1
|
Simic T, Desjardins MÈ, Courson M, Bedetti C, Houzé B, Brambati SM. Treatment-induced neuroplasticity after anomia therapy in post-stroke aphasia: A systematic review of neuroimaging studies. BRAIN AND LANGUAGE 2023; 244:105300. [PMID: 37633250 DOI: 10.1016/j.bandl.2023.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 05/02/2023] [Accepted: 06/21/2023] [Indexed: 08/28/2023]
Abstract
We systematically reviewed the literature on neural changes following anomia treatment post-stroke. We conducted electronic searches of CINAHL, Cochrane Trials, Embase, Ovid MEDLINE, MEDLINE-in-Process and PsycINFO databases; two independent raters assessed all abstracts and full texts. Accepted studies reported original data on adults with post-stroke aphasia, who received behavioural treatment for anomia, and magnetic resonance brain imaging (MRI) pre- and post-treatment. Search results yielded 2481 citations; 33 studies were accepted. Most studies employed functional MRI and the quality of reporting neuroimaging methodology was variable, particularly for pre-processing steps and statistical analyses. The most methodologically robust data were synthesized, focusing on pre- versus post-treatment contrasts. Studies more commonly reported increases (versus decreases) in activation following naming therapy, primarily in the left supramarginal gyrus, and left/bilateral precunei. Our findings highlight the methodological heterogeneity across MRI studies, and the paucity of robust evidence demonstrating direct links between brain and behaviour in anomia rehabilitation.
Collapse
Affiliation(s)
- Tijana Simic
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), 4545 Queen Mary R.d., Montréal, QC H3W 1W4, Canada; Département de Psychologie, Université de Montréal, 90 Vincent-d'Indy Avenue, Montréal, QC H2V 2S9, Canada; Hôpital du Sacré-Cœur de Montréal (HSCM), 5400 Boul Gouin O, Montréal, QC H4J 1C5, Canada.
| | - Marie-Ève Desjardins
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), 4545 Queen Mary R.d., Montréal, QC H3W 1W4, Canada; Département de Psychologie, Université de Montréal, 90 Vincent-d'Indy Avenue, Montréal, QC H2V 2S9, Canada; Hôpital du Sacré-Cœur de Montréal (HSCM), 5400 Boul Gouin O, Montréal, QC H4J 1C5, Canada
| | - Melody Courson
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), 4545 Queen Mary R.d., Montréal, QC H3W 1W4, Canada; Département de Psychologie, Université de Montréal, 90 Vincent-d'Indy Avenue, Montréal, QC H2V 2S9, Canada
| | - Christophe Bedetti
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), 4545 Queen Mary R.d., Montréal, QC H3W 1W4, Canada
| | - Bérengère Houzé
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), 4545 Queen Mary R.d., Montréal, QC H3W 1W4, Canada; Département de Psychologie, Université de Montréal, 90 Vincent-d'Indy Avenue, Montréal, QC H2V 2S9, Canada
| | - Simona Maria Brambati
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), 4545 Queen Mary R.d., Montréal, QC H3W 1W4, Canada; Département de Psychologie, Université de Montréal, 90 Vincent-d'Indy Avenue, Montréal, QC H2V 2S9, Canada; Hôpital du Sacré-Cœur de Montréal (HSCM), 5400 Boul Gouin O, Montréal, QC H4J 1C5, Canada
| |
Collapse
|
2
|
Shah-Basak P, Boukrina O, Li XR, Jebahi F, Kielar A. Targeted neurorehabilitation strategies in post-stroke aphasia. Restor Neurol Neurosci 2023; 41:129-191. [PMID: 37980575 PMCID: PMC10741339 DOI: 10.3233/rnn-231344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND Aphasia is a debilitating language impairment, affecting millions of people worldwide. About 40% of stroke survivors develop chronic aphasia, resulting in life-long disability. OBJECTIVE This review examines extrinsic and intrinsic neuromodulation techniques, aimed at enhancing the effects of speech and language therapies in stroke survivors with aphasia. METHODS We discuss the available evidence supporting the use of transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation, and functional MRI (fMRI) real-time neurofeedback in aphasia rehabilitation. RESULTS This review systematically evaluates studies focusing on efficacy and implementation of specialized methods for post-treatment outcome optimization and transfer to functional skills. It considers stimulation target determination and various targeting approaches. The translation of neuromodulation interventions to clinical practice is explored, emphasizing generalization and functional communication. The review also covers real-time fMRI neurofeedback, discussing current evidence for efficacy and essential implementation parameters. Finally, we address future directions for neuromodulation research in aphasia. CONCLUSIONS This comprehensive review aims to serve as a resource for a broad audience of researchers and clinicians interested in incorporating neuromodulation for advancing aphasia care.
Collapse
Affiliation(s)
| | - Olga Boukrina
- Kessler Foundation, Center for Stroke Rehabilitation Research, West Orange, NJ, USA
| | - Xin Ran Li
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fatima Jebahi
- Department of Speech, Languageand Hearing Sciences, University of Arizona, Tucson, AZ, USA
| | - Aneta Kielar
- Department of Speech, Languageand Hearing Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Dial HR, Europa E, Grasso SM, Mandelli ML, Schaffer KM, Hubbard HI, Wauters LD, Wineholt L, Wilson SM, Gorno-Tempini ML, Henry ML. Baseline structural imaging correlates of treatment outcomes in semantic variant primary progressive aphasia. Cortex 2023; 158:158-175. [PMID: 36577212 PMCID: PMC9904210 DOI: 10.1016/j.cortex.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/25/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022]
Abstract
Semantic variant primary progressive aphasia (svPPA) is a neurodegenerative disorder characterized by a loss of semantic knowledge in the context of anterior temporal lobe atrophy (left > right). Core features of svPPA include anomia and single-word comprehension impairment. Despite growing evidence supporting treatment for anomia in svPPA, there is a paucity of research investigating neural mechanisms supporting treatment-induced gains and generalization to untrained items. In the current study, we examined the relation between the structural integrity of brain parenchyma (tissue inclusive of gray and white matter) at pre-treatment and treatment outcomes for trained and untrained items in a group of 19 individuals with svPPA who completed lexical retrieval treatment. Two structural neuroimaging approaches were used: an exploratory, whole-brain, voxel-wise approach and an a priori region of interest (ROI) approach. Based on previous research, bilateral temporal (inferior, middle, and superior temporal gyri), parietal (supramarginal and angular gyri), frontal (inferior and middle frontal gyri) and medial temporal (hippocampus and parahippocampal gyri) ROIs were selected from the Automated Anatomical Labeling (AAL) atlas. Analyses revealed improved naming of trained items and generalization to untrained items following treatment, providing converging evidence that individuals with svPPA can benefit from treatment for anomia. Better post-treatment naming accuracy was associated with the structural integrity of inferior parietal cortex and the hippocampus. Specifically, improved naming of trained items was related to the left supramarginal (phonological processing) and angular gyri (phonological and semantic processing), and improved naming of trained and untrained items was related to the left hippocampus (episodic, context-based memory). Future research should examine treatment outcomes in relation to pre-treatment functional and structural connectivity as well as changes in network dynamics following speech-language intervention to further elucidate the neural mechanisms underlying treatment response in svPPA and related disorders.
Collapse
Affiliation(s)
- Heather R Dial
- Department of Communication Sciences and Disorders, University of Houston, 3871 Holman St, Houston, TX, USA; Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA.
| | - Eduardo Europa
- Connie L. Lurie College of Education, San Jose State University, One Washington Square, San Jose, CA, USA
| | - Stephanie M Grasso
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA
| | - Maria Luisa Mandelli
- Memory and Aging Center, University of California, San Francisco. 675 Nelson Rising Lane (Suite 190), San Francisco, CA USA
| | - Kristin M Schaffer
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA
| | - H Isabel Hubbard
- College of Health Sciences, University of Kentucky, 900 S. Limestone, Lexington, KY, USA
| | - Lisa D Wauters
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA
| | - Lindsey Wineholt
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA
| | - Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Ave S, Nashville, TN, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, University of California, San Francisco. 675 Nelson Rising Lane (Suite 190), San Francisco, CA USA
| | - Maya L Henry
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA; Department of Neurology, Dell Medical School, University of Texas at Austin, 1601 Trinity St., Bldg. B, Stop Z0700, Austin, TX USA
| |
Collapse
|
4
|
Schevenels K, Michiels L, Lemmens R, De Smedt B, Zink I, Vandermosten M. The role of the hippocampus in statistical learning and language recovery in persons with post stroke aphasia. Neuroimage Clin 2022; 36:103243. [PMID: 36306718 PMCID: PMC9668653 DOI: 10.1016/j.nicl.2022.103243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Although several studies have aimed for accurate predictions of language recovery in post stroke aphasia, individual language outcomes remain hard to predict. Large-scale prediction models are built using data from patients mainly in the chronic phase after stroke, although it is clinically more relevant to consider data from the acute phase. Previous research has mainly focused on deficits, i.e., behavioral deficits or specific brain damage, rather than compensatory mechanisms, i.e., intact cognitive skills or undamaged brain regions. One such unexplored brain region that might support language (re)learning in aphasia is the hippocampus, a region that has commonly been associated with an individual's learning potential, including statistical learning. This refers to a set of mechanisms upon which we rely heavily in daily life to learn a range of regularities across cognitive domains. Against this background, thirty-three patients with aphasia (22 males and 11 females, M = 69.76 years, SD = 10.57 years) were followed for 1 year in the acute (1-2 weeks), subacute (3-6 months) and chronic phase (9-12 months) post stroke. We evaluated the unique predictive value of early structural hippocampal measures for short-term and long-term language outcomes (measured by the ANELT). In addition, we investigated whether statistical learning abilities were intact in patients with aphasia using three different tasks: an auditory-linguistic and visual task based on the computation of transitional probabilities and a visuomotor serial reaction time task. Finally, we examined the association of individuals' statistical learning potential with acute measures of hippocampal gray and white matter. Using Bayesian statistics, we found moderate evidence for the contribution of left hippocampal gray matter in the acute phase to the prediction of long-term language outcomes, over and above information on the lesion and the initial language deficit (measured by the ScreeLing). Non-linguistic statistical learning in patients with aphasia, measured in the subacute phase, was intact at the group level compared to 23 healthy older controls (8 males and 15 females, M = 74.09 years, SD = 6.76 years). Visuomotor statistical learning correlated with acute hippocampal gray and white matter. These findings reveal that particularly left hippocampal gray matter in the acute phase is a potential marker of language recovery after stroke, possibly through its statistical learning ability.
Collapse
Affiliation(s)
- Klara Schevenels
- Research Group Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Onderwijs en Navorsing 2 (O&N2), Herestraat 49 box 721, Leuven 3000, Belgium; Leuven Brain Institute, KU Leuven, Onderwijs en Navorsing 5 (O&N 5), Herestraat 49 box 1020, Leuven 3000, Belgium.
| | - Laura Michiels
- Department of Neurology, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; Research Group Experimental Neurology, Department of Neurosciences, KU Leuven, Herestraat 49 box 7003, Leuven 3000, Belgium; Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Onderwijs en Navorsing 5 (O&N 5), Herestraat 49 box 602, Leuven 3000, Belgium; Leuven Brain Institute, KU Leuven, Onderwijs en Navorsing 5 (O&N 5), Herestraat 49 box 1020, Leuven 3000, Belgium.
| | - Robin Lemmens
- Department of Neurology, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; Research Group Experimental Neurology, Department of Neurosciences, KU Leuven, Herestraat 49 box 7003, Leuven 3000, Belgium; Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Onderwijs en Navorsing 5 (O&N 5), Herestraat 49 box 602, Leuven 3000, Belgium; Leuven Brain Institute, KU Leuven, Onderwijs en Navorsing 5 (O&N 5), Herestraat 49 box 1020, Leuven 3000, Belgium.
| | - Bert De Smedt
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU leuven, Leopold Vanderkelenstraat 32 box 3765, Leuven 3000, Belgium; Leuven Brain Institute, KU Leuven, Onderwijs en Navorsing 5 (O&N 5), Herestraat 49 box 1020, Leuven 3000, Belgium.
| | - Inge Zink
- Research Group Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Onderwijs en Navorsing 2 (O&N2), Herestraat 49 box 721, Leuven 3000, Belgium; Leuven Brain Institute, KU Leuven, Onderwijs en Navorsing 5 (O&N 5), Herestraat 49 box 1020, Leuven 3000, Belgium.
| | - Maaike Vandermosten
- Research Group Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Onderwijs en Navorsing 2 (O&N2), Herestraat 49 box 721, Leuven 3000, Belgium; Leuven Brain Institute, KU Leuven, Onderwijs en Navorsing 5 (O&N 5), Herestraat 49 box 1020, Leuven 3000, Belgium.
| |
Collapse
|
5
|
Language learning in aphasia: A narrative review and critical analysis of the literature with implications for language therapy. Neurosci Biobehav Rev 2022; 141:104825. [PMID: 35963544 DOI: 10.1016/j.neubiorev.2022.104825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022]
Abstract
People with aphasia (PWA) present with language deficits including word retrieval difficulties after brain damage. Language learning is an essential life-long human capacity that may support treatment-induced language recovery after brain insult. This prospect has motivated a growing interest in the study of language learning in PWA during the last few decades. Here, we critically review the current literature on language learning ability in aphasia. The existing studies in this area indicate that (i) language learning can remain functional in some PWA, (ii) inter-individual variability in learning performance is large in PWA, (iii) language processing, short-term memory and lesion site are associated with learning ability, (iv) preliminary evidence suggests a relationship between learning ability and treatment outcomes in this population. Based on the reviewed evidence, we propose a potential account for the interplay between language and memory/learning systems to explain spared/impaired language learning and its relationship to language therapy in PWA. Finally, we indicate potential avenues for future research that may promote more cross-talk between cognitive neuroscience and aphasia rehabilitation.
