1
|
Sachdeva T, Ganpule SG. Twenty Years of Blast-Induced Neurotrauma: Current State of Knowledge. Neurotrauma Rep 2024; 5:243-253. [PMID: 38515548 PMCID: PMC10956535 DOI: 10.1089/neur.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Blast-induced neurotrauma (BINT) is an important injury paradigm of neurotrauma research. This short communication summarizes the current knowledge of BINT. We divide the BINT research into several broad categories-blast wave generation in laboratory, biomechanics, pathology, behavioral outcomes, repetitive blast in animal models, and clinical and neuroimaging investigations in humans. Publications from 2000 to 2023 in each subdomain were considered. The analysis of the literature has brought out salient aspects. Primary blast waves can be simulated reasonably in a laboratory using carefully designed shock tubes. Various biomechanics-based theories of BINT have been proposed; each of these theories may contribute to BINT by generating a unique biomechanical signature. The injury thresholds for BINT are in the nascent stages. Thresholds for rodents are reasonably established, but such thresholds (guided by primary blast data) are unavailable in humans. Single blast exposure animal studies suggest dose-dependent neuronal pathologies predominantly initiated by blood-brain barrier permeability and oxidative stress. The pathologies were typically reversible, with dose-dependent recovery times. Behavioral changes in animals include anxiety, auditory and recognition memory deficits, and fear conditioning. The repetitive blast exposure manifests similar pathologies in animals, however, at lower blast overpressures. White matter irregularities and cortical volume and thickness alterations have been observed in neuroimaging investigations of military personnel exposed to blast. Behavioral changes in human cohorts include sleep disorders, poor motor skills, cognitive dysfunction, depression, and anxiety. Overall, this article provides a concise synopsis of current understanding, consensus, controversies, and potential future directions.
Collapse
Affiliation(s)
- Tarun Sachdeva
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shailesh G. Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
2
|
Green TRF, Carey SD, Mannino G, Craig JA, Rowe RK, Zielinski MR. Sleep, inflammation, and hemodynamics in rodent models of traumatic brain injury. Front Neurosci 2024; 18:1361014. [PMID: 38426017 PMCID: PMC10903352 DOI: 10.3389/fnins.2024.1361014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Traumatic brain injury (TBI) can induce dysregulation of sleep. Sleep disturbances include hypersomnia and hyposomnia, sleep fragmentation, difficulty falling asleep, and altered electroencephalograms. TBI results in inflammation and altered hemodynamics, such as changes in blood brain barrier permeability and cerebral blood flow. Both inflammation and altered hemodynamics, which are known sleep regulators, contribute to sleep impairments post-TBI. TBIs are heterogenous in cause and biomechanics, which leads to different molecular and symptomatic outcomes. Animal models of TBI have been developed to model the heterogeneity of TBIs observed in the clinic. This review discusses the intricate relationship between sleep, inflammation, and hemodynamics in pre-clinical rodent models of TBI.
Collapse
Affiliation(s)
- Tabitha R. F. Green
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Sean D. Carey
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA, United States
| | - Grant Mannino
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John A. Craig
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
| | - Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Mark R. Zielinski
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA, United States
| |
Collapse
|
3
|
Zhao Q, Zhang J, Li H, Li H, Xie F. Models of traumatic brain injury-highlights and drawbacks. Front Neurol 2023; 14:1151660. [PMID: 37396767 PMCID: PMC10309005 DOI: 10.3389/fneur.2023.1151660] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Traumatic brain injury (TBI) is the leading cause for high morbidity and mortality rates in young adults, survivors may suffer from long-term physical, cognitive, and/or psychological disorders. Establishing better models of TBI would further our understanding of the pathophysiology of TBI and develop new potential treatments. A multitude of animal TBI models have been used to replicate the various aspects of human TBI. Although numerous experimental neuroprotective strategies were identified to be effective in animal models, a majority of strategies have failed in phase II or phase III clinical trials. This failure in clinical translation highlights the necessity of revisiting the current status of animal models of TBI and therapeutic strategies. In this review, we elucidate approaches for the generation of animal models and cell models of TBI and summarize their strengths and limitations with the aim of exploring clinically meaningful neuroprotective strategies.
Collapse
Affiliation(s)
- Qinghui Zhao
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Jianhua Zhang
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Huige Li
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Hongru Li
- Zhumadian Central Hospital, Zhumadian, China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
4
|
Double Blast Wave Primary Effect on Synaptic, Glymphatic, Myelin, Neuronal and Neurovascular Markers. Brain Sci 2023; 13:brainsci13020286. [PMID: 36831830 PMCID: PMC9954059 DOI: 10.3390/brainsci13020286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Explosive blasts are associated with neurological consequences as a result of blast waves impact on the brain. Yet, the neuropathologic and molecular consequences due to blast waves vs. blunt-TBI are not fully understood. An explosive-driven blast-generating system was used to reproduce blast wave exposure and examine pathological and molecular changes generated by primary wave effects of blast exposure. We assessed if pre- and post-synaptic (synaptophysin, PSD-95, spinophilin, GAP-43), neuronal (NF-L), glymphatic (LYVE1, podoplanin), myelin (MBP), neurovascular (AQP4, S100β, PDGF) and genomic (DNA polymerase-β, RNA polymerase II) markers could be altered across different brain regions of double blast vs. sham animals. Twelve male rats exposed to two consecutive blasts were compared to 12 control/sham rats. Western blot, ELISA, and immunofluorescence analyses were performed across the frontal cortex, hippocampus, cerebellum, and brainstem. The results showed altered levels of AQP4, S100β, DNA-polymerase-β, PDGF, synaptophysin and PSD-95 in double blast vs. sham animals in most of the examined regions. These data indicate that blast-generated changes are preferentially associated with neurovascular, glymphatic, and DNA repair markers, especially in the brainstem. Moreover, these changes were not accompanied by behavioral changes and corroborate the hypothesis for which an asymptomatic altered status is caused by repeated blast exposures.
Collapse
|
5
|
Kundu S, Singh S. What Happens in TBI? A Wide Talk on Animal Models and Future Perspective. Curr Neuropharmacol 2023; 21:1139-1164. [PMID: 35794772 PMCID: PMC10286592 DOI: 10.2174/1570159x20666220706094248] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a global healthcare concern and a leading cause of death. The most common causes of TBI include road accidents, sports injuries, violence in warzones, and falls. TBI induces neuronal cell death independent of age, gender, and genetic background. TBI survivor patients often experience long-term behavioral changes like cognitive and emotional changes. TBI affects social activity, reducing the quality and duration of life. Over the last 40 years, several rodent models have been developed to mimic different clinical outcomes of human TBI for a better understanding of pathophysiology and to check the efficacy of drugs used for TBI. However, promising neuroprotective approaches that have been used preclinically have been found to be less beneficial in clinical trials. So, there is an urgent need to find a suitable animal model for establishing a new therapeutic intervention useful for TBI. In this review, we have demonstrated the etiology of TBI and post- TBI social life alteration, and also discussed various preclinical TBI models of rodents, zebrafish, and drosophila.
Collapse
Affiliation(s)
- Satyabrata Kundu
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
6
|
Snapper DM, Reginauld B, Liaudanskaya V, Fitzpatrick V, Kim Y, Georgakoudi I, Kaplan DL, Symes AJ. Development of a novel bioengineered 3D brain-like tissue for studying primary blast-induced traumatic brain injury. J Neurosci Res 2023; 101:3-19. [PMID: 36200530 DOI: 10.1002/jnr.25123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022]
Abstract
Primary blast injury is caused by the direct impact of an overpressurization wave on the body. Due to limitations of current models, we have developed a novel approach to study primary blast-induced traumatic brain injury. Specifically, we employ a bioengineered 3D brain-like human tissue culture system composed of collagen-infused silk protein donut-like hydrogels embedded with human IPSC-derived neurons, human astrocytes, and a human microglial cell line. We have utilized this system within an advanced blast simulator (ABS) to expose the 3D brain cultures to a blast wave that can be precisely controlled. These 3D cultures are enclosed in a 3D-printed surrogate skull-like material containing media which are then placed in a holder apparatus inside the ABS. This allows for exposure to the blast wave alone without any secondary injury occurring. We show that blast induces an increase in lactate dehydrogenase activity and glutamate release from the cultures, indicating cellular injury. Additionally, we observe a significant increase in axonal varicosities after blast. These varicosities can be stained with antibodies recognizing amyloid precursor protein. The presence of amyloid precursor protein deposits may indicate a blast-induced axonal transport deficit. After blast injury, we find a transient release of the known TBI biomarkers, UCHL1 and NF-H at 6 h and a delayed increase in S100B at 24 and 48 h. This in vitro model will enable us to gain a better understanding of clinically relevant pathological changes that occur following primary blast and can also be utilized for discovery and characterization of biomarkers.
Collapse
Affiliation(s)
- Dustin M Snapper
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, USA
| | - Bianca Reginauld
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, USA
| | - Volha Liaudanskaya
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Yeonho Kim
- Preclinical Behavior and Modeling Core, Uniformed Services University, Bethesda, Maryland, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Padmakumar S, Kulkarni P, Ferris CF, Bleier BS, Amiji MM. Traumatic brain injury and the development of parkinsonism: Understanding pathophysiology, animal models, and therapeutic targets. Biomed Pharmacother 2022; 149:112812. [PMID: 35290887 PMCID: PMC9050934 DOI: 10.1016/j.biopha.2022.112812] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
The clinical translation of therapeutic approaches to combat debilitating neurodegenerative conditions, such as Parkinson's disease (PD), remains as an urgent unmet challenge. The strong molecular association between the pathogenesis of traumatic brain injury (TBI) and the development of parkinsonism in humans has been well established. Therefore, a lot of ongoing research aims to investigate this pathology overlap in-depth, to exploit the common targets of TBI and PD for development of more effective and long-term treatment strategies. This review article intends to provide a detailed background on TBI pathophysiology and its established overlap with PD with an additional emphasis on the recent findings about their effect on perivascular clearance. Although, the traditional animal models of TBI and PD are still being considered, there is a huge focus on the development of combinatory hybrid animal models coupling concussion with the pre-established PD models for a better recapitulation of the human context of PD pathogenesis. Lastly, the therapeutic targets for TBI and PD, and the contemporary research involving exosomes, DNA vaccines, miRNA, gene therapy and gene editing for the development of potential candidates are discussed, along with the recent development of lesser invasive and promising central nervous system (CNS) drug delivery strategies.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, United States of America
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States of America
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States of America
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, United States of America.
| |
Collapse
|
8
|
A novel simple traumatic brain injury mouse model. Chin Neurosurg J 2022; 8:8. [PMID: 35361274 PMCID: PMC8974042 DOI: 10.1186/s41016-022-00273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background Traumatic brain injury, one of the leading causes of death in adults under 40 years of age in the world, is frequently caused by mechanical shock, resulting in diffuse neuronal damage and long-term cognitive dysfunction. Many existing TBI animal models revival with expensive equipment or special room are needed or the processes of operations are complex and not easy to be widely used. Therefore, a simpler TBI model needs to be designed. Methods Our TBI model is an innovation of the modeling method through air guns shutting rubber bullets. A core facet is the application of our designed rubber bullet impact device. It could focus the hitting power to the fixed site of the brain, thus triggering a mild closed head injury. Moreover, the degree of damage can be adjusted by the times of shots. Results Our model induced blood-brain barrier leakage and diffused neuronal damage. Besides, it led to an increased level of Tau phosphorylation and resulted in cognitive dysfunction within several weeks post-injury. Conclusion Our TBI model is not only simple and time-saving but also can simulate mild brain injuries in clinical. It is suitable for exploring pathobiological mechanisms as well as a screening of potential therapies for TBI. Supplementary Information The online version contains supplementary material available at 10.1186/s41016-022-00273-5.
