1
|
Kochunov P, Hong LE, Summerfelt A, Gao S, Brown PL, Terzi M, Acheson A, Woldorff MG, Fieremans E, Abdollahzadeh A, Sathyasaikumar KV, Clark SM, Schwarcz R, Shepard PD, Elmer GI. White matter and latency of visual evoked potentials during maturation: A miniature pig model of adolescent development. J Neurosci Methods 2024; 411:110252. [PMID: 39159872 DOI: 10.1016/j.jneumeth.2024.110252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Continuous myelination of cerebral white matter (WM) during adolescence overlaps with the formation of higher cognitive skills and the onset of many neuropsychiatric disorders. We developed a miniature-pig model of adolescent brain development for neuroimaging and neurophysiological assessment during this critical period. Minipigs have gyroencephalic brains with a large cerebral WM compartment and a well-defined adolescence period. METHODS Eight Sinclair™ minipigs (Sus scrofa domestica) were evaluated four times during weeks 14-28 (40, 28 and 28 days apart) of adolescence using monocular visual stimulation (1 Hz)-evoked potentials and diffusion MRI (dMRI) of WM. The latency for the pre-positive 30 ms (PP30), positive 30 ms (P30) and negative 50 ms (N50) components of the flash visual evoked potentials (fVEPs) and their interhemispheric latency (IL) were recorded in the frontal, central and occipital areas during ten 60-second stimulations for each eye. The dMRI imaging protocol consisted of fifteen b-shells (b = 0-3500 s/mm2) with 32 directions/shell, providing measurements that included fractional anisotropy (FA), radial kurtosis, kurtosis anisotropy (KA), axonal water fraction (AWF), and the permeability-diffusivity index (PDI). RESULTS Significant reductions (p < 0.05) in the latency and IL of fVEP measurements paralleled significant rises in FA, KA, AWF and PDI over the same period. The longitudinal latency changes in fVEPs were primarily associated with whole-brain changes in diffusion parameters, while fVEP IL changes were related to maturation of the corpus callosum. CONCLUSIONS Good agreement between reduction in the latency of fVEPs and maturation of cerebral WM was interpreted as evidence for ongoing myelination and confirmation of the minipig as a viable research platform. Adolescent development in minipigs can be studied using human neuroimaging and neurophysiological protocols and followed up with more invasive assays to investigate key neurodevelopmental hypotheses in psychiatry.
Collapse
Affiliation(s)
- Peter Kochunov
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - L Elliot Hong
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Si Gao
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - P Leon Brown
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Terzi
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ashley Acheson
- Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke University, Durham, NC. USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Ali Abdollahzadeh
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Korrapati V Sathyasaikumar
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah M Clark
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul D Shepard
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Greg I Elmer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Yoder KK, Chumin EJ, Mustafi SM, Kolleck KA, Halcomb ME, Hile KL, Plawecki MH, O'Connor SJ, Dzemidzic M, Wu YC. Effects of acute alcohol exposure and chronic alcohol use on neurite orientation dispersion and density imaging (NODDI) parameters. Psychopharmacology (Berl) 2023; 240:1465-1472. [PMID: 37209164 PMCID: PMC10594986 DOI: 10.1007/s00213-023-06380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 04/28/2023] [Indexed: 05/22/2023]
Abstract
RATIONALE Little is known about how acute and chronic alcohol exposure may alter the in vivo membrane properties of neurons. OBJECTIVES We employed neurite orientation dispersion and density imaging (NODDI) to examine acute and chronic effects of alcohol exposure on neurite density. METHODS Twenty-one healthy social drinkers (CON) and thirteen nontreatment-seeking individuals with alcohol use disorder (AUD) underwent a baseline multi-shell diffusion magnetic resonance imaging (dMRI) scan. A subset (10 CON, 5 AUD) received dMRI during intravenous infusions of saline and alcohol during dMRI. NODDI parametric images included orientation dispersion (OD), isotropic volume fraction (ISOVF), and corrected intracellular volume fraction (cICVF). Diffusion tensor imaging metrics of fractional anisotropy and mean, axial, and radial diffusivity (FA, MD, AD, RD) were also computed. Average parameter values were extracted from white matter (WM) tracts defined by the Johns Hopkins University atlas. RESULTS There were group differences in FA, RD, MD, OD, and cICVF, primarily in the corpus callosum. Both saline and alcohol had effects on AD and cICVF in WM tracts proximal to the striatum, cingulate, and thalamus. This is the first work to indicate that acute fluid infusions may alter WM properties, which are conventionally believed to be insensitive to acute pharmacological challenges. It also suggests that the NODDI approach may be sensitive to transient changes in WM. The next steps should include determining if the effect on neurite density differs with solute or osmolality, or both, and translational studies to assess how alcohol and osmolality affect the efficiency of neurotransmission.
Collapse
Affiliation(s)
- Karmen K Yoder
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W. 16th St., GH Ste. 4100, Indianapolis, IN, 46202, USA.
- Center for Neuroimaging, Indiana Institute of Biomedical Imaging, Indiana University School of Medicine, 355 W. 16th St., GH Ste. 4100, Indianapolis, IN, 46202, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Ste. 414, Indianapolis, IN, 46202, USA.
| | - Evgeny J Chumin
- Center for Neuroimaging, Indiana Institute of Biomedical Imaging, Indiana University School of Medicine, 355 W. 16th St., GH Ste. 4100, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Ste. 414, Indianapolis, IN, 46202, USA
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, IN, 47405, Bloomington, USA
- Indiana University Network Science Institute, Indiana University, 1015 E 11th St, Bloomington, IN, 47408, USA
| | - Sourajit M Mustafi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W. 16th St., GH Ste. 4100, Indianapolis, IN, 46202, USA
- Center for Neuroimaging, Indiana Institute of Biomedical Imaging, Indiana University School of Medicine, 355 W. 16th St., GH Ste. 4100, Indianapolis, IN, 46202, USA
| | - Kelly A Kolleck
- Indiana University School of Medicine, 340 W. 10th St., Indianapolis, IN, 46202, USA
| | - Meredith E Halcomb
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W. 16th St., GH Ste. 4100, Indianapolis, IN, 46202, USA
- Center for Neuroimaging, Indiana Institute of Biomedical Imaging, Indiana University School of Medicine, 355 W. 16th St., GH Ste. 4100, Indianapolis, IN, 46202, USA
| | - Karen L Hile
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W. 16th St., GH Ste. 4100, Indianapolis, IN, 46202, USA
- Center for Neuroimaging, Indiana Institute of Biomedical Imaging, Indiana University School of Medicine, 355 W. 16th St., GH Ste. 4100, Indianapolis, IN, 46202, USA
| | - Martin H Plawecki
- Department of Psychiatry, Indiana University School of Medicine, 355 W. 16th St., GH Ste. 4800, Indianapolis, IN, 46202, USA
| | - Sean J O'Connor
- Department of Psychiatry, Indiana University School of Medicine, 355 W. 16th St., GH Ste. 4800, Indianapolis, IN, 46202, USA
| | - Mario Dzemidzic
- Department of Neurology, Indiana University School of Medicine, 355 W. 16th St., GH Ste. 4700, Indianapolis, IN, 46202, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W. 16th St., GH Ste. 4100, Indianapolis, IN, 46202, USA
- Center for Neuroimaging, Indiana Institute of Biomedical Imaging, Indiana University School of Medicine, 355 W. 16th St., GH Ste. 4100, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Ste. 414, Indianapolis, IN, 46202, USA
| |
Collapse
|
3
|
Tristán-Vega A, Pieciak T, París G, Rodríguez-Galván JR, Aja-Fernández S. HYDI-DSI revisited: Constrained non-parametric EAP imaging without q-space re-gridding. Med Image Anal 2023; 84:102728. [PMID: 36542908 DOI: 10.1016/j.media.2022.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/20/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Hybrid Diffusion Imaging (HYDI) was one of the first attempts to use multi-shell samplings of the q-space to infer diffusion properties beyond Diffusion Tensor Imaging (DTI) or High Angular Resolution Diffusion Imaging (HARDI). HYDI was intended as a flexible protocol embedding both DTI (for lower b-values) and HARDI (for higher b-values) processing, as well as Diffusion Spectrum Imaging (DSI) when the entire data set was exploited. In the latter case, the spherical sampling of the q-space is re-gridded by interpolation to a Cartesian lattice whose extent covers the range of acquired b-values, hence being acquisition-dependent. The Discrete Fourier Transform (DFT) is afterwards used to compute the corresponding Cartesian sampling of the Ensemble Average Propagator (EAP) in an entirely non-parametric way. From this lattice, diffusion markers such as the Return To Origin Probability (RTOP) or the Mean Squared Displacement (MSD) can be numerically estimated. We aim at re-formulating this scheme by means of a Fourier Transform encoding matrix that eliminates the need for q-space re-gridding at the same time it preserves the non-parametric nature of HYDI-DSI. The encoding matrix is adaptively designed at each voxel according to the underlying DTI approximation, so that an optimal sampling of the EAP can be pursued without being conditioned by the particular acquisition protocol. The estimation of the EAP is afterwards carried out as a regularized Quadratic Programming (QP) problem, which allows to impose positivity constraints that cannot be trivially embedded within the conventional HYDI-DSI. We demonstrate that the definition of the encoding matrix in the adaptive space allows to analytically (as opposed to numerically) compute several popular descriptors of diffusion with the unique source of error being the cropping of high frequency harmonics in the Fourier analysis of the attenuation signal. They include not only RTOP and MSD, but also Return to Axis/Plane Probabilities (RTAP/RTPP), which are defined in terms of specific spatial directions and are not available with the former HYDI-DSI. We report extensive experiments that suggest the benefits of our proposal in terms of accuracy, robustness and computational efficiency, especially when only standard, non-dedicated q-space samplings are available.
