1
|
Ma Y, Jiao F, Batsikadze G, Yavari F, Nitsche MA. The impact of the left inferior frontal gyrus on fear extinction: A transcranial direct current stimulation study. Brain Stimul 2024; 17:816-825. [PMID: 38997105 DOI: 10.1016/j.brs.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/03/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024] Open
Abstract
INTRODUCTION Fear extinction is a fundamental component of exposure-based therapies for anxiety-related disorders. The renewal of fear in a different context after extinction highlights the importance of contextual factors. In this study, we aimed to investigate the causal role of the left inferior frontal gyrus (LiFG) in the context-dependency of fear extinction learning via administration of transcranial direct current stimulation (tDCS) over this area. METHODS 180 healthy subjects were assigned to 9 groups: 3 tDCS conditions (anodal, cathodal, and sham) × 3 context combinations (AAA, ABA, and ABB). The fear conditioning/extinction task was conducted over three consecutive days: acquisition, extinction learning, and extinction recall. tDCS (2 mA, 10min) was administered during the extinction learning phase over the LiFG via a 4-electrode montage. Skin conductance response (SCR) data and self-report assessments were collected. RESULTS During the extinction learning phase, groups with excitability-enhancing anodal tDCS showed a significantly higher fear response to the threat cues compared to cathodal and sham stimulation conditions, irrespective of contextual factors. This effect was stable until the extinction recall phase. Additionally, excitability-reducing cathodal tDCS caused a significant decrease of the response difference between the threat and safety cues during the extinction recall phase. The self-report assessments showed no significant differences between the conditions throughout the experiment. CONCLUSION Independent of the context, excitability enhancement of the LiFG did impair fear extinction, and led to preservation of fear memory. In contrast, excitability reduction of this area enhanced fear extinction retention. These findings imply that the LiFG plays a role in the fear extinction network, which seems to be however context-independent.
Collapse
Affiliation(s)
- Yuanbo Ma
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Fujia Jiao
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
| | - Fatemeh Yavari
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany; German Center for Mental Health (DZPG), Bochum, Germany.
| |
Collapse
|
2
|
Lissek S, Tegenthoff M. Dissimilarities of neural representations of extinction trials are associated with extinction learning performance and renewal level. Front Behav Neurosci 2024; 18:1307825. [PMID: 38468709 PMCID: PMC10925752 DOI: 10.3389/fnbeh.2024.1307825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Renewal of extinguished responses is associated with higher activity in specific extinction-relevant brain regions, i.e., hippocampus (HC), inferior frontal gyrus (IFG), and ventromedial PFC (vmPFC). HC is involved in processing of context information, while IFG and vmPFC use such context information for selecting and deciding among competing response options. However, it is as yet unknown to what extent trials with changed versus unchanged outcome, or extinction trials that evoke renewal (i.e., extinction context differs from acquisition and test context: ABA trials) and trials that do not (i.e., same context in all phases: AAA trials) are represented differentially in extinction-relevant brain regions. Methods In this study, we applied representational similarity analysis (RSA) to determine differences in neural representations of these trial types and their relationship to extinction error rates and renewal level. Results Overall, individuals with renewal (REN) and those without (NoREN) did not differ significantly in their discrimination levels between ABA and AAA extinction trials, with the exception of right posterior HC, where REN exhibited more pronounced context-related discrimination. In addition, higher dissimilarity of representations in bilateral posterior HC, as well as in several IFG regions, during extinction learning was linked to lower ABA renewal rates. Both REN and NoREN benefitted from prediction error feedback from ABA extinction errors for context- and outcome-related discrimination of trials in IFG, vmPFC, and HC, but only the NoREN group also benefitted from error feedback from AAA extinction errors. Discussion Thus, while in both groups the presence of a novel context supported formation of distinct representations, only in NoREN the expectancy violation of the surprising change of outcome alone had a similar effect. In addition, only in NoREN context-related discrimination was linked to error feedback in vmPFC. In summary, the findings show that context- and outcome-related discrimination of trials in HC, vmPFC, and IFG is linked to extinction learning errors, regardless of renewal propensity, and at the same time point towards differential context processing strategies in REN and NoREN. Moreover, better discrimination of context-related trials during extinction learning promotes less renewal during extinction recall, suggesting that renewal may be related to suboptimal context-related trial discrimination.
Collapse
Affiliation(s)
- Silke Lissek
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Han Y, Yan H, Shan X, Li H, Liu F, Xie G, Li P, Guo W. Can the aberrant occipital-cerebellum network be a predictor of treatment in panic disorder? J Affect Disord 2023; 331:207-216. [PMID: 36965626 DOI: 10.1016/j.jad.2023.03.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND This study aimed to detect altered brain activation pattern of patients with panic disorder (PD) and its changes after treatment. The possibilities of diagnosis and prediction of treatment response based on the aberrant brain activity were tested. METHODS Fifty-four PD patients and 54 healthy controls (HCs) were recruited. Clinical assessment and resting-state functional magnetic resonance imaging scans were conducted. Then, patients received a 4-week paroxetine treatment and underwent a second clinical assessment and scan. The fractional amplitude of low-frequency fluctuations (fALFF) was measured. Support vector machine (SVM) and support vector regression (SVR) analyses were conducted. RESULTS Lower fALFF values in the right calcarine/lingual gyrus and left lingual gyrus/cerebellum IV/V, whereas higher fALFF values in right cerebellum Crus II were observed in patients related to HCs at baseline. After treatment, patients with PD exhibited significant clinical improvement, and the abnormal lower fALFF values in the right lingual gyrus exhibited a great increase. The abnormal fALFF at pretreatment can distinguish patients from HCs with 80 % accuracy and predict treatment response which was reflected in the significant correlation between the predicted and actual treatment responses. LIMITATIONS The impacts of ethnic, cultural, and other regional differences on PD were not considered for it was a single-center study. CONCLUSIONS The occipital-cerebellum network played an important role in the pathophysiology of PD and should be a part of the fear network. The abnormal fALFF values in patients with PD at pretreatment could serve as biomarkers of PD and predict the early treatment response of paroxetine.
Collapse
Affiliation(s)
- Yiding Han
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Haohao Yan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Wenbin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
4
|
Strickland JA, McDannald MA. Brainstem networks construct threat probability and prediction error from neuronal building blocks. Nat Commun 2022; 13:6192. [PMID: 36261515 PMCID: PMC9582012 DOI: 10.1038/s41467-022-34021-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
When faced with potential threat we must estimate its probability, respond advantageously, and leverage experience to update future estimates. Threat estimation is the proposed domain of the forebrain, while behaviour is elicited by the brainstem. Yet, the brainstem is also a source of prediction error, a learning signal to acquire and update threat estimates. Neuropixels probes allowed us to record single-unit activity across a 21-region brainstem axis in rats receiving probabilistic fear discrimination with foot shock outcome. Against a backdrop of diffuse behaviour signaling, a brainstem network with a dorsal hub signaled threat probability. Neuronal function remapping during the outcome period gave rise to brainstem networks signaling prediction error and shock on multiple timescales. The results reveal brainstem networks construct threat probability, behaviour, and prediction error signals from neuronal building blocks.
Collapse
Affiliation(s)
- Jasmin A Strickland
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA.
- Department of Psychology, Durham University, Durham, DH1 3LE, UK.
| | - Michael A McDannald
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
5
|
Ojala KE, Tzovara A, Poser BA, Lutti A, Bach DR. Asymmetric representation of aversive prediction errors in Pavlovian threat conditioning. Neuroimage 2022; 263:119579. [PMID: 35995374 DOI: 10.1016/j.neuroimage.2022.119579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Survival in biological environments requires learning associations between predictive sensory cues and threatening outcomes. Such aversive learning may be implemented through reinforcement learning algorithms that are driven by the signed difference between expected and encountered outcomes, termed prediction errors (PEs). While PE-based learning is well established for reward learning, the role of putative PE signals in aversive learning is less clear. Here, we used functional magnetic resonance imaging in humans (21 healthy men and women) to investigate the neural representation of PEs during maintenance of learned aversive associations. Four visual cues, each with a different probability (0, 33, 66, 100%) of being followed by an aversive outcome (electric shock), were repeatedly presented to participants. We found that neural activity at omission (US-) but not occurrence of the aversive outcome (US+) encoded PEs in the medial prefrontal cortex. More expected omission of aversive outcome was associated with lower neural activity. No neural signals fulfilled axiomatic criteria, which specify necessary and sufficient components of PE signals, for signed PE representation in a whole-brain search or in a-priori regions of interest. Our results might suggest that, different from reward learning, aversive learning does not involve signed PE signals that are represented within the same brain region for all conditions.