Collapse
|
9
|
Lidin E, Sköld MK, Angéria M, Davidsson J, Risling M. Hippocampal Expression of Cytochrome P450 1B1 in Penetrating Traumatic Brain Injury. Int J Mol Sci 2022; 23:722. [PMID: 35054909 PMCID: PMC8775891 DOI: 10.3390/ijms23020722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023] Open
Abstract
Hippocampal dysfunction contributes to multiple traumatic brain injury sequala. Female rodents' outcome is superior to male which has been ascribed the neuroprotective sex hormones 17β-estradiol and progesterone. Cytochrome P450 1B1 (CYP1B1) is an oxidative enzyme influencing the neuroinflammatory response by creating inflammatory mediators and metabolizing neuroprotective 17β-estradiol and progesterone. In this study, we aimed to describe hippocampal CYP1B1 mRNA expression, protein presence of CYP1B1 and its key redox partner Cytochrome P450 reductase (CPR) in both sexes, as well as the effect of penetrating traumatic brain injury (pTBI). A total 64 adult Sprague Dawley rats divided by sex received pTBI or sham-surgery and were assigned survival times of 1-, 3-, 5- or 7 days. CYP1B1 mRNA was quantified using in-situ hybridization and immunohistochemistry performed to verify protein colocalization. CYP1B1 mRNA expression was present in all subregions but greatest in CA2 irrespective of sex, survival time or intervention. At 3-, 5- and 7 days post-injury, expression in CA2 was reduced in male rats subjected to pTBI compared to sham-surgery. Females subjected to pTBI instead exhibited increased expression in all CA subregions 3 days post-injury, the only time point expression in CA2 was greater in females than in males. Immunohistochemical analysis confirmed neuronal CYP1B1 protein in all hippocampal subregions, while CPR was limited to CA1 and CA2. CYP1B1 mRNA is constitutively expressed in both sexes. In response to pTBI, females displayed a more urgent but brief regulatory response than males. This indicates there may be sex-dependent differences in CYP1B1 activity, possibly influencing inflammation and neuroprotection in pTBI.
Collapse
Affiliation(s)
- Erik Lidin
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (M.K.S.); (M.A.); (M.R.)
| | - Mattias K. Sköld
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (M.K.S.); (M.A.); (M.R.)
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, 751 85 Uppsala, Sweden
| | - Maria Angéria
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (M.K.S.); (M.A.); (M.R.)
| | - Johan Davidsson
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| | - Mårten Risling
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (M.K.S.); (M.A.); (M.R.)
| |
Collapse
|
10
|
Zhang L, Jackson WJ, Bentil SA. Deformation of an airfoil-shaped brain surrogate under shock wave loading. J Mech Behav Biomed Mater 2021; 120:104513. [PMID: 34010798 DOI: 10.1016/j.jmbbm.2021.104513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Improvised explosive devices (IEDs), during military operations, has increased the incidence of blast-induced traumatic brain injuries (bTBI). The shock wave is created following detonation of the IED. This shock wave propagates through the atmosphere and may cause bTBI. As a result, bTBI research has gained increased attention since this injury's mechanism is not thoroughly understood. To develop better protection and treatment against bTBI, further studies of soft material (e.g. brain and brain surrogate) deformation due to shock wave exposure are essential. However, the dynamic mechanical behavior of soft materials, subjected to high strain rates from shock wave exposure, remains unknown. Thus, an experimental approach was applied to study the interaction between the shock wave and an unconfined brain surrogate fabricated from a biomaterial (i.e. polydimethylsiloxane (PDMS)). The 1:70 ratio of curing agent-to-base determined the stiffness of the PDMS (Sylgard 184, Dow Corning Corporation). A stretched NACA 2414 (upper airfoil surface) geometry was utilized to resemble the shape of a porcine brain. Digital image correlation (DIC) technique was applied to measure the deformation on the brain surrogate's surface following shock wave exposure. A shock tube was utilized to create the shock wave and pressure transducers measured the pressure in the vicinity of the brain surrogate. A transient structural analysis using ANSYS Workbench was performed to predict the elastic modulus of 1:70 airfoil-shaped PDMS, at a strain rate on the order of 6 × 103 s-1. Both compression and protrusion of the PDMS surface were found due to the shock wave exposure. Negative pressure was found in a semi-ring area, which was the cause of protrusion. Oscillation of the brain surrogate, due to the shock wave loading, was found. The frequency of oscillation does not depend on the geometry. This work will add to the limited data describing the dynamic behavior of soft materials due to shock wave loading.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 2529 Union Drive, Ames, IA, 50011, USA
| | - William J Jackson
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 2529 Union Drive, Ames, IA, 50011, USA
| | - Sarah A Bentil
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 2529 Union Drive, Ames, IA, 50011, USA.
| |
Collapse
|
11
|
Unnikrishnan G, Mao H, Sajja VSSS, van Albert S, Sundaramurthy A, Rubio JE, Subramaniam DR, Long J, Reifman J. Animal Orientation Affects Brain Biomechanical Responses to Blast-Wave Exposure. J Biomech Eng 2021; 143:051007. [PMID: 33493319 DOI: 10.1115/1.4049889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Indexed: 11/08/2022]
Abstract
In this study, we investigated how animal orientation within a shock tube influences the biomechanical responses of the brain and cerebral vasculature of a rat when exposed to a blast wave. Using three-dimensional finite element (FE) models, we computed the biomechanical responses when the rat was exposed to the same blast-wave overpressure (100 kPa) in a prone (P), vertical (V), or head-only (HO) orientation. We validated our model by comparing the model-predicted and the experimentally measured brain pressures at the lateral ventricle. For all three orientations, the maximum difference between the predicted and measured pressures was 11%. Animal orientation markedly influenced the predicted peak pressure at the anterior position along the midsagittal plane of the brain (P = 187 kPa; V = 119 kPa; and HO = 142 kPa). However, the relative differences in the predicted peak pressure between the orientations decreased at the medial (21%) and posterior (7%) positions. In contrast to the pressure, the peak strain in the prone orientation relative to the other orientations at the anterior, medial, and posterior positions was 40-88% lower. Similarly, at these positions, the cerebral vasculature strain in the prone orientation was lower than the strain in the other orientations. These results show that animal orientation in a shock tube influences the biomechanical responses of the brain and the cerebral vasculature of the rat, strongly suggesting that a direct comparison of changes in brain tissue observed from animals exposed at different orientations can lead to incorrect conclusions.
Collapse
Affiliation(s)
- Ginu Unnikrishnan
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Haojie Mao
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Venkata Siva Sai Sujith Sajja
- Blast Induced Neurotrauma Division, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Drive, Silver Spring, MD 20910
| | - Stephen van Albert
- Blast Induced Neurotrauma Division, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Drive, Silver Spring, MD 20910
| | - Aravind Sundaramurthy
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Jose E Rubio
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Dhananjay Radhakrishnan Subramaniam
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Joseph Long
- Blast Induced Neurotrauma Division, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Drive, Silver Spring, MD 20910
| | - Jaques Reifman
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702
| |
Collapse
|
12
|
Marsh JL, Bentil SA. Cerebrospinal Fluid Cavitation as a Mechanism of Blast-Induced Traumatic Brain Injury: A Review of Current Debates, Methods, and Findings. Front Neurol 2021; 12:626393. [PMID: 33776887 PMCID: PMC7994250 DOI: 10.3389/fneur.2021.626393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 11/15/2022] Open
Abstract
Cavitation has gained popularity in recent years as a potential mechanism of blast-induced traumatic brain injury (bTBI). This review presents the most prominent debates on cavitation; how bubbles can form or exist within the cerebrospinal fluid (CSF) and brain vasculature, potential mechanisms of cellular, and tissue level damage following the collapse of bubbles in response to local pressure fluctuations, and a survey of experimental and computational models used to address cavitation research questions. Due to the broad and varied nature of cavitation research, this review attempts to provide a necessary synthesis of cavitation findings relevant to bTBI, and identifies key areas where additional work is required. Fundamental questions about the viability and likelihood of CSF cavitation during blast remain, despite a variety of research regarding potential injury pathways. Much of the existing literature on bTBI evaluates cavitation based off its prima facie plausibility, while more rigorous evaluation of its likelihood becomes increasingly necessary. This review assesses the validity of some of the common assumptions in cavitation research, as well as highlighting outstanding questions that are essential in future work.
Collapse
Affiliation(s)
- Jenny L Marsh
- The Bentil Group, Department of Mechanical Engineering, Iowa State University, Ames, IA, United States
| | - Sarah A Bentil
- The Bentil Group, Department of Mechanical Engineering, Iowa State University, Ames, IA, United States
| |
Collapse
|
13
|
Kawa L, Arborelius UP, Hökfelt T, Risling M. Sex-Specific Differences in Rodents Following a Single Primary Blast Exposure: Focus on the Monoamine and Galanin Systems. Front Neurol 2020; 11:540144. [PMID: 33178100 PMCID: PMC7593658 DOI: 10.3389/fneur.2020.540144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/25/2020] [Indexed: 01/16/2023] Open
Abstract
Most blast-induced traumatic brain injuries (bTBI) are mild in severity and culpable for the lingering and persistent neuropsychological complaints in affected individuals. There is evidence that the prevalence of symptoms post-exposure may be sex-specific. Our laboratory has focused on changes in the monoamine and the neuropeptide, galanin, systems in male rodents following primary bTBI. In this study, we aimed to replicate these findings in female rodents. Brainstem sections from the locus coeruleus (LC) and dorsal raphe nuclei (DRN) were processed for in situ hybridisation at 1 and 7 days post-bTBI. We investigated changes in the transcripts for tyrosine hydroxylase (TH), tryptophan hydroxylase two (TPH2) and galanin. Like in males, we found a transient increase in TH transcript levels bilaterally in the female LC. Changes in TPH2 mRNA were more pronounced and extensive in the DRN of females compared to males. Galanin mRNA was increased bilaterally in the LC and DRN, although this increase was not apparent until day 7 in the LC. Serum analysis revealed an increase in corticosterone, but only in exposed females. These changes occurred without any visible signs of white matter injury, cell death, or blood–brain barrier breakdown. Taken together, in the apparent absence of visible structural damage to the brain, the monoamine and galanin systems, two key players in emotional regulation, are activated deferentially in males and females following primary blast exposure. These similarities and differences should be considered when developing and evaluating diagnostic and therapeutic interventions for bTBI.
Collapse
Affiliation(s)
- Lizan Kawa
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Ulf P Arborelius
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
14
|
Explosive-driven double-blast exposure: molecular, histopathological, and behavioral consequences. Sci Rep 2020; 10:17446. [PMID: 33060648 PMCID: PMC7566442 DOI: 10.1038/s41598-020-74296-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury generated by blast may induce long-term neurological and psychiatric sequelae. We aimed to identify molecular, histopathological, and behavioral changes in rats 2 weeks after explosive-driven double-blast exposure. Rats received two 30-psi (~ 207-kPa) blasts 24 h apart or were handled identically without blast. All rats were behaviorally assessed over 2 weeks. At Day 15, rats were euthanized, and brains removed. Brains were dissected into frontal cortex, hippocampus, cerebellum, and brainstem. Western blotting was performed to measure levels of total-Tau, phosphorylated-Tau (pTau), amyloid precursor protein (APP), GFAP, Iba1, αII-spectrin, and spectrin breakdown products (SBDP). Kinases and phosphatases, correlated with tau phosphorylation were also measured. Immunohistochemistry for pTau, APP, GFAP, and Iba1 was performed. pTau protein level was greater in the hippocampus, cerebellum, and brainstem and APP protein level was greater in cerebellum of blast vs control rats (p < 0.05). GFAP, Iba1, αII-spectrin, and SBDP remained unchanged. No immunohistochemical or neurobehavioral changes were observed. The dissociation between increased pTau and APP in different regions in the absence of neurobehavioral changes 2 weeks after double blast exposure is a relevant finding, consistent with human data showing that battlefield blasts might be associated with molecular changes before signs of neurological and psychiatric disorders manifest.