Collapse
Affiliation(s)
| | - Tomasz Pieciak
- LPI, ETSI Telecomunicación, Universidad de Valladolid, Spain; AGH University of Science and Technology, Kraków, Poland
| | - Guillem París
- LPI, ETSI Telecomunicación, Universidad de Valladolid, Spain
| | | | | |
Collapse
|
4
|
Eckert MA, Iuricich F, Harris KC, Hamlett ED, Vazey EM, Aston-Jones G. Locus coeruleus and dorsal cingulate morphology contributions to slowed processing speed. Neuropsychologia 2023; 179:108449. [PMID: 36528219 PMCID: PMC9906468 DOI: 10.1016/j.neuropsychologia.2022.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Slowed information processing speed is a defining feature of cognitive aging. Nucleus locus coeruleus (LC) and medial prefrontal regions are targets for understanding slowed processing speed because these brain regions influence neural and behavioral response latencies through their roles in optimizing task performance. Although structural measures of medial prefrontal cortex have been consistently related to processing speed, it is unclear if 1) declines in LC structure underlie this association because of reciprocal connections between LC and medial prefrontal cortex, or 2) if LC declines provide a separate explanation for age-related changes in processing speed. LC and medial prefrontal structural measures were predicted to explain age-dependent individual differences in processing speed in a cross-sectional sample of 43 adults (19-79 years; 63% female). Higher turbo-spin echo LC contrast, based on a persistent homology measure, and greater dorsal cingulate cortical thickness were significantly and each uniquely related to faster processing speed. However, only dorsal cingulate cortical thickness appeared to statistically mediate age-related differences in processing speed. The results suggest that individual differences in cognitive processing speed can be attributed, in part, to structural variation in nucleus LC and medial prefrontal cortex, with the latter key to understanding why older adults exhibit slowed processing speed.
Collapse
Affiliation(s)
- Mark A Eckert
- Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, MSC 550, Charleston, S.C., 29425-5500, USA.
| | - Federico Iuricich
- Visual Computing Division, School of Computing, Clemson University, Clemson, S.C., 29634, USA
| | - Kelly C Harris
- Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, MSC 550, Charleston, S.C., 29425-5500, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, S.C., 29425-5500, USA
| | - Elena M Vazey
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003-9297, USA
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA
| |
Collapse
|
5
|
Moody JF, Dean DC, Kecskemeti SR, Blennow K, Zetterberg H, Kollmorgen G, Suridjan I, Wild N, Carlsson CM, Johnson SC, Alexander AL, Bendlin BB. Associations between diffusion MRI microstructure and cerebrospinal fluid markers of Alzheimer's disease pathology and neurodegeneration along the Alzheimer's disease continuum. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12381. [PMID: 36479018 PMCID: PMC9720004 DOI: 10.1002/dad2.12381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/14/2022] [Accepted: 10/29/2022] [Indexed: 12/07/2022]
Abstract
Introduction White matter (WM) degeneration is a critical component of early Alzheimer's disease (AD) pathophysiology. Diffusion-weighted imaging (DWI) models, including diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI), and mean apparent propagator MRI (MAP-MRI), have the potential to identify early neurodegenerative WM changes associated with AD. Methods We imaged 213 (198 cognitively unimpaired) aging adults with DWI and used tract-based spatial statistics to compare 15 DWI metrics of WM microstructure to 9 cerebrospinal fluid (CSF) markers of AD pathology and neurodegeneration treated as continuous variables. Results We found widespread WM injury in AD, as indexed by robust associations between DWI metrics and CSF biomarkers. MAP-MRI had more spatially diffuse relationships with Aβ42/40 and pTau, compared with NODDI and DTI. Discussion Our results suggest that WM degeneration may be more pervasive in AD than is commonly appreciated and that innovative DWI models such as MAP-MRI may provide clinically viable biomarkers of AD-related neurodegeneration in the earliest stages of AD progression.
Collapse
Affiliation(s)
- Jason F. Moody
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Douglas C. Dean
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of PediatricsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research InstituteUCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | | | | | | | - Cynthia M. Carlsson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterMiddleton Memorial VA HospitalMadisonWisconsinUSA
| | - Andrew L. Alexander
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of PsychiatryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Barbara B. Bendlin
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
6
|
Eikenes L, Visser E, Vangberg T, Håberg AK. Both brain size and biological sex contribute to variation in white matter microstructure in middle-aged healthy adults. Hum Brain Mapp 2022; 44:691-709. [PMID: 36189786 PMCID: PMC9842919 DOI: 10.1002/hbm.26093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 01/25/2023] Open
Abstract
Whether head size and/or biological sex influence proxies of white matter (WM) microstructure such as fractional anisotropy (FA) and mean diffusivity (MD) remains controversial. Diffusion tensor imaging (DTI) indices are also associated with age, but there are large discrepancies in the spatial distribution and timeline of age-related differences reported. The aim of this study was to evaluate the associations between intracranial volume (ICV), sex, and age and DTI indices from WM in a population-based study of healthy individuals (n = 812) aged 50-66 in the Nord-Trøndelag health survey. Semiautomated tractography and tract-based spatial statistics (TBSS) analyses were performed on the entire sample and in an ICV-matched sample of men and women. The tractography results showed a similar positive association between ICV and FA in all major WM tracts in men and women. Associations between ICV and MD, radial diffusivity and axial diffusivity were also found, but to a lesser extent than FA. The TBSS results showed that both men and women had areas of higher and lower FA when controlling for age, but after controlling for age and ICV only women had areas with higher FA. The ICV matched analysis also demonstrated that only women had areas of higher FA. Age was negatively associated with FA across the entire WM skeleton in the TBSS analysis, independent of both sex and ICV. Combined, these findings demonstrated that both ICV and sex contributed to variation in DTI indices and emphasized the importance of considering ICV as a covariate in DTI analysis.
Collapse
Affiliation(s)
- Live Eikenes
- Department of Circulation and Medical ImagingNorwegian University of Science and TechnologyTrondheimNorway
| | - Eelke Visser
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK,Donders InstituteRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Torgil Vangberg
- Department of Clinical MedicineUiT The Arctic University of NorwayTromsøNorway,PET CenterUniversity Hospital North NorwayTromsøNorway
| | - Asta K. Håberg
- Department of NeuroscienceNorwegian University of Science and TechnologyTrondheimNorway,Department of Diagnostic Imaging, MR‐CenterSt. Olav's University HospitalTrondheimNorway
| |
Collapse
|
7
|
Xiao D, Wang K, Theriault L, Charbel E. White matter integrity and key structures affected in Alzheimer's disease characterized by diffusion tensor imaging. Eur J Neurosci 2022; 56:5319-5331. [PMID: 36048971 DOI: 10.1111/ejn.15815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
White matter (WM) degeneration is suggested to predict the early signs of Alzheimer's disease (AD). The exact structural regions of brain circuitry involved are not known. This study aims to examine the associations between WM tract integrity, represented by the diffusion tensor imaging (DTI) measures, and AD diagnosis and to denote the key substrates in predicting AD. It included DTI measures of mean diffusivity (MD), fractional anisotropy, radial diffusivity and axial diffusivity of 18 main WM tracts in 84 non-Hispanic white participants from the Alzheimer's Disease Neuroimaging Initiative dataset. The multivariable general linear model was used to examine the association of AD diagnosis with each DTI measure adjusting for age, gender and education. The corpus callosum, fornix, cingulum hippocampus, uncinate fasciculus, sagittal striatum, left posterior thalamic radiation and fornix-stria terminalis showed significant increases in MD, radial and axial diffusivity, whereas the splenium of corpus callosum and the fornix showed significant decreases in fractional anisotropy among AD patients. Variable cluster analysis identified that hippocampus volume, mini-mental state examination (MMSE), cingulate gyrus/hippocampus, inferior fronto-occipital fasciculus and uncinate fasciculus are highly correlated in one cluster with MD measures. In conclusion, there were significant differences in DTI measures between the brain WM of AD patients and controls. Age is the risk factor associated with AD, not gender or education. Right cingulum gyrus and right uncinate fasciculus are particularly affected, correlating well with a cognitive test MMSE and MD measures for dementia in AD patients and could be a region of focus for AD staging.