Collapse
|
6
|
Harnish SM, Diedrichs VA, Bartlett CW. EARLY CONSIDERATIONS OF GENETICS IN APHASIA REHABILITATION: A NARRATIVE REVIEW. APHASIOLOGY 2022; 37:835-853. [PMID: 37346093 PMCID: PMC10281715 DOI: 10.1080/02687038.2022.2043234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/14/2022] [Indexed: 06/23/2023]
Abstract
Background Early investigations linking language and genetics were focused on the evolution of human communication in populations with developmental speech and language disorders. Recently, studies suggest that genes may also modulate recovery from post-stroke aphasia. Aims Our goal is to review current literature related to the influence of genetics on post-stroke recovery, and the implications for aphasia rehabilitation. We describe candidate genes implicated by empirical findings and address additional clinical considerations. Main Contribution We describe existing evidence and mechanisms supporting future investigations into how genetic factors may modulate aphasia recovery and propose that two candidate genes, brain derived neurotrophic factor (BDNF) and apolipoprotein E (APOE), may be important considerations for future research assessing response to aphasia treatment. Evidence suggests that BDNF is important for learning, memory, and neuroplasticity. APOE influences cognitive functioning and memory in older individuals and has also been implicated in neural repair. Moreover, recent data suggest an interaction between specific alleles of the BDNF and APOE genes in influencing episodic memory. Conclusions Genetic influences on recovery from aphasia have been largely unexplored in the literature despite evidence that genetic factors influence behaviour and recovery from brain injury. As researchers continue to explore prognostic factors that may influence response to aphasia treatment, it is time for genetic factors to be considered as a source of variability. As the field moves in the direction of personalized medicine, eventually allied health professionals may utilize genetic profiles to inform treatment decisions and education for patients and care partners.
Collapse
Affiliation(s)
- Stacy M Harnish
- Department of Speech and Hearing Science, The Ohio State University
| | | | - Christopher W Bartlett
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital and Department of Pediatrics, College of Medicine, The Ohio State University
| |
Collapse
|
7
|
Baumgärtner A, Staiger A. Neurogene Störungen der Sprache und des
Sprechens. REHABILITATION 2022; 61:52-70. [PMID: 35176777 DOI: 10.1055/a-1534-8854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Hope TMH, Nardo D, Holland R, Ondobaka S, Akkad H, Price CJ, Leff AP, Crinion J. Lesion site and therapy time predict responses to a therapy for anomia after stroke: a prognostic model development study. Sci Rep 2021; 11:18572. [PMID: 34535718 PMCID: PMC8448867 DOI: 10.1038/s41598-021-97916-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Stroke is a leading cause of disability, and language impairments (aphasia) after stroke are both common and particularly feared. Most stroke survivors with aphasia exhibit anomia (difficulties with naming common objects), but while many therapeutic interventions for anomia have been proposed, treatment effects are typically much larger in some patients than others. Here, we asked whether that variation might be more systematic, and even predictable, than previously thought. 18 patients, each at least 6 months after left hemisphere stroke, engaged in a computerised treatment for their anomia over a 6-week period. Using only: (a) the patients' initial accuracy when naming (to-be) trained items; (b) the hours of therapy that they devoted to the therapy; and (c) whole-brain lesion location data, derived from structural MRI; we developed Partial Least Squares regression models to predict the patients' improvements on treated items, and tested them in cross-validation. Somewhat surprisingly, the best model included only lesion location data and the hours of therapy undertaken. In cross-validation, this model significantly out-performed the null model, in which the prediction for each patient was simply the mean treatment effect of the group. This model also made promisingly accurate predictions in absolute terms: the correlation between empirical and predicted treatment response was 0.62 (95% CI 0.27, 0.95). Our results indicate that individuals' variation in response to anomia treatment are, at least somewhat, systematic and predictable, from the interaction between where and how much lesion damage they have suffered, and the time they devoted to the therapy.
Collapse
Affiliation(s)
- Thomas M H Hope
- Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AR, UK.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| | - Davide Nardo
- Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AR, UK
- MRC Cognition and Brain Sciences Unit, Cambridge University, London, UK
| | - Rachel Holland
- Division of Language and Communication Science, City University of London, London, UK
| | - Sasha Ondobaka
- Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AR, UK
| | - Haya Akkad
- Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AR, UK
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Alexander P Leff
- Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AR, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Jenny Crinion
- Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AR, UK
| |
Collapse
|
9
|
Cichon N, Wlodarczyk L, Saluk-Bijak J, Bijak M, Redlicka J, Gorniak L, Miller E. Novel Advances to Post-Stroke Aphasia Pharmacology and Rehabilitation. J Clin Med 2021; 10:jcm10173778. [PMID: 34501229 PMCID: PMC8432240 DOI: 10.3390/jcm10173778] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Abstract
Aphasia is one of the most common clinical features of functional impairment after a stroke. Approximately 21–40% of stroke patients sustain permanent aphasia, which progressively worsens one’s quality of life and rehabilitation outcomes. Post-stroke aphasia treatment strategies include speech language therapies, cognitive neurorehabilitation, telerehabilitation, computer-based management, experimental pharmacotherapy, and physical medicine. This review focuses on current evidence of the effectiveness of impairment-based aphasia therapies and communication-based therapies (as well as the timing and optimal treatment intensities for these interventions). Moreover, we present specific interventions, such as constraint-induced aphasia therapy (CIAT) and melodic intonation therapy (MIT). Accumulated data suggest that using transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) is safe and can be used to modulate cortical excitability. Therefore, we review clinical studies that present TMS and tDCS as (possible) promising therapies in speech and language recovery, stimulating neuroplasticity. Several drugs have been used in aphasia pharmacotherapy, but evidence from clinical studies suggest that only nootropic agents, donepezil and memantine, may improve the prognosis of aphasia. This article is an overview on the current state of knowledge related to post-stroke aphasia pharmacology, rehabilitation, and future trends.
Collapse
Affiliation(s)
- Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
- Correspondence:
| | - Lidia Wlodarczyk
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, 141/143, 90-236 Lodz, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
| | - Justyna Redlicka
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa, 14, 93-113 Lodz, Poland; (J.R.); (E.M.)
| | - Leslaw Gorniak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa, 14, 93-113 Lodz, Poland; (J.R.); (E.M.)
| |
Collapse
|
10
|
Chen Q, Shen W, Sun H, Shen D, Cai X, Ke J, Zhang L, Fang Q. Effects of mirror therapy on motor aphasia after acute cerebral infarction: A randomized controlled trial. NeuroRehabilitation 2021; 49:103-117. [PMID: 34180428 DOI: 10.3233/nre-210125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mirror therapy (MT) has proven to be beneficial for treating patients suffering from motor aphasia after stroke. However, the impacts of MT on neuroplasticity remain unexplored. OBJECTIVE In this paper we conducted a randomized controlled trial to evaluate the treatment using the MT on motor aphasia following acute cerebral infarction. METHODS We randomly assigned 30 patients into test and control groups, with test group patients treated with MT, whereas control group patients were treated with sham MT. At 24 hours prior to and after the intervention, we obtained functional magnetic resonance imaging (fMRI) data from study subjects. At baseline, after treatment and 12-week follow-up, we additionally evaluated patients with the Modified Rankin Scale (mRS), the National Institutes of Health Stroke Scale (NIHSS), and the aphasia quotient (AQ) in the western aphasia test. RESULTS After 2 weeks of treatment, the test group demonstrated significant improvements in AQ values, naming, repetition, spontaneous speech, and mRS scores compared to the control group (P < 0.05). Furthermore, in the follow-up time point (12 weeks), we found that the test group exhibited significantly better NIHSS scores and AQ evaluation indicators than the control group (P < 0.05). Specifically, the fMRI study shows that functional connectivity significantly improved in test group patients mainly among frontal, temporal, and parietal lobes of the left hemisphere with each other than controls group. Meanwhile, we found significantly enhanced functional connectivity with the hippocampus (P < 0.01). CONCLUSIONS Our results indicate that the MT can expedite the recovery of language function during the early phases of stroke recovery. These findings may elucidate the underlying mechanism of MT and the application of this therapy as an adjunct rehabilitation technique in language recovery.
Collapse
Affiliation(s)
- Qingmei Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Department of Physical Medicine & Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Wenjun Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Haiwei Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dan Shen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiuying Cai
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jun Ke
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Lichi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
11
|
Menahemi-Falkov M, Breitenstein C, Pierce JE, Hill AJ, O'Halloran R, Rose ML. A systematic review of maintenance following intensive therapy programs in chronic post-stroke aphasia: importance of individual response analysis. Disabil Rehabil 2021; 44:5811-5826. [PMID: 34383614 DOI: 10.1080/09638288.2021.1955303] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Recent evidence supports the benefit of intensive aphasia intervention programs for people with chronic aphasia, yet it is unclear if all participants can expect positive outcomes and for how long therapeutic gains last. METHODS We systematically searched for studies investigating intensive interventions in chronic aphasia. To explore individual response rates and maintenance of therapeutic gains we carried out meta-synthesis by calculating and analysing the Standard Error of Measurement and Minimal Detectable Change metrics of six common outcome measures. RESULTS Forty-four studies comprising 24 experimental (13 group, 11 single-subject) and 20 non-experimental studies met our inclusion criteria (n = 670). Whereas most group studies reported statistically significant post-therapy improvement and maintenance, analysis of individual participant data (IPD, n = 393) from these studies revealed that only about a third of participants were classified as "immediate responders," of which more than a third had lost their initial immediate gains at follow-up. This pattern did not change when IPD from single-subject studies (n = 49) was added to the analysis. Thus, only 22% of all IPD receiving an intensive intervention improved significantly and maintained their therapy gains. CONCLUSIONS Intensive aphasia therapy is effective when measured at the group-level, but many individuals do not respond significantly to the intervention, and even fewer individuals preserve their initial gains. Group study results do not allow prediction of an individual's response to the intervention. Future research should elucidate which factors mediate positive treatment response and maintenance for an individual.Implications for rehabilitationOnly a small proportion (about one fifth in this review) of intensive aphasia treatment program participants respond and maintain their therapy gains, a fact that is obscured by traditional p-value group analysis.A simple clinical decision-making method is presented for evaluating individual therapy gains and their maintenance.For some immediate treatment responders (about one third in this review), gains from intensive therapy programs are unlikely to be maintained in the long-term without additional, ongoing practice.Clinicians should consider the possibility of individual clients losing some of their therapy gains and take proactive steps to support long-term maintenance.