Collapse
|
15
|
Manohar S, Adler HJ, Chen GD, Salvi R. Blast-induced hearing loss suppresses hippocampal neurogenesis and disrupts long term spatial memory. Hear Res 2020; 395:108022. [PMID: 32663733 PMCID: PMC9063718 DOI: 10.1016/j.heares.2020.108022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Acoustic information transduced by cochlear hair cells is continuously relayed from the auditory pathway to other sensory, motor, emotional and cognitive centers in the central nervous system. Human epidemiological studies have suggested that hearing loss is a risk factor for dementia and cognitive decline, but the mechanisms contributing to these memory and cognitive impairments are poorly understood. To explore these issues in a controlled experimental setting, we exposed adult rats to a series of intense blast wave exposures that significantly reduced the neural output of the cochlea. Several weeks later, we used the Morris Water Maze test, a hippocampal-dependent memory task, to assess the ability of Blast Wave and Control rats to learn a spatial navigation task (memory acquisition) and to remember what they had learned (spatial memory retention) several weeks earlier. The elevated plus maze and open field arena were used to test for anxiety-like behaviors. Afterwards, hippocampal cell proliferation and neurogenesis were evaluated using bromodeoxyuridine (BrdU), doublecortin (DCX), and Neuronal Nuclei (NeuN) immunolabeling. The Blast Wave and Control rats learned the spatial navigation task equally well and showed no differences on tests of anxiety. However, the Blast Wave rats performed significantly worse on the spatial memory retention task, i.e., remembering where they had been two weeks earlier. Deficits on the spatial memory retention task were associated with significant decreases in hippocampal cell proliferation and neurogenesis. Our blast wave results are consistent with other experimental manipulations that link spatial memory retention deficits (long term memory) with decreased cell proliferation and neurogenesis in the hippocampus. These results add to the growing body of knowledge linking blast-induced cochlear hearing loss with the cognitive deficits often seen in combat personnel and provide mechanistic insights into these extra auditory disorders that could lead to therapeutic interventions.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Henry J Adler
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| |
Collapse
|
16
|
Robinson-Freeman KE, Collins KL, Garber B, Terblanche R, Risling M, Vermetten E, Besemann M, Mistlin A, Tsao JW. A Decade of mTBI Experience: What Have We Learned? A Summary of Proceedings From a NATO Lecture Series on Military mTBI. Front Neurol 2020; 11:836. [PMID: 32982907 PMCID: PMC7477387 DOI: 10.3389/fneur.2020.00836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Mild traumatic brain injury (mTBI, also known as a concussion) as a consequence of battlefield blast exposure or blunt force trauma has been of increasing concern to militaries during recent conflicts. This concern is due to the frequency of exposure to improvised explosive devices for forces engaged in operations both in Iraq and Afghanistan coupled with the recognition that mTBI may go unreported or undetected. Blasts can lead to mTBI through a variety of mechanisms. Debate continues as to whether exposure to a primary blast wave alone is sufficient to create brain injury in humans, and if so, exactly how this occurs with an intact skull. Resources dedicated to research in this area have also varied substantially among contributing NATO countries. Most of the research has been conducted in the US, focused on addressing uncertainties in management practices. Development of objective diagnostic tests should be a top priority to facilitate both diagnosis and prognosis, thereby improving management. It is expected that blast exposure and blunt force trauma to the head will continue to be a potential source of injury during future conflicts. An improved understanding of the effects of blast exposure will better enable military medical providers to manage mTBI cases and develop optimal protective measures. Without the immediate pressures that come with a high operational tempo, the time is right to look back at lessons learned, make full use of available data, and modify mitigation strategies with both available evidence and new evidence as it comes to light. Toward that end, leveraging our cooperation with the civilian medical community is critical because the military experience over the past 10 years has led to a renewed interest in many similar issues pertaining to mTBI in the civilian world. Such cross-fertilization of knowledge will undoubtedly benefit all. This paper highlights similarities and differences in approach to mTBI patient care in NATO and partner countries and provides a summary of and lessons learned from a NATO lecture series on the topic of mTBI, demonstrating utility of having patients present their experiences to a medical audience, linking practical clinical care to policy approaches.
Collapse
Affiliation(s)
| | - Kassondra L Collins
- Department of Physical Therapy, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bryan Garber
- Research and Analysis Section, Directorate of Mental Health, Canadian Forces Health Services Group, Ottawa, ON, Canada
| | - Ronel Terblanche
- Centre for Mental and Cognitive Health, DMRC Headey Court, Epsom, United Kingdom
| | - Marten Risling
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Eric Vermetten
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Markus Besemann
- Physical Medicine and Rehabilitation, Canadian Forces Health Services Group, Ottawa, ON, Canada
| | - Alan Mistlin
- Centre for Mental and Cognitive Health, DMRC Headey Court, Epsom, United Kingdom
| | - Jack W Tsao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Children's Foundation Research Institute, Memphis, TN, United States
| |
Collapse
|
17
|
Ravin R, Morgan NY, Blank PS, Ravin N, Guerrero-Cazares H, Quinones-Hinojosa A, Zimmerberg J. Response to Blast-like Shear Stresses Associated with Mild Blast-Induced Brain Injury. Biophys J 2019; 117:1167-1178. [PMID: 31495447 PMCID: PMC6818442 DOI: 10.1016/j.bpj.2019.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/12/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022] Open
Abstract
Toward the goal of understanding the pathophysiology of mild blast-induced traumatic brain injury and identifying the physical forces associated with the primary injury phase, we developed a system that couples a pneumatic blast to a microfluidic channel to precisely and reproducibly deliver shear transients to dissociated human central nervous system (CNS) cells, on a timescale comparable to an explosive blast but with minimal pressure transients. Using fluorescent beads, we have characterized the shear transients experienced by the cells and demonstrate that the system is capable of accurately and reproducibly delivering uniform shear transients with minimal pressure across the cell culture volume. This system is compatible with high-resolution, time-lapse optical microscopy. Using this system, we demonstrate that blast-like shear transients produced with minimal pressure transients and submillisecond rise times activate calcium responses in dissociated human CNS cultures. Cells respond with increased cytosolic free calcium to a threshold shear stress between 8 and 21 Pa; the propagation of this calcium response is a result of purinergic signaling. We propose that this system models, in vitro, the fundamental injury wave produced by shear forces consequent to blast shock waves passing through density inhomogeneity in human CNS cells.
Collapse
Affiliation(s)
- Rea Ravin
- Celoptics, Inc., Rockville, Maryland
| | - Nicole Y Morgan
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, Maryland
| | - Paul S Blank
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | | | | | | | - Joshua Zimmerberg
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
18
|
Bustamante MC, Cronin DS. Cavitation threshold evaluation of porcine cerebrospinal fluid using a Polymeric Split Hopkinson Pressure Bar-Confinement chamber apparatus. J Mech Behav Biomed Mater 2019; 100:103400. [PMID: 31476553 DOI: 10.1016/j.jmbbm.2019.103400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 01/16/2023]
Abstract
Studies investigating mild Traumatic Brain Injury (mTBI) in the military population using experimental head surrogates and Finite Element (FE) head models have demonstrated the existence of transient negative pressures occurring within the head at the contrecoup location to the blast wave impingement. It has been hypothesized that this negative pressure may cause cavitation of cerebrospinal fluid (CSF) and possibly lead to brain tissue damage from cavitation bubble collapse. The cavitation pressure threshold of human CSF is presently unknown, although existing FE studies in the literature have assumed a value of -100 kPa. In the present study, the cavitation threshold of degassed porcine CSF at body temperature (37 °C) was measured using a unique modified Polymeric Split Hopkinson Pressure Bar apparatus, and compared to thresholds of distilled water at various conditions. The loading pulse generated in the apparatus was comparable to experimentally measured pressures resulting from blast exposure, and those predicted by an FE model. The occurrence of cavitation was identified using high-speed imaging and the corresponding pressures were determined using a computational model of the apparatus that was previously developed and validated. The probability of cavitation was calculated (ISO/TS, 18506) from forty-one experimental tests on porcine CSF, representing an upper bound for in vivo CSF. The 50% probability of cavitation for CSF (-0.467 MPa ± 7%) was lower than that of distilled water (-1.37 MPa ± 16%) under the same conditions. The lesser threshold of CSF could be related to the constituents such as blood cells and proteins. The results of this study can be used to inform FE head models subjected to blast exposure and improve prediction of the potential for CSF cavitation and response of brain tissue.
Collapse
Affiliation(s)
- M C Bustamante
- Department of Mechanical Engineering, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L3G1, Canada.
| | - D S Cronin
- Department of Mechanical Engineering, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L3G1, Canada.
| |
Collapse
|
19
|
Risling M, Smith D, Stein TD, Thelin EP, Zanier ER, Ankarcrona M, Nilsson P. Modelling human pathology of traumatic brain injury in animal models. J Intern Med 2019; 285:594-607. [PMID: 30963638 PMCID: PMC9351987 DOI: 10.1111/joim.12909] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is caused by a head impact with a force exceeding regular exposure from normal body movement which the brain normally can accommodate. People affected include, but are not restricted to, sport athletes in American football, ice hockey, boxing as well as military personnel. Both single and repetitive exposures may affect the brain acutely and can lead to chronic neurodegenerative changes including chronic traumatic encephalopathy associated with the development of dementia. The changes in the brain following TBI include neuroinflammation, white matter lesions, and axonal damage as well as hyperphosphorylation and aggregation of tau protein. Even though the human brain gross anatomy is different from rodents implicating different energy transfer upon impact, especially rotational forces, animal models of TBI are important tools to investigate the changes that occur upon TBI at molecular and cellular levels. Importantly, such models may help to increase the knowledge of how the pathologies develop, including the spreading of tau pathologies, and how to diagnose the severity of the TBI in the clinic. In addition, animal models are helpful in the development of novel biomarkers and can also be used to test potential disease-modifying compounds in a preclinical setting.
Collapse
Affiliation(s)
- M Risling
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - D Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - T D Stein
- VA Boston Healthcare System, Boston, MA, USA.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - E P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - E R Zanier
- Department of Neuroscience, Mario Negri Institute, IRCCS Milano, Milano, Italy
| | - M Ankarcrona
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - P Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
20
|
Shah EJ, Gurdziel K, Ruden DM. Mammalian Models of Traumatic Brain Injury and a Place for Drosophila in TBI Research. Front Neurosci 2019; 13:409. [PMID: 31105519 PMCID: PMC6499071 DOI: 10.3389/fnins.2019.00409] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI), caused by a sudden blow or jolt to the brain that disrupts normal function, is an emerging health epidemic with ∼2.5 million cases occurring annually in the United States that are severe enough to cause hospitalization or death. Most common causes of TBI include contact sports, vehicle crashes and domestic violence or war injuries. Injury to the central nervous system is one of the most consistent candidates for initiating the molecular and cellular cascades that result in Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Not every TBI event is alike with effects varying from person to person. The majority of people recover from mild TBI within a short period of time, but repeated incidents can have deleterious long-lasting effects which depend on factors such as the number of TBIs sustained, time till medical attention, age, gender and genetics of the individual. Despite extensive research, many questions still remain regarding diagnosis, treatment, and prevention of long-term effects from TBI as well as recovery of brain function. In this review, we present an overview of TBI pathology, discuss mammalian models for TBI and focus on current methods using Drosophila melanogaster as a model for TBI study. The relatively small brain size (∼100,000 neurons and glia), conserved neurotransmitter signaling mechanisms and sophisticated genetics of Drosophila allows for cell biological, molecular and genetic analyses that are impractical in mammalian models of TBI.