Collapse
Affiliation(s)
- Karita E Ojala
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; Neuroscience Centre Zurich, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland.
| | - Athina Tzovara
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; Neuroscience Centre Zurich, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Institute of Computer Science, University of Bern, Neubrückstrasse 10, Bern 3012, Switzerland
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55 EV 6299, Maastricht, the Netherlands
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Chemin de Mont-Paisible 16, Lausanne 1011, Switzerland
| | - Dominik R Bach
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; Neuroscience Centre Zurich, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Wellcome Centre for Human Neuroimaging and Max-Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, 10-12 Russell Square, London WC1B 5EH, United Kingdom.
| |
Collapse
|
6
|
Stemerding LE, van Ast VA, Gerlicher AM, Kindt M. Pupil dilation and skin conductance as measures of prediction error in aversive learning. Behav Res Ther 2022; 157:104164. [DOI: 10.1016/j.brat.2022.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
|
7
|
Inter-individual differences in pain anticipation and pain perception in migraine: Neural correlates of migraine frequency and cortisol-to-dehydroepiandrosterone sulfate (DHEA-S) ratio. PLoS One 2021; 16:e0261570. [PMID: 34929017 PMCID: PMC8687546 DOI: 10.1371/journal.pone.0261570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023] Open
Abstract
Previous studies targeting inter-individual differences in pain processing in migraine mainly focused on the perception of pain. Our main aim was to disentangle pain anticipation and perception using a classical fear conditioning task, and investigate how migraine frequency and pre-scan cortisol-to-dehydroepiandrosterone sulfate (DHEA-S) ratio as an index of neurobiological stress response would relate to neural activation in these two phases. Functional Magnetic Resonance Imaging (fMRI) data of 23 participants (18 females; mean age: 27.61± 5.36) with episodic migraine without aura were analysed. We found that migraine frequency was significantly associated with pain anticipation in brain regions comprising the midcingulate and caudate, whereas pre-scan cortisol-to DHEA-S ratio was related to pain perception in the pre-supplementary motor area (pre-SMA). Both results suggest exaggerated preparatory responses to pain or more general to stressors, which may contribute to the allostatic load caused by stressors and migraine attacks on the brain.
Collapse
|
8
|
Wu Y, Zhong Y, Zheng G, Liu Y, Pang M, Xu H, Ding H, Wang C, Zhang N. Disrupted fronto-temporal function in panic disorder: a resting-state connectome study. Brain Imaging Behav 2021; 16:888-898. [PMID: 34668168 DOI: 10.1007/s11682-021-00563-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 12/21/2022]
Abstract
Recent neuroimaging studies have identified alterations in activity and connectivity among many brain regions as potential biomarkers for panic disorder. However, the functional connectome of panic disorder is not well understood. Therefore, a graph-theoretical approach was applied in this study to construct functional networks of patients and healthy controls in order to discover topological changes in panic disorder. 31 patients and 33 age and sex matched healthy controls underwent resting-state functional magnetic resonance imaging. Brain networks for each participant were structured using nodes from the Anatomical Automatic Labeling template and edges from connectivity matrices. Then, topological organizations of networks were calculated. Network-based statistical analysis was conducted, and global and nodal properties were compared between patients and controls. Unlike controls, patients with panic disorder displayed a small-world network. Patients also revealed decreased nodal efficiency in right superior frontal gyrus (SFG), middle frontal gyrus (MFG), right superior temporal gyrus (STG), and left middle temporal gyrus (MTG). Decreased functional connectivity was found in panic disorder between right MTG and extensive temporal regions. Among these disrupted regions, the decreased nodal efficiency of SFG showed a positive correlation with clinical symptoms while nodal betweenness centrality in angular gyrus showed a negative correlation. Our results indicated decreased function of global and regional information transmission in panic disorder and emphasized the role of temporal regions in its pathology.
Collapse
Affiliation(s)
- Yun Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, No.264 Guangzhou Road, Gulou District, Nanjing, 210029, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing, 210097, PR China
| | - Gang Zheng
- Department of Medical Imaging, Medical School of Nanjing University, Nanjing, Jiangsu, China.,College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Ya Liu
- Department of Medical Imaging, Medical School of Nanjing University, Nanjing, Jiangsu, China.,College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Manlong Pang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, No.264 Guangzhou Road, Gulou District, Nanjing, 210029, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huazhen Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, No.264 Guangzhou Road, Gulou District, Nanjing, 210029, China.,Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huachen Ding
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, No.264 Guangzhou Road, Gulou District, Nanjing, 210029, China.,Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, No.264 Guangzhou Road, Gulou District, Nanjing, 210029, China. .,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China. .,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, No.264 Guangzhou Road, Gulou District, Nanjing, 210029, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Zhornitsky S, Le TM, Wang W, Dhingra I, Chen Y, Li CSR, Zhang S. Midcingulate Cortical Activations Interrelate Chronic Craving and Physiological Responses to Negative Emotions in Cocaine Addiction. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:37-47. [PMID: 35664438 PMCID: PMC9164547 DOI: 10.1016/j.bpsgos.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
10
|
Laing PAF, Harrison BJ. Safety learning and the Pavlovian conditioned inhibition of fear in humans: Current state and future directions. Neurosci Biobehav Rev 2021; 127:659-674. [PMID: 34023357 DOI: 10.1016/j.neubiorev.2021.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023]
Abstract
Safety learning occurs when an otherwise neutral stimulus comes to signal the absence of threat, allowing organisms to use safety information to inhibit fear and anxiety in nonthreatening environments. Although it continues to emerge as a topic of relevance in biological and clinical psychology, safety learning remains inconsistently defined and under-researched. Here, we analyse the Pavlovian conditioned inhibition paradigm and its application to the study of safety learning in humans. We discuss existing studies; address outstanding theoretical considerations; and identify prospects for its further application. Though Pavlovian conditioned inhibition presents a theoretically sound model of safety learning, it has been investigated infrequently, with decade-long interims between some studies, and notable methodological variability. Consequently, we argue that the full potential of conditioned inhibition as a model for human safety learning remains untapped, and propose that it could be revisited as a framework for addressing timely questions in the behavioural and clinical sciences.
Collapse
Affiliation(s)
- Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Yaple ZA, Tolomeo S, Yu R. Abnormal prediction error processing in schizophrenia and depression. Hum Brain Mapp 2021; 42:3547-3560. [PMID: 33955106 PMCID: PMC8249895 DOI: 10.1002/hbm.25453] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 11/19/2022] Open
Abstract
To make adaptive decisions under uncertainty, individuals need to actively monitor the discrepancy between expected outcomes and actual outcomes, known as prediction errors. Reward‐based learning deficits have been shown in both depression and schizophrenia patients. For this study, we compiled studies that investigated prediction error processing in depression and schizophrenia patients and performed a series of meta‐analyses. In both groups, positive t‐maps of prediction error tend to yield striatum activity across studies. The analysis of negative t‐maps of prediction error revealed two large clusters within the right superior and inferior frontal lobes in schizophrenia and the medial prefrontal cortex and bilateral insula in depression. The concordant posterior cingulate activity was observed in both patient groups, more prominent in the depression group and absent in the healthy control group. These findings suggest a possible role in dopamine‐rich areas associated with the encoding of prediction errors in depression and schizophrenia.
Collapse
Affiliation(s)
| | - Serenella Tolomeo
- Department of Psychology, National University of Singapore, Singapore
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China.,Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China.,Department of Physics, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
12
|
Iordanova MD, Yau JOY, McDannald MA, Corbit LH. Neural substrates of appetitive and aversive prediction error. Neurosci Biobehav Rev 2021; 123:337-351. [PMID: 33453307 PMCID: PMC7933120 DOI: 10.1016/j.neubiorev.2020.10.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Prediction error, defined by the discrepancy between real and expected outcomes, lies at the core of associative learning. Behavioural investigations have provided evidence that prediction error up- and down-regulates associative relationships, and allocates attention to stimuli to enable learning. These behavioural advances have recently been followed by investigations into the neurobiological substrates of prediction error. In the present paper, we review neuroscience data obtained using causal and recording neural methods from a variety of key behavioural designs. We explore the neurobiology of both appetitive (reward) and aversive (fear) prediction error with a focus on the mesolimbic dopamine system, the amygdala, ventrolateral periaqueductal gray, hippocampus, cortex and locus coeruleus noradrenaline. New questions and avenues for research are considered.
Collapse
Affiliation(s)
- Mihaela D Iordanova
- Department of Psychology/Centre for Studies in Behavioral Neurobiology, Concordia University, 7141 Sherbrooke St, Montreal, QC, H4B 1R6, Canada.
| | - Joanna Oi-Yue Yau
- School of Psychology, The University of New South Wales, UNSW Sydney, NSW, 2052, Australia.
| | - Michael A McDannald
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Avenue, 514 McGuinn Hall, Chestnut Hill, MA, 02467, USA.
| | - Laura H Corbit
- Departments of Psychology and Cell and Systems Biology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| |
Collapse
|
13
|
Laing PA, Vervliet B, Fullana MA, Savage HS, Davey CG, Felmingham KL, Harrison BJ. Characterizing human safety learning via Pavlovian conditioned inhibition. Behav Res Ther 2021; 137:103800. [DOI: 10.1016/j.brat.2020.103800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
|
14
|
Willems AL, Vervliet B. When nothing matters: Assessing markers of expectancy violation during omissions of threat. Behav Res Ther 2021; 136:103764. [DOI: 10.1016/j.brat.2020.103764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/20/2020] [Accepted: 11/06/2020] [Indexed: 02/03/2023]
|
15
|
Elman I, Upadhyay J, Lowen S, Karunakaran K, Albanese M, Borsook D. Mechanisms Underlying Unconscious Processing and Their Alterations in Post-traumatic Stress Disorder: Neuroimaging of Zero Monetary Outcomes Contextually Framed as "No Losses" vs. "No Gains". Front Neurosci 2020; 14:604867. [PMID: 33390889 PMCID: PMC7772193 DOI: 10.3389/fnins.2020.604867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/24/2020] [Indexed: 11/26/2022] Open
Abstract
Although unconscious processing is a key element of mental operation, its neural correlates have not been established. Also, clinical observations suggest that unconscious processing may be involved in the pathophysiology of post-traumatic stress disorder (PTSD), but the neurobiological mechanisms underlying such impairments remain unknown. The purpose of the present study was to examine putative mechanisms underlying unconscious processing by healthy participants and to determine whether these mechanisms may be altered in PTSD patients. Twenty patients with PTSD and 27 healthy individuals were administered a validated wheel of fortune-type gambling task during functional magnetic resonance imaging (fMRI). Unconscious processing was elicited using unconscious contextual framing of the zero monetary outcomes as "no loss," "no gain" or as "neutral." Brief passive visual processing of the "no loss" vs. "no gain" contrast by healthy participants yielded bilateral frontal-, temporal- and insular cortices and striatal activations. Between-group comparison revealed smaller activity in the left anterior prefrontal-, left dorsolateral prefrontal-, right temporal- and right insular cortices and in bilateral striatum in PTSD patients with the left dorsolateral prefrontal cortex activity been more pronounced in those with greater PTSD severity. These observations implicate frontal-, temporal-, and insular cortices along with the striatum in the putative mechanisms underlying unconscious processing of the monetary outcomes. Additionally, our results support the hypothesis that PTSD is associated with primary cortical and subcortical alterations involved in the above processes and that these alterations may be related to some aspects of PTSD symptomatology.
