- Université de Lille, ULR 4072 - PSITEC - Psychologie: Interactions, Temps, Emotions, Cognition, Lille, France
| | - Lise Hobeika
- Université de Lille, ULR 4072 - PSITEC - Psychologie: Interactions, Temps, Emotions, Cognition, Lille, France.,Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | - Séverine Samson
- Université de Lille, ULR 4072 - PSITEC - Psychologie: Interactions, Temps, Emotions, Cognition, Lille, France.,Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.,Epilepsy Unit, AP-HP, GHU Pitié-Salpêtrière-Charles Foix, Paris, France
| |
Collapse
|
47
|
Shi J, Huang H, Jiang R, Mao X, Huang Q, Li A. The Right Inferior Frontal Gyrus Plays an Important Role in Unconscious Information Processing: Activation Likelihood Estimation Analysis Based on Functional Magnetic Resonance Imaging. Front Neurosci 2022; 16:781099. [PMID: 35401077 PMCID: PMC8987111 DOI: 10.3389/fnins.2022.781099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Unconsciousness is a kind of brain activity that occurs below the level of consciousness, and the masked priming paradigm is a classic paradigm to study unconscious perceptual processing. With the deepening of unconscious perception research, different researchers mostly use different experimental materials and different masked priming paradigms in a single experiment but not for the comprehensive analysis of the unconscious information processing mechanism itself. Thus, the purpose of this study is to conduct a comprehensive analysis through a cross-experimental paradigm, cross-experimental materials, and cross-experimental purposes. We used activation likelihood estimation to test functional magnetic resonance imaging studies, involving 361 subjects, 124 foci in eight studies representing direct comparison of unconscious processing with baseline, and 115 foci in 10 studies representing direct comparison of unconscious priming effects. In the comparison of unconscious processing and baseline, clusters formed in the left superior parietal gyrus, the right insular gyrus, and the right inferior frontal gyrus (IFG) triangular part after correcting for familywise error (FWE). In the comparison of priming effects, clusters formed in only the right IFG triangular part after correcting for FWE. Here, we found that ventral and dorsal pathways jointly regulate unconscious perceptual processes, but only the ventral pathway is involved in the regulation of unconscious priming effects. The IFG triangular part is involved in the regulation of unconscious perceptual processing and unconscious priming effects and may be an important brain area in unconscious information processing. These preliminary data provide conditions for further study of the neural correlation of unconscious information processing.
Collapse
Affiliation(s)
- Jilong Shi
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Haojie Huang
- Department of Physical Education, Xiamen University, Xiamen, China
| | - Ruichen Jiang
- School of Psychology, Shanghai University of Sport, Shanghai, China
- School of Teacher Education, Anqing Normal University, Anqing, China
| | - Xuechen Mao
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Qin Huang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Anmin Li
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
48
|
Independence of functional connectivity analysis in fMRI research does not rely on whether seeds are exogenous or endogenous. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
49
|
Zapparoli L, Mariano M, Paulesu E. How the motor system copes with aging: a quantitative meta-analysis of the effect of aging on motor function control. Commun Biol 2022; 5:79. [PMID: 35058549 PMCID: PMC8776875 DOI: 10.1038/s42003-022-03027-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/27/2021] [Indexed: 01/28/2023] Open
Abstract
Motor cognitive functions and their neurophysiology evolve and degrade along the lifespan in a dramatic fashion. Current models of how the brain adapts to aging remain inspired primarily by studies on memory or language processes. Yet, aging is strongly associated with reduced motor independence and the associated degraded interaction with the environment: accordingly, any neurocognitive model of aging not considering the motor system is, ipso facto, incomplete. Here we present a meta-analysis of forty functional brain-imaging studies to address aging effects on motor control. Our results indicate that motor control is associated with aging-related changes in brain activity, involving not only motoric brain regions but also posterior areas such as the occipito-temporal cortex. Notably, some of these differences depend on the specific nature of the motor task and the level of performance achieved by the participants. These findings support neurocognitive models of aging that make fewer anatomical assumptions while also considering tasks-dependent and performance-dependent manifestations. Besides the theoretical implications, the present data also provide additional information for the motor rehabilitation domain, indicating that motor control is a more complex phenomenon than previously understood, to which separate cognitive operations can contribute and decrease in different ways with aging. Many aspects of neuronal control degrade with ageing, including motor control. Using a meta-analysis of functional MRI images, it is made apparent that the ageing brain relies more on visual strategies than sensory stimuli to maintain motor function.
Collapse
|
50
|
Wyser DG, Kanzler CM, Salzmann L, Lambercy O, Wolf M, Scholkmann F, Gassert R. Characterizing reproducibility of cerebral hemodynamic responses when applying short-channel regression in functional near-infrared spectroscopy. NEUROPHOTONICS 2022; 9:015004. [PMID: 35265732 PMCID: PMC8901194 DOI: 10.1117/1.nph.9.1.015004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/11/2022] [Indexed: 05/06/2023]
Abstract
Significance: Functional near-infrared spectroscopy (fNIRS) enables the measurement of brain activity noninvasively. Optical neuroimaging with fNIRS has been shown to be reproducible on the group level and hence is an excellent research tool, but the reproducibility on the single-subject level is still insufficient, challenging the use for clinical applications. Aim: We investigated the effect of short-channel regression (SCR) as an approach to obtain fNIRS measurements with higher reproducibility on a single-subject level. SCR simultaneously considers contributions from long- and short-separation channels and removes confounding physiological changes through the regression of the short-separation channel information. Approach: We performed a test-retest study with a hand grasping task in 15 healthy subjects using a wearable fNIRS device, optoHIVE. Relevant brain regions were localized with transcranial magnetic stimulation to ensure correct placement of the optodes. Reproducibility was assessed by intraclass correlation, correlation analysis, mixed effects modeling, and classification accuracy of the hand grasping task. Further, we characterized the influence of SCR on reproducibility. Results: We found a high reproducibility of fNIRS measurements on a single-subject level (ICC single = 0.81 and correlation r = 0.81 ). SCR increased the reproducibility from 0.64 to 0.81 (ICC single ) but did not affect classification (85% overall accuracy). Significant intersubject variability in the reproducibility was observed and was explained by Mayer wave oscillations and low raw signal strength. The raw signal-to-noise ratio (threshold at 40 dB) allowed for distinguishing between persons with weak and strong activations. Conclusions: We report, for the first time, that fNIRS measurements are reproducible on a single-subject level using our optoHIVE fNIRS system and that SCR improves reproducibility. In addition, we give a benchmark to easily assess the ability of a subject to elicit sufficiently strong hemodynamic responses. With these insights, we pave the way for the reliable use of fNIRS neuroimaging in single subjects for neuroscientific research and clinical applications.
Collapse
Affiliation(s)
- Dominik G. Wyser
- ETH Zurich, Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Zurich, Switzerland
- University Hospital Zurich, University of Zurich, Biomedical Optics Research Laboratory, Department of Neonatology, Zurich, Switzerland
| | - Christoph M. Kanzler
- ETH Zurich, Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Lena Salzmann
- ETH Zurich, Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Olivier Lambercy
- ETH Zurich, Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Martin Wolf
- University Hospital Zurich, University of Zurich, Biomedical Optics Research Laboratory, Department of Neonatology, Zurich, Switzerland
| | - Felix Scholkmann
- University Hospital Zurich, University of Zurich, Biomedical Optics Research Laboratory, Department of Neonatology, Zurich, Switzerland
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Roger Gassert
- ETH Zurich, Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Zurich, Switzerland
| |
Collapse
|