Collapse
Affiliation(s)
- Danqing Xiao
- Department of STEM, School of Arts and Sciences, Regis College, Weston, Massachusetts, USA.,Neuroimaging Center, McLean Hospital, Belmont, Massachusetts, USA
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | - Luke Theriault
- Department of STEM, School of Arts and Sciences, Regis College, Weston, Massachusetts, USA.,School of Medicine, St. George's University, Saint George's, Grenada
| | - Elhelou Charbel
- Department of STEM, School of Arts and Sciences, Regis College, Weston, Massachusetts, USA
| | | |
Collapse
|
8
|
Kasa LW, Peters T, Mirsattari SM, Jurkiewicz MT, Khan AR, A M Haast R. The role of the temporal pole in temporal lobe epilepsy: A diffusion kurtosis imaging study. Neuroimage Clin 2022; 36:103201. [PMID: 36126518 PMCID: PMC9486670 DOI: 10.1016/j.nicl.2022.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
This study aimed to evaluate the use of diffusion kurtosis imaging (DKI) to detect microstructural abnormalities within the temporal pole (TP) and its temporopolar cortex in temporal lobe epilepsy (TLE) patients. DKI quantitative maps were obtained from fourteen lesional TLE and ten non-lesional TLE patients, along with twenty-three healthy controls. Data collected included mean (MK); radial (RK) and axial kurtosis (AK); mean diffusivity (MD) and axonal water fraction (AWF). Automated fiber quantification (AFQ) was used to quantify DKI measurements along the inferior longitudinal (ILF) and uncinate fasciculus (Unc). ILF and Unc tract profiles were compared between groups and tested for correlation with disease duration. To characterize temporopolar cortex microstructure, DKI maps were sampled at varying depths from superficial white matter (WM) towards the pial surface. Patients were separated according to the temporal lobe ipsilateral to seizure onset and their AFQ results were used as input for statistical analyses. Significant differences were observed between lesional TLE and controls, towards the most temporopolar segment of ILF and Unc proximal to the TP within the ipsilateral temporal lobe in left TLE patients for MK, RK, AWF and MD. No significant changes were observed with DKI maps in the non-lesional TLE group. DKI measurements correlated with disease duration, mostly towards the temporopolar segments of the WM bundles. Stronger differences in MK, RK and AWF within the temporopolar cortex were observed in the lesional TLE and noticeable differences (except for MD) in non-lesional TLE groups compared to controls. This study demonstrates that DKI has potential to detect subtle microstructural alterations within the temporopolar segments of the ILF and Unc and the connected temporopolar cortex in TLE patients including non-lesional TLE subjects. This could aid our understanding of the extrahippocampal areas, more specifically the temporal pole role in seizure generation in TLE and might inform surgical planning, leading to better seizure outcomes.
Collapse
Affiliation(s)
- Loxlan W Kasa
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; School of Biomedical Engineering, Western University, London, Ontario, Canada
| | - Terry Peters
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; School of Biomedical Engineering, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Seyed M Mirsattari
- Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada
| | - Michael T Jurkiewicz
- Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Ali R Khan
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; School of Biomedical Engineering, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada.
| | - Roy A M Haast
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
9
|
Sex differences in the connectome of the human brain according to an MR-tractography study. КЛИНИЧЕСКАЯ ПРАКТИКА 2022. [DOI: 10.17816/clinpract105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background: The gender differences in the brain anatomy play an important role in planning and analysis in a lot of studies of the brain. Despite most animal studies being performed on the animals of only one sex, clinical studies generally enroll both males and females. Keeping this fact in mind, learning the gender differences in the white matter structure is important for those studies which deal with the white matter changes. These differences should be considered on the stages of planning and evaluation of the results.
Aims: Evaluation of the gender differences in the white matter pathways in healthy subjects.
Methods: 21 women and 20 men were enrolled in the study. All the subjects underwent MR-tractography, then the anatomic connectome was composed and the differences were evaluated using the tracts quantitative anisotropy (QA) evaluation.
Results: The gender differences were found in the white matter pathways with the prevalence of quantitative anisotropy in women, observed in a larger number of tracts than in those of men. QA was prevalent in a lot of fascicli that form major pathways in both groups: corpus callosum, dominant arcuate fasciclus, inferior fronto-occipital, inferior and superior right longitudinal pathways.
Conclusions: The white matter pathways in males and females are different not only within the major tracts but also for small fascicli that form tracts.
Collapse
|
10
|
Kochunov P, Hong LE, Dennis EL, Morey RA, Tate DF, Wilde EA, Logue M, Kelly S, Donohoe G, Favre P, Houenou J, Ching CRK, Holleran L, Andreassen OA, van Velzen LS, Schmaal L, Villalón-Reina JE, Bearden CE, Piras F, Spalletta G, van den Heuvel OA, Veltman DJ, Stein DJ, Ryan MC, Tan Y, van Erp TGM, Turner JA, Haddad L, Nir TM, Glahn DC, Thompson PM, Jahanshad N. ENIGMA-DTI: Translating reproducible white matter deficits into personalized vulnerability metrics in cross-diagnostic psychiatric research. Hum Brain Mapp 2022; 43:194-206. [PMID: 32301246 PMCID: PMC8675425 DOI: 10.1002/hbm.24998] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022] Open
Abstract
The ENIGMA-DTI (diffusion tensor imaging) workgroup supports analyses that examine the effects of psychiatric, neurological, and developmental disorders on the white matter pathways of the human brain, as well as the effects of normal variation and its genetic associations. The seven ENIGMA disorder-oriented working groups used the ENIGMA-DTI workflow to derive patterns of deficits using coherent and coordinated analyses that model the disease effects across cohorts worldwide. This yielded the largest studies detailing patterns of white matter deficits in schizophrenia spectrum disorder (SSD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), posttraumatic stress disorder (PTSD), traumatic brain injury (TBI), and 22q11 deletion syndrome. These deficit patterns are informative of the underlying neurobiology and reproducible in independent cohorts. We reviewed these findings, demonstrated their reproducibility in independent cohorts, and compared the deficit patterns across illnesses. We discussed translating ENIGMA-defined deficit patterns on the level of individual subjects using a metric called the regional vulnerability index (RVI), a correlation of an individual's brain metrics with the expected pattern for a disorder. We discussed the similarity in white matter deficit patterns among SSD, BD, MDD, and OCD and provided a rationale for using this index in cross-diagnostic neuropsychiatric research. We also discussed the difference in deficit patterns between idiopathic schizophrenia and 22q11 deletion syndrome, which is used as a developmental and genetic model of schizophrenia. Together, these findings highlight the importance of collaborative large-scale research to provide robust and reproducible effects that offer insights into individual vulnerability and cross-diagnosis features.
Collapse
Affiliation(s)
- Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Emily L Dennis
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA, Salt Lake City, Utah, USA
| | - Rajendra A Morey
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA, Salt Lake City, Utah, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA, Salt Lake City, Utah, USA
| | - Mark Logue
- VA Boston Healthcare System, National Center for PTSD, Boston, Massachusetts, USA
- Boston University School of Medicine, Department of Psychiatry, Boston, Massachusetts, USA
- Boston University School of Medicine, Biomedical Genetics, Boston, Massachusetts, USA
- Boston University School of Public Health, Department of Biostatistics, Boston, Massachusetts, USA
| | - Sinead Kelly
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Pauline Favre
- Neurospin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
- INSERM Unit U955, team "Translational Neuro-Psychiatry", Créteil, France
| | - Josselin Houenou
- Neurospin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
- INSERM Unit U955, team "Translational Neuro-Psychiatry", Créteil, France
- Psychiatry Department, Assistance Publique-Hôpitaux de Paris (AP-HP), CHU Mondor, Créteil, France
- Faculté de Médecine, Université Paris Est Créteil, Créteil, France
| | - Christopher R K Ching
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Laurena Holleran
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Laura S van Velzen
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia
| | - Julio E Villalón-Reina
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California, USA
- Department of Psychology, University of California at Los Angeles, Los Angeles, California, USA
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Dick J Veltman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Dan J Stein
- Department of Psychiatry & Neuroscience Institute, University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Meghann C Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry, University of California Irvine, Irvine, California, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, USA
| | - Jessica A Turner
- Department of Psychology and Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Liz Haddad
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Talia M Nir
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Olin Neuropsychiatric Research Center, Hartford Hospital, Hartford, Connecticut, USA
| | - Paul M Thompson
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Neda Jahanshad
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| |
Collapse
|
11
|
Hsu CCH, Huang CC, Tsai SJ, Chen LK, Li HC, Lo CYZ, Lin CP. Differential Age Trajectories of White Matter Changes Between Sexes Correlate with Cognitive Performances. Brain Connect 2021; 11:759-771. [PMID: 33858197 DOI: 10.1089/brain.2020.0961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Aging is accompanied by a gradual deterioration in multiple cognitive abilities and brain structures. Both cognitive function and white matter (WM) structure are found to be associated with neurodegeneration diseases and correlated with sex during aging. However, it is still unclear whether the brain structural change could be attributable to sex, and how sex would affect cognitive performances during aging. Materials and Methods: Diffusion magnetic resonance imaging (MRI) scans were performed on 1127 healthy participants (age range: 21-89) at a single site. The age trajectories of the WM tract microstructure were delineated to estimate the turning age and changing rate between sexes. The canonical correlation analysis and moderated mediation analysis were used to examine the relationship between sex-linked WM tracts and cognitive performances. Results: The axon intactness and demyelination of sex-linked tracts during aging were multifaceted. Sex-linked tracts in females peak around 5 years later than those in males but change significantly faster after the turning age. Projection and association tracts (e.g., corticospinal tracts and parahippocampal cingulum) contributed to a significant decrease in visuospatial functions (VS) and executive functions (E). We discovered that there is a stronger indirect effect of sex-linked tracts on cognitive functions in females than in males. Conclusion: Our findings suggest that the vulnerable projection and association tracts in females may induce negative impacts on integrating multiple functions, which results in a faster decrease in VS and E.