Collapse
Affiliation(s)
- Igor Elman
- Center for Pain and the Brain, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, United States
| | - Jaymin Upadhyay
- Center for Pain and the Brain, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| | | | - Keerthana Karunakaran
- Center for Pain and the Brain, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark Albanese
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, United States
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| |
Collapse
|
16
|
Undeger I, Visser RM, Olsson A. Neural Pattern Similarity Unveils the Integration of Social Information and Aversive Learning. Cereb Cortex 2020; 30:5410-5419. [PMID: 32494810 PMCID: PMC7472208 DOI: 10.1093/cercor/bhaa122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Attributing intentions to others' actions is important for learning to avoid their potentially harmful consequences. Here, we used functional magnetic resonance imaging multivariate pattern analysis to investigate how the brain integrates information about others' intentions with the aversive outcome of their actions. In an interactive aversive learning task, participants (n = 33) were scanned while watching two alleged coparticipants (confederates)-one making choices intentionally and the other unintentionally-leading to aversive (a mild shock) or safe (no shock) outcomes to the participant. We assessed the trial-by-trial changes in participants' neural activation patterns related to observing the coparticipants and experiencing the outcome of their choices. Participants reported a higher number of shocks, more discomfort, and more anger to shocks given by the intentional player. Intentionality enhanced responses to aversive actions in the insula, anterior cingulate cortex, inferior frontal gyrus, dorsal medial prefrontal cortex, and the anterior superior temporal sulcus. Our findings indicate that neural pattern similarities index the integration of social and threat information across the cortex.
Collapse
Affiliation(s)
- Irem Undeger
- Section for Psychology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm 171 77, Sweden
| | - Renée M Visser
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, 1018 WT, The Netherlands
| | - Andreas Olsson
- Section for Psychology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm 171 77, Sweden
| |
Collapse
|
17
|
Measuring learning in human classical threat conditioning: Translational, cognitive and methodological considerations. Neurosci Biobehav Rev 2020; 114:96-112. [DOI: 10.1016/j.neubiorev.2020.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023]
|
18
|
Anticipation and violated expectation of pain are influenced by trait rumination: An fMRI study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:56-72. [PMID: 30251186 PMCID: PMC6344394 DOI: 10.3758/s13415-018-0644-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rumination – as a stable tendency to focus repetitively on feelings related to distress – represents a transdiagnostic risk factor. Theories suggest altered emotional information processing as the key mechanism of rumination. However, studies on the anticipation processes in relation to rumination are scarce, even though expectation in this process is demonstrated to influence the processing of emotional stimuli. In addition, no published study has investigated violated expectation in relation to rumination yet. In the present study we examined the neural correlates of pain anticipation and perception using a fear conditioning paradigm with pain as the unconditioned stimulus in healthy subjects (N = 30). Rumination was assessed with the 10-item Ruminative Response Scale (RRS). Widespread brain activation – extending to temporal, parietal, and occipital lobes along with activation in the cingulate cortex, insula, and putamen – showed a positive correlation with rumination, supporting our hypothesis that trait rumination influences anticipatory processes. Interestingly, with violated expectation (when an unexpected, non-painful stimulus follows a pain cue compared to when an expected, painful stimulus follows the same pain cue) a negative association between rumination and activation was found in the posterior cingulate cortex, which is responsible for change detection in the environment and subsequent behavioral modification. Our results suggest that rumination is associated with increased neural response to pain perception and pain anticipation, and may deteriorate the identification of an unexpected omission of aversive stimuli. Therefore, targeting rumination in cognitive behavioral therapy of chronic pain could have a beneficial effect.
Collapse
|
19
|
Jentsch VL, Wolf OT, Merz CJ. Temporal dynamics of conditioned skin conductance and pupillary responses during fear acquisition and extinction. Int J Psychophysiol 2020; 147:93-99. [DOI: 10.1016/j.ijpsycho.2019.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
|
20
|
Junjiao L, Wei C, Jingwen C, Yanjian H, Yong Y, Liang X, Jing J, Xifu Z. Role of prediction error in destabilizing fear memories in retrieval extinction and its neural mechanisms. Cortex 2019; 121:292-307. [PMID: 31669978 DOI: 10.1016/j.cortex.2019.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/06/2019] [Accepted: 09/12/2019] [Indexed: 01/15/2023]
Abstract
Memory reconsolidation interference has been shown to be an effective way to neutralize conditioned fear memory and prevent relapse. The critical factor to utilize this paradigm is inducing a labile state of the long-term memory. Novel information is viewed as a driving factor to update memory; however, it is unknown whether different forms of novelty play the same role. In addition, although pharmacological intervention studies have confirmed that prediction error (PE) during reactivation is a necessary condition in memory destabilization, the role of PE in retrieval extinction has remained under debate; furthermore, the neural mechanisms underlying the process are largely unknown. In this study, we isolated two forms of novelty: PE and stimulus novelty without PE during reactivation to compare their role in memory lability. Skin conductance responses (SCR) and functional magnetic resonance imaging (fMRI) were used to clarify their role at the behavioural and neural mechanism levels. A total of 54 healthy adults were tested in a three-day retrieval extinction protocol. The results showed that PE, the novelty of CS-US combinations, was a critical condition to destabilize memory. The novelty of the stimulus itself with the absence of PE was insufficient for retrieving the memory. The neural mechanisms that distinguished standard extinction from retrieval extinction were that the latter was associated with a diminished recruitment of the inferior temporal cortex (IT) and dorsolateral prefrontal cortex (dlPFC) and decreased functional connectivity of the dlPFC-anterior cingulate cortex (ACC) and IT-dlPFC. Possible interpretations were discussed.
Collapse
Affiliation(s)
- Li Junjiao
- School of Psychology, South China Normal University, Guangzhou, China; School of Teacher Education, Guangdong University of Education, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Chen Wei
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Caoyang Jingwen
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Hu Yanjian
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Yang Yong
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xu Liang
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jie Jing
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Zheng Xifu
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
21
|
Wang W, Zhornitsky S, Le TM, Dhingra I, Zhang S, Krystal JH, Li CSR. Cue-elicited craving, thalamic activity, and physiological arousal in adult non-dependent drinkers. J Psychiatr Res 2019; 116:74-82. [PMID: 31202048 PMCID: PMC6606341 DOI: 10.1016/j.jpsychires.2019.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/01/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Changes in physiological arousal frequently accompany cognitive and affective challenges. Many studies employed cue exposure paradigms to investigate the neural processes underlying cue-elicited drug and alcohol craving. However, whether cue-elicited craving relates to changes in physiological arousal and the neural bases underlying the potential relationship remain unclear. Here we examined cerebral cue-related activations in relation to differences in skin conductance responses (SCR) recorded during alcohol vs. neutral cue blocks in 61 non-dependent alcohol drinkers (30 men). Imaging and skin conductance data were collected and processed with published routines. Mediation analyses were conducted to examine the inter-relationship between regional activities, cue-elicited craving, and SCR. The results showed higher SCR during alcohol than during neutral cue exposure. Despite no differences in drinking characteristics, men as compared to women demonstrated higher craving rating, and men but not women demonstrated a positive correlation between alcohol (vs. neutral) cue-evoked craving and SCR. Further, across subjects, thalamic cue activity was positively correlated with differences in SCR between alcohol and neutral cue blocks in men but not in women. Mediation analyses suggested that thalamic activity mediated the correlation between craving and SCR across men and women, and in men but not women alone. These findings substantiate physiological and neural correlates of alcohol cue response and suggest important sex differences in the physiological and neural processes of cue evoked craving. Centered on the intralaminar and mediodorsal subregions, the thalamic correlate may represent a neural target for behavioral or pharmacological therapy to decrease cue-elicited arousal and craving.
Collapse
Affiliation(s)
- Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520
| | - Thang M. Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520
| | - Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520,Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520
| | - Chiang-shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520,Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520
| |
Collapse
|
22
|
Harlé KM, Yu AJ, Paulus MP. Bayesian computational markers of relapse in methamphetamine dependence. NEUROIMAGE-CLINICAL 2019; 22:101794. [PMID: 30928810 PMCID: PMC6444286 DOI: 10.1016/j.nicl.2019.101794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 03/05/2019] [Accepted: 03/24/2019] [Indexed: 01/17/2023]
Abstract
Methamphetamine use disorder is associated with a high likelihood of relapse. Identifying robust predictors of relapse that have explanatory power is critical to develop secondary prevention based on a mechanistic understanding of relapse. Computational approaches have the potential to identify such predictive markers of psychiatric illness, with the advantage of providing a finer mechanistic explanation of the cognitive processes underlying psychiatric vulnerability. In this study, sixty-two recently sober methamphetamine-dependent individuals were recruited from a 28-day inpatient treatment program, and completed a Stop Signal Task (SST) while undergoing functional magnetic resonance imaging (fMRI). These individuals were prospectively followed for 1 year and assessed for relapse to methamphetamine use. Thirty-three percent of followed participants reported relapse. We found that neural activity associated with two types of Bayesian prediction error, i.e. the difference between actual and expected need to stop on a given trial, significantly differentiated those individuals who remained abstinent and those who relapsed. Specifically, relapsed individuals exhibited smaller neural activations to such Bayesian prediction errors relative to those individuals who remained abstinent in the left temporoparietal junction (Cohen's d = 0.91), the left inferior frontal gyrus (Cohen's d = 0.57), and left anterior insula (Cohen's d = 0.63). In contrast, abstinent and relapsed participants did not differ in neural activation to non-model based task contrasts or on various self-report clinical measures. In conclusion, Bayesian cognitive models may help identify predictive biomarkers of relapse, while providing a computational explanation of belief processing and updating deficits in individuals with methamphetamine use disorder. Methamphetamine-dependent individuals (MDI) face a high rate of relapse after treatment. Can a Bayesian learning modeling and fMRI be used to identify markers of relapse? MDI who relapsed within 1 year have smaller activation to Bayesian model-based prediction errors. Such neural pattern was observed in left temporo-parietal junction, IFG, and anterior insula. MDI more likely to relapse show weaker tracking of uncertainty and updating of their belief model.