Collapse
Affiliation(s)
- Ekta J. Shah
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Douglas M. Ruden
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
21
|
Assessment of Fluid Cavitation Threshold Using a Polymeric Split Hopkinson Bar-Confinement Chamber Apparatus. CONFERENCE PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL MECHANICS SERIES 2019. [DOI: 10.1007/978-3-319-95062-4_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Divani AA, Salazar P, Monga M, Beilman GJ, SantaCruz KS. Inducing Different Brain Injury Levels Using Shock Wave Lithotripsy. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:2925-2933. [PMID: 29689641 DOI: 10.1002/jum.14656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/04/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To assess the feasibility of inducing different severities of shock wave (SW)-induced traumatic brain injury (TBI) using lithotripsy. METHODS Wistar rats (n = 36) were divided into 2 groups: group 1 (n = 20) received 5 SW pulses, and group 2 (n = 16) received 15 SWs pulses. The SW pulses were delivered to the right side of the frontal cortex. Neurologic and behavioral assessments (Garcia test, beam walking, rotarod, and elevated plus maze) were performed at the baseline and at 3, 6, 24, 72, and 168 hours after injury. At day 7 after injury (168 hours), we performed cerebral angiography to assess the presence of cerebral vasospasm and vascular damage due to SW-induced TBI. At the conclusion of the study, the animals were euthanized to assess damage to brain tissue using an overall histologic severity score. RESULTS The Garcia score was significantly higher, and the anxiety index (based on the elevated plus maze) was significantly lower in group 1 compared to group 2 (P < .05). The anxiety index for group 1 returned to the baseline level in a fast nonlinear fashion, whereas the anxiety index for group 2 followed a distinct slow linear reduction. Cerebral angiograms revealed a more severe vasospasm for the animals in group 2 compared to group 1 (P = .027). We observed a statistically significant difference in the overall histologic severity scores between the groups. The median (interquartile range) overall histologic severity scores for groups 1 and 2 were 3.0 (2.75) and 6.5 (6.0), respectively (P = .023). CONCLUSIONS We have successfully established different SW-induced TBI severities in our SW-induced TBI model by delivering different numbers of SW pulses to brain tissue.
Collapse
Affiliation(s)
- Afshin A Divani
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Manoj Monga
- Department of Urology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Greg J Beilman
- Department of Surgery, Division of Surgical Critical Care and Acute Care Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karen S SantaCruz
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
23
|
Brady RD, Casillas-Espinosa PM, Agoston DV, Bertram EH, Kamnaksh A, Semple BD, Shultz SR. Modelling traumatic brain injury and posttraumatic epilepsy in rodents. Neurobiol Dis 2018; 123:8-19. [PMID: 30121231 DOI: 10.1016/j.nbd.2018.08.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Posttraumatic epilepsy (PTE) is one of the most debilitating and understudied consequences of traumatic brain injury (TBI). It is challenging to study the effects, underlying pathophysiology, biomarkers, and treatment of TBI and PTE purely in human patients for a number of reasons. Rodent models can complement human PTE studies as they allow for the rigorous investigation into the causal relationship between TBI and PTE, the pathophysiological mechanisms of PTE, the validation and implementation of PTE biomarkers, and the assessment of PTE treatments, in a tightly controlled, time- and cost-efficient manner in experimental subjects known to be experiencing epileptogenic processes. This article will review several common rodent models of TBI and/or PTE, including their use in previous studies and discuss their relative strengths, limitations, and avenues for future research to advance our understanding and treatment of PTE.
Collapse
Affiliation(s)
- Rhys D Brady
- Departments of Neuroscience and Medicine, Central Clinical School, Monash University, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia.
| | - Pablo M Casillas-Espinosa
- Departments of Neuroscience and Medicine, Central Clinical School, Monash University, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia.
| | - Denes V Agoston
- Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Edward H Bertram
- Department of Neurology, University of Virginia, P.O. Box 800394, Charlottesville, VA 22908-0394, USA
| | - Alaa Kamnaksh
- Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Bridgette D Semple
- Departments of Neuroscience and Medicine, Central Clinical School, Monash University, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia
| | - Sandy R Shultz
- Departments of Neuroscience and Medicine, Central Clinical School, Monash University, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia
| |
Collapse
|
24
|
Zhang JH, Gu JW, Li BC, Gao FB, Liao XM, Cui SJ. Establishment of a novel rat model of blast-related diffuse axonal injury. Exp Ther Med 2018; 16:93-102. [PMID: 29977358 PMCID: PMC6030930 DOI: 10.3892/etm.2018.6146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/05/2018] [Indexed: 02/05/2023] Open
Abstract
Although studies concerning blast-related traumatic brain injury (bTBI) have demonstrated the significance of diffuse axonal injury (DAI), no standard models for this type of injury have been widely accepted. The present study investigated a mechanism of inducing DAI through real blast injury, which was achieved by performing instantaneous high-speed swinging of the rat head, thus establishing a stable animal model of blast DAI. Adult Sprague-Dawley rats weighing 150±10 g were randomly divided into experimental (n=16), control (n=10) and sham control (n=6) groups. The frontal, parietal and occipital cortex of the rats in the experimental group were exposed, whereas those of the control group were unexposed; the sham control group rats were anesthetized and attached to the craniocerebral blast device without experiencing a blast. The rats were subjected to craniocerebral blast injury through a blast equivalent to 400 mg of trinitrotoluene using an electric detonator. Biomechanical parameters, and physical and behavioural changes of the sagittal head swing were measured using a high-speed camera. Magnetic resonance imaging (MRI) scans were conducted at 2, 12, 24 and 48 h after craniocerebral injury, only the experimental group indicated brain stem injury. The rats were sacrificed immediately following the MRI at 48 h for pathological examination of the brain stem using haematoxylin and eosin staining. The results indicated that 14 rats (87.5%) in the experimental group exhibited blast DAI, while no DAI was observed in the control and sham control groups, and the difference between the groups was significant (P<0.05). The present results indicated that this experimental design may serve to provide a stable model of blast DAI in rats.
Collapse
Affiliation(s)
- Jun-Hai Zhang
- Department of Neurosurgery, The 306th Hospital of The People's Liberation Army, Beijing 100101, P.R. China
| | - Jian-Wen Gu
- Department of Neurosurgery, The 306th Hospital of The People's Liberation Army, Beijing 100101, P.R. China
| | - Bing-Cang Li
- Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400042, P.R. China
| | - Fa-Bao Gao
- Department of Radiology and Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiao-Ming Liao
- The Professional Laboratory, College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Shao-Jie Cui
- Department of Neurosurgery, The 306th Hospital of The People's Liberation Army, Beijing 100101, P.R. China
| |
Collapse
|
25
|
Allen RS, Motz CT, Feola A, Chesler KC, Haider R, Ramachandra Rao S, Skelton LA, Fliesler SJ, Pardue MT. Long-Term Functional and Structural Consequences of Primary Blast Overpressure to the Eye. J Neurotrauma 2018; 35:2104-2116. [PMID: 29648979 DOI: 10.1089/neu.2017.5394] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acoustic blast overpressure (ABO) injury in military personnel and civilians is often accompanied by delayed visual deficits. However, most animal model studies dealing with blast-induced visual defects have focused on short-term (≤1 month) changes. Here, we evaluated long-term (≤8 months) retinal structure and function deficits in rats with ABO injury. Adult male Long-Evans rats were subjected to ABO from a single blast (approximately 190 dB SPL, ∼63 kPa, @80 psi), generated by a shock tube device. Retinal function (electroretinography; ERG), visual function (optomotor response), retinal thickness (spectral domain-optical coherence tomography; SD-OCT), and spatial cognition/exploratory motor behavior (Y-maze) were measured at 2, 4, 6, and 8 months post-blast. Immunohistochemical analysis of glial fibrillary acidic protein (GFAP) in retinal sections was performed at 8 months post-blast. Electroretinogram a- and b-waves, oscillatory potentials, and flicker responses showed greater amplitudes with delayed implicit times in both eyes of blast-exposed animals, relative to controls. Contrast sensitivity (CS) was reduced in both eyes of blast-exposed animals, whereas spatial frequency (SF) was decreased only in ipsilateral eyes, relative to controls. Total retinal thickness was greater in both eyes of blast-exposed animals, relative to controls, due to increased thickness of several retinal layers. Age, but not blast exposure, altered Y-maze outcomes. GFAP was greatly increased in blast-exposed retinas. ABO exposure resulted in visual and retinal changes that persisted up to 8 months post-blast, mimicking some of the visual deficits observed in human blast-exposed patients, thereby making this a useful model to study mechanisms of injury and potential treatments.
Collapse
Affiliation(s)
- Rachael S Allen
- 1 Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center , Atlanta, Georgia .,2 Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Cara T Motz
- 1 Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center , Atlanta, Georgia
| | - Andrew Feola
- 1 Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center , Atlanta, Georgia .,2 Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Kyle C Chesler
- 2 Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Raza Haider
- 1 Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center , Atlanta, Georgia
| | - Sriganesh Ramachandra Rao
- 3 Ophthalmology, Biochemistry, and Neuroscience Program, SUNY-University at Buffalo , Buffalo, New York
| | - Lara A Skelton
- 4 Research Service, VA Western NY Healthcare System , Buffalo, New York
| | - Steven J Fliesler
- 3 Ophthalmology, Biochemistry, and Neuroscience Program, SUNY-University at Buffalo , Buffalo, New York.,4 Research Service, VA Western NY Healthcare System , Buffalo, New York
| | - Machelle T Pardue
- 1 Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center , Atlanta, Georgia .,2 Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
26
|
Kawa L, Kamnaksh A, Long JB, Arborelius UP, Hökfelt T, Agoston DV, Risling M. A Comparative Study of Two Blast-Induced Traumatic Brain Injury Models: Changes in Monoamine and Galanin Systems Following Single and Repeated Exposure. Front Neurol 2018; 9:479. [PMID: 29973912 PMCID: PMC6019469 DOI: 10.3389/fneur.2018.00479] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/01/2018] [Indexed: 12/28/2022] Open
Abstract
Repeated mild blast-induced traumatic brain injury (rmbTBI), caused by recurrent exposure to low levels of explosive blast, is a significant concern for military health systems. However, the pathobiology of rmbTBI is currently poorly understood. Animal models are important tools to identify the molecular changes of rmbTBI, but comparisons across different models can present their own challenges. In this study, we compared two well-established rodent models of mbTBI, the "KI model" and the "USU/WRAIR model." These two models create different pulse forms, in terms of peak pressure and duration. Following single and double exposures to mild levels of blast, we used in situ hybridization (ISH) to assess changes in mRNA levels of tyrosine hydroxylase (TH), tryptophan hydroxylase (TPH2), and galanin in the locus coeruleus (LC) and dorsal raphe nucleus (DRN). These systems and their transmitters are known to mediate responses to stress and anxiety. We found increased mRNA levels of TH, TPH2 and galanin in the LC and DRN of single-exposed rats relative to sham rats in the KI but not the USU/WRAIR model. Sham mRNA values measured in the USU/WRAIR model were substantially higher than their KI counterparts. Double exposure caused similarly significant increases in mRNA values in the KI model but not the USU/WRAIR model, except TPH2 and galanin levels in the DRN. We detected no cumulative effect of injury in either model at the used inter-injury interval (30 min), and there were no detectable neuropathological changes in any experimental group at 1 day post-injury. The apparent lack of early response to injury as compared to sham in the USU/WRAIR model is likely caused by stressors (e.g., transportation and noise), associated with the experimental execution, that were absent in the KI model. This study is the first to directly compare two established rodent models of rmbTBI, and to highlight the challenges of comparing findings from different animal models. Additional studies are needed to understand the role of stress, dissect the effects of psychological and physical injuries and to identify the window of increased cerebral vulnerability, i.e., the inter-injury interval that results in a cumulative effect following repeated blast exposure.