Collapse
Affiliation(s)
- Chih-Chin Heather Hsu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Center of Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chu-Chung Huang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,Shanghai Changning Mental Health Center, Shanghai, China
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Liang-Kung Chen
- Center of Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| | - Hui-Chun Li
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
12
|
Ouyang Y, Cui D, Yuan Z, Liu Z, Jiao Q, Yin T, Qiu J. Analysis of Age-Related White Matter Microstructures Based on Diffusion Tensor Imaging. Front Aging Neurosci 2021; 13:664911. [PMID: 34262444 PMCID: PMC8273390 DOI: 10.3389/fnagi.2021.664911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/14/2021] [Indexed: 12/04/2022] Open
Abstract
Population aging has become a serious social problem. Accordingly, many researches are focusing on changes in brains of the elderly. In this study, we used multiple parameters to analyze age-related changes in white matter fibers. A sample cohort of 58 individuals was divided into young and middle-age groups and tract-based spatial statistics (TBSS) were used to analyze the differences in fractional anisotropy (FA), mean diffusion (MD), axial diffusion (AD), and radial diffusion (RD) between the two groups. Deterministic fiber tracking was used to investigate the correlation between fiber number and fiber length with age. The TBSS analysis revealed significant differences in FA, MD, AD, and RD in multiple white matter fibers between the two groups. In the middle-age group FA and AD were lower than in young people, whereas the MD and RD values were higher. Deterministic fiber tracking showed that the fiber length of some fibers correlated positively with age. These fibers were observed in the splenium of corpus callosum (SCC), the posterior limb of internal capsule (PLIC), the right posterior corona radiata (PCR_R), the anterior corona radiata (ACR), the left posterior thalamic radiation (include optic radiation; PTR_L), and the left superior longitudinal fasciculus (SLF_L), among others. The results showed that the SCC, PLIC, PCR_R, ACR, PTR_L, and SLF_L significantly differed between young and middle-age people. Therefore, we believe that these fibers could be used as image markers of age-related white matter changes.
Collapse
Affiliation(s)
- Yahui Ouyang
- Medical Engineering and Technology Research Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
- College of Radiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
| | - Dong Cui
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zilong Yuan
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qing Jiao
- College of Radiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jianfeng Qiu
- Medical Engineering and Technology Research Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
- College of Radiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
| |
Collapse
|
13
|
Hybrid diffusion imaging reveals altered white matter tract integrity and associations with symptoms and cognitive dysfunction in chronic traumatic brain injury. NEUROIMAGE-CLINICAL 2021; 30:102681. [PMID: 34215151 PMCID: PMC8102667 DOI: 10.1016/j.nicl.2021.102681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/12/2021] [Accepted: 04/18/2021] [Indexed: 11/20/2022]
Abstract
Hybrid Diffusion Imaging (HYDI) detects white matter associations in patients with cTBI. The advanced diffusion model NODDI was more sensitive in detecting between-group differences than classic DTI. DTI appeared to be just as sensitive as NODDI for detecting white matter correlations with self-reported symptoms. This study highlights the advantages of acquiring both DTI and NODDI to fully characterize white matter microstructure in cTBI.
The detection and association of in vivo biomarkers in white matter (WM) pathology after acute and chronic mild traumatic brain injury (mTBI) are needed to improve care and develop therapies. In this study, we used the diffusion MRI method of hybrid diffusion imaging (HYDI) to detect white matter alterations in patients with chronic TBI (cTBI). 40 patients with cTBI presenting symptoms at least three months post injury, and 17 healthy controls underwent magnetic resonance HYDI. cTBI patients were assessed with a battery of neuropsychological tests. A voxel-wise statistical analysis within the white matter skeleton was performed to study between group differences in the diffusion models. In addition, a partial correlation analysis controlling for age, sex, and time after injury was performed within the cTBI cohort, to test for associations between diffusion metrics and clinical outcomes. The advanced diffusion modeling technique of neurite orientation dispersion and density imaging (NODDI) showed large clusters of between-group differences resulting in lower values in the cTBI across the brain, where the single compartment diffusion tensor model failed to show any significant results. However, the diffusion tensor model appeared to be just as sensitive in detecting self-reported symptoms in the cTBI population using a within-group correlation. To the best of our knowledge this study provides the first application of HYDI in evaluation of cTBI using combined DTI and NODDI, significantly enhancing our understanding of the effects of concussion on white matter microstructure and emphasizing the utility of full characterization of complex diffusion to diagnose, monitor, and treat brain injury.
Collapse
|
14
|
van Noordt S, Willoughby T. Cortical maturation from childhood to adolescence is reflected in resting state EEG signal complexity. Dev Cogn Neurosci 2021; 48:100945. [PMID: 33831821 PMCID: PMC8027532 DOI: 10.1016/j.dcn.2021.100945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/09/2021] [Accepted: 03/21/2021] [Indexed: 11/18/2022] Open
Abstract
Endogenous cortical fluctuations captured by electroencephalograms (EEGs) reflect activity in large-scale brain networks that exhibit dynamic patterns over multiple time scales. Developmental changes in the coordination and integration of brain function leads to greater complexity in population level neural dynamics. In this study we examined multiscale entropy, a measure of signal complexity, in resting-state EEGs in a large (N = 405) cross-sectional sample of children and adolescents (9–16 years). Our findings showed consistent age-dependent increases in EEG complexity that are distributed across multiple temporal scales and spatial regions. Developmental changes were most robust as the age gap between groups increased, particularly between late childhood and adolescence, and were most prominent over fronto-central scalp regions. These results suggest that the transition from late childhood to adolescence is characterized by age-dependent changes in the underlying complexity of endogenous brain networks.
Collapse
Affiliation(s)
- Stefon van Noordt
- Azrieli Centre for Autism Research, Montreal Neurological Institute and Hospital, McGill University, Montréal, Canada; Department of Psychology, Brock University, St. Catharines, Ontario, Canada.
| | - Teena Willoughby
- Department of Psychology, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
15
|
Faizy TD, Thaler C, Broocks G, Flottmann F, Leischner H, Kniep H, Nawabi J, Schön G, Stellmann JP, Kemmling A, Reddy R, Heit JJ, Fiehler J, Kumar D, Hanning U. The Myelin Water Fraction Serves as a Marker for Age-Related Myelin Alterations in the Cerebral White Matter - A Multiparametric MRI Aging Study. Front Neurosci 2020; 14:136. [PMID: 32153358 PMCID: PMC7050496 DOI: 10.3389/fnins.2020.00136] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Quantitative MRI modalities, such as diffusion tensor imaging (DTI) or magnetization transfer imaging (MTI) are sensitive to the neuronal effects of aging of the cerebral white matter (WM), but lack the specificity for myelin content. Myelin water imaging (MWI) is highly specific for myelin and may be more sensitive for the detection of changes in myelin content inside the cerebral WM microstructure. In this multiparametric imaging study, we evaluated the performance of myelin water fraction (MWF) estimates as a marker for myelin alterations during normal-aging. Multiparametric MRI data derived from DTI, MTI and a novel, recently-proposed MWF-map processing and reconstruction algorithm were acquired from 54 healthy subjects (aged 18-79 years) and region-based multivariate regression analysis was performed. MWFs significantly decreased with age in most WM regions (except corticospinal tract) and changes of MWFs were associated with changes of radial diffusivity, indicating either substantial alterations or preservation of myelin content in these regions. Decreases of fractional anisotropy and magnetization transfer ratio were associated with lower MWFs in commissural fiber tracts only. Mean diffusivity had no regional effects on MWF. We conclude that MWF estimates are sensitive for the assessment of age-related myelin alterations in the cerebral WM of normal-aging brains.
Collapse
Affiliation(s)
- Tobias D Faizy
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Thaler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Flottmann
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannes Leischner
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helge Kniep
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jawed Nawabi
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Schön
- Institute of Applied Biometrics and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Patrick Stellmann
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - André Kemmling
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Muenster, Münster, Germany
| | - Ravinder Reddy
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeremy J Heit
- Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dushyant Kumar
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Uta Hanning
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Beaudet G, Tsuchida A, Petit L, Tzourio C, Caspers S, Schreiber J, Pausova Z, Patel Y, Paus T, Schmidt R, Pirpamer L, Sachdev PS, Brodaty H, Kochan N, Trollor J, Wen W, Armstrong NJ, Deary IJ, Bastin ME, Wardlaw JM, Munõz Maniega S, Witte AV, Villringer A, Duering M, Debette S, Mazoyer B. Age-Related Changes of Peak Width Skeletonized Mean Diffusivity (PSMD) Across the Adult Lifespan: A Multi-Cohort Study. Front Psychiatry 2020; 11:342. [PMID: 32425831 PMCID: PMC7212692 DOI: 10.3389/fpsyt.2020.00342] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
Parameters of water diffusion in white matter derived from diffusion-weighted imaging (DWI), such as fractional anisotropy (FA), mean, axial, and radial diffusivity (MD, AD, and RD), and more recently, peak width of skeletonized mean diffusivity (PSMD), have been proposed as potential markers of normal and pathological brain ageing. However, their relative evolution over the entire adult lifespan in healthy individuals remains partly unknown during early and late adulthood, and particularly for the PSMD index. Here, we gathered and analyzed cross-sectional diffusion tensor imaging (DTI) data from 10 population-based cohort studies in order to establish the time course of white matter water diffusion phenotypes from post-adolescence to late adulthood. DTI data were obtained from a total of 20,005 individuals aged 18.1 to 92.6 years and analyzed with the same pipeline for computing skeletonized DTI metrics from DTI maps. For each individual, MD, AD, RD, and FA mean values were computed over their FA volume skeleton, PSMD being calculated as the 90% peak width of the MD values distribution across the FA skeleton. Mean values of each DTI metric were found to strongly vary across cohorts, most likely due to major differences in DWI acquisition protocols as well as pre-processing and DTI model fitting. However, age effects on each DTI metric were found to be highly consistent across cohorts. RD, MD, and AD variations with age exhibited the same U-shape pattern, first slowly decreasing during post-adolescence until the age of 30, 40, and 50 years, respectively, then progressively increasing until late life. FA showed a reverse profile, initially increasing then continuously decreasing, slowly until the 70s, then sharply declining thereafter. By contrast, PSMD constantly increased, first slowly until the 60s, then more sharply. These results demonstrate that, in the general population, age affects PSMD in a manner different from that of other DTI metrics. The constant increase in PSMD throughout the entire adult life, including during post-adolescence, indicates that PSMD could be an early marker of the ageing process.