Collapse
Affiliation(s)
- Katia M Harlé
- VA San Diego Healthcare System, United States of America; Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America.
| | - Angela J Yu
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, United States of America
| | - Martin P Paulus
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America; Laureate Institute for Brain Research, Tulsa, OK, United States of America
| |
Collapse
|
23
|
Lai CH. Fear Network Model in Panic Disorder: The Past and the Future. Psychiatry Investig 2019; 16:16-26. [PMID: 30176707 PMCID: PMC6354036 DOI: 10.30773/pi.2018.05.04.2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/04/2018] [Indexed: 01/04/2023] Open
Abstract
The core concept for pathophysiology in panic disorder (PD) is the fear network model (FNM). The alterations in FNM might be linked with disturbances in the autonomic nervous system (ANS), which is a common phenomenon in PD. The traditional FNM included the frontal and limbic regions, which were dysregulated in the feedback mechanism for cognitive control of frontal lobe over the primitive response of limbic system. The exaggerated responses of limbic system are also associated with dysregulation in the neurotransmitter system. The neuroimaging studies also corresponded to FNM concept. However, more extended areas of FNM have been discovered in recent imaging studies, such as sensory regions of occipital, parietal cortex and temporal cortex and insula. The insula might integrate the filtered sensory information via thalamus from the visuospatial and other sensory modalities related to occipital, parietal and temporal lobes. In this review article, the traditional and advanced FNM would be discussed. I would also focus on the current evidences of insula, temporal, parietal and occipital lobes in the pathophysiology. In addition, the white matter and functional connectome studies would be reviewed to support the concept of advanced FNM. An emerging dysregulation model of fronto-limbic-insula and temporooccipito-parietal areas might be revealed according to the combined results of recent neuroimaging studies. The future delineation of advanced FNM model can be beneficial from more extensive and advanced studies focusing on the additional sensory regions of occipital, parietal and temporal cortex to confirm the role of advanced FNM in the pathophysiology of PD.
Collapse
Affiliation(s)
- Chien-Han Lai
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,PhD Psychiatry & Neuroscience Clinic, Taoyuan, Taiwan.,Department of Psychiatry, Yeezen General Hospital, Taoyuan, Taiwan
| |
Collapse
|
24
|
Reilly EE, Lavender JM, Berner LA, Brown TA, Wierenga CE, Kaye WH. Could repetitive negative thinking interfere with corrective learning? The example of anorexia nervosa. Int J Eat Disord 2018; 52:36-41. [PMID: 30597593 DOI: 10.1002/eat.22997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/13/2018] [Accepted: 11/20/2018] [Indexed: 11/12/2022]
Abstract
Identifying processes that may interfere with corrective learning during treatments for anorexia nervosa (AN) may help to improve the effectiveness of existing interventions. We propose that certain cognitive processes characteristic of the AN temperament may help explain previous findings in AN suggesting difficulty updating previously learned associations and learning from feedback. Specifically, we hypothesize that engagement in repetitive negative thinking (RNT), including worry and rumination, could interfere with corrective learning that is critical to the success of behavioral treatments. In doing so, we draw from existing work in anxiety and mood disorders linking RNT to the maintenance of symptoms and poorer response to cognitive-behavioral treatments. Next, we outline hypothesized mechanisms through which engagement in RNT before, during, and after exposure to aversive stimuli could interfere with learning in AN. We then provide recommendations for how these hypothesized associations could be tested in future research. Although prior work has suggested that RNT processes are common among individuals with AN, this work has been primarily descriptive in nature. We propose that extending this work through direct examination of the impact of active engagement in RNT on corrective learning could aid in identifying AN maintenance processes that could be explicitly targeted in treatment.
Collapse
Affiliation(s)
- Erin E Reilly
- Department of Psychiatry, University of California, San Diego, San Diego, California
| | - Jason M Lavender
- Department of Psychiatry, University of California, San Diego, San Diego, California
| | - Laura A Berner
- Department of Psychiatry, University of California, San Diego, San Diego, California
| | - Tiffany A Brown
- Department of Psychiatry, University of California, San Diego, San Diego, California
| | - Christina E Wierenga
- Department of Psychiatry, University of California, San Diego, San Diego, California
- VA San Diego Healthcare System, San Diego, California
| | - Walter H Kaye
- Department of Psychiatry, University of California, San Diego, San Diego, California
| |
Collapse
|
25
|
Sevenster D, Visser RM, D'Hooge R. A translational perspective on neural circuits of fear extinction: Current promises and challenges. Neurobiol Learn Mem 2018; 155:113-126. [PMID: 29981423 PMCID: PMC6805216 DOI: 10.1016/j.nlm.2018.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Fear extinction is the well-known process of fear reduction through repeated re-exposure to a feared stimulus without the aversive outcome. The last two decades have witnessed a surge of interest in extinction learning. First, extinction learning is observed across species, and especially research on rodents has made great strides in characterising the physical substrate underlying extinction learning. Second, extinction learning is considered of great clinical significance since it constitutes a crucial component of exposure treatment. While effective in reducing fear responding in the short term, extinction learning can lose its grip, resulting in a return of fear (i.e., laboratory model for relapse of anxiety symptoms in patients). Optimization of extinction learning is, therefore, the subject of intense investigation. It is thought that the success of extinction learning is, at least partly, determined by the mismatch between what is expected and what actually happens (prediction error). However, while much of our knowledge about the neural circuitry of extinction learning and factors that contribute to successful extinction learning comes from animal models, translating these findings to humans has been challenging for a number of reasons. Here, we present an overview of what is known about the animal circuitry underlying extinction of fear, and the role of prediction error. In addition, we conducted a systematic literature search to evaluate the degree to which state-of-the-art neuroimaging methods have contributed to translating these findings to humans. Results show substantial overlap between networks in animals and humans at a macroscale, but current imaging techniques preclude comparisons at a smaller scale, especially in sub-cortical areas that are functionally heterogeneous. Moreover, human neuroimaging shows the involvement of numerous areas that are not typically studied in animals. Results obtained in research aimed to map the extinction circuit are largely dependent on the methods employed, not only across species, but also across human neuroimaging studies. Directions for future research are discussed.
Collapse
Affiliation(s)
- Dieuwke Sevenster
- Laboratory of Biological Psychology, Department of Psychology, KU Leuven, Tiensestraat 102, B-3000 Leuven, Belgium; Clinical Psychology, Utrecht University, Heidelberglaan 1, 3584 CS Utrecht, The Netherlands.
| | - Renée M Visser
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Department of Psychology, KU Leuven, Tiensestraat 102, B-3000 Leuven, Belgium
| |
Collapse
|
26
|
Lateral orbitofrontal cortex partitions mechanisms for fear regulation and alcohol consumption. PLoS One 2018; 13:e0198043. [PMID: 29856796 PMCID: PMC5983516 DOI: 10.1371/journal.pone.0198043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/12/2018] [Indexed: 01/09/2023] Open
Abstract
Anxiety disorders and alcohol use disorder are highly comorbid, yet identifying neural dysfunction driving comorbidity has been challenging. Lateral orbitofrontal cortex (lOFC) dysfunction has been independently observed in each disorder. Here we tested the hypothesis that the lOFC is essential to partition mechanisms for fear regulation and alcohol consumption. Specifically, the capacity to regulate fear and the propensity to consume alcohol are unrelated when lOFC is intact, but become linked through lOFC dysfunction. Male Long Evans rats received bilateral, neurotoxic lOFC lesions or sham surgery. Fear regulation was determined by establishing discrimination to danger, uncertainty, and safety cues then shifting the shock probability of the uncertainty cue. Alcohol consumption was assessed through voluntary, intermittent access to 20% ethanol. The neurotoxic lesion approach ensured lOFC dysfunction spanned testing in fear regulation and alcohol consumption. LOFC-lesioned rats demonstrated maladaptive fear generalization during probability shifts, inverting normal prediction error assignment, and subsequently consumed more alcohol. Most novel, fear regulation and alcohol consumption were inextricably linked only in lOFC-lesioned rats: extreme fear regulation predicted excessive alcohol consumption. The results reveal the lOFC is essential to partition mechanisms for fear regulation and alcohol consumption and uncover a plausible source of neural dysfunction contributing to comorbid anxiety disorders and alcohol use disorder.