Collapse
Affiliation(s)
- Lizan Kawa
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology and Genetics, Uniformed Services, University, Bethesda, MD, United States
| | - Joseph B Long
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ulf P Arborelius
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Denes V Agoston
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Anatomy, Physiology and Genetics, Uniformed Services, University, Bethesda, MD, United States
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Agoston DV. Modeling the Long-Term Consequences of Repeated Blast-Induced Mild Traumatic Brain Injuries. J Neurotrauma 2018; 34:S44-S52. [PMID: 28937952 DOI: 10.1089/neu.2017.5317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Repeated mild traumatic brain injury (rmTBI) caused by playing collision sports or by exposure to blasts during military operations can lead to late onset, chronic diseases such as chronic traumatic encephalopathy (CTE), a progressive neurodegenerative condition that manifests in increasingly severe neuropsychiatric abnormalities years after the last injury. Currently, because of the heterogeneity of the clinical presentation, confirmation of a CTE diagnosis requires post-mortem examination of the brain. The hallmarks of CTE are abnormal accumulation of phosphorylated tau protein, TDP-43 immunoreactive neuronal cytoplasmic inclusions, and astroglial abnormalities, but the pathomechanism leading to these terminal findings remains unknown. Animal modeling can play an important role in the identification of CTE pathomechanisms, the development of early stage diagnostic and prognostic biomarkers, and pharmacological interventions. Modeling the long-term consequences of blast rmTBI in animals is especially challenging because of the complexities of blast physics and animal-to-human scaling issues. This review summarizes current knowledge about the pathobiologies of CTE and rmbTBI and discusses problems as well as potential solutions related to high-fidelity modeling of rmbTBI and determining its long-term consequences.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University , Bethesda, Maryland; Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
28
|
Agoston D, Arun P, Bellgowan P, Broglio S, Cantu R, Cook D, da Silva UO, Dickstein D, Elder G, Fudge E, Gandy S, Gill J, Glenn JF, Gupta RK, Hinds S, Hoffman S, Lattimore T, Lin A, Lu KP, Maroon J, Okonkwo D, Perl D, Robinson M, Rosen C, Smith D. Military Blast Injury and Chronic Neurodegeneration: Research Presentations from the 2015 International State-of-the-Science Meeting. J Neurotrauma 2018; 34:S6-S17. [PMID: 28937955 DOI: 10.1089/neu.2017.5220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Blast-related traumatic brain injury (TBI) is a signature injury of recent military conflicts, leading to increased Department of Defense (DoD) interest in its potential long-term effects, such as chronic traumatic encephalopathy (CTE). The DoD Blast Injury Research Program Coordinating Office convened the 2015 International State-of-the-Science Meeting to discuss the existing evidence regarding a causal relationship between TBI and CTE. Over the course of the meeting, experts across government, academia, and the sports community presented cutting edge research on the unique pathological characteristics of blast-related TBI, blast-related neurodegenerative mechanisms, risk factors for CTE, potential biomarkers for CTE, and treatment strategies for chronic neurodegeneration. The current paper summarizes these presentations. Although many advances have been made to address these topics, more research is needed to establish the existence of links between the long-term effects of single or multiple blast-related TBI and CTE.
Collapse
Affiliation(s)
- Denes Agoston
- 1 Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Peethambaran Arun
- 2 Walter Reed Army Institute of Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Patrick Bellgowan
- 3 National Institute of Neurological Disorders and Stroke , Bethesda, Maryland
| | | | - Robert Cantu
- 5 Boston University School of Medicine , Boston, Massachusetts
| | - David Cook
- 6 VA Puget Sound Health Care System , Seattle, Washington
| | | | - Dara Dickstein
- 8 Icahn School of Medicine at Mount Sinai , New York, New York
| | - Gregory Elder
- 9 James J. Peters VA Medical Center , Bronx, New York
| | - Elizabeth Fudge
- 10 Office of the Assistant Secretary of Defense , Health Affairs, Falls Church, Virginia
| | - Sam Gandy
- 8 Icahn School of Medicine at Mount Sinai , New York, New York.,11 James J. Peters VA Medical Center , Bronx, New York
| | - Jessica Gill
- 12 National Institutes of Health , Bethesda, Maryland
| | - John F Glenn
- 13 US Army Medical Research and Materiel Command , Fort Detrik, Maryland
| | - Raj K Gupta
- 13 US Army Medical Research and Materiel Command , Fort Detrik, Maryland
| | - Sidney Hinds
- 14 Defense and Veterans Brain Injury Center , Rockville, Maryland
| | | | - Theresa Lattimore
- 10 Office of the Assistant Secretary of Defense , Health Affairs, Falls Church, Virginia
| | - Alexander Lin
- 16 Brigham and Women's Hospital , Harvard Medical School, Boston, Massachusetts
| | - Kun Ping Lu
- 17 Beth Israel Deaconess Medical Center , Harvard Medical School, Boston, Massachusetts
| | - Joseph Maroon
- 18 University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - David Okonkwo
- 18 University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Daniel Perl
- 1 Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | | | - Charles Rosen
- 20 Department of Neurosurgery, West Virginia University , Morgantown, West Virginia
| | - Douglas Smith
- 21 University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Watts S, Kirkman E, Bieler D, Bjarnason S, Franke A, Gupta R, Leggieri MJ, Orru H, Ouellet S, Philippens M, Sarron JC, Skriudalen S, Teland JA, Risling M, Cernak I. Guidelines for using animal models in blast injury research. J ROY ARMY MED CORPS 2018; 165:38-40. [PMID: 29643122 DOI: 10.1136/jramc-2018-000956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2018] [Indexed: 11/03/2022]
Abstract
Blast injury is a very complex phenomenon and frequently results in multiple injuries. One method to investigate the consequences of blast injuries is with the use of living systems (animal models). The use of animals allows the examination and evaluation of injury mechanisms in a more controlled manner, allowing variables such as primary or secondary blast injury for example, to be isolated and manipulated as required. To ensure a degree of standardisation across the blast research community a set of guidelines which helps researchers navigate challenges of modelling blast injuries in animals is required. This paper describes the guidelines for Using Animal Models in Blast Injury Research developed by the NATO Health Factors and Medicine (HFM) Research Task Group 234.
Collapse
Affiliation(s)
- Sarah Watts
- CBR Division, Dstl Porton Down, Salisbury, Wiltshire, UK
| | - E Kirkman
- CBR Division, Dstl Porton Down, Salisbury, Wiltshire, UK
| | - D Bieler
- Department of Trauma Surgery and Orthopaedics, German Armed Forces Central Hospital of Koblenz, Koblenz, Germany
| | - S Bjarnason
- Defence Research and Development Canada-Suffield Research Centre, Ottawa, Ontario, Canada
| | - A Franke
- Department of Trauma Surgery and Orthopaedics, German Armed Forces Central Hospital of Koblenz, Koblenz, Germany
| | - R Gupta
- US Army Medical Research and Materiel Command, DoD Blast Injury Research Program Executive Agency, Maryland, USA
| | - M J Leggieri
- US Army Medical Research and Materiel Command, DoD Blast Injury Research Program Executive Agency, Maryland, USA
| | - H Orru
- Institute of Family Medicine and Public Health University of Tartu, Tartu, Estonia
| | - S Ouellet
- Defence Research and Development Canada-Valcartier Research Centre, Quebec City, Quebec, Canada
| | - M Philippens
- Explosions, Ballistics and Protection, TNO Locatie Rijswijk, Rijswijk, The Netherlands
| | - J-C Sarron
- Sous-direction 'Plans-Capacités', Paris, France
| | - S Skriudalen
- Norwegian Defence Research Establishment (FFI), Kjeller, Norway
| | - J A Teland
- Norwegian Defence Research Establishment (FFI), Kjeller, Norway
| | - M Risling
- Department of Neuroscience, Karolinska Institute, Solna, Sweden
| | - I Cernak
- STARR-C (Stress, Trauma and Resilience Research Consulting), Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Song H, Cui J, Simonyi A, Johnson CE, Hubler GK, DePalma RG, Gu Z. Linking blast physics to biological outcomes in mild traumatic brain injury: Narrative review and preliminary report of an open-field blast model. Behav Brain Res 2018; 340:147-158. [DOI: 10.1016/j.bbr.2016.08.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/13/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022]
|
31
|
Lipponen A, El-Osta A, Kaspi A, Ziemann M, Khurana I, KN H, Navarro-Ferrandis V, Puhakka N, Paananen J, Pitkänen A. Transcription factors Tp73, Cebpd, Pax6, and Spi1 rather than DNA methylation regulate chronic transcriptomics changes after experimental traumatic brain injury. Acta Neuropathol Commun 2018; 6:17. [PMID: 29482641 PMCID: PMC5828078 DOI: 10.1186/s40478-018-0519-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/15/2018] [Indexed: 11/10/2022] Open
Abstract
Traumatic brain injury (TBI) induces a wide variety of cellular and molecular changes that can continue for days to weeks to months, leading to functional impairments. Currently, there are no pharmacotherapies in clinical use that favorably modify the post-TBI outcome, due in part to limited understanding of the mechanisms of TBI-induced pathologies. Our system biology analysis tested the hypothesis that chronic transcriptomics changes induced by TBI are controlled by altered DNA-methylation in gene promoter areas or by transcription factors. We performed genome-wide methyl binding domain (MBD)-sequencing (seq) and RNA-seq in perilesional, thalamic, and hippocampal tissue sampled at 3 months after TBI induced by lateral fluid percussion in adult male Sprague-Dawley rats. We investigated the regulated molecular networks and mechanisms underlying the chronic regulation, particularly DNA methylation and transcription factors. Finally, we identified compounds that modulate the transcriptomics changes and could be repurposed to improve recovery. Unexpectedly, DNA methylation was not a major regulator of chronic post-TBI transcriptomics changes. On the other hand, the transcription factors Cebpd, Pax6, Spi1, and Tp73 were upregulated at 3 months after TBI (False discovery rate < 0.05), which was validated using digital droplet polymerase chain reaction. Transcription regulatory network analysis revealed that these transcription factors regulate apoptosis, inflammation, and microglia, which are well-known contributors to secondary damage after TBI. Library of Integrated Network-based Cellular Signatures (LINCS) analysis identified 118 pharmacotherapies that regulate the expression of Cebpd, Pax6, Spi1, and Tp73. Of these, the antidepressant and/or antipsychotic compounds trimipramine, rolipramine, fluspirilene, and chlorpromazine, as well as the anti-cancer therapies pimasertib, tamoxifen, and vorinostat were strong regulators of the identified transcription factors, suggesting their potential to modulate the regulated transcriptomics networks to improve post-TBI recovery.
Collapse
Affiliation(s)
- Anssi Lipponen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC Australia
- Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR
| | - Antony Kaspi
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC Australia
| | - Mark Ziemann
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC Australia
| | - Ishant Khurana
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC Australia
| | - Harikrishnan KN
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC Australia
| | - Vicente Navarro-Ferrandis
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Noora Puhakka
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Jussi Paananen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- University of Eastern Finland Bioinformatics Center, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
32
|
Bhatti J, Nascimento B, Akhtar U, Rhind SG, Tien H, Nathens A, da Luz LT. Systematic Review of Human and Animal Studies Examining the Efficacy and Safety of N-Acetylcysteine (NAC) and N-Acetylcysteine Amide (NACA) in Traumatic Brain Injury: Impact on Neurofunctional Outcome and Biomarkers of Oxidative Stress and Inflammation. Front Neurol 2018; 8:744. [PMID: 29387038 PMCID: PMC5776005 DOI: 10.3389/fneur.2017.00744] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Background No new therapies for traumatic brain injury (TBI) have been officially translated into current practice. At the tissue and cellular level, both inflammatory and oxidative processes may be exacerbated post-injury and contribute to further brain damage. N-acetylcysteine (NAC) has the potential to downregulate both processes. This review focuses on the potential neuroprotective utility of NAC and N-acetylcysteine amide (NACA) post-TBI. Methods Medline, Embase, Cochrane Library, and ClinicalTrials.gov were searched up to July 2017. Studies that examined clinical and laboratory effects of NAC and NACA post-TBI in human and animal studies were included. Risk of bias was assessed in human and animal studies according to the design of each study (randomized or not). The primary outcome assessed was the effect of NAC/NACA treatment on functional outcome, while secondary outcomes included the impact on biomarkers of inflammation and oxidation. Due to the clinical and methodological heterogeneity observed across studies, no meta-analyses were conducted. Results Our analyses revealed only three human trials, including two randomized controlled trials (RCTs) and 20 animal studies conducted using standardized animal models of brain injury. The two RCTs reported improvement in the functional outcome post-NAC/NACA administration. Overall, the evidence from animal studies is more robust and demonstrated substantial improvement of cognition and psychomotor performance following NAC/NACA use. Animal studies also reported significantly more cortical sparing, reduced apoptosis, and lower levels of biomarkers of inflammation and oxidative stress. No safety concerns were reported in any of the studies included in this analysis. Conclusion Evidence from the animal literature demonstrates a robust association for the prophylactic application of NAC and NACA post-TBI with improved neurofunctional outcomes and downregulation of inflammatory and oxidative stress markers at the tissue level. While a growing body of scientific literature suggests putative beneficial effects of NAC/NACA treatment for TBI, the lack of well-designed and controlled clinical investigations, evaluating therapeutic outcomes, prognostic biomarkers, and safety profiles, limits definitive interpretation and recommendations for its application in humans at this time.