Collapse
Affiliation(s)
- Grégory Beaudet
- Institute of Neurodegenerative Diseases (IMN), CNRS, CEA, Bordeaux, France.,Institute of Neurodegenerative Diseases (IMN), University of Bordeaux, Bordeaux, France
| | - Ami Tsuchida
- Institute of Neurodegenerative Diseases (IMN), CNRS, CEA, Bordeaux, France.,Institute of Neurodegenerative Diseases (IMN), University of Bordeaux, Bordeaux, France
| | - Laurent Petit
- Institute of Neurodegenerative Diseases (IMN), CNRS, CEA, Bordeaux, France.,Institute of Neurodegenerative Diseases (IMN), University of Bordeaux, Bordeaux, France
| | | | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,Institute for Anatomy I, Medical Faculty, Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Jan Schreiber
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
| | - Zdenka Pausova
- Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Yash Patel
- Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Lukas Pirpamer
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Neuropsychiatric Institute Prince of Wales Hospital, Randwick, NSW, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Neuropsychiatric Institute Prince of Wales Hospital, Randwick, NSW, Australia
| | - Nicole Kochan
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Neuropsychiatric Institute Prince of Wales Hospital, Randwick, NSW, Australia
| | - Julian Trollor
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Neuropsychiatric Institute Prince of Wales Hospital, Randwick, NSW, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Neuropsychiatric Institute Prince of Wales Hospital, Randwick, NSW, Australia
| | | | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom.,Brain Research Imaging Centre, Neuroimaging Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom.,Brain Research Imaging Centre, Neuroimaging Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Susana Munõz Maniega
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom.,Brain Research Imaging Centre, Neuroimaging Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - A Veronica Witte
- Departmet of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Departmet of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Stéphanie Debette
- Institute of Neurodegenerative Diseases (IMN), University of Bordeaux, Bordeaux, France.,Bordeaux Population Health Research Center, Inserm, Bordeaux, France.,Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Bernard Mazoyer
- Institute of Neurodegenerative Diseases (IMN), CNRS, CEA, Bordeaux, France.,Institute of Neurodegenerative Diseases (IMN), University of Bordeaux, Bordeaux, France
| |
Collapse
|
17
|
Chou MC, Ko CH, Hsieh TJ, Chang JM, Chung WS. A preliminary report of longitudinal white matter alterations in patients with end-stage renal disease: A three-year diffusion tensor imaging study. PLoS One 2019; 14:e0215942. [PMID: 31039171 PMCID: PMC6490894 DOI: 10.1371/journal.pone.0215942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 04/11/2019] [Indexed: 11/19/2022] Open
Abstract
PURPOSE End-stage renal disease (ESRD) patients exhibit silent white-matter alterations after long-term hemodialysis, which may be due to ESRD itself or the hemodialysis. The purpose of this study was to investigate the longitudinal white-matter alterations in the ESRD patients under 3-year long-term hemodialysis using voxel-wise analysis of diffusion tensor imaging (DTI). MATERIALS AND METHODS 15 ESRD patients and 15 age-matched healthy controls participated in this study. Due to the development of abnormal brain lesions in some cases, 13 ESRD patients and 13 age-matched healthy controls were enrolled and underwent cognitive function assessment and DTI acquisition at two-time points separated by 3 years. Voxel-based analysis was performed to globally detect white-matter alterations between the two groups as well as between the two scans within the two groups. RESULTS In the ESRD patients, diffusivity indices were significantly increased and the fractional anisotropy was significantly decreased in both scans, as compared with healthy controls. Longitudinal comparisons showed significant white-matter alterations in healthy controls in three years, but little or no significant alterations were noted in the ESRD patients after additional 3-year hemodialysis. CONCLUSION Poorer white matter integrity and cognitive function are noted in ESRD patients and the toxic effect of ESRD may be the major factor of white matter alterations.
Collapse
Affiliation(s)
- Ming-Chung Chou
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Hung Ko
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Psychiatry, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsyh-Jyi Hsieh
- Department of Medical imaging, Chi Mei Medical Center, Tainan, Taiwan
- Department of Radiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| | - Jer-Ming Chang
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Shiuan Chung
- Department of Medical Imaging, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Faizy TD, Kumar D, Broocks G, Thaler C, Flottmann F, Leischner H, Kutzner D, Hewera S, Dotzauer D, Stellmann JP, Reddy R, Fiehler J, Sedlacik J, Gellißen S. Age-Related Measurements of the Myelin Water Fraction derived from 3D multi-echo GRASE reflect Myelin Content of the Cerebral White Matter. Sci Rep 2018; 8:14991. [PMID: 30301904 PMCID: PMC6177453 DOI: 10.1038/s41598-018-33112-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 09/19/2018] [Indexed: 12/17/2022] Open
Abstract
Myelin Water Fraction (MWF) measurements derived from quantitative Myelin Water Imaging (MWI) may detect demyelinating changes of the cerebral white matter (WM) microstructure. Here, we investigated age-related alterations of the MWF in normal aging brains of healthy volunteers utilizing two fast and clinically feasible 3D gradient and spin echo (GRASE) MWI sequences with 3 mm and 5 mm isotropic voxel size. In 45 healthy subjects (age range: 18–79 years), distinct regions of interest (ROI) were defined in the cerebral WM including corticospinal tracts. For the 3 mm sequence, significant correlations of the mean MWF with age were found for most ROIs (r < −0.8 for WM ROIs; r = −0.55 for splenium of corpus callosum; r = −0.75 for genu of corpus callosum; p < 0.001 for all ROIs). Similar correlations with age were found for the ROIs of the 5 mm sequence. No significant correlations were found for the corticospinal tract and the occipital WM (p > 0.05). Mean MWF values obtained from the 3 mm and 5 mm sequences were strongly comparable. The applied 3D GRASE MWI sequences were found to be sensitive for age-dependent myelin changes of the cerebral WM microstructure. The reported MWF values might be of substantial use as reference for further investigations in patient studies.
Collapse
Affiliation(s)
- Tobias D Faizy
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Dushyant Kumar
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Thaler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Flottmann
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannes Leischner
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Kutzner
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Hewera
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Dotzauer
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Patrick Stellmann
- Institute of Neuroimmunology und Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ravinder Reddy
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Sedlacik
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Gellißen
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Ryan MC, Kochunov P, Sherman PM, Rowland LM, Wijtenburg SA, Acheson A, Hong LE, Sladky J, McGuire S. Miniature pig magnetic resonance spectroscopy model of normal adolescent brain development. J Neurosci Methods 2018; 308:173-182. [PMID: 30099002 DOI: 10.1016/j.jneumeth.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND We are developing the miniature pig (Sus scrofa domestica), an in-vivo translational, gyrencephalic model for brain development, as an alternative to laboratory rodents/non-human primates. We analyzed longitudinal changes in adolescent pigs using proton magnetic resonance spectroscopy (1H-MRS) and examined the relationship with white matter (WM) integrity derived from diffusion weighted imaging (DWI). NEW METHOD Twelve female Sinclair™ pigs underwent three imaging/spectroscopy sessions every 23.95 ± 3.73 days beginning at three months of age using a clinical 3 T scanner. 1H-MRS data were collected using 1.2 × 1.0 × 3.0 cm voxels placed in left and right hemisphere WM using a Point Resolved Spectroscopy sequence (TR = 2000 ms, TE = 30 ms). Concentrations of N-acetylaspartate, myo-inositol (MI), glutamate + glutamine, choline, creatine, and macromolecules (MM) 09 and 14 were averaged from both hemispheres. DWI data were collected using 15 shells of b-values (b = 0-3500 s/mm2) with 32 directions/shell and fit using the WM Tract Integrity model to calculate fractional anisotropy (FA), kurtosis anisotropy (KA) and permeability-diffusivity index. RESULTS MI and MM09 significantly declined with age. Increased FA and KA significantly correlated with decline in MI and MM09. Correlations lost significance once corrected for age. COMPARISON WITH EXISTING METHODS MRI scanners/protocols can be used to collect 1H-MRS and DWI data in pigs. Pigs have a larger, more complex, gyrencephalic brain than laboratory rodents but are less complex than non-human primates, thus satisfying the "replacement" principle of animal research. CONCLUSIONS Longitudinal effects in MRS measurements were similar to those reported in adolescent humans. MRS changes correlated with diffusion measurements indicating ongoing WM myelination/maturation.