Collapse
Affiliation(s)
- Maya Menahemi-Falkov
- School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia.,Centre of Research Excellence in Aphasia Recovery and Rehabilitation, La Trobe University, Melbourne, Australia
| | - Caterina Breitenstein
- Department of Neurology with Institute of Translational Medicine, University of Muenster, Muenster, Germany
| | - John E Pierce
- School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia.,Centre of Research Excellence in Aphasia Recovery and Rehabilitation, La Trobe University, Melbourne, Australia
| | - Anne J Hill
- Centre of Research Excellence in Aphasia Recovery and Rehabilitation, La Trobe University, Melbourne, Australia.,Centre for Research in Telerehabilitation, School of Health and Rehabilitation Sciences, The University of Queensland, Queensland, Australia
| | - Robyn O'Halloran
- School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia.,Centre of Research Excellence in Aphasia Recovery and Rehabilitation, La Trobe University, Melbourne, Australia
| | - Miranda L Rose
- School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia.,Centre of Research Excellence in Aphasia Recovery and Rehabilitation, La Trobe University, Melbourne, Australia
| |
Collapse
|
12
|
Kristinsson S, Basilakos A, Elm J, Spell LA, Bonilha L, Rorden C, den Ouden DB, Cassarly C, Sen S, Hillis A, Hickok G, Fridriksson J. Individualized response to semantic versus phonological aphasia therapies in stroke. Brain Commun 2021; 3:fcab174. [PMID: 34423302 PMCID: PMC8376685 DOI: 10.1093/braincomms/fcab174] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/23/2021] [Accepted: 05/28/2021] [Indexed: 11/12/2022] Open
Abstract
Attempts to personalize aphasia treatment to the extent where it is possible to reliably predict individual response to a particular treatment have yielded inconclusive results. The current study aimed to (i) compare the effects of phonologically versus semantically focussed naming treatment and (ii) examine biographical and neuropsychological baseline factors predictive of response to each treatment. One hundred and four individuals with chronic post-stroke aphasia underwent 3 weeks of phonologically focussed treatment and 3 weeks of semantically focussed treatment in an unblinded cross-over design. A linear mixed-effects model was used to compare the effects of treatment type on proportional change in correct naming across groups. Correlational analysis and stepwise regression models were used to examine biographical and neuropsychological predictors of response to phonological and semantic treatment across all participants. Last, chi-square tests were used to explore the association between treatment response and phonological and semantic deficit profiles. Semantically focussed treatment was found to be more effective at the group-level, independently of treatment order (P = 0.041). Overall, milder speech and language impairment predicted good response to semantic treatment (r range: 0.256-0.373) across neuropsychological tasks. The Western Aphasia Battery-Revised Spontaneous Speech score emerged as the strongest predictor of semantic treatment response (R 2 = 0.188). Severity of stroke symptoms emerged as the strongest predictor of phonological treatment response (R 2 = 0.103). Participants who showed a good response to semantic treatment were more likely to present with fluent speech compared to poor responders (P = 0.005), whereas participants who showed a good response to phonological treatment were more likely to present with apraxia of speech (P = 0.020). These results suggest that semantic treatment may be more beneficial to the improvement of naming performance in aphasia than phonological treatment, at the group-level. In terms of personalized predictors, participants with relatively mild impairments and fluent speech responded better to semantic treatment, while phonological treatment benefitted participants with more severe impairments and apraxia of speech.
Collapse
Affiliation(s)
- Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
| | - Alexandra Basilakos
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
| | - Jordan Elm
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Leigh Ann Spell
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
| | - Leonardo Bonilha
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Chris Rorden
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk B den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
| | - Christy Cassarly
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Souvik Sen
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Neurology, University of South Carolina, Columbia, SC 29208, USA
| | - Argye Hillis
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Neurology and Physical Medicine & Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregory Hickok
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Cognitive Sciences and Language Science, University of California, Irvine, CA 92697, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
13
|
Hula WD, Panesar S, Gravier ML, Yeh FC, Dresang HC, Dickey MW, Fernandez-Miranda JC. Structural white matter connectometry of word production in aphasia: an observational study. Brain 2020; 143:2532-2544. [PMID: 32705146 DOI: 10.1093/brain/awaa193] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/12/2020] [Accepted: 04/22/2020] [Indexed: 11/15/2022] Open
Abstract
While current dual-steam neurocognitive models of language function have coalesced around the view that distinct neuroanatomical networks subserve semantic and phonological processing, respectively, the specific white matter components of these networks remain a matter of debate. To inform this debate, we investigated relationships between structural white matter connectivity and word production in a cross-sectional study of 42 participants with aphasia due to unilateral left hemisphere stroke. Specifically, we reconstructed a local connectome matrix for each participant from diffusion spectrum imaging data and regressed these matrices on indices of semantic and phonological ability derived from their responses to a picture-naming test and a computational model of word production. These connectometry analyses indicated that both dorsally located (arcuate fasciculus) and ventrally located (inferior frontal-occipital, uncinate, and middle longitudinal fasciculi) tracts were associated with semantic ability, while associations with phonological ability were more dorsally situated, including the arcuate and middle longitudinal fasciculi. Associations with limbic pathways including the posterior cingulum bundle and the fornix were also found. All analyses controlled for total lesion volume and all results showing positive associations obtained false discovery rates < 0.05. These results challenge dual-stream accounts that deny a role for the arcuate fasciculus in semantic processing, and for ventral-stream pathways in language production. They also illuminate limbic contributions to both semantic and phonological processing for word production.
Collapse
Affiliation(s)
- William D Hula
- Geriatric Research, Education, and Clinical Center and Audiology and Speech Pathology Service, VA Pittsburgh Healthcare System, Pittsburgh PA, USA.,Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh PA, USA
| | - Sandip Panesar
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Michelle L Gravier
- Department of Speech, Language, and Hearing Sciences, California State East Bay, Hayward, CA, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haley C Dresang
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh PA, USA
| | - Michael Walsh Dickey
- Geriatric Research, Education, and Clinical Center and Audiology and Speech Pathology Service, VA Pittsburgh Healthcare System, Pittsburgh PA, USA.,Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh PA, USA
| | | |
Collapse
|
14
|
Copland DA. Elizabeth Usher Memorial Lecture: Lost in Translation? Challenges and future prospects for a neurobiological approach to aphasia rehabilitation. INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2020; 22:270-280. [PMID: 32686593 DOI: 10.1080/17549507.2020.1768287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While there has been considerable progress in conducting trials of aphasia therapy, there is no consistent evidence for long-term benefits of aphasia treatment, suggesting the need to reconsider current approaches. There are also no accurate methods for determining the amount, type and timing of aphasia therapy that should be provided for an individual. At the same time, there has been increasing interest in applying various principles of neuroplasticity to aphasia treatment and using measures of brain structure and function to predict recovery. This article will consider the potential of neuroplasticity principles and neurobiological predictors to improve our current approach to aphasia rehabilitation and optimise outcomes. Reviewing these principles highlights some of the challenges of translating animal model-based principles and emphases the need to also consider relevant theories of human learning. While considerable progress has been made in considering neurobiological principles and using measures of brain structure and function to predict recovery, there is significant work required to achieve the full potential of this neurobiological approach to aphasia management.
Collapse
Affiliation(s)
- David A Copland
- School of Health and Rehabilitation Sciences, Centre for Clinical Research, Queensland Aphasia Rehabilitation Centre, The University of Queensland, St Lucia, Australia
| |
Collapse
|
15
|
de Aguiar V, Zhao Y, Faria A, Ficek B, Webster KT, Wendt H, Wang Z, Hillis AE, Onyike CU, Frangakis C, Caffo B, Tsapkini K. Brain volumes as predictors of tDCS effects in primary progressive aphasia. BRAIN AND LANGUAGE 2020; 200:104707. [PMID: 31704518 PMCID: PMC7709910 DOI: 10.1016/j.bandl.2019.104707] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 05/28/2023]
Abstract
The current study aims to determine the brain areas critical for response to anodal transcranial direct current stimulation (tDCS) in PPA. Anodal tDCS and sham were administered over the left inferior frontal gyrus (IFG), combined with written naming/spelling therapy. Thirty people with PPA were included in this study, and assessed immediately, 2 weeks, and 2 months post-therapy. We identified anatomical areas whose volumes significantly predicted the additional tDCS effects. For trained words, the volumes of the left Angular Gyrus and left Posterior Cingulate Cortex predicted the additional tDCS gain. For untrained words, the volumes of the left Middle Frontal Gyrus, left Supramarginal Gyrus, and right Posterior Cingulate Cortex predicted the additional tDCS gain. These findings show that areas involved in language, attention and working memory contribute to the maintenance and generalization of stimulation effects. The findings highlight that tDCS possibly affects areas anatomically or functionally connected to stimulation targets.
Collapse
Affiliation(s)
- Vânia de Aguiar
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Center for Language and Cognition Groningen (CLCG), University of Groningen, Netherlands.
| | - Yi Zhao
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, United States
| | - Andreia Faria
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Bronte Ficek
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kimberly T Webster
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Haley Wendt
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Zeyi Wang
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, United States
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States; Department of Physical Medicine & Rehabilitation, Johns Hopkins University, Baltimore, MD, United States
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Constantine Frangakis
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, United States; Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, United States
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
16
|
Turkeltaub PE. A Taxonomy of Brain-Behavior Relationships After Stroke. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:3907-3922. [PMID: 31756155 PMCID: PMC7203524 DOI: 10.1044/2019_jslhr-l-rsnp-19-0032] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Purpose Understanding the brain basis of language and cognitive outcomes is a major goal of aphasia research. Prior studies have not often considered the many ways that brain features can relate to behavioral outcomes or the mechanisms underlying these relationships. The purpose of this review article is to provide a new framework for understanding the ways that brain features may relate to language and cognitive outcomes from stroke. Method Brain-behavior relationships that may be important for aphasia outcomes are organized into a taxonomy, including features of the lesion and features of brain tissue spared by the lesion. Features of spared brain tissue are categorized into those that change after stroke and those that do not. Features that change are further subdivided, and multiple mechanisms of brain change after stroke are discussed. Results Features of the stroke, including size, location, and white matter damage, relate to many behavioral outcomes and likely account for most of the variance in outcomes. Features of the spared brain tissue that are unchanged by stroke, such as prior ischemic disease in the white matter, contribute to outcomes. Many different neurobiological and behavioral mechanisms may drive changes in the brain after stroke in association with behavioral recovery. Changes primarily driven by neurobiology are likely to occur in brain regions with a systematic relationship to the stroke distribution. Changes primarily driven by behavior are likely to occur in brain networks related to the behavior driving the change. Conclusions Organizing the various hypothesized brain-behavior relationships according to this framework and considering the mechanisms that drive these relationships may help investigators develop specific experimental designs and more complete statistical models to explain language and cognitive abilities after stroke. Eight main recommendations for future research are provided. Presentation Video https://doi.org/10.23641/asha.10257578.
Collapse
Affiliation(s)
- Peter E Turkeltaub
- Department of Neurology, Georgetown University Medical Center, Washington, DC
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC
| |
Collapse
|
17
|
Crosson B, Rodriguez AD, Copland D, Fridriksson J, Krishnamurthy LC, Meinzer M, Raymer AM, Krishnamurthy V, Leff AP. Neuroplasticity and aphasia treatments: new approaches for an old problem. J Neurol Neurosurg Psychiatry 2019; 90:1147-1155. [PMID: 31055282 PMCID: PMC8014302 DOI: 10.1136/jnnp-2018-319649] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022]
Abstract
Given the profound impact of language impairment after stroke (aphasia), neuroplasticity research is garnering considerable attention as means for eventually improving aphasia treatments and how they are delivered. Functional and structural neuroimaging studies indicate that aphasia treatments can recruit both residual and new neural mechanisms to improve language function and that neuroimaging modalities may hold promise in predicting treatment outcome. In relatively small clinical trials, both non-invasive brain stimulation and behavioural manipulations targeting activation or suppression of specific cortices can improve aphasia treatment outcomes. Recent language interventions that employ principles consistent with inducing neuroplasticity also are showing improved performance for both trained and novel items and contexts. While knowledge is rapidly accumulating, larger trials emphasising how to select optimal paradigms for individualised aphasia treatment are needed. Finally, a model of how to incorporate the growing knowledge into clinical practice could help to focus future research.
Collapse
Affiliation(s)
- Bruce Crosson
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA .,Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Amy D Rodriguez
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA.,Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - David Copland
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Queensland, Australia.,Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina, USA
| | - Lisa C Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA.,Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia, USA
| | - Marcus Meinzer
- Department of Neurology, University of Greifswald, Greifswald, Germany
| | - Anastasia M Raymer
- Department of Communication Disorders and Special Education, Old Dominion University, Norfolk, Virginia, USA
| | - Venkatagiri Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA.,Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Alexander P Leff
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, UK
| |
Collapse
|
18
|
Kiran S, Thompson CK. Neuroplasticity of Language Networks in Aphasia: Advances, Updates, and Future Challenges. Front Neurol 2019; 10:295. [PMID: 31001187 PMCID: PMC6454116 DOI: 10.3389/fneur.2019.00295] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/06/2019] [Indexed: 11/13/2022] Open
Abstract
Researchers have sought to understand how language is processed in the brain, how brain damage affects language abilities, and what can be expected during the recovery period since the early 19th century. In this review, we first discuss mechanisms of damage and plasticity in the post-stroke brain, both in the acute and the chronic phase of recovery. We then review factors that are associated with recovery. First, we review organism intrinsic variables such as age, lesion volume and location and structural integrity that influence language recovery. Next, we review organism extrinsic factors such as treatment that influence language recovery. Here, we discuss recent advances in our understanding of language recovery and highlight recent work that emphasizes a network perspective of language recovery. Finally, we propose our interpretation of the principles of neuroplasticity, originally proposed by Kleim and Jones (1) in the context of extant literature in aphasia recovery and rehabilitation. Ultimately, we encourage researchers to propose sophisticated intervention studies that bring us closer to the goal of providing precision treatment for patients with aphasia and a better understanding of the neural mechanisms that underlie successful neuroplasticity.