Collapse
|
27
|
Dittert N, Hüttner S, Polak T, Herrmann MJ. Augmentation of Fear Extinction by Transcranial Direct Current Stimulation (tDCS). Front Behav Neurosci 2018; 12:76. [PMID: 29922133 PMCID: PMC5996916 DOI: 10.3389/fnbeh.2018.00076] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Although posttraumatic stress disorder (PTSD; DSM-V 309.82) and anxiety disorders (DSM-V 300.xx) are widely spread mental disorders, the effectiveness of their therapy is still unsatisfying. Non-invasive brain-stimulation techniques like transcranial direct current stimulation (tDCS) might be an option to improve extinction learning, which is a main functional factor of exposure-based therapy for anxiety disorders. To examine this hypothesis, we used a fear conditioning paradigm with female faces as conditioned stimuli (CS) and a 95-dB female scream as unconditioned stimulus (UCS). We aimed to perform a tDCS of the ventromedial prefrontal cortex (vmPFC), which is mainly involved in the control of extinction-processes. Therefore, we applied two 4 × 4 cm electrodes approximately at the EEG-positions F7 and F8 and used a direct current of 1.5 mA. The 20-min stimulation was started during a 10-min break between acquisition and extinction and went on overall extinction-trials. The healthy participants were randomly assigned in two double-blinded process into two sham stimulation and two verum stimulation groups with opposite current flow directions. To measure the fear reactions, we used skin conductance responses (SCR) and subjective ratings. We performed a generalized estimating equations model for the SCR to assess the impact of tDCS and current flow direction on extinction processes for all subjects that showed a successful conditioning (N = 84). The results indicate that tDCS accelerates early extinction processes with a significantly faster loss of CS+/CS– discrimination. The discrimination loss was driven by a significant decrease in reaction toward the CS+ as well as an increase in reaction toward the CS– in the tDCS verum groups, whereas the sham groups showed no significant reaction changes during this period. Therefore, we assume that tDCS of the vmPFC can be used to enhance early extinction processes successfully. But before it should be tested in a clinical context further investigation is needed to assess the reason for the reaction increase on CS–. If this negative side effect can be avoided, tDCS may be a tool to improve exposure-based anxiety therapies.
Collapse
Affiliation(s)
- Natalie Dittert
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Sandrina Hüttner
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Polak
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Fouragnan E, Retzler C, Philiastides MG. Separate neural representations of prediction error valence and surprise: Evidence from an fMRI meta-analysis. Hum Brain Mapp 2018; 39:2887-2906. [PMID: 29575249 DOI: 10.1002/hbm.24047] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 12/12/2022] Open
Abstract
Learning occurs when an outcome differs from expectations, generating a reward prediction error signal (RPE). The RPE signal has been hypothesized to simultaneously embody the valence of an outcome (better or worse than expected) and its surprise (how far from expectations). Nonetheless, growing evidence suggests that separate representations of the two RPE components exist in the human brain. Meta-analyses provide an opportunity to test this hypothesis and directly probe the extent to which the valence and surprise of the error signal are encoded in separate or overlapping networks. We carried out several meta-analyses on a large set of fMRI studies investigating the neural basis of RPE, locked at decision outcome. We identified two valence learning systems by pooling studies searching for differential neural activity in response to categorical positive-versus-negative outcomes. The first valence network (negative > positive) involved areas regulating alertness and switching behaviours such as the midcingulate cortex, the thalamus and the dorsolateral prefrontal cortex whereas the second valence network (positive > negative) encompassed regions of the human reward circuitry such as the ventral striatum and the ventromedial prefrontal cortex. We also found evidence of a largely distinct surprise-encoding network including the anterior cingulate cortex, anterior insula and dorsal striatum. Together with recent animal and electrophysiological evidence this meta-analysis points to a sequential and distributed encoding of different components of the RPE signal, with potentially distinct functional roles.
Collapse
Affiliation(s)
- Elsa Fouragnan
- Institute of Neuroscience & Psychology, University of Glasgow, Glasgow, United Kingdom.,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Chris Retzler
- Institute of Neuroscience & Psychology, University of Glasgow, Glasgow, United Kingdom.,Department of Behavioural & Social Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Marios G Philiastides
- Institute of Neuroscience & Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
29
|
Effects of prediction error on post-retrieval extinction of fear to compound stimuli. ACTA PSYCHOLOGICA SINICA 2018. [DOI: 10.3724/sp.j.1041.2018.00739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Baseline Levels of Rapid Eye Movement Sleep May Protect Against Excessive Activity in Fear-Related Neural Circuitry. J Neurosci 2017; 37:11233-11244. [PMID: 29061703 DOI: 10.1523/jneurosci.0578-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/17/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022] Open
Abstract
Sleep, and particularly rapid eye movement sleep (REM), has been implicated in the modulation of neural activity following fear conditioning and extinction in both human and animal studies. It has long been presumed that such effects play a role in the formation and persistence of posttraumatic stress disorder, of which sleep impairments are a core feature. However, to date, few studies have thoroughly examined the potential effects of sleep prior to conditioning on subsequent acquisition of fear learning in humans. Furthermore, these studies have been restricted to analyzing the effects of a single night of sleep-thus assuming a state-like relationship between the two. In the current study, we used long-term mobile sleep monitoring and functional neuroimaging (fMRI) to explore whether trait-like variations in sleep patterns, measured in advance in both male and female participants, predict subsequent patterns of neural activity during fear learning. Our results indicate that higher baseline levels of REM sleep predict reduced fear-related activity in, and connectivity between, the hippocampus, amygdala and ventromedial PFC during conditioning. Additionally, skin conductance responses (SCRs) were weakly correlated to the activity in the amygdala. Conversely, there was no direct correlation between REM sleep and SCRs, indicating that REM may only modulate fear acquisition indirectly. In a follow-up experiment, we show that these results are replicable, though to a lesser extent, when measuring sleep over a single night just before conditioning. As such, baseline sleep parameters may be able to serve as biomarkers for resilience, or lack thereof, to trauma.SIGNIFICANCE STATEMENT Numerous studies over the past two decades have established a clear role of sleep in fear-learning processes. However, previous work has focused on the effects of sleep following fear acquisition, thus neglecting the potential effects of baseline sleep levels on the acquisition itself. The current study provides the first evidence in humans of such an effect. Specifically, the results of this study suggest that baseline rapid eye movement (REM) sleep may serve a protective function against enhanced fear encoding through the modulation of connectivity between the hippocampus, amygdala, and the ventromedial PFC. Building on this finding, baseline REM measurements may serve as a noninvasive biomarker for resilience to trauma or, conversely, to the potential development of posttraumatic stress disorder following trauma.
Collapse
|
31
|
van den Akker K, Schyns G, Jansen A. Altered appetitive conditioning in overweight and obese women. Behav Res Ther 2017; 99:78-88. [PMID: 28964981 DOI: 10.1016/j.brat.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 11/16/2022]
Abstract
Overweight and obese individuals show increased psychological and physiological reactivity to food cues and many of them have difficulties in achieving long-term weight loss. The current study tests whether abnormalities in the learning and extinction of appetitive responses to food cues might be responsible for this. Overweight/obese and healthy weight women completed a differential appetitive conditioning task using food as rewards, while eating expectancies, eating desires, conditioned stimulus evaluations, salivation, and electrodermal responses were assessed during an acquisition and extinction phase. Results suggested reduced discriminative conditioning in the overweight/obese group, as reflected by a worse acquisition of differential eating desires and no successful acquisition of differential evaluative responses. Some evidence was also found for impaired contingency learning in overweight and obese individuals. No group differences in conditioned salivation and skin conductance responses were found and no compelling evidence for differences in extinction was found as well. In sum, the current findings indicate that overweight and obesity may be characterized by reduced appetitive conditioning. It is suggested that this could be causally related to overeating via stronger context conditioning or a tendency towards overgeneralization in overweight and obese individuals.
Collapse
Affiliation(s)
- Karolien van den Akker
- Faculty of Psychology and Neuroscience, Department of Clinical Psychological Science, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Ghislaine Schyns
- Faculty of Psychology and Neuroscience, Department of Clinical Psychological Science, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Anita Jansen
- Faculty of Psychology and Neuroscience, Department of Clinical Psychological Science, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
32
|
van den Akker K, Nederkoorn C, Jansen A. Electrodermal responses during appetitive conditioning are sensitive to contingency instruction ambiguity. Int J Psychophysiol 2017; 118:40-47. [DOI: 10.1016/j.ijpsycho.2017.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
|
33
|
D'Astolfo L, Rief W. Learning about Expectation Violation from Prediction Error Paradigms - A Meta-Analysis on Brain Processes Following a Prediction Error. Front Psychol 2017; 8:1253. [PMID: 28804467 PMCID: PMC5532445 DOI: 10.3389/fpsyg.2017.01253] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
Modifying patients' expectations by exposing them to expectation violation situations (thus maximizing the difference between the expected and the actual situational outcome) is proposed to be a crucial mechanism for therapeutic success for a variety of different mental disorders. However, clinical observations suggest that patients often maintain their expectations regardless of experiences contradicting their expectations. It remains unclear which information processing mechanisms lead to modification or persistence of patients' expectations. Insight in the processing could be provided by Neuroimaging studies investigating prediction error (PE, i.e., neuronal reactions to non-expected stimuli). Two methods are often used to investigate the PE: (1) paradigms, in which participants passively observe PEs ("passive" paradigms) and (2) paradigms, which encourage a behavioral adaptation following a PE ("active" paradigms). These paradigms are similar to the methods used to induce expectation violations in clinical settings: (1) the confrontation with an expectation violation situation and (2) an enhanced confrontation in which the patient actively challenges his expectation. We used this similarity to gain insight in the different neuronal processing of the two PE paradigms. We performed a meta-analysis contrasting neuronal activity of PE paradigms encouraging a behavioral adaptation following a PE and paradigms enforcing passiveness following a PE. We found more neuronal activity in the striatum, the insula and the fusiform gyrus in studies encouraging behavioral adaptation following a PE. Due to the involvement of reward assessment and avoidance learning associated with the striatum and the insula we propose that the deliberate execution of action alternatives following a PE is associated with the integration of new information into previously existing expectations, therefore leading to an expectation change. While further research is needed to directly assess expectations of participants, this study provides new insights into the information processing mechanisms following an expectation violation.