Collapse
Affiliation(s)
- Meghann C Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - Paul M Sherman
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States; Department of Radiology, 59thMedical Wing, 1100 Wilford Hall Loop, Bldg 4551, Joint Base San Antonio, TX, 78236, United States.
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - Ashley Acheson
- Department of Psychiatry, University of Arkansas for Medical Sciences, 4301 W Markham St., Little Rock, AR, 72205, United States.
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - John Sladky
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States; Department of Neurology, 59th Medical Wing, 1100 Wilford Hall Loop, Bldg 4551, Joint Base San Antonio, Lackland AFB, TX, 78236, United States.
| | - Stephen McGuire
- Department of Neurology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States.
| |
Collapse
|
20
|
McGuire JA, Sherman PM, Dean E, Bernot JM, Rowland LM, McGuire SA, Kochunov PV. Utilization of MRI for Cerebral White Matter Injury in a Hypobaric Swine Model-Validation of Technique. Mil Med 2018; 182:e1757-e1764. [PMID: 29087921 DOI: 10.7205/milmed-d-16-00188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Repetitive hypobaric exposure in humans induces subcortical white matter change, observable on magnetic resonance imaging (MRI) and associated with cognitive impairment. Similar findings occur in traumatic brain injury (TBI). We are developing a swine MRI-driven model to understand the pathophysiology and to develop treatment interventions. METHODS Five miniature pigs (Sus scrofa domestica) were repetitively exposed to nonhypoxic hypobaria (30,000 feet/FIO2 100%/transcutaneous PO2 >90%) while under general anesthesia. Three pigs served as controls. Pre-exposure and postexposure MRIs were obtained that included structural sequences, dynamic contrast perfusion, and diffusion tensor quantification. Statistical comparison of individual subject and group change was performed utilizing a two-tailed t test. FINDINGS No structural imaging change was noted on T2-weighted or three-dimensional fluid-attenuated inversion recovery imaging between MRI 1 and MRI 2. No absolute difference in dynamic contrast perfusion was observed. A trend (p = 0.084) toward increase in interstitial extra-axonal fluid was noted. When individual subjects were examined, this trend toward increased extra-axonal fluid paralleled a decrease in contrast perfusion rate. DISCUSSION/IMPACT/RECOMMENDATIONS This study demonstrates high reproducibility of quantitative noninvasive MRI, suggesting MRI is an appropriate assessment tool for TBI and hypobaric-induced injury research in swine. The lack of fluid-attenuated inversion recovery change may be multifactorial and requires further investigation. A trend toward increased extra-axonal water content that negatively correlates with dynamic contrast perfusion implies generalized axonal injury was induced. This study suggests this is a potential model for hypobaric-induced injury as well as potentially other axonal injuries such as TBI in which similar subcortical white matter change occurs. Further development of this model is necessary.
Collapse
Affiliation(s)
- Jennifer A McGuire
- Conte Center, Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228
| | - Paul M Sherman
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913
| | - Erica Dean
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913
| | - Jeremy M Bernot
- Department of Neuroradiology, 59th Medical Wing, 2200 Bergquist Drive, Suite 1, Room 7A45, Joint Base San Antonio-Lackland AFB, TX 78236
| | - Laura M Rowland
- Conte Center, Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228
| | - Stephen A McGuire
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913
| | - Peter V Kochunov
- Conte Center, Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228
| |
Collapse
|
21
|
Wu YC, Mustafi SM, Harezlak J, Kodiweera C, Flashman LA, McAllister TW. Hybrid Diffusion Imaging in Mild Traumatic Brain Injury. J Neurotrauma 2018; 35:2377-2390. [PMID: 29786463 PMCID: PMC6196746 DOI: 10.1089/neu.2017.5566] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is an important public health problem. Although conventional medical imaging techniques can detect moderate-to-severe injuries, they are relatively insensitive to mTBI. In this study, we used hybrid diffusion imaging (HYDI) to detect white matter alterations in 19 patients with mTBI and 23 other trauma control patients. Within 15 days (standard deviation = 10) of brain injury, all subjects underwent magnetic resonance HYDI and were assessed with a battery of neuropsychological tests of sustained attention, memory, and executive function. Tract-based spatial statistics (TBSS) was used for voxel-wise statistical analyses within the white matter skeleton to study between-group differences in diffusion metrics, within-group correlations between diffusion metrics and clinical outcomes, and between-group interaction effects. The advanced diffusion imaging techniques, including neurite orientation dispersion and density imaging (NODDI) and q-space analyses, appeared to be more sensitive then classic diffusion tensor imaging. Only NODDI-derived intra-axonal volume fraction (Vic) demonstrated significant group differences (i.e., 5–9% lower in the injured brain). Within the mTBI group, Vic and a q-space measure, P0, correlated with 6 of 10 neuropsychological tests, including measures of attention, memory, and executive function. In addition, the direction of correlations differed significantly between groups (R2 > 0.71 and pinteration < 0.03). Specifically, in the control group, higher Vic and P0 were associated with better performances on clinical assessments, whereas in the mTBI group, higher Vic and P0 were associated with worse performances with correlation coefficients >0.83. In summary, the NODDI-derived axonal density index and q-space measure for tissue restriction demonstrated superior sensitivity to white matter changes shortly after mTBI. These techniques hold promise as a neuroimaging biomarker for mTBI.
Collapse
Affiliation(s)
- Yu-Chien Wu
- 1 Department of Radiology and Imaging Sciences, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sourajit M Mustafi
- 1 Department of Radiology and Imaging Sciences, Indiana University School of Medicine , Indianapolis, Indiana
| | - Jaroslaw Harezlak
- 2 Department of Epidemiology and Biostatistics, School of Public Health, Indiana University , Bloomington, Indiana
| | - Chandana Kodiweera
- 3 Dartmouth Brain Imaging Center, Dartmouth College , Hanover, New Hampshire
| | - Laura A Flashman
- 4 Department of Psychiatry, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center , Lebanon, New Hampshire
| | - Thomas W McAllister
- 5 Department of Psychiatry, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
22
|
Ryan MC, Sherman P, Rowland LM, Wijtenburg SA, Acheson A, Fieremans E, Veraart J, Novikov DS, Hong LE, Sladky J, Peralta PD, Kochunov P, McGuire SA. Miniature pig model of human adolescent brain white matter development. J Neurosci Methods 2018; 296:99-108. [PMID: 29277719 PMCID: PMC5817010 DOI: 10.1016/j.jneumeth.2017.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neuroscience research in brain development and disorders can benefit from an in vivo animal model that portrays normal white matter (WM) development trajectories and has a sufficiently large cerebrum for imaging with human MRI scanners and protocols. NEW METHOD Twelve three-month-old Sinclair™ miniature pigs (Sus scrofa domestica) were longitudinally evaluated during adolescent development using advanced diffusion weighted imaging (DWI) focused on cerebral WM. Animals had three MRI scans every 23.95 ± 3.73 days using a 3-T scanner. The DWI imaging protocol closely modeled advanced human structural protocols and consisted of fifteen b-shells (b = 0-3500 s/mm2) with 32-directions/shell. DWI data were analyzed using diffusion kurtosis and bi-exponential modeling that provided measurements that included fractional anisotropy (FA), radial kurtosis, kurtosis anisotropy (KA), axial kurtosis, tortuosity, and permeability-diffusivity index (PDI). RESULTS Significant longitudinal effects of brain development were observed for whole-brain average FA, KA, and PDI (all p < 0.001). There were expected regional differences in trends, with corpus callosum fibers showing the highest rate of change. COMPARISON WITH EXISTING METHOD(S) Pigs have a large, gyrencephalic brain that can be studied using clinical MRI scanners/protocols. Pigs are less complex than non-human primates thus satisfying the "replacement" principle of animal research. CONCLUSIONS Longitudinal effects were observed for whole-brain and regional diffusion measurements. The changes in diffusion measurements were interepreted as evidence for ongoing myelination and maturation of cerebral WM. Corpus callosum and superficial cortical WM showed the expected higher rates of change, mirroring results in humans.