Collapse
Affiliation(s)
- Swathi Kiran
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States
| | - Cynthia K. Thompson
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
- Department of Neurology, The Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
19
|
Braun M, Kronbichler M, Richlan F, Hawelka S, Hutzler F, Jacobs AM. A model-guided dissociation between subcortical and cortical contributions to word recognition. Sci Rep 2019; 9:4506. [PMID: 30872701 PMCID: PMC6418272 DOI: 10.1038/s41598-019-41011-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 02/18/2019] [Indexed: 12/26/2022] Open
Abstract
Neurocognitive studies of visual word recognition have provided information about brain activity correlated with orthographic processing. Some of these studies related the orthographic neighborhood density of letter strings to the amount of hypothetical global lexical activity (GLA) in the brain as simulated by computational models of word recognition. To further investigate this issue, we used GLA of words and nonwords from the multiple read-out model of visual word recognition (MROM) and related this activity to neural correlates of orthographic processing in the brain by using functional magnetic resonance imaging (fMRI). Words and nonwords elicited linear effects in the cortex with increasing BOLD responses for decreasing values of GLA. In addition, words showed increasing linear BOLD responses for increasing GLA values in subcortical regions comprising the hippocampus, globus pallidus and caudate nucleus. We propose that these regions are involved in the matching of orthographic input onto representations in long-term memory. The results speak to a potential involvement of the basal ganglia in visual word recognition with globus pallidus and caudate nucleus activity potentially reflecting maintenance of orthographic input in working memory supporting the matching of the input onto stored representations by selection of appropriate lexical candidates and the inhibition of orthographically similar but non-matching candidates.
Collapse
Affiliation(s)
- Mario Braun
- Centre for Cognitive Neuroscience, Universität Salzburg, Salzburg, Austria.
- Allgemeine und Neurokognitive Psychologie, Freie Universität Berlin, Berlin, Germany.
| | - Martin Kronbichler
- Centre for Cognitive Neuroscience, Universität Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Fabio Richlan
- Centre for Cognitive Neuroscience, Universität Salzburg, Salzburg, Austria
| | - Stefan Hawelka
- Centre for Cognitive Neuroscience, Universität Salzburg, Salzburg, Austria
| | - Florian Hutzler
- Centre for Cognitive Neuroscience, Universität Salzburg, Salzburg, Austria
| | - Arthur M Jacobs
- Allgemeine und Neurokognitive Psychologie, Freie Universität Berlin, Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Berlin, Germany
- Dahlem Institute for Neuroimaging of Emotion, Berlin, Germany
| |
Collapse
|
20
|
Quique YM, Evans WS, Dickey MW. Acquisition and Generalization Responses in Aphasia Naming Treatment: A Meta-Analysis of Semantic Feature Analysis Outcomes. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2019; 28:230-246. [PMID: 30208415 DOI: 10.1044/2018_ajslp-17-0155] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Purpose This meta-analysis synthesizes results from published studies that used semantic feature analysis (SFA) treatment to improve naming for people with aphasia. It examines how both person- and treatment-related variables affected the likelihood of correct naming responses in individual probe sessions for both acquisition (treated) and generalization (untreated) stimuli. Method The meta-analysis compiled data from 12 studies analyzing a total of 35 participants with aphasia. It used mixed-effects models as a novel statistical tool to examine the effects of 2 sets of variables on naming performance: treatment-related variables, including treatment phase (baseline vs. treatment), dosage (number of treatment sessions), and stimulus type (treated vs. untreated, semantically related vs. unrelated items), and person-specific variables, including degree of language impairment and demographic variables (age, time poststroke). Results Results of the meta-analysis revealed that SFA intervention promoted increased naming accuracy during naming probes when comparing baseline and treatment phases. In addition, increased dosages of SFA were associated with increased naming accuracy, and treatment-related gains were larger for acquisition (treated) than generalization (untreated) stimuli, likewise for related versus unrelated generalization stimuli. Furthermore, a subset of person-specific variables was predictive of SFA-related gains: Language impairment variables were related to treatment-related changes in naming performance, but demographic variables were not. Conclusion These results provide group-level evidence for the efficacy of SFA as well as preliminary estimates of how much naming performance benefit is engendered by varying dosages of SFA. The results also provide promising and previously unobserved evidence of potential person-level predictors of SFA treatment response.
Collapse
Affiliation(s)
- Yina M Quique
- Department of Communication Science and Disorders, University of Pittsburgh, PA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, PA
| | - William S Evans
- Department of Communication Science and Disorders, University of Pittsburgh, PA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, PA
| | - Michael Walsh Dickey
- Department of Communication Science and Disorders, University of Pittsburgh, PA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, PA
| |
Collapse
|
21
|
Boyd LA, Hayward KS, Ward NS, Stinear CM, Rosso C, Fisher RJ, Carter AR, Leff AP, Copland DA, Carey LM, Cohen LG, Basso DM, Maguire JM, Cramer SC. Biomarkers of Stroke Recovery: Consensus-Based Core Recommendations from the Stroke Recovery and Rehabilitation Roundtable. Neurorehabil Neural Repair 2018; 31:864-876. [PMID: 29233071 DOI: 10.1177/1545968317732680] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The most difficult clinical questions in stroke rehabilitation are "What is this patient's potential for recovery?" and "What is the best rehabilitation strategy for this person, given her/his clinical profile?" Without answers to these questions, clinicians struggle to make decisions regarding the content and focus of therapy, and researchers design studies that inadvertently mix participants who have a high likelihood of responding with those who do not. Developing and implementing biomarkers that distinguish patient subgroups will help address these issues and unravel the factors important to the recovery process. The goal of the present paper is to provide a consensus statement regarding the current state of the evidence for stroke recovery biomarkers. Biomarkers of motor, somatosensory, cognitive and language domains across the recovery timeline post-stroke are considered; with focus on brain structure and function, and exclusion of blood markers and genetics. We provide evidence for biomarkers that are considered ready to be included in clinical trials, as well as others that are promising but not ready and so represent a developmental priority. We conclude with an example that illustrates the utility of biomarkers in recovery and rehabilitation research, demonstrating how the inclusion of a biomarker may enhance future clinical trials. In this way, we propose a way forward for when and where we can include biomarkers to advance the efficacy of the practice of, and research into, rehabilitation and recovery after stroke.
Collapse
Affiliation(s)
- Lara A Boyd
- 1 Department of Physical Therapy & the Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Kathryn S Hayward
- 2 Department of Physical Therapy, University of British Columbia, Vancouver, Canada; Stroke Division, The Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
| | - Nick S Ward
- 3 Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Cathy M Stinear
- 4 Department of Medicine and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Charlotte Rosso
- 5 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, France; AP-HP, Stroke Unit, Pitié-Salpêtrière Hospital, France
| | - Rebecca J Fisher
- 6 Division of Rehabilitation & Ageing, University of Nottingham, Nottingham, UK
| | - Alexandre R Carter
- 7 Department of Neurology, Washington University in Saint Louis, St Louis, MO, USA
| | - Alex P Leff
- 8 Department of Brain Repair and Rehabilitation, Institute of Neurology & Institute of Cognitive Neuroscience, University College London, Queens Square, London, UK
| | - David A Copland
- 9 School of Health & Rehabilitation Sciences, University of Queensland, Brisbane, Australia; and University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Leeanne M Carey
- 10 School of Allied Health, College of Science, Health and Engineering, La Trobe, University, Bundoora, Australia; and Neurorehabilitation and Recovery, Stroke Division, The Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
| | - Leonardo G Cohen
- 11 Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - D Michele Basso
- 12 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Jane M Maguire
- 13 Faculty of Health, University of Technology Sydney, Ultimo, Sydney, Australia
| | - Steven C Cramer
- 14 University of California, Irvine, CA, USA; Depts. Neurology, Anatomy & Neurobiology, and Physical Medicine & Rehabilitation, Irvine, CA, USA
| |
Collapse
|
22
|
"Practice makes perfect?" white matter microstructural characteristic predicts the degree of improvement in within-trial conflict processing across two weeks. Brain Imaging Behav 2018; 13:841-851. [PMID: 29987633 DOI: 10.1007/s11682-018-9908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Several studies have investigated the trait-like characteristics of conflict processing at different levels. Our study extends these findings by reporting a practice-based improvement in within-trial conflict processing across two sessions. Eighty-three participants performed the same flanker task on two occasions 2 weeks apart. A subset of 37 subjects also underwent diffusion tensor imaging (DTI) scanning the day before the first behavioral task. Despite the trait-like characteristics of conflict processing, within-trial conflict processing in the second behavioral session was significantly shorter than that in the first session, indicating a practice-based improvement in conflict processing. Furthermore, changes in within-trial conflict processing across the two sessions exhibited significant individual differences. Tract-based spatial statistics revealed that the improvement across two sessions was related to the axial diffusivity values in white matter regions, including the body and splenium of the corpus callosum, right superior and posterior corona radiate, and right superior longitudinal fasciculus. Subsequently, lasso regression with leave-one-out cross validation was used to assess the predictive ability of white matter microstructural characteristics in significant regions. The results showed that 61% of individual variability in the improvement in the within-trial conflict processing could be explained by variations in the axial diffusivity values in the four significant regions and the within-trial conflict processing in the first session. These results suggest that axonal morphology in the white tracts connecting conflict-related regions predicts the degree of within-trial conflict processing improvement across two sessions.
Collapse
|
23
|
Boyd LA, Hayward KS, Ward NS, Stinear CM, Rosso C, Fisher RJ, Carter AR, Leff AP, Copland DA, Carey LM, Cohen LG, Basso DM, Maguire JM, Cramer SC. Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int J Stroke 2018; 12:480-493. [PMID: 28697711 DOI: 10.1177/1747493017714176] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The most difficult clinical questions in stroke rehabilitation are "What is this patient's potential for recovery?" and "What is the best rehabilitation strategy for this person, given her/his clinical profile?" Without answers to these questions, clinicians struggle to make decisions regarding the content and focus of therapy, and researchers design studies that inadvertently mix participants who have a high likelihood of responding with those who do not. Developing and implementing biomarkers that distinguish patient subgroups will help address these issues and unravel the factors important to the recovery process. The goal of the present paper is to provide a consensus statement regarding the current state of the evidence for stroke recovery biomarkers. Biomarkers of motor, somatosensory, cognitive and language domains across the recovery timeline post-stroke are considered; with focus on brain structure and function, and exclusion of blood markers and genetics. We provide evidence for biomarkers that are considered ready to be included in clinical trials, as well as others that are promising but not ready and so represent a developmental priority. We conclude with an example that illustrates the utility of biomarkers in recovery and rehabilitation research, demonstrating how the inclusion of a biomarker may enhance future clinical trials. In this way, we propose a way forward for when and where we can include biomarkers to advance the efficacy of the practice of, and research into, rehabilitation and recovery after stroke.
Collapse
Affiliation(s)
- Lara A Boyd
- 1 Department of Physical Therapy & the Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Kathryn S Hayward
- 2 Department of Physical Therapy, University of British Columbia, Vancouver, Canada; Stroke Division, The Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
| | - Nick S Ward
- 3 Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Cathy M Stinear
- 4 Department of Medicine and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Charlotte Rosso
- 5 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,6 AP-HP, Urgences Cérébro-Vasculaires, Hôpital Pitié-Salpêtrière, Paris, France
| | - Rebecca J Fisher
- 7 Division of Rehabilitation & Ageing, University of Nottingham, Nottingham, UK
| | - Alexandre R Carter
- 8 Department of Neurology, Washington University in Saint Louis, St Louis, MO, USA
| | - Alex P Leff
- 9 Department of Brain Repair and Rehabilitation, Institute of Neurology & Institute of Cognitive Neuroscience, University College London, Queens Square, London, UK
| | - David A Copland
- 10 School of Health & Rehabilitation Sciences, University of Queensland, Brisbane, Australia; and University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Leeanne M Carey
- 11 School of Allied Health, College of Science, Health and Engineering, La Trobe, University, Bundoora, Australia; and Neurorehabilitation and Recovery, Stroke Division, The Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
| | - Leonardo G Cohen
- 12 Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - D Michele Basso
- 13 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Jane M Maguire
- 14 Faculty of Health, University of Technology, Ultimo, Sydney, Australia
| | - Steven C Cramer
- 15 University of California, Irvine, CA, USA; Depts. Neurology, Anatomy & Neurobiology, and Physical Medicine & Rehabilitation, Irvine, CA, USA
| |
Collapse
|
24
|
Edwards LJ, Pine KJ, Ellerbrock I, Weiskopf N, Mohammadi S. NODDI-DTI: Estimating Neurite Orientation and Dispersion Parameters from a Diffusion Tensor in Healthy White Matter. Front Neurosci 2017; 11:720. [PMID: 29326546 PMCID: PMC5742359 DOI: 10.3389/fnins.2017.00720] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/11/2017] [Indexed: 11/25/2022] Open
Abstract
The NODDI-DTI signal model is a modification of the NODDI signal model that formally allows interpretation of standard single-shell DTI data in terms of biophysical parameters in healthy human white matter (WM). The NODDI-DTI signal model contains no CSF compartment, restricting application to voxels without CSF partial-volume contamination. This modification allowed derivation of analytical relations between parameters representing axon density and dispersion, and DTI invariants (MD and FA) from the NODDI-DTI signal model. These relations formally allow extraction of biophysical parameters from DTI data. NODDI-DTI parameters were estimated by applying the proposed analytical relations to DTI parameters estimated from the first shell of data, and compared to parameters estimated by fitting the NODDI-DTI model to both shells of data (reference dataset) in the WM of 14 in vivo diffusion datasets recorded with two different protocols, and in simulated data. The first two datasets were also fit to the NODDI-DTI model using only the first shell (as for DTI) of data. NODDI-DTI parameters estimated from DTI, and NODDI-DTI parameters estimated by fitting the model to the first shell of data gave similar errors compared to two-shell NODDI-DTI estimates. The simulations showed the NODDI-DTI method to be more noise-robust than the two-shell fitting procedure. The NODDI-DTI method gave unphysical parameter estimates in a small percentage of voxels, reflecting voxelwise DTI estimation error or NODDI-DTI model invalidity. In the course of evaluating the NODDI-DTI model, it was found that diffusional kurtosis strongly biased DTI-based MD values, and so, making assumptions based on healthy WM, a novel heuristic correction requiring only DTI data was derived and used to mitigate this bias. Since validations were only performed on healthy WM, application to grey matter or pathological WM would require further validation. Our results demonstrate NODDI-DTI to be a promising model and technique to interpret restricted datasets acquired for DTI analysis in healthy white matter with greater biophysical specificity, though its limitations must be borne in mind.