Collapse
Affiliation(s)
- Lisa D'Astolfo
- Department of Clinical Psychology and Psychotherapy, Philipps University of MarburgMarburg, Germany
| | - Winfried Rief
- Department of Clinical Psychology and Psychotherapy, Philipps University of MarburgMarburg, Germany
| |
Collapse
|
34
|
Tremel JJ, Laurent PA, Wolk DA, Wheeler ME, Fiez JA. Neural signatures of experience-based improvements in deterministic decision-making. Behav Brain Res 2016; 315:51-65. [PMID: 27523644 PMCID: PMC5017924 DOI: 10.1016/j.bbr.2016.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 11/25/2022]
Abstract
Feedback about our choices is a crucial part of how we gather information and learn from our environment. It provides key information about decision experiences that can be used to optimize future choices. However, our understanding of the processes through which feedback translates into improved decision-making is lacking. Using neuroimaging (fMRI) and cognitive models of decision-making and learning, we examined the influence of feedback on multiple aspects of decision processes across learning. Subjects learned correct choices to a set of 50 word pairs across eight repetitions of a concurrent discrimination task. Behavioral measures were then analyzed with both a drift-diffusion model and a reinforcement learning model. Parameter values from each were then used as fMRI regressors to identify regions whose activity fluctuates with specific cognitive processes described by the models. The patterns of intersecting neural effects across models support two main inferences about the influence of feedback on decision-making. First, frontal, anterior insular, fusiform, and caudate nucleus regions behave like performance monitors, reflecting errors in performance predictions that signal the need for changes in control over decision-making. Second, temporoparietal, supplementary motor, and putamen regions behave like mnemonic storage sites, reflecting differences in learned item values that inform optimal decision choices. As information about optimal choices is accrued, these neural systems dynamically adjust, likely shifting the burden of decision processing from controlled performance monitoring to bottom-up, stimulus-driven choice selection. Collectively, the results provide a detailed perspective on the fundamental ability to use past experiences to improve future decisions.
Collapse
Affiliation(s)
| | | | - David A Wolk
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
35
|
Leuchs L, Schneider M, Czisch M, Spoormaker VI. Neural correlates of pupil dilation during human fear learning. Neuroimage 2016; 147:186-197. [PMID: 27915119 DOI: 10.1016/j.neuroimage.2016.11.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/12/2016] [Accepted: 11/30/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Fear conditioning and extinction are prevailing experimental and etiological models for normal and pathological anxiety. Pupil dilations in response to conditioned stimuli are increasingly used as a robust psychophysiological readout of fear learning, but their neural correlates remain unknown. We aimed at identifying the neural correlates of pupil responses to threat and safety cues during a fear learning task. METHODS Thirty-four healthy subjects underwent a fear conditioning and extinction paradigm with simultaneous functional magnetic resonance imaging (fMRI) and pupillometry. After a stringent preprocessing and artifact rejection procedure, trial-wise pupil responses to threat and safety cues were entered as parametric modulations to the fMRI general linear models. RESULTS Trial-wise magnitude of pupil responses to both conditioned and safety stimuli correlated positively with activity in dorsal anterior cingulate cortex (dACC), thalamus, supramarginal gyrus and insula for the entire fear learning task, and with activity in the dACC during the fear conditioning phase in particular. Phasic pupil responses did not show habituation, but were negatively correlated with tonic baseline pupil diameter, which decreased during the task. Correcting phasic pupil responses for the tonic baseline pupil diameter revealed thalamic activity, which was also observed in an analysis employing a linear (declining) time modulation. CONCLUSION Pupil dilations during fear conditioning and extinction provide useful readouts to track fear learning on a trial-by-trial level, particularly with simultaneous fMRI. Whereas phasic pupil responses reflect activity in brain regions involved in fear learning and threat appraisal, most prominently in dACC, tonic changes in pupil diameter may reflect changes in general arousal.
Collapse
Affiliation(s)
- Laura Leuchs
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Max Schneider
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Michael Czisch
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | |
Collapse
|
36
|
The fate of memory: Reconsolidation and the case of Prediction Error. Neurosci Biobehav Rev 2016; 68:423-441. [DOI: 10.1016/j.neubiorev.2016.06.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 05/07/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022]
|
37
|
Harlé KM, Zhang S, Ma N, Yu AJ, Paulus MP. Reduced Neural Recruitment for Bayesian Adjustment of Inhibitory Control in Methamphetamine Dependence. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:448-459. [PMID: 28966988 DOI: 10.1016/j.bpsc.2016.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Delineating the processes that contribute to the progression and maintenance of substance dependence is critical to understanding and preventing addiction. Several previous studies have shown inhibitory control deficits in individuals with stimulant use disorder. We used a Bayesian computational approach to examine potential neural deficiencies in the dynamic predictive processing underlying inhibitory function among recently abstinent methamphetamine-dependent individuals (MDIs), a population at high risk of relapse. Sixty-two MDIs were recruited from a 28-day inpatient treatment program at the San Diego Veterans Affairs Medical Center and compared with 34 healthy control subjects. They completed a stop-signal task during functional magnetic resonance imaging. A Bayesian ideal observer model was used to predict individuals' trial-to-trial probabilistic expectations of inhibitory response, P(stop), to identify group differences specific to Bayesian expectation and prediction error computation. Relative to control subjects, MDIs were more likely to make stop errors on difficult trials and had attenuated slowing following stop errors. MDIs further exhibited reduced sensitivity as measured by the neural tracking of a Bayesian measure of surprise (unsigned prediction error), which was evident across all trials in the left posterior caudate and orbitofrontal cortex (Brodmann area 11), and selectively on stop error trials in the right thalamus and inferior parietal lobule. MDIs are less sensitive to surprising task events, both across trials and upon making commission errors, which may help explain why these individuals may not engage in switching strategy when the environment changes, leading to adverse consequences.
Collapse
Affiliation(s)
- Katia M Harlé
- Department of Psychiatry (KMH, MPP); and Department of Cognitive Science (SZ, NM, AJY), University of California, San Diego, La Jolla, California; and Laureate Institute for Brain Research (MPP), Tulsa, Oklahoma
| | - Shunan Zhang
- Department of Psychiatry (KMH, MPP); and Department of Cognitive Science (SZ, NM, AJY), University of California, San Diego, La Jolla, California; and Laureate Institute for Brain Research (MPP), Tulsa, Oklahoma
| | - Ning Ma
- Department of Psychiatry (KMH, MPP); and Department of Cognitive Science (SZ, NM, AJY), University of California, San Diego, La Jolla, California; and Laureate Institute for Brain Research (MPP), Tulsa, Oklahoma
| | - Angela J Yu
- Department of Psychiatry (KMH, MPP); and Department of Cognitive Science (SZ, NM, AJY), University of California, San Diego, La Jolla, California; and Laureate Institute for Brain Research (MPP), Tulsa, Oklahoma
| | - Martin P Paulus
- Department of Psychiatry (KMH, MPP); and Department of Cognitive Science (SZ, NM, AJY), University of California, San Diego, La Jolla, California; and Laureate Institute for Brain Research (MPP), Tulsa, Oklahoma
| |
Collapse
|
38
|
White SF, Tyler PM, Erway AK, Botkin ML, Kolli V, Meffert H, Pope K, Blair RJ. Dysfunctional representation of expected value is associated with reinforcement-based decision-making deficits in adolescents with conduct problems. J Child Psychol Psychiatry 2016; 57:938-46. [PMID: 27062170 PMCID: PMC4958524 DOI: 10.1111/jcpp.12557] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous work has shown that patients with conduct problems (CP) show impairments in reinforcement-based decision-making. However, studies with patients have not previously demonstrated any relationships between impairment in any of the neurocomputations underpinning reinforcement-based decision-making and specific symptom sets [e.g. level of CP and/or callous-unemotional (CU) traits]. METHODS Seventy-two youths [20 female, mean age = 13.81 (SD = 2.14), mean IQ = 102.34 (SD = 10.99)] from a residential treatment program and the community completed a passive avoidance task while undergoing functional MRI. RESULTS Greater levels of CP were associated with poorer task performance. Reduced representation of expected values (EV) when making avoidance responses within bilateral anterior insula cortex/inferior frontal gyrus (AIC/iFG) and striatum was associated with greater levels of CP but not CU traits. CONCLUSIONS The current data indicate that difficulties in the use of value information to motivate decisions to avoid suboptimal choices are associated with increased levels of CP (though not severity of CU traits). Moreover, they account for the behavioral deficits observed during reinforcement-based decision-making in youth with CP. In short, an individual's relative failure to utilize value information within AIC/iFG to avoid bad choices is associated with elevated levels of CP.