Collapse
Affiliation(s)
- Meghann C Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - Paul Sherman
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - Ashley Acheson
- Department of Psychiatry, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, United States
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, NY 10016, United States
| | - Jelle Veraart
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, NY 10016, United States
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, NY 10016, United States
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - John Sladky
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States; Department of Neurology, 59th Medical Wing, 2200 Bergquist Drive, Suite 1, Joint Base San Antonio-Lackland AFB, TX 78236, United States
| | - P Dana Peralta
- Department of Neurology, 59th Medical Wing, 2200 Bergquist Drive, Suite 1, Joint Base San Antonio-Lackland AFB, TX 78236, United States
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - Stephen A McGuire
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States; Department of Neurology, 59th Medical Wing, 2200 Bergquist Drive, Suite 1, Joint Base San Antonio-Lackland AFB, TX 78236, United States
| |
Collapse
|
23
|
McGuire SA, Wijtenburg SA, Sherman PM, Rowland LM, Ryan M, Sladky JH, Kochunov PV. Reproducibility of quantitative structural and physiological MRI measurements. Brain Behav 2017; 7:e00759. [PMID: 28948069 PMCID: PMC5607538 DOI: 10.1002/brb3.759] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 06/01/2017] [Accepted: 06/04/2017] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Quantitative longitudinal magnetic resonance imaging and spectroscopy (MRI/S) is used to assess progress of brain disorders and treatment effects. Understanding the significance of MRI/S changes requires knowledge of the inherent technical and physiological consistency of these measurements. This longitudinal study examined the variance and reproducibility of commonly used quantitative MRI/S measurements in healthy subjects while controlling physiological and technical parameters. METHODS Twenty-five subjects were imaged three times over 5 days on a Siemens 3T Verio scanner equipped with a 32-channel phase array coil. Structural (T1, T2-weighted, and diffusion-weighted imaging) and physiological (pseudocontinuous arterial spin labeling, proton magnetic resonance spectroscopy) data were collected. Consistency of repeated images was evaluated with mean relative difference, mean coefficient of variation, and intraclass correlation (ICC). Finally, a "reproducibility rating" was calculated based on the number of subjects needed for a 3% and 10% difference. RESULTS Structural measurements generally demonstrated excellent reproducibility (ICCs 0.872-0.998) with a few exceptions. Moderate-to-low reproducibility was observed for fractional anisotropy measurements in fornix and corticospinal tracts, for cortical gray matter thickness in the entorhinal, insula, and medial orbitofrontal regions, and for the count of the periependymal hyperintensive white matter regions. The reproducibility of physiological measurements ranged from excellent for most of the magnetic resonance spectroscopy measurements to moderate for permeability-diffusivity coefficients in cingulate gray matter to low for regional blood flow in gray and white matter. DISCUSSION This study demonstrates a high degree of longitudinal consistency across structural and physiological measurements in healthy subjects, defining the inherent variability in these commonly used sequences. Additionally, this study identifies those areas where caution should be exercised in interpretation. Understanding this variability can serve as the basis for interpretation of MRI/S data in the assessment of neurological disorders and treatment effects.
Collapse
Affiliation(s)
- Stephen A. McGuire
- Aeromedical Research DepartmentU.S. Air Force School of Aerospace MedicineWright‐Patterson AFBDaytonOHUSA
- Department of Neurology59 Medical WingJoint Base San Antonio‐LacklandSan AntonioTXUSA
- Department of Neuroradiology59 Medical WingJoint Base San Antonio‐LacklandSan AntonioTXUSA
| | - S. Andrea Wijtenburg
- Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Paul M. Sherman
- Aeromedical Research DepartmentU.S. Air Force School of Aerospace MedicineWright‐Patterson AFBDaytonOHUSA
- Department of Neuroradiology59 Medical WingJoint Base San Antonio‐LacklandSan AntonioTXUSA
| | - Laura M. Rowland
- Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Meghann Ryan
- Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - John H. Sladky
- Department of Neurology59 Medical WingJoint Base San Antonio‐LacklandSan AntonioTXUSA
| | - Peter V. Kochunov
- Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| |
Collapse
|
24
|
Zhuang Y, Qiu X, Wang L, Ma Q, Mapstone M, Luque A, Weber M, Tivarus M, Miller E, Arduino RC, Zhong J, Schifitto G. Combination antiretroviral therapy improves cognitive performance and functional connectivity in treatment-naïve HIV-infected individuals. J Neurovirol 2017; 23:704-712. [PMID: 28791662 PMCID: PMC5655604 DOI: 10.1007/s13365-017-0553-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/20/2017] [Accepted: 07/10/2017] [Indexed: 11/28/2022]
Abstract
Our study aimed to investigate the short-term effect of combination antiretroviral therapy (cART) on cognitive performance and functional and structural connectivity and their relationship to plasma levels of antiretroviral (ARV) drugs. Seventeen ARV treatment-naïve HIV-infected individuals (baseline mean CD4 cell count, 479 ± 48 cells/mm3) were age matched with 17 HIV-uninfected individuals. All subjects underwent a detailed neurocognitive and functional assessment and magnetic resonance imaging. HIV-infected subjects were scanned before starting cART and 12 weeks after initiation of treatment. Uninfected subjects were assessed once at baseline. Functional connectivity (FC) was assessed within the default mode network while structural connectivity was assessed by voxel-wise analysis using tract-based spatial statistics (TBSS) and probabilistic tractography within the DMN. Tenofovir and emtricitabine blood concentration were measured at week 12 of cART. Prior to cART, HIV-infected individuals had significantly lower cognitive performance than control subjects as measured by the total Z-score from the neuropsychological tests assessing six cognitive domains (p = 0.020). After 12 weeks of cART treatment, there remained only a weak cognitive difference between HIV-infected and HIV-uninfected subjects (p = 0.057). Mean FC was lower in HIV-infected individuals compared with those uninfected (p = 0.008), but FC differences became non-significant after treatment (p = 0.197). There were no differences in DTI metrics between HIV-infected and HIV-uninfected individuals using the TBSS approach and limited evidence of decreased structural connectivity within the DMN in HIV-infected individuals. Tenofovir and emtricitabine plasma concentrations did not correlate with either cognitive performance or imaging metrics. CONCLUSIONS Twelve weeks of cART improves cognitive performance and functional connectivity in ARV treatment-naïve HIV-infected individuals with relatively preserved immune function. Longer periods of observation are necessary to assess whether this effect is maintained.
Collapse
Affiliation(s)
- Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Lu Wang
- Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Qing Ma
- Department of Pharmacy Practice, University at Buffalo, Buffalo, NY, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Amneris Luque
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Miriam Weber
- Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Madalina Tivarus
- Department of Imaging Sciences, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 673, Rochester, NY, 14642, USA
| | - Eric Miller
- Department of Psychiatry and Bio-behavioral Sciences, University of California, Los Angeles, CA, USA
| | - Roberto C Arduino
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jianhui Zhong
- Department of Imaging Sciences, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 673, Rochester, NY, 14642, USA
| | - Giovanni Schifitto
- Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA. .,Department of Imaging Sciences, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 673, Rochester, NY, 14642, USA.
| |
Collapse
|
25
|
Kochunov P, Fu M, Nugent K, Wright SN, Du X, Muellerklein F, Morrissey M, Eskandar G, Shukla DK, Jahanshad N, Thompson PM, Patel B, Postolache TT, Strauss KA, Shuldiner AR, Mitchell BD, Hong LE. Heritability of complex white matter diffusion traits assessed in a population isolate. Hum Brain Mapp 2016; 37:525-35. [PMID: 26538488 PMCID: PMC4718876 DOI: 10.1002/hbm.23047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/07/2015] [Accepted: 10/22/2015] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Diffusion weighted imaging (DWI) methods can noninvasively ascertain cerebral microstructure by examining pattern and directions of water diffusion in the brain. We calculated heritability for DWI parameters in cerebral white (WM) and gray matter (GM) to study the genetic contribution to the diffusion signals across tissue boundaries. METHODS Using Old Order Amish (OOA) population isolate with large family pedigrees and high environmental homogeneity, we compared the heritability of measures derived from three representative DWI methods targeting the corpus callosum WM and cingulate gyrus GM: diffusion tensor imaging (DTI), the permeability-diffusivity (PD) model, and the neurite orientation dispersion and density imaging (NODDI) model. These successively more complex models represent the diffusion signal modeling using one, two, and three diffusion compartments, respectively. RESULTS We replicated the high heritability of the DTI-based fractional anisotropy (h(2) = 0.67) and radial diffusivity (h(2) = 0.72) in WM. High heritability in both WM and GM tissues were observed for the permeability-diffusivity index from the PD model (h(2) = 0.64 and 0.84), and the neurite density from the NODDI model (h(2) = 0.70 and 0.55). The orientation dispersion index from the NODDI model was only significantly heritable in GM (h(2) = 0.68). CONCLUSION DWI measures from multicompartmental models were significantly heritable in WM and GM. DWI can offer valuable phenotypes for genetic research; and genes thus identified may reveal mechanisms contributing to mental and neurological disorders in which diffusion imaging anomalies are consistently found. Hum Brain Mapp 37:525-535, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Mao Fu
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Katie Nugent
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Susan N. Wright
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Xiaoming Du
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Florian Muellerklein
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Mary Morrissey
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMaryland
| | - George Eskandar
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Dinesh K Shukla
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Neda Jahanshad
- Keck School of Medicine of USCImaging Genetics CenterMarina Del ReyCalifornia
| | - Paul M. Thompson
- Keck School of Medicine of USCImaging Genetics CenterMarina Del ReyCalifornia
| | - Binish Patel
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Teodor T. Postolache
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMaryland
| | | | - Alan R. Shuldiner
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Braxton D. Mitchell
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMaryland
- Veterans Affairs Maryland Health Care SystemGeriatric Research and Education Clinical CenterBaltimoreMaryland
| | - L. Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| |
Collapse
|
26
|
Age effects and sex differences in human brain white matter of young to middle-aged adults: A DTI, NODDI, and q-space study. Neuroimage 2015; 128:180-192. [PMID: 26724777 DOI: 10.1016/j.neuroimage.2015.12.033] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 02/04/2023] Open
Abstract
Microstructural changes in human brain white matter of young to middle-aged adults were studied using advanced diffusion Magnetic Resonance Imaging (dMRI). Multiple shell diffusion-weighted data were acquired using the Hybrid Diffusion Imaging (HYDI). The HYDI method is extremely versatile and data were analyzed using Diffusion Tensor Imaging (DTI), Neurite Orientation Dispersion and Density Imaging (NODDI), and q-space imaging approaches. Twenty-four females and 23 males between 18 and 55years of age were included in this study. The impact of age and sex on diffusion metrics were tested using least squares linear regressions in 48 white matter regions of interest (ROIs) across the whole brain and adjusted for multiple comparisons across ROIs. In this study, white matter projections to either the hippocampus or the cerebral cortices were the brain regions most sensitive to aging. Specifically, in this young to middle-aged cohort, aging effects were associated with more dispersion of white matter fibers while the tissue restriction and intra-axonal volume fraction remained relatively stable. The fiber dispersion index of NODDI exhibited the most pronounced sensitivity to aging. In addition, changes of the DTI indices in this aging cohort were correlated mostly with the fiber dispersion index rather than the intracellular volume fraction of NODDI or the q-space measurements. While men and women did not differ in the aging rate, men tend to have higher intra-axonal volume fraction than women. This study demonstrates that advanced dMRI using a HYDI acquisition and compartmental modeling of NODDI can elucidate microstructural alterations that are sensitive to age and sex. Finally, this study provides insight into the relationships between DTI diffusion metrics and advanced diffusion metrics of NODDI model and q-space imaging.