Collapse
Affiliation(s)
- Luke J Edwards
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Kerrin J Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Isabel Ellerbrock
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Siawoosh Mohammadi
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom.,Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
25
|
Hartwigsen G, Saur D. Neuroimaging of stroke recovery from aphasia - Insights into plasticity of the human language network. Neuroimage 2017; 190:14-31. [PMID: 29175498 DOI: 10.1016/j.neuroimage.2017.11.056] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/02/2017] [Accepted: 11/22/2017] [Indexed: 12/15/2022] Open
Abstract
The role of left and right hemisphere brain regions in language recovery after stroke-induced aphasia remains controversial. Here, we summarize how neuroimaging studies increase the current understanding of functional interactions, reorganization and plasticity in the language network. We first discuss the temporal dynamics across the time course of language recovery, with a main focus on longitudinal studies from the acute to the chronic phase after stroke. These studies show that the functional contribution of perilesional and spared left hemisphere as well as contralesional right hemisphere regions to language recovery changes over time. The second section introduces critical variables and recent advances on early prediction of subsequent outcome. In the third section, we outline how multi-method approaches that combine neuroimaging techniques with non-invasive brain stimulation elucidate mechanisms of plasticity and reorganization in the language network. These approaches provide novel insights into general mechanisms of plasticity in the language network and might ultimately support recovery processes during speech and language therapy. Finally, the neurobiological correlates of therapy-induced plasticity are discussed. We argue that future studies should integrate individualized approaches that might vary the combination of language therapy with specific non-invasive brain stimulation protocols across the time course of recovery. The way forward will include the combination of such approaches with large data sets obtained from multicentre studies.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Research Group Modulation of Language Networks, Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Dorothee Saur
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig, Germany.
| |
Collapse
|
26
|
Crosson B, Hampstead BM, Krishnamurthy LC, Krishnamurthy V, McGregor KM, Nocera JR, Roberts S, Rodriguez AD, Tran SM. Advances in neurocognitive rehabilitation research from 1992 to 2017: The ascension of neural plasticity. Neuropsychology 2017; 31:900-920. [PMID: 28857600 DOI: 10.1037/neu0000396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The last 25 years have seen profound changes in neurocognitive rehabilitation that continue to motivate its evolution. Although the concept of nervous system plasticity was discussed by William James (1890), the foundation for experience-based plasticity had not reached the critical empirical mass to seriously impact rehabilitation research until after 1992. The objective of this review is to describe how the emergence of neural plasticity has changed neurocognitive rehabilitation research. METHOD The important developments included (a) introduction of a widely available tool that could measure brain plasticity (i.e., functional MRI); (b) development of new structural imaging techniques that could define limits of and opportunities for neural plasticity; (c) deployment of noninvasive brain stimulation to leverage neural plasticity for rehabilitation; (d) growth of a literature indicating that exercise has positively impacts neural plasticity, especially for older persons; and (e) enhancement of neural plasticity by creating interventions that generalize beyond the boundaries of treatment activities. Given the massive literature, each of these areas is developed by example. RESULTS The expanding influence of neural plasticity has provided new models and tools for neurocognitive rehabilitation in neural injuries and disorders, as well as methods for measuring neural plasticity and predicting its limits and opportunities. Early clinical trials have provided very encouraging results. CONCLUSION Now that neural plasticity has gained a firm foothold, it will continue to influence the evolution of neurocognitive rehabilitation research for the next 25 years and advance rehabilitation for neural injuries and disease. (PsycINFO Database Record
Collapse
Affiliation(s)
- Bruce Crosson
- Veterans Affairs Rehabilitation Research and Development Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center
| | - Benjamin M Hampstead
- Neuropsychology Section, Department of Mental Health Services, Veterans Affairs Ann Arbor Healthcare Systems
| | | | | | | | | | | | - Amy D Rodriguez
- Atlanta Veterans Affairs Rehabilitation Research and Development Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center
| | | |
Collapse
|
27
|
Lukic S, Barbieri E, Wang X, Caplan D, Kiran S, Rapp B, Parrish TB, Thompson CK. Right Hemisphere Grey Matter Volume and Language Functions in Stroke Aphasia. Neural Plast 2017; 2017:5601509. [PMID: 28573050 PMCID: PMC5441122 DOI: 10.1155/2017/5601509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/09/2017] [Accepted: 03/21/2017] [Indexed: 11/17/2022] Open
Abstract
The role of the right hemisphere (RH) in recovery from aphasia is incompletely understood. The present study quantified RH grey matter (GM) volume in individuals with chronic stroke-induced aphasia and cognitively healthy people using voxel-based morphometry. We compared group differences in GM volume in the entire RH and in RH regions-of-interest. Given that lesion site is a critical source of heterogeneity associated with poststroke language ability, we used voxel-based lesion symptom mapping (VLSM) to examine the relation between lesion site and language performance in the aphasic participants. Finally, using results derived from the VLSM as a covariate, we evaluated the relation between GM volume in the RH and language ability across domains, including comprehension and production processes both at the word and sentence levels and across spoken and written modalities. Between-subject comparisons showed that GM volume in the RH SMA was reduced in the aphasic group compared to the healthy controls. We also found that, for the aphasic group, increased RH volume in the MTG and the SMA was associated with better language comprehension and production scores, respectively. These data suggest that the RH may support functions previously performed by LH regions and have important implications for understanding poststroke reorganization.
Collapse
Affiliation(s)
- Sladjana Lukic
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA
| | - Elena Barbieri
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA
| | - Xue Wang
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David Caplan
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Swathi Kiran
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Speech, Language, and Hearing, College of Health & Rehabilitation, Boston University, Boston, MA, USA
| | - Brenda Rapp
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Cognitive Science, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Todd B. Parrish
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cynthia K. Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA
- Department of Neurology, Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
28
|
Dignam J, Copland D, O'Brien K, Burfein P, Khan A, Rodriguez AD. Influence of Cognitive Ability on Therapy Outcomes for Anomia in Adults With Chronic Poststroke Aphasia. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2017; 60:406-421. [PMID: 28199471 DOI: 10.1044/2016_jslhr-l-15-0384] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
PURPOSE The relationship between cognitive abilities and aphasia rehabilitation outcomes is complex and remains poorly understood. This study investigated the influence of language and cognitive abilities on anomia therapy outcomes in adults with aphasia. METHOD Thirty-four adults with chronic aphasia participated in Aphasia Language Impairment and Functioning Therapy. A language and cognitive assessment battery, including 3 baseline naming probes, was administered prior to therapy. Naming accuracy for 30 treated and 30 untreated items was collected at posttherapy and 1-month follow-up. Multiple regression models were computed to evaluate the relationship between language and cognitive abilities at baseline and anomia therapy outcomes. RESULTS Both language and cognitive variables significantly influenced anomia therapy gains. Verbal short-term memory ability significantly predicted naming gains for treated items at posttherapy (β = -.551, p = .002) and for untreated items at posttherapy (β = .456, p = .014) and 1-month follow-up (β = .455, p = .021). Furthermore, lexical-semantic processing significantly predicted naming gains for treated items at posttherapy (β = -.496, p = .004) and 1-month follow-up (β = .545, p = .012). CONCLUSIONS Our findings suggest that individuals' cognitive ability, specifically verbal short-term memory, affects anomia treatment success. Further research into the relationship between cognitive ability and anomia therapy outcomes may help to optimize treatment techniques.
Collapse
Affiliation(s)
- Jade Dignam
- The University of Queensland, Centre for Clinical Research, Herston, Queensland, AustraliaSchool of Health and Rehabilitation Sciences, The University of Queensland, St. Lucia, AustraliaNational Health and Medical Research Council Centre for Clinical Research Excellence in Aphasia Rehabilitation, Brisbane, Queensland, Australia
| | - David Copland
- The University of Queensland, Centre for Clinical Research, Herston, Queensland, AustraliaSchool of Health and Rehabilitation Sciences, The University of Queensland, St. Lucia, AustraliaNational Health and Medical Research Council Centre for Clinical Research Excellence in Aphasia Rehabilitation, Brisbane, Queensland, Australia
| | - Kate O'Brien
- The University of Queensland, Centre for Clinical Research, Herston, Queensland, Australia
| | - Penni Burfein
- Speech Pathology Department, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia
| | - Asaduzzaman Khan
- School of Health and Rehabilitation Sciences, The University of Queensland, St. Lucia, Australia
| | - Amy D Rodriguez
- The University of Queensland, Centre for Clinical Research, Herston, Queensland, AustraliaSchool of Health and Rehabilitation Sciences, The University of Queensland, St. Lucia, AustraliaNational Health and Medical Research Council Centre for Clinical Research Excellence in Aphasia Rehabilitation, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Norise C, Hamilton RH. Non-invasive Brain Stimulation in the Treatment of Post-stroke and Neurodegenerative Aphasia: Parallels, Differences, and Lessons Learned. Front Hum Neurosci 2017; 10:675. [PMID: 28167904 PMCID: PMC5253356 DOI: 10.3389/fnhum.2016.00675] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/19/2016] [Indexed: 11/22/2022] Open
Abstract
Numerous studies over the span of more than a decade have shown that non-invasive brain stimulation (NIBS) techniques, namely transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), can facilitate language recovery for patients who have suffered from aphasia due to stroke. While stroke is the most common etiology of aphasia, neurodegenerative causes of language impairment—collectively termed primary progressive aphasia (PPA)—are increasingly being recognized as important clinical phenotypes in dementia. Very limited data now suggest that (NIBS) may have some benefit in treating PPAs. However, before applying the same approaches to patients with PPA as have previously been pursued in patients with post-stroke aphasia, it will be important for investigators to consider key similarities and differences between these aphasia etiologies that is likely to inform successful approaches to stimulation. While both post-stroke aphasia and the PPAs have clear overlaps in their clinical phenomenology, the mechanisms of injury and theorized neuroplastic changes associated with the two etiologies are notably different. Importantly, theories of plasticity in post-stroke aphasia are largely predicated on the notion that regions of the brain that had previously been uninvolved in language processing may take on new compensatory roles. PPAs, however, are characterized by slow distributed degeneration of cellular units within the language system; compensatory recruitment of brain regions to subserve language is not currently understood to be an important aspect of the condition. This review will survey differences in the mechanisms of language representation between the two etiologies of aphasia and evaluate properties that may define and limit the success of different neuromodulation approaches for these two disorders.