Collapse
Affiliation(s)
- Stuart F. White
- Section on Affective Cognitive Neuroscience, NIMH, NIH, Bethesda, MD,Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE; USA
| | - Patrick M. Tyler
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE; USA
| | - Anna K. Erway
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE; USA
| | - Mary L. Botkin
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE; USA
| | - Venkata Kolli
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE; USA
| | - Harma Meffert
- Section on Affective Cognitive Neuroscience, NIMH, NIH, Bethesda, MD
| | - Kayla Pope
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE; USA
| | - R. James Blair
- Section on Affective Cognitive Neuroscience, NIMH, NIH, Bethesda, MD
| |
Collapse
|
39
|
From Pavlov to pain: How predictability affects the anticipation and processing of visceral pain in a fear conditioning paradigm. Neuroimage 2016; 130:104-114. [DOI: 10.1016/j.neuroimage.2016.01.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/24/2015] [Accepted: 01/16/2016] [Indexed: 01/19/2023] Open
|
40
|
|
41
|
Lange I, Kasanova Z, Goossens L, Leibold N, De Zeeuw CI, van Amelsvoort T, Schruers K. The anatomy of fear learning in the cerebellum: A systematic meta-analysis. Neurosci Biobehav Rev 2015; 59:83-91. [PMID: 26441374 DOI: 10.1016/j.neubiorev.2015.09.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 11/17/2022]
Abstract
Recent neuro-imaging studies have implicated the cerebellum in several higher-order functions. Its role in human fear conditioning has, however, received limited attention. The current meta-analysis examines the loci of cerebellar contributions to fear conditioning in healthy subjects, thus mapping, for the first time, the neural response to conditioned aversive stimuli onto the cerebellum. By using the activation likelihood estimation (ALE) technique for analyses, we identified several distinct regions in the cerebellum that activate in response to the presentation of the conditioned stimulus: the cerebellar tonsils, lobules HIV-VI, and the culmen. These regions have separately been implicated in fear acquisition, consolidation of fear memories and expression of conditioned fear responses. Their specific role in these processes may be attributed to the general contribution of cerebellar cortical networks to timing and prediction. Our meta-analysis highlights the potential role of the cerebellum in human cognition and emotion in general, and addresses the possibility how deficits in associative cerebellar learning may play a role in the pathogenesis of anxiety disorders. Future studies are needed to further clarify the mechanistic role of the cerebellum in higher order functions and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Iris Lange
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands.
| | - Zuzana Kasanova
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Liesbet Goossens
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Nicole Leibold
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Chris I De Zeeuw
- Royal Dutch Academy of Arts and Sciences, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Erasmus Medical Center, Department of Neuroscience, Rotterdam, The Netherlands
| | - Therese van Amelsvoort
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Koen Schruers
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands; University of Leuven, Faculty of Psychology, Center for Experimental and Learning Psychology, Leuven, Belgium
| |
Collapse
|
42
|
Davidson P, Carlsson I, Jönsson P, Johansson M. Sleep and the generalization of fear learning. J Sleep Res 2015; 25:88-95. [DOI: 10.1111/jsr.12339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Per Davidson
- Department of Psychology; Lund University; Lund Sweden
| | | | - Peter Jönsson
- School of Education and Environment; Centre for Psychology; Kristianstad University; Kristianstad Sweden
| | | |
Collapse
|
43
|
Mulej Bratec S, Xie X, Schmid G, Doll A, Schilbach L, Zimmer C, Wohlschläger A, Riedl V, Sorg C. Cognitive emotion regulation enhances aversive prediction error activity while reducing emotional responses. Neuroimage 2015; 123:138-48. [PMID: 26306990 DOI: 10.1016/j.neuroimage.2015.08.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 11/24/2022] Open
Abstract
Cognitive emotion regulation is a powerful way of modulating emotional responses. However, despite the vital role of emotions in learning, it is unknown whether the effect of cognitive emotion regulation also extends to the modulation of learning. Computational models indicate prediction error activity, typically observed in the striatum and ventral tegmental area, as a critical neural mechanism involved in associative learning. We used model-based fMRI during aversive conditioning with and without cognitive emotion regulation to test the hypothesis that emotion regulation would affect prediction error-related neural activity in the striatum and ventral tegmental area, reflecting an emotion regulation-related modulation of learning. Our results show that cognitive emotion regulation reduced emotion-related brain activity, but increased prediction error-related activity in a network involving ventral tegmental area, hippocampus, insula and ventral striatum. While the reduction of response activity was related to behavioral measures of emotion regulation success, the enhancement of prediction error-related neural activity was related to learning performance. Furthermore, functional connectivity between the ventral tegmental area and ventrolateral prefrontal cortex, an area involved in regulation, was specifically increased during emotion regulation and likewise related to learning performance. Our data, therefore, provide first-time evidence that beyond reducing emotional responses, cognitive emotion regulation affects learning by enhancing prediction error-related activity, potentially via tegmental dopaminergic pathways.
Collapse
Affiliation(s)
- Satja Mulej Bratec
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | - Xiyao Xie
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Department of Psychology, Ludwig-Maximilians-Universität München, 80802 Munich, Germany.
| | - Gabriele Schmid
- Department of Psychosomatics and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Anselm Doll
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | - Leonhard Schilbach
- Department of Psychiatry, University Hospital Cologne, Cologne, Germany.
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Afra Wohlschläger
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Valentin Riedl
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
44
|
Matsuo K, Ban R, Hama Y, Yuzuriha S. Eyelid Opening with Trigeminal Proprioceptive Activation Regulates a Brainstem Arousal Mechanism. PLoS One 2015; 10:e0134659. [PMID: 26244675 PMCID: PMC4526522 DOI: 10.1371/journal.pone.0134659] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 07/01/2015] [Indexed: 12/03/2022] Open
Abstract
Eyelid opening stretches mechanoreceptors in the supratarsal Müller muscle to activate the proprioceptive fiber supplied by the trigeminal mesencephalic nucleus. This proprioception induces reflex contractions of the slow-twitch fibers in the levator palpebrae superioris and frontalis muscles to sustain eyelid and eyebrow positions against gravity. The cell bodies of the trigeminal proprioceptive neurons in the mesencephalon potentially make gap-junctional connections with the locus coeruleus neurons. The locus coeruleus is implicated in arousal and autonomic function. Due to the relationship between arousal, ventromedial prefrontal cortex, and skin conductance, we assessed whether upgaze with trigeminal proprioceptive evocation activates sympathetically innervated sweat glands and the ventromedial prefrontal cortex. Specifically, we examined whether 60° upgaze induces palmar sweating and hemodynamic changes in the prefrontal cortex in 16 subjects. Sweating was monitored using a thumb-mounted perspiration meter, and prefrontal cortex activity was measured with 45-channel, functional near-infrared spectroscopy (fNIRS) and 2-channel NIRS at Fp1 and Fp2. In 16 subjects, palmar sweating was induced by upgaze and decreased in response to downgaze. Upgaze activated the ventromedial prefrontal cortex with an accumulation of integrated concentration changes in deoxyhemoglobin, oxyhemoglobin, and total hemoglobin levels in 12 subjects. Upgaze phasically and degree-dependently increased deoxyhemoglobin level at Fp1 and Fp2, whereas downgaze phasically decreased it in 16 subjects. Unilateral anesthetization of mechanoreceptors in the supratarsal Müller muscle used to significantly reduce trigeminal proprioceptive evocation ipsilaterally impaired the increased deoxyhemoglobin level by 60° upgaze at Fp1 or Fp2 in 6 subjects. We concluded that upgaze with strong trigeminal proprioceptive evocation was sufficient to phasically activate sympathetically innervated sweat glands and appeared to induce rapid oxygen consumption in the ventromedial prefrontal cortex and to rapidly produce deoxyhemoglobin to regulate physiological arousal. Thus, eyelid opening with trigeminal proprioceptive evocation may activate the ventromedial prefrontal cortex via the mesencephalic trigeminal nucleus and locus coeruleus.
Collapse
Affiliation(s)
- Kiyoshi Matsuo
- Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, Matsumoto, Japan
- * E-mail:
| | - Ryokuya Ban
- Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuki Hama
- Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shunsuke Yuzuriha
- Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
45
|
Britton JC, Evans TC, Hernandez MV. Looking beyond Fear and Extinction Learning: Considering Novel Treatment Targets for Anxiety. Curr Behav Neurosci Rep 2014; 1:134-143. [PMID: 25705579 DOI: 10.1007/s40473-014-0015-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fear conditioning studies provide valuable insight into how fears are learned and extinguished. Previous work focuses on fear and extinction learning to understand and treat anxiety disorders. However, a cascade of cognitive processes that extend beyond learning may also yield therapeutic targets for anxiety disorders. Throughout this review, we will discuss recent findings of fear generalization, memory consolidation, and reconsolidation. Factors related to effectiveness, efficiency and durability of extinction-based treatments will be addressed. Moreover, adolescence may be a key developmental stage when threat-related perturbations emerge; therefore, targeting interventions during adolescence when these nascent processes are more malleable may alter the trajectory of anxiety disorders.
Collapse
|
46
|
Disrupted expected value signaling in youth with disruptive behavior disorders to environmental reinforcers. J Am Acad Child Adolesc Psychiatry 2014; 53:579-88.e9. [PMID: 24745957 PMCID: PMC3999439 DOI: 10.1016/j.jaac.2013.12.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 12/09/2013] [Accepted: 01/14/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Youth with disruptive behavior disorders (DBD), including conduct disorder (CD) and oppositional defiant disorder (ODD), have difficulties in reinforcement-based decision making, the neural basis of which is poorly understood. Studies examining decision making in youth with DBD have revealed reduced reward responses within the ventromedial prefrontal cortex/orbitofrontal cortex (vmPFC/OFC), increased responses to unexpected punishment within the vmPFC and striatum, and reduced use of expected value information in the anterior insula cortex and dorsal anterior cingulate cortex during the avoidance of suboptimal choices. Previous work has used only monetary reinforcement. The current study examined whether dysfunction in youth with DBD during decision making extended to environmental reinforcers. METHOD A total of 30 youth (15 healthy youth and 15 youth with DBD) completed a novel reinforcement-learning paradigm using environmental reinforcers (physical threat images, e.g., striking snake image; contamination threat images, e.g., rotting food; appetitive images, e.g., puppies) while undergoing functional magnetic resonance imaging (fMRI). RESULTS Behaviorally, healthy youth were significantly more likely to avoid physical threat, but not contamination threat, stimuli than youth with DBD. Imaging results revealed that youth with DBD showed significantly reduced use of expected value information in the bilateral caudate, thalamus, and posterior cingulate cortex during the avoidance of suboptimal responses. CONCLUSIONS The current data suggest that youth with DBD show deficits to environmental reinforcers similar to the deficits seen to monetary reinforcers. Importantly, this deficit was unrelated to callous-unemotional (CU) traits, suggesting that caudate impairment may be a common deficit across youth with DBD.