Collapse
Affiliation(s)
- Junaid Bhatti
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Barto Nascimento
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Umbreen Akhtar
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Shawn G Rhind
- Defense Research and Development Canada (DRDC), Toronto Research Centre, Toronto, ON, Canada
| | - Homer Tien
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Avery Nathens
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Luis Teodoro da Luz
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Rodriguez UA, Zeng Y, Deyo D, Parsley MA, Hawkins BE, Prough DS, DeWitt DS. Effects of Mild Blast Traumatic Brain Injury on Cerebral Vascular, Histopathological, and Behavioral Outcomes in Rats. J Neurotrauma 2018; 35:375-392. [PMID: 29160141 PMCID: PMC5784797 DOI: 10.1089/neu.2017.5256] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To determine the effects of mild blast-induced traumatic brain injury (bTBI), several groups of rats were subjected to blast injury or sham injury in a compressed air-driven shock tube. The effects of bTBI on relative cerebral perfusion (laser Doppler flowmetry [LDF]), and mean arterial blood pressure (MAP) cerebral vascular resistance were measured for 2 h post-bTBI. Dilator responses to reduced intravascular pressure were measured in isolated middle cerebral arterial (MCA) segments, ex vivo, 30 and 60 min post-bTBI. Neuronal injury was assessed (Fluoro-Jade C [FJC]) 24 and 48 h post-bTBI. Neurological outcomes (beam balance and walking tests) and working memory (Morris water maze [MWM]) were assessed 2 weeks post-bTBI. Because impact TBI (i.e., non-blast TBI) is often associated with reduced cerebral perfusion and impaired cerebrovascular function in part because of the generation of reactive oxygen and nitrogen species such as peroxynitrite (ONOO-), the effects of the administration of the ONOO- scavenger, penicillamine methyl ester (PenME), on cerebral perfusion and cerebral vascular resistance were measured for 2 h post-bTBI. Mild bTBI resulted in reduced relative cerebral perfusion and MCA dilator responses to reduced intravascular pressure, increases in cerebral vascular resistance and in the numbers of FJC-positive cells in the brain, and significantly impaired working memory. PenME administration resulted in significant reductions in cerebral vascular resistance and a trend toward increased cerebral perfusion, suggesting that ONOO- may contribute to blast-induced cerebral vascular dysfunction.
Collapse
Affiliation(s)
- Uylissa A. Rodriguez
- Cell Biology Graduate Program, Department of Neuroscience and Cell Biology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Yaping Zeng
- The Moody Project for Translational Traumatic Brain Injury Research, Charles R. Allen Research Laboratories, Department of Anesthesiology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Donald Deyo
- The Moody Project for Translational Traumatic Brain Injury Research, Charles R. Allen Research Laboratories, Department of Anesthesiology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Margaret A. Parsley
- The Moody Project for Translational Traumatic Brain Injury Research, Charles R. Allen Research Laboratories, Department of Anesthesiology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Bridget E. Hawkins
- Cell Biology Graduate Program, Department of Neuroscience and Cell Biology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Donald S. Prough
- The Moody Project for Translational Traumatic Brain Injury Research, Charles R. Allen Research Laboratories, Department of Anesthesiology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Douglas S. DeWitt
- Cell Biology Graduate Program, Department of Neuroscience and Cell Biology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
- The Moody Project for Translational Traumatic Brain Injury Research, Charles R. Allen Research Laboratories, Department of Anesthesiology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
34
|
DeWalt GJ, Eldred WD. Visual system pathology in humans and animal models of blast injury. J Comp Neurol 2017; 525:2955-2967. [PMID: 28560719 DOI: 10.1002/cne.24252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 12/20/2022]
Abstract
Injury from blast exposure is becoming a more prevalent cause of death and disability worldwide. The devastating neurological impairments that result from blasts are significant and lifelong. Progress in the development of effective therapies to treat injury has been slowed by its heterogeneous pathology and the dearth of information regarding the cellular mechanisms involved. Within the last decade, a number of studies have documented visual dysfunction following injury. This brief review examines damage to the visual system in both humans and animal models of blast injury. The in vivo use of the retina as a surrogate to evaluate brain injury following exposure to blast is also highlighted.
Collapse
Affiliation(s)
- Gloria J DeWalt
- Department of Biology, Boston University, Boston, Massachusetts
| | | |
Collapse
|
35
|
Exendin-4 attenuates blast traumatic brain injury induced cognitive impairments, losses of synaptophysin and in vitro TBI-induced hippocampal cellular degeneration. Sci Rep 2017. [PMID: 28623327 PMCID: PMC5473835 DOI: 10.1038/s41598-017-03792-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mild blast traumatic brain injury (B-TBI) induced lasting cognitive impairments in novel object recognition and less severe deficits in Y-maze behaviors. B-TBI significantly reduced the levels of synaptophysin (SYP) protein staining in cortical (CTX) and hippocampal (HIPP) tissues. Treatment with exendin-4 (Ex-4) delivered by subcutaneous micro-osmotic pumps 48 hours prior to or 2 hours immediately after B-TBI prevented the induction of both cognitive deficits and B-TBI induced changes in SYP staining. The effects of a series of biaxial stretch injuries (BSI) on a neuronal derived cell line, HT22 cells, were assessed in an in vitro model of TBI. Biaxial stretch damage induced shrunken neurites and cell death. Treatment of HT22 cultures with Ex-4 (25 to 100 nM), prior to injury, attenuated the cytotoxic effects of BSI and preserved neurite length similar to sham treated cells. These data imply that treatment with Ex-4 may represent a viable option for the management of secondary events triggered by blast-induced, mild traumatic brain injury that is commonly observed in militarized zones.
Collapse
|
36
|
Werhane ML, Evangelista ND, Clark AL, Sorg SF, Bangen KJ, Tran M, Schiehser DM, Delano-Wood L. Pathological vascular and inflammatory biomarkers of acute- and chronic-phase traumatic brain injury. Concussion 2017; 2:CNC30. [PMID: 30202571 PMCID: PMC6094091 DOI: 10.2217/cnc-2016-0022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/19/2016] [Indexed: 12/24/2022] Open
Abstract
Given the demand for developing objective methods for characterizing traumatic brain injury (TBI), research dedicated to evaluating putative biomarkers has burgeoned over the past decade. Since it is critical to elucidate the underlying pathological processes that underlie the higher diverse outcomes that follow neurotrauma, considerable efforts have been aimed at identifying biomarkers of both the acute- and chronic-phase TBI. Such information is not only critical for helping to elucidate the pathological changes that lead to poor long-term outcomes following TBI but it may also assist in the identification of possible prevention and interventions for individuals who sustain head trauma. In the current review, we discuss the potential role of vascular dysfunction and chronic inflammation in both acute- and chronic-phase TBI, and we also highlight existing studies that have investigated inflammation biomarkers associated with poorer injury outcome.
Collapse
Affiliation(s)
- Madeleine L Werhane
- San Diego State University/University of California, San Diego (SDSU/UC San Diego) Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
| | | | - Alexandra L Clark
- San Diego State University/University of California, San Diego (SDSU/UC San Diego) Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Scott F Sorg
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Katherine J Bangen
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - My Tran
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- San Diego State University (SDSU), San Diego, CA 92182, USA
| | - Dawn M Schiehser
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Psychiatry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Lisa Delano-Wood
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Psychiatry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| |
Collapse
|
37
|
Kallakuri S, Desai A, Feng K, Tummala S, Saif T, Chen C, Zhang L, Cavanaugh JM, King AI. Neuronal Injury and Glial Changes Are Hallmarks of Open Field Blast Exposure in Swine Frontal Lobe. PLoS One 2017; 12:e0169239. [PMID: 28107370 PMCID: PMC5249202 DOI: 10.1371/journal.pone.0169239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 12/13/2016] [Indexed: 02/03/2023] Open
Abstract
With the rapid increase in the number of blast induced traumatic brain injuries and associated neuropsychological consequences in veterans returning from the operations in Iraq and Afghanistan, the need to better understand the neuropathological sequelae following exposure to an open field blast exposure is still critical. Although a large body of experimental studies have attempted to address these pathological changes using shock tube models of blast injury, studies directed at understanding changes in a gyrencephalic brain exposed to a true open field blast are limited and thus forms the focus of this study. Anesthetized, male Yucatan swine were subjected to forward facing medium blast overpressure (peak side on overpressure 224-332 kPa; n = 7) or high blast overpressure (peak side on overpressure 350-403 kPa; n = 5) by detonating 3.6 kg of composition-4 charge. Sham animals (n = 5) were subjected to all the conditions without blast exposure. After a 3-day survival period, the brain was harvested and sections from the frontal lobes were processed for histological assessment of neuronal injury and glial reactivity changes. Significant neuronal injury in the form of beta amyloid precursor protein immunoreactive zones in the gray and white matter was observed in the frontal lobe sections from both the blast exposure groups. A significant increase in the number of astrocytes and microglia was also observed in the blast exposed sections compared to sham sections. We postulate that the observed acute injury changes may progress to chronic periods after blast and may contribute to short and long-term neuronal degeneration and glial mediated inflammation.
Collapse
Affiliation(s)
- Srinivasu Kallakuri
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Alok Desai
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Ke Feng
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Sharvani Tummala
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Tal Saif
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Chaoyang Chen
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Liying Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - John M. Cavanaugh
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Albert I. King
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
38
|
Chen HJ, Xu C, Li Y, Chen ZQ, Li GH, Duan ZX, Li XX, Zhang JY, Wang Z, Feng H, Li BC. An open air research study of blast-induced traumatic brain injury to goats. Chin J Traumatol 2017; 18:267-74. [PMID: 26777709 DOI: 10.1016/j.cjtee.2015.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE We once reported blast-induced traumatic brain injury (bTBI) in confined space. Here, bTBI was studied again on goats in the open air using 3.0 kg trinitrotoluene. METHODS The goats were placed at 2, 4, 6 and 8 m far from explosion center. Trinitrotoluene (TNT) was used as the source of the blast wave and the pressure at each distance was recorded. The systemic physiology, electroencephalogram, serum level of S-100 beta, and neuron specific enolase (NSE) were determined pre and post the exposure. Neuroanatomy and neuropathology were observed 4 h after the exposure. RESULTS Simple blast waveforms were recorded with parameters of 702.8 kPa-0.442 ms, 148.4 kPa-2.503 ms, 73.9 kPa-3.233 ms, and 41.9 kPa-5.898 ms at 2, 4, 6 and 8 m respectively. Encephalic blast overpressure was on the first time recorded in the literature by us at 104.2 kPa-0.60 ms at 2 m, where mortality and burn rate were 44% and 44%. Gross examination showed that bTBI was mainly manifested as congestive expansion of blood vessels and subarachnoid hemorrhage, which had a total incidence of 25% and 19% in 36 goats. Microscopical observation found that the main pathohistological changes were enlarged perivascular space (21/36, 58%), small hemorrhages (9/36, 25%), vascular dilatation and congestion (8/36, 22%), and less subarachnoid hemorrhage (2/36, 6%). After explosion, serum levels of S-100b and NSE were elevated, and EEG changed into slow frequency with declined amplitude. The results indicated that severity and incidence of bTBI is related to the intensity of blast overpressure. CONCLUSION Blast wave can pass through the skull to directly injure brain tissue.