Collapse
Affiliation(s)
- Catherine Norise
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania Philadelphia, PA, USA
| | - Roy H Hamilton
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
30
|
Darkow R, Martin A, Würtz A, Flöel A, Meinzer M. Transcranial direct current stimulation effects on neural processing in post-stroke aphasia. Hum Brain Mapp 2016; 38:1518-1531. [PMID: 27859982 DOI: 10.1002/hbm.23469] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/14/2016] [Accepted: 11/06/2016] [Indexed: 12/18/2022] Open
Abstract
Non-invasive transcranial direct current stimulation (tDCS) can enhance recovery after stroke. However, fundamental knowledge about how tDCS impacts neural processing in the lesioned human brain is currently lacking. In the present study, it was investigated how tDCS modulates brain function in patients with post-stroke language impairment (aphasia). In a cross-over, randomized trial, patients named pictures of common objects during functional magnetic resonance imaging (fMRI). Concurrently, excitatory (anodal-) or sham-tDCS (1 mA, 20 min, or 30 s, respectively) was administered to the left primary motor cortex, a montage with demonstrated potential to improve aphasic language. By choosing stimuli that could reliable be named by the patients, the authors aimed to derive a pure measure of stimulation effects that was independent of treatment or performance effects and to assess how tDCS interacts with the patients' residual language network. Univariate fMRI data analysis revealed reduced activity in domain-general regions mediating high-level cognitive control during anodal-tDCS. Independent component functional network analysis demonstrated selectively increased language network activity and an inter-correlated shift from higher to lower frequency bands, indicative of increased within-network communication. Compared with healthy controls, anodal-tDCS resulted in overall "normalization" of brain function in the patients. These results demonstrate for the first time how tDCS modulates neural processing in stroke patients. Such information is crucial to assure that behavioral treatments targeting specific neural circuits overlap with regions that are modulated by tDCS, thereby maximizing stimulation effects during therapy. Hum Brain Mapp 38:1518-1531, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert Darkow
- Department of Neurology, NeuroCure Clinical Research Center, and Center of Stroke Research Berlin, Berlin, Charité University Medicine, Berlin, 10117, Germany
| | - Andrew Martin
- The University of Queensland, Centre for Clinical Research, Brisbane Queensland, 4029, Australia
| | - Anna Würtz
- Department of Neurology, NeuroCure Clinical Research Center, and Center of Stroke Research Berlin, Berlin, Charité University Medicine, Berlin, 10117, Germany
| | - Agnes Flöel
- Department of Neurology, NeuroCure Clinical Research Center, and Center of Stroke Research Berlin, Berlin, Charité University Medicine, Berlin, 10117, Germany
| | - Marcus Meinzer
- Department of Neurology, NeuroCure Clinical Research Center, and Center of Stroke Research Berlin, Berlin, Charité University Medicine, Berlin, 10117, Germany.,The University of Queensland, Centre for Clinical Research, Brisbane Queensland, 4029, Australia
| |
Collapse
|
31
|
Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia. Brain 2016; 139:1152-63. [DOI: 10.1093/brain/aww002] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
|
32
|
Mohammadi S, Carey D, Dick F, Diedrichsen J, Sereno MI, Reisert M, Callaghan MF, Weiskopf N. Whole-Brain In-vivo Measurements of the Axonal G-Ratio in a Group of 37 Healthy Volunteers. Front Neurosci 2015; 9:441. [PMID: 26640427 PMCID: PMC4661323 DOI: 10.3389/fnins.2015.00441] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/03/2015] [Indexed: 12/13/2022] Open
Abstract
The g-ratio, quantifying the ratio between the inner and outer diameters of a fiber, is an important microstructural characteristic of fiber pathways and is functionally related to conduction velocity. We introduce a novel method for estimating the MR g-ratio non-invasively across the whole brain using high-fidelity magnetization transfer (MT) imaging and single-shell diffusion MRI. These methods enabled us to map the MR g-ratio in vivo across the brain's prominent fiber pathways in a group of 37 healthy volunteers and to estimate the inter-subject variability. Effective correction of susceptibility-related distortion artifacts was essential before combining the MT and diffusion data, in order to reduce partial volume and edge artifacts. The MR g-ratio is in good qualitative agreement with histological findings despite the different resolution and spatial coverage of MRI and histology. The MR g-ratio holds promise as an important non-invasive biomarker due to its microstructural and functional relevance in neurodegeneration.
Collapse
Affiliation(s)
- Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, UK
| | - Daniel Carey
- Birkbeck/UCL Centre for NeuroImaging, Birkbeck College London, UK
| | - Fred Dick
- Birkbeck/UCL Centre for NeuroImaging, Birkbeck College London, UK
| | - Joern Diedrichsen
- UCL Institute of Cognitive Neurology, University College London London, UK
| | - Martin I Sereno
- Birkbeck/UCL Centre for NeuroImaging, Birkbeck College London, UK
| | - Marco Reisert
- Medical Physics, Department of Radiology, University Medical Center Freiburg Freiburg, Germany
| | - Martina F Callaghan
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, UK
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, UK ; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| |
Collapse
|
33
|
Gram MG, Wogensen E, Wörtwein G, Mogensen J, Malá H. Delayed restraint procedure enhances cognitive recovery of spatial function after fimbria-fornix transection. Restor Neurol Neurosci 2015; 34:1-17. [PMID: 26518669 DOI: 10.3233/rnn-140396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To i) evaluate the effect of a restraint procedure (7 days, 2 h/day) on place learning after fimbria-fornix transection (FF), ii) investigate effects of early vs. late administration of restraint, and iii) establish effects of the restraint procedure on expression of brain derived neurotrophic factor (BDNF) in prefrontal cortex and hippocampus. METHODS Fifty rats subjected to FF or sham surgery and divided into groups exposed to restraint immediately (early restraint) or 21 days (late restraint) after surgery were trained to acquire an allocentric place learning task. In parallel, 29 animals were subjected to FF or sham surgery and an identical restraint procedure in order to measure concentrations of BDNF and corticosterone. RESULTS The performance of the sham operated rats was positively affected by the late restraint. In FF-lesioned animals, the late restraint significantly improved task performance compared to the lesioned group with no restraint, while the early restraint was associated with a negative impact on task acquisition. Biochemical analysis after restraint procedure revealed a lesion-induced upregulation of BDNF in FF animals. CONCLUSIONS The improved task performance of lesioned animals suggests a therapeutic effect of this manipulation, independent of BDNF. This effect is sensitive to the temporal administration of treatment.
Collapse
Affiliation(s)
- Marie Gajhede Gram
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Elise Wogensen
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Mogensen
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Hana Malá
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Geva S, Correia MM, Warburton EA. Contributions of bilateral white matter to chronic aphasia symptoms as assessed by diffusion tensor MRI. BRAIN AND LANGUAGE 2015; 150:117-28. [PMID: 26401977 PMCID: PMC4669306 DOI: 10.1016/j.bandl.2015.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/09/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Language reorganisation following stroke has been studied widely. However, while studies of brain activation and grey matter examined both hemispheres, studies of white matter changes have mostly focused on the left hemisphere. Here we examined the relationship between bilateral hemispheric white matter and aphasia symptoms. 15 chronic stroke patients with aphasia and 18 healthy adults were studied using Diffusion Weighted Imaging data. By applying histogram analysis, Tract-Based Spatial Statistics, tractography and lesion-tract overlap methods, it was found that damage to the left hemisphere in general, and to the arcuate fasciculus in particular, correlated with impairments on word repetition, object naming, sentence comprehension and homophone and rhyme judgement. However, no such relationship was found in the right hemisphere. It is suggested that while some language function in aphasia can be explained by damage to the left arcuate fasciculus, it cannot be explained by looking at the contra-lesional tract.
Collapse
Affiliation(s)
- Sharon Geva
- Department of Clinical Neurosciences, University of Cambridge, United Kingdom; Cognitive Neuroscience and Neuropsychiatry Section, UCL Institute of Child Health, United Kingdom.
| | - Marta M Correia
- MRC Cognition and Brain Sciences Unit, Cambridge, United Kingdom
| | | |
Collapse
|
35
|
Primaßin A, Scholtes N, Heim S, Huber W, Neuschäfer M, Binkofski F, Werner CJ. Determinants of Concurrent Motor and Language Recovery during Intensive Therapy in Chronic Stroke Patients: Four Single-Case Studies. Front Neurol 2015; 6:215. [PMID: 26500606 PMCID: PMC4598579 DOI: 10.3389/fneur.2015.00215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023] Open
Abstract
Despite intensive research on mechanisms of recovery of function after stroke, surprisingly little is known about determinants of concurrent recovery of language and motor functions in single patients. The alternative hypotheses are that the two functions might either “fight for resources” or use the same mechanisms in the recovery process. Here, we present follow-up data of four exemplary patients with different base levels of motor and language abilities. We assessed functional scales and performed exact lesion analysis to examine the connection between lesion parameters and recovery potential in each domain. Results confirm that preservation of the corticospinal tracts (CSTs) is a neural predictor for good motor recovery while preservation of the arcuate fasciculus (AF) is important for a good language recovery. However, results further indicate that even patients with large lesions in CST, AF, and superior longitudinal fasciculus, respectively, are able to recover their motor/language abilities during intensive therapy. We further found some indicators of a facilitating interaction between motor and language recovery. Patients with positive improvement of motor skills after therapy also improved in language skills, while the patients with no motor improvements were not able to gain any language recovery.
Collapse
Affiliation(s)
- Annika Primaßin
- Section Clinical-Cognitive Sciences, Department of Neurology, Uniklinik RWTH Aachen , Aachen , Germany ; Department of Clinical Neurophysiology, University Medical Center , Göttingen , Germany
| | - Nina Scholtes
- Section Clinical-Cognitive Sciences, Department of Neurology, Uniklinik RWTH Aachen , Aachen , Germany
| | - Stefan Heim
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen , Aachen , Germany ; JARA - Translational Brain Medicine , Aachen , Germany ; Department of Neurology, Medical Faculty, Uniklinik RWTH Aachen , Aachen , Germany ; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich , Jülich , Germany
| | - Walter Huber
- Section Clinical-Cognitive Sciences, Department of Neurology, Uniklinik RWTH Aachen , Aachen , Germany
| | | | - Ferdinand Binkofski
- Section Clinical-Cognitive Sciences, Department of Neurology, Uniklinik RWTH Aachen , Aachen , Germany ; Institute of Neuroscience and Medicine (INM-4), Research Centre Jülich , Jülich , Germany
| | - Cornelius J Werner
- Department of Neurology, Medical Faculty, Uniklinik RWTH Aachen , Aachen , Germany
| |
Collapse
|
36
|
Holtbernd F, Deppe M, Bachmann R, Mohammadi S, Ringelstein EB, Reilmann R. Deficits in tongue motor control are linked to microstructural brain damage in multiple sclerosis: a pilot study. BMC Neurol 2015; 15:190. [PMID: 26450403 PMCID: PMC4599335 DOI: 10.1186/s12883-015-0451-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/29/2015] [Indexed: 11/14/2022] Open
Abstract
Background Deterioration of fine motor control of the tongue is common in Multiple Sclerosis (MS) and has a major impact on quality of life. However, the underlying neuronal substrate is largely unknown. Here, we aimed to explore the association of tongue motor dysfunction in MS patients with overall clinical disability and structural brain damage. Methods We employed a force transducer based quantitative-motor system (Q-Motor) to objectively assess tongue function in 33 patients with MS. The variability of tongue force output (TFV) and the mean applied tongue force (TF) were measured during an isometric tongue protrusion task. Twenty-three age and gender matched healthy volunteers served as controls. Correlation analyses of motor performance in MS patients with individual disease burden as expressed by the Expanded Disability Status Scale (EDSS) and with microstructural brain damage as measured by the fractional anisotropy (FA) on Diffusion Tensor Imaging were performed. Results MS patients showed significantly increased TFV and decreased TF compared to controls (p < 0.02). TFV but not TF was correlated with the EDSS (p < 0.04). TFV was inversely correlated with FA in the bilateral posterior limb of the internal capsule expanding to the brain stem (p < 0.001), a region critical to tongue function. TF showed a weaker, positive and unilateral correlation with FA in the same region (p < 0.001). Conclusions Changes in TFV were more robust and correlated better with disease phenotype and FA changes than TF. TFV might serve as an objective and non-invasive outcome measure to augment the quantitative assessment of motor dysfunction in MS.
Collapse
Affiliation(s)
- Florian Holtbernd
- Department of Neurology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Michael Deppe
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, Building A1, Muenster, Germany.
| | - Rainald Bachmann
- Department of Radiology, Marienhospital Aachen, Zeise 4, 52066, Aachen, Germany.
| | - Siawoosh Mohammadi
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, UK. .,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Erich B Ringelstein
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, Building A1, Muenster, Germany.
| | - Ralf Reilmann
- George-Huntington-Institute, Technology Park Muenster, Johann-Krane-Weg 27, 48149, Muenster, Germany.,Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany.,Department of Clinical Radiology, University of Muenster, Albert-Schweitzer-Campus 1, Building A1, Muenster, Germany
| |
Collapse
|
37
|
Edgin JO, Clark CAC, Massand E, Karmiloff-Smith A. Building an adaptive brain across development: targets for neurorehabilitation must begin in infancy. Front Behav Neurosci 2015; 9:232. [PMID: 26441566 PMCID: PMC4565977 DOI: 10.3389/fnbeh.2015.00232] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
Much progress has been made toward behavioral and pharmacological intervention in intellectual disability, which was once thought too difficult to treat. Down syndrome (DS) research has shown rapid advances, and clinical trials are currently underway, with more on the horizon. Here, we review the literature on the emergent profile of cognitive development in DS, emphasizing that treatment approaches must consider how some "end state" impairments, such as language deficits, may develop from early alterations in neural systems beginning in infancy. Specifically, we highlight evidence suggesting that there are pre- and early postnatal alterations in brain structure and function in DS, resulting in disturbed network function across development. We stress that these early alterations are likely amplified by Alzheimer's disease (AD) progression and poor sleep. Focusing on three network hubs (prefrontal cortex, hippocampus, and cerebellum), we discuss how these regions may relate to evolving deficits in cognitive function in individuals with DS, and to their language profile in particular.