Collapse
|
47
|
Spoormaker VI, Gvozdanovic GA, Sämann PG, Czisch M. Ventromedial prefrontal cortex activity and rapid eye movement sleep are associated with subsequent fear expression in human subjects. Exp Brain Res 2014; 232:1547-54. [DOI: 10.1007/s00221-014-3831-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
|
48
|
Abstract
Anxiety disorders are highly prevalent and debilitating psychiatric disorders. Owing to the complex aetiology of anxiety disorders, translational studies involving multiple approaches, including human and animal genetics, molecular, endocrinological and imaging studies, are needed to get a converging picture of function or dysfunction of anxiety-related circuits. An advantage of anxiety disorders is that the neural circuitry of fear is comparatively well understood, with striking analogies between animal and human models, and this article aims to provide a brief overview of current translational approaches to anxiety. Experimental models that involve similar tasks in animals and humans, such as fear conditioning and extinction, seem particularly promising and can be readily integrated with imaging, behavioural and physiological readouts. The cross-validation between animal and human genetics models is essential to examine the relevance of candidate genes, as well as their neural pathways, for anxiety disorders; a recent example of such cross-validation work is provided by preclinical and clinical work on TMEM132D, which has been identified as a candidate gene for panic disorder. Further integration of epigenetic data and gene × environment interaction are promising approaches, as highlighted by FKPB5 and PACAP, early life trauma and stress-related anxiety disorders. Finally, connecting genetic and epigenetic data with functionally relevant imaging readouts will allow a comparison of overlap and differences across species in mechanistic pathways from genes to brain functioning and behaviour.
Collapse
|
49
|
Lai CH, Wu YT. Changes in regional homogeneity of parieto-temporal regions in panic disorder patients who achieved remission with antidepressant treatment. J Affect Disord 2013; 151:709-714. [PMID: 23993443 DOI: 10.1016/j.jad.2013.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/02/2013] [Accepted: 08/04/2013] [Indexed: 01/11/2023]
Abstract
OBJECTIVE This study was aimed to study the treatment effects of antidepressant for regional homogeneity (ReHo), an indicator of synchronization of brain function, in panic disorder (PD) patients. METHOD Twenty-one remitted PD patients with escitalopram treatment and 21 healthy controls all received 3-T magnetic resonance imaging scanning at baseline and sixth week. We utilized REST (Resting State FMRI Data Analysis Toolkit, version 1.4) to calculate regional homogeneity (ReHo) of patients and controls at baseline and sixth week. We compared the ReHo at baseline with the ReHo at sixth week to estimate the treatment effects for the ReHo of remitted patients. Besides, inter-scan effects were evaluated in the control group. The group-related differences between remitted patients and controls were also estimated. RESULTS Remitted PD patients had increases in ReHo of right Heschl gyrus (superior temporal lobe) and decreases in ReHo of right angular gyrus (parietal lobe). The improvements in severity of panic symptoms were negatively correlated with the changes of ReHo in right superior parietal lobe. However, remitted patients still had lower ReHo than controls in right Heschl gyrus and left thalamus. CONCLUSION The changes in ReHo of temporo-parietal regions might represent treatment-related ReHo changes for remission of PD. The residual alterations in ReHo of temporo-thalamic regions might represent group-related ReHo differences for patients with PD.
Collapse
Affiliation(s)
- Chien-Han Lai
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei City, Taiwan, ROC; Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.
| | - Yu-Te Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan, ROC; Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
50
|
Zhang S, Hu S, Chao HH, Ide JS, Luo X, Farr OM, Li CSR. Ventromedial prefrontal cortex and the regulation of physiological arousal. Soc Cogn Affect Neurosci 2013; 9:900-8. [PMID: 23620600 DOI: 10.1093/scan/nst064] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Neuroimaging studies show a correlation between activity of the ventromedial prefrontal cortex (vmPFC) and skin conductance measurements. However, little is known whether this brain region plays a causal role in regulating physiological arousal. To address this question, we employed Granger causality analysis (GCA) to establish causality between cerebral blood oxygenation level-dependent and skin conductance signals in 24 healthy adults performing a cognitive task during functional magnetic resonance imaging. The results showed that activity of the vmPFC not only negatively correlated with skin conductance level (SCL) but also Granger caused SCL, thus establishing the direction of influence. Importantly, across participants, the strength of Granger causality was negatively correlated to phasic skin conductance responses elicited by external events during the behavioral task. In contrast, activity of the dorsal anterior cingulate cortex positively correlated with SCL but did not show a causal relationship in GCA. These new findings indicate that the vmPFC plays a causal role in regulating physiological arousal. Increased vmPFC activity leads to a decrease in skin conductance. The findings may also advance our understanding of dysfunctions of the vmPFC in mood and anxiety disorders that involve altered control of physiological arousal.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Department of Medicine, Yale University, New Haven, CT 06519, USA, Department of Medicine, VA Connecticut Healthcare Systems, West Haven, CT 06516, USA, Department of Science and technology, University Federal De Sao Paulo, Sao Jose Dos Campos, Brazil, Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, Rhode Island 02912, USA, Interdepartmental Neuroscience Program, and Department of Neurobiology, Yale University, New Haven, CT 06520, USA
| | - Sien Hu
- Department of Psychiatry, Department of Medicine, Yale University, New Haven, CT 06519, USA, Department of Medicine, VA Connecticut Healthcare Systems, West Haven, CT 06516, USA, Department of Science and technology, University Federal De Sao Paulo, Sao Jose Dos Campos, Brazil, Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, Rhode Island 02912, USA, Interdepartmental Neuroscience Program, and Department of Neurobiology, Yale University, New Haven, CT 06520, USA
| | - Herta H Chao
- Department of Psychiatry, Department of Medicine, Yale University, New Haven, CT 06519, USA, Department of Medicine, VA Connecticut Healthcare Systems, West Haven, CT 06516, USA, Department of Science and technology, University Federal De Sao Paulo, Sao Jose Dos Campos, Brazil, Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, Rhode Island 02912, USA, Interdepartmental Neuroscience Program, and Department of Neurobiology, Yale University, New Haven, CT 06520, USADepartment of Psychiatry, Department of Medicine, Yale University, New Haven, CT 06519, USA, Department of Medicine, VA Connecticut Healthcare Systems, West Haven, CT 06516, USA, Department of Science and technology, University Federal De Sao Paulo, Sao Jose Dos Campos, Brazil, Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, Rhode Island 02912, USA, Interdepartmental Neuroscience Program, and Department of Neurobiology, Yale University, New Haven, CT 06520, USA
| | - Jaime S Ide
- Department of Psychiatry, Department of Medicine, Yale University, New Haven, CT 06519, USA, Department of Medicine, VA Connecticut Healthcare Systems, West Haven, CT 06516, USA, Department of Science and technology, University Federal De Sao Paulo, Sao Jose Dos Campos, Brazil, Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, Rhode Island 02912, USA, Interdepartmental Neuroscience Program, and Department of Neurobiology, Yale University, New Haven, CT 06520, USA
| | - Xi Luo
- Department of Psychiatry, Department of Medicine, Yale University, New Haven, CT 06519, USA, Department of Medicine, VA Connecticut Healthcare Systems, West Haven, CT 06516, USA, Department of Science and technology, University Federal De Sao Paulo, Sao Jose Dos Campos, Brazil, Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, Rhode Island 02912, USA, Interdepartmental Neuroscience Program, and Department of Neurobiology, Yale University, New Haven, CT 06520, USA
| | - Olivia M Farr
- Department of Psychiatry, Department of Medicine, Yale University, New Haven, CT 06519, USA, Department of Medicine, VA Connecticut Healthcare Systems, West Haven, CT 06516, USA, Department of Science and technology, University Federal De Sao Paulo, Sao Jose Dos Campos, Brazil, Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, Rhode Island 02912, USA, Interdepartmental Neuroscience Program, and Department of Neurobiology, Yale University, New Haven, CT 06520, USA
| | - Chiang-shan R Li
- Department of Psychiatry, Department of Medicine, Yale University, New Haven, CT 06519, USA, Department of Medicine, VA Connecticut Healthcare Systems, West Haven, CT 06516, USA, Department of Science and technology, University Federal De Sao Paulo, Sao Jose Dos Campos, Brazil, Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, Rhode Island 02912, USA, Interdepartmental Neuroscience Program, and Department of Neurobiology, Yale University, New Haven, CT 06520, USADepartment of Psychiatry, Department of Medicine, Yale University, New Haven, CT 06519, USA, Department of Medicine, VA Connecticut Healthcare Systems, West Haven, CT 06516, USA, Department of Science and technology, University Federal De Sao Paulo, Sao Jose Dos Campos, Brazil, Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, Rhode Island 02912, USA, Interdepartmental Neuroscience Program, and Department of Neurobiology, Yale University, New Haven, CT 06520, USADepartment of Psychiatry, Department of Medicine, Yale University, New Haven, CT 06519, USA, Department of Medicine, VA Connecticut Healthcare Systems, West Haven, CT 06516, USA, Department of Science and technology, University Federal De Sao Paulo, Sao Jose Dos Campos, Brazil, Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, Rhode Island 02912, USA, Interdepartmental Neuroscience Program, and Department of Neurobiology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|