Collapse
Affiliation(s)
- Hui-Jun Chen
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lipponen A, Paananen J, Puhakka N, Pitkänen A. Analysis of Post-Traumatic Brain Injury Gene Expression Signature Reveals Tubulins, Nfe2l2, Nfkb, Cd44, and S100a4 as Treatment Targets. Sci Rep 2016; 6:31570. [PMID: 27530814 PMCID: PMC4987651 DOI: 10.1038/srep31570] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022] Open
Abstract
We aimed to define the chronically altered gene expression signature of traumatic brain injury (TBI-sig) to discover novel treatments to reverse pathologic gene expression or reinforce the expression of recovery-related genes. Genome-wide RNA-sequencing was performed at 3 months post-TBI induced by lateral fluid-percussion injury in rats. We found 4964 regulated genes in the perilesional cortex and 1966 in the thalamus (FDR < 0.05). TBI-sig was used for a LINCS analysis which identified 11 compounds that showed a strong connectivity with the TBI-sig in neuronal cell lines. Of these, celecoxib and sirolimus were recently reported to have a disease-modifying effect in in vivo animal models of epilepsy. Other compounds revealed by the analysis were BRD-K91844626, BRD-A11009626, NO-ASA, BRD-K55260239, SDZ-NKT-343, STK-661558, BRD-K75971499, ionomycin, and desmethylclomipramine. Network analysis of overlapping genes revealed the effects on tubulins (Tubb2a, Tubb3, Tubb4b), Nfe2l2, S100a4, Cd44, and Nfkb2, all of which are linked to TBI-relevant outcomes, including epileptogenesis and tissue repair. Desmethylclomipramine modulated most of the gene targets considered favorable for TBI outcome. Our data demonstrate long-lasting transcriptomics changes after TBI. LINCS analysis predicted that these changes could be modulated by various compounds, some of which are already in clinical use but never tested in TBI.
Collapse
Affiliation(s)
- Anssi Lipponen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Jussi Paananen
- Institute of Biomedicine, University of Eastern Finland, Finland.,University of Eastern Finland Bioinformatics Center, University of Eastern Finland, Finland
| | - Noora Puhakka
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Asla Pitkänen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
40
|
Wang H, Zhang YP, Cai J, Shields LBE, Tuchek CA, Shi R, Li J, Shields CB, Xu XM. A Compact Blast-Induced Traumatic Brain Injury Model in Mice. J Neuropathol Exp Neurol 2016; 75:183-96. [PMID: 26802177 DOI: 10.1093/jnen/nlv019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Blast-induced traumatic brain injury (bTBI) is a common injury on the battlefield and often results in permanent cognitive and neurological abnormalities. We report a novel compact device that creates graded bTBI in mice. The injury severity can be controlled by precise pressures that mimic Friedlander shockwave curves. The mouse head was stabilized with a head fixator, and the body was protected with a metal shield; shockwave durations were 3 to 4 milliseconds. Reflective shockwave peak readings at the position of the mouse head were 12 6 2.6 psi, 50 6 20.3 psi, and 100 6 33.1 psi at 100, 200, and 250 psi predetermined driver chamber pressures, respectively. The bTBIs of 250 psi caused 80% mortality, which decreased to 27% with the metal shield. Brain and lung damage depended on the shockwave duration and amplitude. Cognitive deficits were assessed using the Morris water maze, Y-maze, and open-field tests. Pathological changes in the brain included disruption of the blood-brain barrier, multifocal neuronal and axonal degeneration, and reactive gliosis assessed by Evans Blue dye extravasation, silver and Fluoro-Jade B staining, and glial fibrillary acidic protein immunohistochemistry, respectively. Behavioral and pathological changes were injury severity-dependent. This mouse bTBI model may be useful for investigating injury mechanisms and therapeutic strategies associated with bTBI.
Collapse
|
41
|
Mishra V, Skotak M, Schuetz H, Heller A, Haorah J, Chandra N. Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model. Sci Rep 2016; 6:26992. [PMID: 27270403 PMCID: PMC4895217 DOI: 10.1038/srep26992] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/27/2016] [Indexed: 11/25/2022] Open
Abstract
Injury severity in blast induced Traumatic Brain Injury (bTBI) increases with blast overpressure (BOP) and impulse in dose-dependent manner. Pure primary blast waves were simulated in compressed gas shock-tubes in discrete increments. Present work demonstrates 24 hour survival of rats in 0–450 kPa (0–800 Pa∙s impulse) range at 10 discrete levels (60, 100, 130, 160, 190, 230, 250, 290, 350 and 420 kPa) and determines the mortality rate as a non-linear function of BOP. Using logistic regression model, predicted mortality rate (PMR) function was calculated, and used to establish TBI severities. We determined a BOP of 145 kPa as upper mild TBI threshold (5% PMR). Also we determined 146–220 kPa and 221–290 kPa levels as moderate and severe TBI based on 35%, and 70% PMR, respectively, while BOP above 290 kPa is lethal. Since there are no standards for animal bTBI injury severity, these thresholds need further refinements using histopathology, immunohistochemistry and behavior. Further, we specifically investigated mild TBI range (0–145 kPa) using physiological (heart rate), pathological (lung injury), immuno-histochemical (oxidative/nitrosative and blood-brain barrier markers) as well as blood borne biomarkers. With these additional data, we conclude that mild bTBI occurs in rats when the BOP is in the range of 85–145 kPa.
Collapse
Affiliation(s)
- Vikas Mishra
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Maciej Skotak
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Heather Schuetz
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, 68198, NE,USA
| | - Abi Heller
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, 68198, NE,USA
| | - James Haorah
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Namas Chandra
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| |
Collapse
|
42
|
Ravin R, Blank PS, Busse B, Ravin N, Vira S, Bezrukov L, Waters H, Guerrero-Cazares H, Quinones-Hinojosa A, Lee PR, Fields RD, Bezrukov SM, Zimmerberg J. Blast shockwaves propagate Ca(2+) activity via purinergic astrocyte networks in human central nervous system cells. Sci Rep 2016; 6:25713. [PMID: 27162174 PMCID: PMC4861979 DOI: 10.1038/srep25713] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/21/2016] [Indexed: 12/26/2022] Open
Abstract
In a recent study of the pathophysiology of mild, blast-induced traumatic brain injury (bTBI) the exposure of dissociated, central nervous system (CNS) cells to simulated blast resulted in propagating waves of elevated intracellular Ca2+. Here we show, in dissociated human CNS cultures, that these calcium waves primarily propagate through astrocyte-dependent, purinergic signaling pathways that are blocked by P2 antagonists. Human, compared to rat, astrocytes had an increased calcium response and prolonged calcium wave propagation kinetics, suggesting that in our model system rat CNS cells are less responsive to simulated blast. Furthermore, in response to simulated blast, human CNS cells have increased expressions of a reactive astrocyte marker, glial fibrillary acidic protein (GFAP) and a protease, matrix metallopeptidase 9 (MMP-9). The conjoint increased expression of GFAP and MMP-9 and a purinergic ATP (P2) receptor antagonist reduction in calcium response identifies both potential mechanisms for sustained changes in brain function following primary bTBI and therapeutic strategies targeting abnormal astrocyte activity.
Collapse
Affiliation(s)
- Rea Ravin
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA.,Celoptics Inc., Rockville, MD 20852, USA
| | - Paul S Blank
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
| | - Brad Busse
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
| | - Nitay Ravin
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA.,Celoptics Inc., Rockville, MD 20852, USA
| | - Shaleen Vira
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
| | - Ludmila Bezrukov
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
| | - Hang Waters
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
| | | | | | - Philip R Lee
- Section on Nervous System Development and Plasticity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3713, USA
| | - R Douglas Fields
- Section on Nervous System Development and Plasticity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3713, USA
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-0924, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
| |
Collapse
|
43
|
Nathan DE, Bellgowan JF, Oakes TR, French LM, Nadar SR, Sham EB, Liu W, Riedy G. Assessing Quantitative Changes in Intrinsic Thalamic Networks in Blast and Nonblast Mild Traumatic Brain Injury: Implications for Mechanisms of Injury. Brain Connect 2016; 6:389-402. [PMID: 26956452 DOI: 10.1089/brain.2015.0403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the global war on terror, the increased use of improvised explosive devices has resulted in increased incidence of blast-related mild traumatic brain injury (mTBI). Diagnosing mTBI is both challenging and controversial due to heterogeneity of injury location, trauma intensity, transient symptoms, and absence of focal biomarkers on standard clinical imaging modalities. The goal of this study is to identify a brain biomarker that is sensitive to mTBI injury. Research suggests the thalamus may be sensitive to changes induced by mTBI. A significant number of connections to and from various brain regions converge at the thalamus. In addition, the thalamus is involved in information processing, integration, and regulation of specific behaviors and mood. In this study, changes in task-free thalamic networks as quantified by graph theory measures in mTBI blast (N = 186), mTBI nonblast (N = 80), and controls (N = 21) were compared. Results show that the blast mTBI group had significant hyper-connectivity compared with the controls and nonblast mTBI group. However, after controlling for post-traumatic stress symptoms (PTSS), the blast mTBI group was not different from the controls, but the nonblast mTBI group showed significant hypo-connectivity. The results suggest that there are differences in the mechanisms of injury related to mTBI as reflected in the architecture of the thalamic networks. However, the effect of PTSS and its relationship to mTBI is difficult to distinguish and warrants more research.
Collapse
Affiliation(s)
- Dominic E Nathan
- 1 National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center , Bethesda, Maryland.,2 North Tide LLC , Dulles, Virginia.,3 Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Julie F Bellgowan
- 1 National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center , Bethesda, Maryland.,2 North Tide LLC , Dulles, Virginia
| | - Terrence R Oakes
- 1 National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center , Bethesda, Maryland
| | - Louis M French
- 1 National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center , Bethesda, Maryland.,4 Center of Neuroscience and Regenerative Medicine (CNRM) , Bethesda, Maryland
| | - Sreenivasan R Nadar
- 1 National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center , Bethesda, Maryland.,5 Henry M. Jackson Foundation , Bethesda, Maryland
| | - Elyssa B Sham
- 1 National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center , Bethesda, Maryland.,2 North Tide LLC , Dulles, Virginia
| | - Wei Liu
- 1 National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center , Bethesda, Maryland.,2 North Tide LLC , Dulles, Virginia
| | - Gerard Riedy
- 1 National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center , Bethesda, Maryland.,3 Uniformed Services University of the Health Sciences , Bethesda, Maryland
| |
Collapse
|
44
|
Sawyer TW, Wang Y, Ritzel DV, Josey T, Villanueva M, Shei Y, Nelson P, Hennes G, Weiss T, Vair C, Fan C, Barnes J. High-Fidelity Simulation of Primary Blast: Direct Effects on the Head. J Neurotrauma 2016; 33:1181-93. [PMID: 26582146 DOI: 10.1089/neu.2015.3914] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of primary blast in blast-induced traumatic brain injury (bTBI) is controversial in part due to the technical difficulties of generating free-field blast conditions in the laboratory. The use of traditional shock tubes often results in artifacts, particularly of dynamic pressure, whereas the forces affecting the head are dependent on where the animal is placed relative to the tube, whether the exposure is whole-body or head-only, and on how the head is actually exposed to the insult (restrained or not). An advanced blast simulator (ABS) has been developed that enables high-fidelity simulation of free-field blastwaves, including sharply defined static and dynamic overpressure rise times, underpressures, and secondary shockwaves. Rats were exposed in head-only fashion to single-pulse blastwaves of 15 to 30 psi static overpressure. Head restraints were configured so as to eliminate concussive and minimize whiplash forces exerted on the head, as shown by kinematic analysis. No overt signs of trauma were present in the animals post-exposure. However, significant changes in brain 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNPase) and neurofilament heavy chain levels were evident by 7 days. In contrast to most studies of primary blast-induced TBI (PbTBI), no elevation of glial fibrillary acidic protein (GFAP) levels was noted when head movement was minimized. The ABS described in this article enables the generation of shockwaves highly representative of free-field blast. The use of this technology, in concert with head-only exposure, minimized head movement, and the kinematic analysis of the forces exerted on the head provide convincing evidence that primary blast directly causes changes in brain function and that GFAP may not be an appropriate biomarker of PbTBI.