Collapse
Affiliation(s)
- Jamie O. Edgin
- Department of Psychology, University of ArizonaTucson, AZ, USA
- Sonoran University Center for Excellence in Developmental DisabilitiesTucson, AZ, USA
| | | | - Esha Massand
- Centre for Brain and Cognitive Development, Birkbeck, University of LondonLondon, UK
| | | |
Collapse
|
38
|
Olson IR, Von Der Heide RJ, Alm KH, Vyas G. Development of the uncinate fasciculus: Implications for theory and developmental disorders. Dev Cogn Neurosci 2015; 14:50-61. [PMID: 26143154 PMCID: PMC4795006 DOI: 10.1016/j.dcn.2015.06.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/29/2015] [Accepted: 06/18/2015] [Indexed: 12/27/2022] Open
Abstract
The uncinate fasciculus (UF) is a long-range white matter tract that connects limbic regions in the temporal lobe to the frontal lobe. The UF is one of the latest developing tracts, and continues maturing into the third decade of life. As such, individual differences in the maturational profile of the UF may serve to explain differences in behavior. Indeed, atypical macrostructure and microstructure of the UF have been reported in numerous studies of individuals with developmental and psychiatric disorders such as social deprivation and maltreatment, autism spectrum disorders, conduct disorder, risk taking, and substance abuse. The present review evaluates what we currently know about the UF's developmental trajectory and reviews the literature relating UF abnormalities to specific disorders. Additionally, we take a dimensional approach and critically examine symptoms and behavioral impairments that have been demonstrated to cluster with UF aberrations, in an effort to relate these impairments to our speculations regarding the functionality of the UF. We suggest that developmental disorders with core problems relating to memory retrieval, reward and valuation computation, and impulsive decision making may be linked to aberrations in uncinate microstructure.
Collapse
|
39
|
Crosson B, McGregor KM, Nocera JR, Drucker JH, Tran SM, Butler AJ. The relevance of aging-related changes in brain function to rehabilitation in aging-related disease. Front Hum Neurosci 2015; 9:307. [PMID: 26074807 PMCID: PMC4444823 DOI: 10.3389/fnhum.2015.00307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/12/2015] [Indexed: 12/29/2022] Open
Abstract
The effects of aging on rehabilitation of aging-related diseases are rarely a design consideration in rehabilitation research. In this brief review we present strong coincidental evidence from these two fields suggesting that deficits in aging-related disease or injury are compounded by the interaction between aging-related brain changes and disease-related brain changes. Specifically, we hypothesize that some aphasia, motor, and neglect treatments using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) in stroke patients may address the aging side of this interaction. The importance of testing this hypothesis and addressing the larger aging by aging-related disease interaction is discussed. Underlying mechanisms in aging that most likely are relevant to rehabilitation of aging-related diseases also are covered.
Collapse
Affiliation(s)
- Bruce Crosson
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA ; Department of Psychology, Georgia State University Atlanta, GA, USA ; School of Health and Rehabilitation Sciences, University of Queensland Brisbane, Qld, Australia
| | - Keith M McGregor
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA
| | - Joe R Nocera
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA
| | - Jonathan H Drucker
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA ; Department of Psychology, Emory University Atlanta, GA, USA
| | - Stella M Tran
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Psychology, Georgia State University Atlanta, GA, USA
| | - Andrew J Butler
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Physical Therapy and School of Nursing and Health Professionals, Georgia State University Atlanta, GA, USA
| |
Collapse
|
40
|
Neuroscience of Aphasia Recovery: the Concept of Neural Multifunctionality. Curr Neurol Neurosci Rep 2015; 15:41. [DOI: 10.1007/s11910-015-0568-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning. Neuroimage 2015; 117:11-9. [PMID: 25987365 DOI: 10.1016/j.neuroimage.2015.05.019] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Declarative verbal learning and memory are known to be lateralised to the dominant hemisphere and to be subserved by a network of structures, including those located in frontal and temporal regions. These structures support critical components of verbal memory, including working memory, encoding, and retrieval. Their relative functional importance in facilitating declarative verbal learning and memory, however, remains unclear. OBJECTIVE To investigate the different functional roles of these structures in subserving declarative verbal learning and memory performance by applying a more focal form of transcranial direct current stimulation, "High Definition tDCS" (HD-tDCS). Additionally, we sought to examine HD-tDCS effects and electrical field intensity distributions using computer modelling. METHODS HD-tDCS was administered to the left dorsolateral prefrontal cortex (LDLPFC), planum temporale (PT), and left medial temporal lobe (LMTL) to stimulate the hippocampus, during learning on a declarative verbal memory task. Sixteen healthy participants completed a single blind, intra-individual cross-over, sham-controlled study which used a Latin Square experimental design. Cognitive effects on working memory and sustained attention were additionally examined. RESULTS HD-tDCS to the LDLPFC significantly improved the rate of verbal learning (p=0.03, η(2)=0.29) and speed of responding during working memory performance (p=0.02, η(2)=0.35), but not accuracy (p=0.12, η(2)=0.16). No effect of tDCS on verbal learning, retention, or retrieval was found for stimulation targeted to the LMTL or the PT. Secondary analyses revealed that LMTL stimulation resulted in increased recency (p=0.02, η(2)=0.31) and reduced mid-list learning effects (p=0.01, η(2)=0.39), suggesting an inhibitory effect on learning. CONCLUSIONS HD-tDCS to the LDLPFC facilitates the rate of verbal learning and improved efficiency of working memory may underlie performance effects. This focal method of administrating tDCS has potential for probing and enhancing cognitive functioning.
Collapse
|
42
|
Ullman MT, Pullman MY. A compensatory role for declarative memory in neurodevelopmental disorders. Neurosci Biobehav Rev 2015; 51:205-22. [PMID: 25597655 PMCID: PMC4359651 DOI: 10.1016/j.neubiorev.2015.01.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/17/2014] [Accepted: 01/08/2015] [Indexed: 11/20/2022]
Abstract
Most research on neurodevelopmental disorders has focused on their abnormalities. However, what remains intact may also be important. Increasing evidence suggests that declarative memory, a critical learning and memory system in the brain, remains largely functional in a number of neurodevelopmental disorders. Because declarative memory remains functional in these disorders, and because it can learn and retain numerous types of information, functions, and tasks, this system should be able to play compensatory roles for multiple types of impairments across the disorders. Here, we examine this hypothesis for specific language impairment, dyslexia, autism spectrum disorder, Tourette syndrome, and obsessive-compulsive disorder. We lay out specific predictions for the hypothesis and review existing behavioral, electrophysiological, and neuroimaging evidence. Overall, the evidence suggests that declarative memory indeed plays compensatory roles for a range of impairments across all five disorders. Finally, we discuss diagnostic, therapeutic and other implications.
Collapse
Affiliation(s)
- Michael T Ullman
- Brain and Language Laboratory, Department of Neuroscience, Georgetown University, Box 571464, Washington, DC 20057-1464, United States.
| | - Mariel Y Pullman
- Brain and Language Laboratory, Department of Neuroscience, Georgetown University, Box 571464, Washington, DC 20057-1464, United States
| |
Collapse
|
43
|
Mohammadi S, Tabelow K, Ruthotto L, Feiweier T, Polzehl J, Weiskopf N. High-resolution diffusion kurtosis imaging at 3T enabled by advanced post-processing. Front Neurosci 2015; 8:427. [PMID: 25620906 PMCID: PMC4285740 DOI: 10.3389/fnins.2014.00427] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022] Open
Abstract
Diffusion Kurtosis Imaging (DKI) is more sensitive to microstructural differences and can be related to more specific micro-scale metrics (e.g., intra-axonal volume fraction) than diffusion tensor imaging (DTI), offering exceptional potential for clinical diagnosis and research into the white and gray matter. Currently DKI is acquired only at low spatial resolution (2–3 mm isotropic), because of the lower signal-to-noise ratio (SNR) and higher artifact level associated with the technically more demanding DKI. Higher spatial resolution of about 1 mm is required for the characterization of fine white matter pathways or cortical microstructure. We used restricted-field-of-view (rFoV) imaging in combination with advanced post-processing methods to enable unprecedented high-quality, high-resolution DKI (1.2 mm isotropic) on a clinical 3T scanner. Post-processing was advanced by developing a novel method for Retrospective Eddy current and Motion ArtifacT Correction in High-resolution, multi-shell diffusion data (REMATCH). Furthermore, we applied a powerful edge preserving denoising method, denoted as multi-shell orientation-position-adaptive smoothing (msPOAS). We demonstrated the feasibility of high-quality, high-resolution DKI and its potential for delineating highly myelinated fiber pathways in the motor cortex. REMATCH performs robustly even at the low SNR level of high-resolution DKI, where standard EC and motion correction failed (i.e., produced incorrectly aligned images) and thus biased the diffusion model fit. We showed that the combination of REMATCH and msPOAS increased the contrast between gray and white matter in mean kurtosis (MK) maps by about 35% and at the same time preserves the original distribution of MK values, whereas standard Gaussian smoothing strongly biases the distribution.
Collapse
Affiliation(s)
- Siawoosh Mohammadi
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London London, UK ; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Karsten Tabelow
- Stochastic Algorithms and Nonparametric Statistics, Weierstrass Institute for Applied Analysis and Stochastics Berlin, Germany
| | - Lars Ruthotto
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia Vancouver, BC, Canada
| | | | - Jörg Polzehl
- Stochastic Algorithms and Nonparametric Statistics, Weierstrass Institute for Applied Analysis and Stochastics Berlin, Germany
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London London, UK
| |
Collapse
|
44
|
Mattioli F, Ambrosi C, Mascaro L, Scarpazza C, Pasquali P, Frugoni M, Magoni M, Biagi L, Gasparotti R. Early Aphasia Rehabilitation Is Associated With Functional Reactivation of the Left Inferior Frontal Gyrus. Stroke 2014; 45:545-52. [DOI: 10.1161/strokeaha.113.003192] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Flavia Mattioli
- From Neuropsychology Unit (F.M., C.S., P.P., M.F.), Department of Diagnostic Imaging, Medical Physics Unit (L.M.), and Stroke Unit (M.M.), Spedali Civili di Brescia, Brescia, Italy; Department of Diagnostic Imaging, Neuroradiology Unit, University of Brescia, Brescia, Italy (C.A., R.G.); and IRCCS Stella Maris Foundation, Pisa, Italy (L.B.)
| | - Claudia Ambrosi
- From Neuropsychology Unit (F.M., C.S., P.P., M.F.), Department of Diagnostic Imaging, Medical Physics Unit (L.M.), and Stroke Unit (M.M.), Spedali Civili di Brescia, Brescia, Italy; Department of Diagnostic Imaging, Neuroradiology Unit, University of Brescia, Brescia, Italy (C.A., R.G.); and IRCCS Stella Maris Foundation, Pisa, Italy (L.B.)
| | - Lorella Mascaro
- From Neuropsychology Unit (F.M., C.S., P.P., M.F.), Department of Diagnostic Imaging, Medical Physics Unit (L.M.), and Stroke Unit (M.M.), Spedali Civili di Brescia, Brescia, Italy; Department of Diagnostic Imaging, Neuroradiology Unit, University of Brescia, Brescia, Italy (C.A., R.G.); and IRCCS Stella Maris Foundation, Pisa, Italy (L.B.)
| | - Cristina Scarpazza
- From Neuropsychology Unit (F.M., C.S., P.P., M.F.), Department of Diagnostic Imaging, Medical Physics Unit (L.M.), and Stroke Unit (M.M.), Spedali Civili di Brescia, Brescia, Italy; Department of Diagnostic Imaging, Neuroradiology Unit, University of Brescia, Brescia, Italy (C.A., R.G.); and IRCCS Stella Maris Foundation, Pisa, Italy (L.B.)
| | - Patrizia Pasquali
- From Neuropsychology Unit (F.M., C.S., P.P., M.F.), Department of Diagnostic Imaging, Medical Physics Unit (L.M.), and Stroke Unit (M.M.), Spedali Civili di Brescia, Brescia, Italy; Department of Diagnostic Imaging, Neuroradiology Unit, University of Brescia, Brescia, Italy (C.A., R.G.); and IRCCS Stella Maris Foundation, Pisa, Italy (L.B.)
| | - Marina Frugoni
- From Neuropsychology Unit (F.M., C.S., P.P., M.F.), Department of Diagnostic Imaging, Medical Physics Unit (L.M.), and Stroke Unit (M.M.), Spedali Civili di Brescia, Brescia, Italy; Department of Diagnostic Imaging, Neuroradiology Unit, University of Brescia, Brescia, Italy (C.A., R.G.); and IRCCS Stella Maris Foundation, Pisa, Italy (L.B.)
| | - Mauro Magoni
- From Neuropsychology Unit (F.M., C.S., P.P., M.F.), Department of Diagnostic Imaging, Medical Physics Unit (L.M.), and Stroke Unit (M.M.), Spedali Civili di Brescia, Brescia, Italy; Department of Diagnostic Imaging, Neuroradiology Unit, University of Brescia, Brescia, Italy (C.A., R.G.); and IRCCS Stella Maris Foundation, Pisa, Italy (L.B.)
| | - Laura Biagi
- From Neuropsychology Unit (F.M., C.S., P.P., M.F.), Department of Diagnostic Imaging, Medical Physics Unit (L.M.), and Stroke Unit (M.M.), Spedali Civili di Brescia, Brescia, Italy; Department of Diagnostic Imaging, Neuroradiology Unit, University of Brescia, Brescia, Italy (C.A., R.G.); and IRCCS Stella Maris Foundation, Pisa, Italy (L.B.)
| | - Roberto Gasparotti
- From Neuropsychology Unit (F.M., C.S., P.P., M.F.), Department of Diagnostic Imaging, Medical Physics Unit (L.M.), and Stroke Unit (M.M.), Spedali Civili di Brescia, Brescia, Italy; Department of Diagnostic Imaging, Neuroradiology Unit, University of Brescia, Brescia, Italy (C.A., R.G.); and IRCCS Stella Maris Foundation, Pisa, Italy (L.B.)
| |
Collapse
|
45
|
van Hees S, McMahon K, Angwin A, de Zubicaray G, Copland DA. Neural activity associated with semantic versus phonological anomia treatments in aphasia. BRAIN AND LANGUAGE 2014; 129:47-57. [PMID: 24556337 DOI: 10.1016/j.bandl.2013.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
Naming impairments in aphasia are typically targeted using semantic and/or phonologically based tasks. However, it is not known whether these treatments have different neural mechanisms. Eight participants with aphasia received twelve treatment sessions using an alternating treatment design, with fMRI scans pre- and post-treatment. Half the sessions employed Phonological Components Analysis (PCA), and half the sessions employed Semantic Feature Analysis (SFA). Pre-treatment activity in the left caudate correlated with greater immediate treatment success for items treated with SFA, whereas recruitment of the left supramarginal gyrus and right precuneus post-treatment correlated with greater immediate treatment success for items treated with PCA. The results support previous studies that have found greater treatment outcome to be associated with activity in predominantly left hemisphere regions, and suggest that different mechanisms may be engaged dependent on the type of treatment employed.
Collapse
Affiliation(s)
- Sophia van Hees
- University of Queensland Centre for Clinical Research, Herston, QLD 4029, Australia; School of Health and Rehabilitation Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; Centre for Advanced Imaging, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Katie McMahon
- Centre for Advanced Imaging, University of Queensland, St. Lucia, QLD 4072, Australia; Wesley Hospital, Auchenflower, QLD 4066, Australia.
| | - Anthony Angwin
- School of Health and Rehabilitation Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Greig de Zubicaray
- School of Psychology, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - David A Copland
- University of Queensland Centre for Clinical Research, Herston, QLD 4029, Australia; School of Health and Rehabilitation Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; Clinical Centre for Research Excellence in Aphasia Rehabilitation, Australia.
| |
Collapse
|
46
|
van Hees S, McMahon K, Angwin A, de Zubicaray G, Read S, Copland DA. A functional MRI study of the relationship between naming treatment outcomes and resting state functional connectivity in post-stroke aphasia. Hum Brain Mapp 2014; 35:3919-31. [PMID: 24453137 DOI: 10.1002/hbm.22448] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/11/2013] [Accepted: 11/29/2013] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The majority of studies investigating the neural mechanisms underlying treatment in people with aphasia have examined task-based brain activity. However, the use of resting-state fMRI may provide another method of examining the brain mechanisms responsible for treatment-induced recovery, and allows for investigation into connectivity within complex functional networks METHODS Eight people with aphasia underwent 12 treatment sessions that aimed to improve object naming. Half the sessions employed a phonologically-based task, and half the sessions employed a semantic-based task, with resting-state fMRI conducted pre- and post-treatment. Brain regions in which the amplitude of low frequency fluctuations (ALFF) correlated with treatment outcomes were used as seeds for functional connectivity (FC) analysis. FC maps were compared from pre- to post-treatment, as well as with a group of 12 healthy older controls RESULTS Pre-treatment ALFF in the right middle temporal gyrus (MTG) correlated with greater outcomes for the phonological treatment, with a shift to the left MTG and supramarginal gyrus, as well as the right inferior frontal gyrus, post-treatment. When compared to controls, participants with aphasia showed both normalization and up-regulation of connectivity within language networks post-treatment, predominantly in the left hemisphere CONCLUSIONS The results provide preliminary evidence that treatments for naming impairments affect the FC of language networks, and may aid in understanding the neural mechanisms underlying the rehabilitation of language post-stroke.
Collapse
Affiliation(s)
- Sophia van Hees
- Centre for Clinical Research, University of Queensland, Brisbane, Australia; School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Meinzer M, Jähnigen S, Copland DA, Darkow R, Grittner U, Avirame K, Rodriguez AD, Lindenberg R, Flöel A. Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary. Cortex 2014; 50:137-47. [PMID: 23988131 DOI: 10.1016/j.cortex.2013.07.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022]
Affiliation(s)
- Marcus Meinzer
- Department of Neurology, Charité University Medicine, Berlin, Germany; Center for Stroke Research, Charité University Medicine, Berlin, Germany; Center for Clinical Research, University of Queensland, Brisbane, Australia.
| | - Sophia Jähnigen
- Department of Neurology, Charité University Medicine, Berlin, Germany
| | - David A Copland
- Center for Clinical Research, University of Queensland, Brisbane, Australia; CCRE in Aphasia Rehabilitation, University of Queensland, Brisbane, Australia
| | - Robert Darkow
- Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Ulrike Grittner
- Center for Stroke Research, Charité University Medicine, Berlin, Germany; Department for Biostatistics and Clinical Epidemiology, Charité University Medicine, Berlin, Germany
| | - Keren Avirame
- Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Amy D Rodriguez
- Center for Clinical Research, University of Queensland, Brisbane, Australia; CCRE in Aphasia Rehabilitation, University of Queensland, Brisbane, Australia
| | - Robert Lindenberg
- Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, Charité University Medicine, Berlin, Germany; Center for Stroke Research, Charité University Medicine, Berlin, Germany; NeuroCure Cluster of Excellence, Charité University Medicine, Berlin, Germany.
| |
Collapse
|
48
|
Road work on memory lane--functional and structural alterations to the learning and memory circuit in adults born very preterm. Neuroimage 2013; 102 Pt 1:152-61. [PMID: 24368264 DOI: 10.1016/j.neuroimage.2013.12.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 11/22/2013] [Accepted: 12/10/2013] [Indexed: 12/23/2022] Open
Abstract
Very preterm (VPT) birth is considered a risk factor not only for neurological impairment, but also for reduced function in several cognitive domains in childhood and later in life. Individuals who were born VPT are more likely to demonstrate learning and memory difficulties compared to term-born controls. These problems contribute to more VPT-born children repeating grades and underachieving in school. This, in turn, affects their prospects in adult life. Here we aimed to 1) study how the VPT-born adult brain functionally recruited specific areas during learning, i.e. encoding and recall across four repeated blocks of verbal stimuli, and to investigate how these patterns of activation differed from term-born subjects; and 2) probe the microstructural differences of white-matter tracts connecting these areas to other parts of the learning and memory network. To investigate these functional-structural relationships we analyzed functional and diffusion-weighted MRI. Functional-MRI and a verbal paired associate learning (VPAL) task were used to extract Blood Oxygenation Level Dependent (BOLD) activity in 21 VPT-born adults (<33 weeks of gestation) (mean age: 19.68 years ± 0.85; IQ: 99.86 ± 11.20) and 10 term-born controls (mean age: 19.87 years ± 2.04; IQ: 108.9 ± 13.18). Areas in which differences in functional activation were observed between groups were used as seed regions for tractography. Fractional anisotropy (FA) of the tract-skeleton was then compared between groups on a voxel-wise basis. Results of functional MRI analysis showed a significantly different pattern of activation between groups during encoding in right anterior cingulate-caudate body, and during retrieval in left thalamus, hippocampus and parts of left posterior parahippocampal gyrus. The number of correctly recalled word pairs did not statistically differ between individuals who were born VPT and controls. The VPT-born group was found to have reduced FA in tracts passing through the thalamic/hippocampal region that was differently activated during the recall condition, with the hippocampal fornix, inferior longitudinal fasciculus and inferior fronto-occipital fasciculus particularly affected. Young adults who were born very preterm display a strikingly different pattern of activation during the process of learning in key structures of the learning and memory network, including anterior cingulate and caudate body during encoding and thalamus/parahippocampal gyrus during cued recall. Altered activation in thalamus/parahippocampal gyrus may be explained by reduced connections between these areas and the hippocampus, which may be a direct consequence of neonatal hypoxic/ischemic injury. These results could reflect the effect of adaptive plastic processes associated with high-order cognitive functions, at least when the cognitive load remains relatively low, as ex-preterm young adults displayed unimpaired performance in completing the verbal paired associate learning task.
Collapse
|
49
|
Tuomiranta LM, Càmara E, Froudist Walsh S, Ripollés P, Saunavaara JP, Parkkola R, Martin N, Rodríguez-Fornells A, Laine M. Hidden word learning capacity through orthography in aphasia. Cortex 2013; 50:174-91. [PMID: 24262200 DOI: 10.1016/j.cortex.2013.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/14/2013] [Accepted: 10/14/2013] [Indexed: 11/17/2022]
Abstract
The ability to learn to use new words is thought to depend on the integrity of the left dorsal temporo-frontal speech processing pathway. We tested this assumption in a chronic aphasic individual (AA) with an extensive left temporal lesion using a new-word learning paradigm. She exhibited severe phonological problems and Magnetic Resonance Imaging (MRI) suggested a complete disconnection of this left-sided white-matter pathway comprising the arcuate fasciculus (AF). Diffusion imaging tractography confirmed the disconnection of the direct segment and the posterior indirect segment of her left AF, essential components of the left dorsal speech processing pathway. Despite her left-hemispheric damage and moderate aphasia, AA learned to name and maintain the novel words in her active vocabulary on par with healthy controls up to 6 months after learning. This exceeds previous demonstrations of word learning ability in aphasia. Interestingly, AA's preserved word learning ability was modality-specific as it was observed exclusively for written words. Functional magnetic resonance imaging (fMRI) revealed that in contrast to normals, AA showed a significantly right-lateralized activation pattern in the temporal and parietal regions when engaged in reading. Moreover, learning of visually presented novel word-picture pairs also activated the right temporal lobe in AA. Both AA and the controls showed increased activation during learning of novel versus familiar word-picture pairs in the hippocampus, an area critical for associative learning. AA's structural and functional imaging results suggest that in a literate person, a right-hemispheric network can provide an effective alternative route for learning of novel active vocabulary. Importantly, AA's previously undetected word learning ability translated directly into therapy, as she could use written input also to successfully re-learn and maintain familiar words that she had lost due to her left hemisphere lesion.
Collapse
Affiliation(s)
- Leena M Tuomiranta
- Department of Psychology and Logopedics, Abo Akademi University, Turku, Finland
| | - Estela Càmara
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Seán Froudist Walsh
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College, London, UK
| | - Pablo Ripollés
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Basic Psychology, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | - Nadine Martin
- Department of Communication Sciences and Disorders, Eleanor M. Saffran Center for Cognitive Neuroscience, Temple University, Philadelphia, PA, USA
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Basic Psychology, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Matti Laine
- Department of Psychology and Logopedics, Abo Akademi University, Turku, Finland.
| |
Collapse
|
50
|
Abstract
As a relatively recent cultural invention in human evolution, reading is an important gateway to personal development and socioeconomic success. Despite the well documented individual differences in reading ability, its neuroanatomical correlates have not been well understood, largely due to the fact that reading is a complex skill that consists of multiple components. Using a large sample of 416 college students and 7 reading tasks, the present study successfully identified three uncorrelated components of reading ability: phonological decoding, form-sound association, and naming speed. We then tried to predict individuals' scores in these components from their gray matter volume (GMV) on a subset of participants (N = 253) with high-quality structural images, adopting a multivariate support vector regression analysis with tenfold cross-validation. Our results revealed distinct neural regions that supported different aspects of reading ability: whereas phonological decoding was associated with the GMV in the left superior parietal lobe extending to the supramarginal gyrus, form-sound association was predicted by the GMV in the hippocampus and cerebellum. Naming speed was associated with GMV in distributed brain regions in the occipital, temporal, parietal, and frontal cortices. Phonological decoding and form-sound association were uncorrelated with general cognitive abilities. However, naming speed was correlated with intelligence and processing speed, and some of the regions that were predictive of naming speed also predicted these general cognitive abilities. These results provide further insights on the cognitive and neural architecture of reading and the structural basis of individual differences in reading abilities.
Collapse
|