Collapse
Affiliation(s)
- Thomas W Sawyer
- 1 Defence Research & Development Canada , Medicine Hat, Alberta, Canada
| | - Yushan Wang
- 1 Defence Research & Development Canada , Medicine Hat, Alberta, Canada
| | | | - Tyson Josey
- 1 Defence Research & Development Canada , Medicine Hat, Alberta, Canada
| | - Mercy Villanueva
- 1 Defence Research & Development Canada , Medicine Hat, Alberta, Canada
| | - Yimin Shei
- 1 Defence Research & Development Canada , Medicine Hat, Alberta, Canada
| | - Peggy Nelson
- 1 Defence Research & Development Canada , Medicine Hat, Alberta, Canada
| | - Grant Hennes
- 1 Defence Research & Development Canada , Medicine Hat, Alberta, Canada
| | - Tracy Weiss
- 1 Defence Research & Development Canada , Medicine Hat, Alberta, Canada
| | - Cory Vair
- 1 Defence Research & Development Canada , Medicine Hat, Alberta, Canada
| | - Changyang Fan
- 3 Canada West Biosciences , Calgary, Alberta, Canada
| | - Julia Barnes
- 3 Canada West Biosciences , Calgary, Alberta, Canada
| |
Collapse
|
45
|
Stemper BD, Shah AS, Budde MD, Olsen CM, Glavaski-Joksimovic A, Kurpad SN, McCrea M, Pintar FA. Behavioral Outcomes Differ between Rotational Acceleration and Blast Mechanisms of Mild Traumatic Brain Injury. Front Neurol 2016; 7:31. [PMID: 27014184 PMCID: PMC4789366 DOI: 10.3389/fneur.2016.00031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/29/2016] [Indexed: 11/20/2022] Open
Abstract
Mild traumatic brain injury (mTBI) can result from a number of mechanisms, including blunt impact, head rotational acceleration, exposure to blast, and penetration of projectiles. Mechanism is likely to influence the type, severity, and chronicity of outcomes. The objective of this study was to determine differences in the severity and time course of behavioral outcomes following blast and rotational mTBI. The Medical College of Wisconsin (MCW) Rotational Injury model and a shock tube model of primary blast injury were used to induce mTBI in rats and behavioral assessments were conducted within the first week, as well as 30 and 60 days following injury. Acute recovery time demonstrated similar increases over protocol-matched shams, indicating acute injury severity equivalence between the two mechanisms. Post-injury behavior in the elevated plus maze demonstrated differing trends, with rotationally injured rats acutely demonstrating greater activity, whereas blast-injured rats had decreased activity that developed at chronic time points. Similarly, blast-injured rats demonstrated trends associated with cognitive deficits that were not apparent following rotational injuries. These findings demonstrate that rotational and blast injury result in behavioral changes with different qualitative and temporal manifestations. Whereas rotational injury was characterized by a rapidly emerging phenotype consistent with behavioral disinhibition, blast injury was associated with emotional and cognitive differences that were not evident acutely, but developed later, with an anxiety-like phenotype still present in injured animals at our most chronic measurements.
Collapse
Affiliation(s)
- Brian D. Stemper
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alok S. Shah
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher M. Olsen
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Frank A. Pintar
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| |
Collapse
|
46
|
Eftaxiopoulou T, Barnett-Vanes A, Arora H, Macdonald W, Nguyen TTN, Itadani M, Sharrock AE, Britzman D, Proud WG, Bull AMJ, Rankin SM. Prolonged but not short-duration blast waves elicit acute inflammation in a rodent model of primary blast limb trauma. Injury 2016; 47:625-32. [PMID: 26838938 DOI: 10.1016/j.injury.2016.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/06/2016] [Accepted: 01/14/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Blast injuries from conventional and improvised explosive devices account for 75% of injuries from current conflicts; over 70% of injuries involve the limbs. Variable duration and magnitude of blast wave loading occurs in real-life explosions and is hypothesised to cause different injuries. While a number of in vivo models report the inflammatory response to blast injuries, the extent of this response has not been investigated with respect to the duration of the primary blast wave. The relevance is that explosions in open air are of short duration compared to those in confined spaces. METHODS Hindlimbs of adult Sprauge-Dawley rats were subjected to focal isolated primary blast waves of varying overpressure (1.8-3.65kPa) and duration (3.0-11.5ms), utilising a shock tube and purpose-built experimental rig. Rats were monitored during and after the blast. At 6 and 24h after exposure, blood, lungs, liver and muscle tissues were collected and prepared for histology and flow cytometry. RESULTS At 6h, increases in circulating neutrophils and CD43Lo/His48Hi monocytes were observed in rats subjected to longer-duration blast waves. This was accompanied by increases in circulating pro-inflammatory chemo/cytokines KC and IL-6. No changes were observed with shorter-duration blast waves irrespective of overpressure. In all cases, no histological damage was observed in muscle, lung or liver. By 24h post-blast, all inflammatory parameters had normalised. CONCLUSIONS We report the development of a rodent model of primary blast limb trauma that is the first to highlight an important role played by blast wave duration and magnitude in initiating acute inflammatory response following limb injury in the absence of limb fracture or penetrating trauma. The combined biological and mechanical method developed can be used to further understand the complex effects of blast waves in a range of different tissues and organs in vivo.
Collapse
Affiliation(s)
| | | | - Hari Arora
- Department of Bioengineering, Imperial College London, UK.
| | | | | | - Mako Itadani
- Department of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Anna E Sharrock
- National Heart and Lung Institute, Imperial College London, UK.
| | - David Britzman
- Department of Bioengineering, Imperial College London, UK.
| | | | | | - Sara M Rankin
- National Heart and Lung Institute, Imperial College London, UK.
| |
Collapse
|
47
|
Kawa L, Barde S, Arborelius UP, Theodorsson E, Agoston D, Risling M, Hökfelt T. Expression of galanin and its receptors are perturbed in a rodent model of mild, blast-induced traumatic brain injury. Exp Neurol 2016; 279:159-167. [PMID: 26928087 DOI: 10.1016/j.expneurol.2016.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 01/05/2023]
Abstract
The symptomatology, mood and cognitive disturbances seen in post-traumatic stress disorder (PTSD) and mild blast-induced traumatic brain injury (mbTBI) overlap considerably. However the pathological mechanisms underlying the two conditions are currently unknown. The neuropeptide galanin has been suggested to play a role in the development of stress and mood disorders. Here we applied bio- and histochemical methods with the aim to elucidate the nature of any changes in the expression of galanin and its receptors in a rodent model of mbTBI. In situ hybridization and quantitative polymerase chain reaction studies revealed significant, injury-induced changes, in some cases lasting at least for one week, in the mRNA levels of galanin and/or its three receptors, galanin receptor 1-3 (GalR1-3). Such changes were seen in several forebrain regions, and the locus coeruleus. In the ventral periaqueductal gray GalR1 mRNA levels were increased, while GalR2 were decreased. Analysis of galanin peptide levels using radioimmunoassay demonstrated an increase in several brain regions including the locus coeruleus, dorsal hippocampal formation and amygdala. These findings suggest a role for the galanin system in the endogenous response to mbTBI, and that pharmacological studies of the effects of activation or inhibition of different galanin receptors in combination with functional assays of behavioral recovery may reveal promising targets for new therapeutic strategies in mbTBI.
Collapse
Affiliation(s)
- Lizan Kawa
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden.
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden
| | - Ulf P Arborelius
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
| | - Denes Agoston
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden; Department of Anatomy, Physiology and Genetics, The Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden.
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden
| |
Collapse
|
48
|
Cao Y, Risling M, Malm E, Sondén A, Bolling MF, Sköld MK. Cellular High-Energy Cavitation Trauma - Description of a Novel In Vitro Trauma Model in Three Different Cell Types. Front Neurol 2016; 7:10. [PMID: 26869990 PMCID: PMC4734234 DOI: 10.3389/fneur.2016.00010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/19/2016] [Indexed: 12/25/2022] Open
Abstract
The mechanisms involved in traumatic brain injury have yet to be fully characterized. One mechanism that, especially in high-energy trauma, could be of importance is cavitation. Cavitation can be described as a process of vaporization, bubble generation, and bubble implosion as a result of a decrease and subsequent increase in pressure. Cavitation as an injury mechanism is difficult to visualize and model due to its short duration and limited spatial distribution. One strategy to analyze the cellular response of cavitation is to employ suitable in vitro models. The flyer-plate model is an in vitro high-energy trauma model that includes cavitation as a trauma mechanism. A copper fragment is accelerated by means of a laser, hits the bottom of a cell culture well causing cavitation, and shock waves inside the well and cell medium. We have found the flyer-plate model to be efficient, reproducible, and easy to control. In this study, we have used the model to analyze the cellular response to microcavitation in SH-SY5Y neuroblastoma, Caco-2, and C6 glioma cell lines. Mitotic activity in neuroblastoma and glioma was investigated with BrdU staining, and cell numbers were calculated using automated time-lapse imaging. We found variations between cell types and between different zones surrounding the lesion with these methods. It was also shown that the injured cell cultures released S-100B in a dose-dependent manner. Using gene expression microarray, a number of gene families of potential interest were found to be strongly, but differently regulated in neuroblastoma and glioma at 24 h post trauma. The data from the gene expression arrays may be used to identify new candidates for biomarkers in cavitation trauma. We conclude that our model is useful for studies of trauma in vitro and that it could be applied in future treatment studies.
Collapse
Affiliation(s)
- Yuli Cao
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Elisabeth Malm
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Anders Sondén
- Section of Surgery, Department of Clinical Science and Education, Karolinska Institutet at Södersjukhuset , Stockholm , Sweden
| | - Magnus Frödin Bolling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias K Sköld
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
49
|
Przekwas A, Somayaji MR, Gupta RK. Synaptic Mechanisms of Blast-Induced Brain Injury. Front Neurol 2016; 7:2. [PMID: 26834697 PMCID: PMC4720734 DOI: 10.3389/fneur.2016.00002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 01/04/2016] [Indexed: 01/08/2023] Open
Abstract
Blast wave-induced traumatic brain injury (TBI) is one of the most common injuries to military personnel. Brain tissue compression/tension due to blast-induced cranial deformations and shear waves due to head rotation may generate diffuse micro-damage to neuro-axonal structures and trigger a cascade of neurobiological events culminating in cognitive and neurodegenerative disorders. Although diffuse axonal injury is regarded as a signature wound of mild TBI (mTBI), blast loads may also cause synaptic injury wherein neuronal synapses are stretched and sheared. This synaptic injury may result in temporary disconnect of the neural circuitry and transient loss in neuronal communication. We hypothesize that mTBI symptoms such as loss of consciousness or dizziness, which start immediately after the insult, could be attributed to synaptic injury. Although empirical evidence is beginning to emerge; the detailed mechanisms underlying synaptic injury are still elusive. Coordinated in vitro-in vivo experiments and mathematical modeling studies can shed light into the synaptic injury mechanisms and their role in the potentiation of mTBI symptoms.
Collapse
Affiliation(s)
- Andrzej Przekwas
- Computational Medicine and Biology Division, CFD Research Corporation, Huntsville, AL, USA
| | | | - Raj K. Gupta
- Department of Defense Blast Injury Research Program Coordinating Office, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA
| |
Collapse
|
50
|
Kallakuri S, Purkait HS, Dalavayi S, VandeVord P, Cavanaugh JM. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord. J Neurosci Rural Pract 2016; 6:481-7. [PMID: 26752889 PMCID: PMC4692002 DOI: 10.4103/0976-3147.169767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s) of blast overpressure (OP) induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM) tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L) chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.
Collapse
Affiliation(s)
- Srinivasu Kallakuri
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Heena S Purkait
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Satya Dalavayi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Pamela VandeVord
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - John M Cavanaugh
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|