Collapse
|
27
|
Avants BB, Duda JT, Kilroy E, Krasileva K, Jann K, Kandel BT, Tustison NJ, Yan L, Jog M, Smith R, Wang Y, Dapretto M, Wang DJJ. The pediatric template of brain perfusion. Sci Data 2015; 2:150003. [PMID: 25977810 PMCID: PMC4413243 DOI: 10.1038/sdata.2015.3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance imaging (MRI) captures the dynamics of brain development with multiple modalities that quantify both structure and function. These measurements may yield valuable insights into the neural patterns that mark healthy maturation or that identify early risk for psychiatric disorder. The Pediatric Template of Brain Perfusion (PTBP) is a free and public neuroimaging resource that will help accelerate the understanding of childhood brain development as seen through the lens of multiple modality neuroimaging and in relation to cognitive and environmental factors. The PTBP uses cross-sectional and longitudinal MRI to quantify cortex, white matter, resting state functional connectivity and brain perfusion, as measured by Arterial Spin Labeling (ASL), in 120 children 7-18 years of age. We describe the PTBP and show, as a demonstration of validity, that global summary measurements capture the trajectories that demarcate critical turning points in brain maturation. This novel resource will allow a more detailed understanding of the network-level, structural and functional landmarks that are obtained during normal adolescent brain development.
Collapse
Affiliation(s)
- Brian B Avants
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jeffrey T Duda
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Emily Kilroy
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| | - Kate Krasileva
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| | - Kay Jann
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| | - Benjamin T Kandel
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nicholas J Tustison
- Department of Radiology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Lirong Yan
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| | - Mayank Jog
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| | - Robert Smith
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| | - Yi Wang
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| | - Mirella Dapretto
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| | - Danny J J Wang
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
28
|
Kochunov P, Chiappelli J, Wright SN, Rowland LM, Patel B, Wijtenburg SA, Nugent K, McMahon RP, Carpenter WT, Muellerklein F, Sampath H, Hong LE. Multimodal white matter imaging to investigate reduced fractional anisotropy and its age-related decline in schizophrenia. Psychiatry Res 2014; 223:148-56. [PMID: 24909602 PMCID: PMC4100065 DOI: 10.1016/j.pscychresns.2014.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/18/2014] [Accepted: 05/08/2014] [Indexed: 01/14/2023]
Abstract
We hypothesized that reduced fractional anisotropy (FA) of water diffusion and its elevated aging-related decline in schizophrenia patients may be caused by elevated hyperintensive white matter (HWM) lesions, by reduced permeability-diffusivity index (PDI), or both. We tested this hypothesis in 40/30 control/patient participants. FA values for the corpus callosum were calculated from high angular resolution diffusion tensor imaging (DTI). Whole-brain volume of HWM lesions was quantified by 3D-T2w-fluid-attenuated inversion recovery (FLAIR) imaging. PDI for corpus callosum was ascertained using multi b-value diffusion imaging (15 b-shells with 30 directions per shell). Patients had significantly lower corpus callosum FA values, and there was a significant age-by-diagnosis interaction. Patients also had significantly reduced PDI but no difference in HWM volume. PDI and HWM volume were significant predictors of FA and captured the diagnosis-related variance. Separately, PDI robustly explained FA variance in schizophrenia patients, but not in controls. Conversely, HWM volume made equally significant contributions to variability in FA in both groups. The diagnosis-by-age effect of FA was explained by a PDI-by-diagnosis interaction. Post hoc testing showed a similar trend for PDI of gray mater. Our study demonstrated that reduced FA and its accelerated decline with age in schizophrenia were explained by pathophysiology indexed by PDI, rather than HWM volume.
Collapse
Affiliation(s)
- Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA; Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Susan N. Wright
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Laura M. Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Benish Patel
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - S. Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Katie Nugent
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Robert P. McMahon
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - William T. Carpenter
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Florian Muellerklein
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Hemalatha Sampath
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| |
Collapse
|
29
|
Palombo M, Gentili S, Bozzali M, Macaluso E, Capuani S. New insight into the contrast in diffusional kurtosis images: Does it depend on magnetic susceptibility? Magn Reson Med 2014; 73:2015-24. [DOI: 10.1002/mrm.25308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 05/03/2014] [Accepted: 05/10/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Palombo
- Physics Department “Sapienza” University of Rome; Rome Italy
- Neuroimaging laboratory; IRCCS Santa Lucia foundation; Rome Italy
| | - Silvia Gentili
- Physics Department “Sapienza” University of Rome; Rome Italy
| | - Marco Bozzali
- Neuroimaging laboratory; IRCCS Santa Lucia foundation; Rome Italy
| | | | - Silvia Capuani
- Physics Department “Sapienza” University of Rome; Rome Italy
- CNR-IPCF UOS Roma Sapienza; Physics Department “Sapienza” University of Rome; Rome Italy
| |
Collapse
|
30
|
Ugwu ID, Amico F, Carballedo A, Fagan AJ, Frodl T. Childhood adversity, depression, age and gender effects on white matter microstructure: a DTI study. Brain Struct Funct 2014; 220:1997-2009. [PMID: 24744150 DOI: 10.1007/s00429-014-0769-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 04/01/2014] [Indexed: 11/26/2022]
Abstract
Previous diffusion tensor imaging (DTI) studies have shown that various factors can affect white matter (WM) tract diffusivity. The aim of the present study was to investigate the effects of childhood adversity (CA), age and gender on WM diffusivity in tracts that are thought to be involved in emotional regulation in individuals with major depressive disorder (MDD) and healthy controls (HC). DTI was obtained from 46 subjects with MDD and 46 HC subjects. Data were pre-processed and deterministic tractography was applied in the cingulum, uncinate fasciculus (UF), fornix, superior longitudinal fasciculus (SLF) and fronto-occipital fasciculus (FOF). In subjects with a history of CA, fractional anisotropy (FA) was greater in the rostral cingulum (RC) and dorsal cingulum, whereas radial diffusivity (RD) was smaller in the RC when compared with subjects with no history of CA. In the UF, FOF and parahippocampal cingulum, FA was greater in the left hemisphere in the subjects with CA when compared with those without CA. Age affected FA, longitudinal diffusivity and RD in the UF, fornix, FOF and SLF, reflecting axonal and myelin degeneration with increasing age. Depression or gender did not have any effects on the diffusivity measures. Due to the cross-sectional nature of the study, a recall bias for CA and possible effects of medical treatment on diffusivity measures could have played a role. CA and age could increase the likelihood to develop WM microstructural anomalies in the brain affective network. Moreover, subjects with CA could be more vulnerable to FA changes.
Collapse
Affiliation(s)
- Izuchukwu D Ugwu
- Adelaide and Meath Hospital Incorporating the National Children's Hospital, Tallaght, Dublin 24, Dublin, Ireland
| | | | | | | | | |
Collapse
|
31
|
Kong Y, Wang D, Shi L, Hui SCN, Chu WCW. Adaptive distance metric learning for diffusion tensor image segmentation. PLoS One 2014; 9:e92069. [PMID: 24651858 PMCID: PMC3961296 DOI: 10.1371/journal.pone.0092069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/17/2014] [Indexed: 11/23/2022] Open
Abstract
High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework.
Collapse
Affiliation(s)
- Youyong Kong
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Research Center for Medical Image Computing, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Defeng Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Research Center for Medical Image Computing, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Engineering and Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- * E-mail: (DW); (WCWC)
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Research Center for Medical Image Computing, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Steve C. N. Hui
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Research Center for Medical Image Computing, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Winnie C. W. Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Research Center for Medical Image Computing, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- * E-mail: (DW); (WCWC)
| |
Collapse
|
32
|
Kanaan RA, Chaddock C, Allin M, Picchioni MM, Daly E, Shergill SS, McGuire PK. Gender influence on white matter microstructure: a tract-based spatial statistics analysis. PLoS One 2014; 9:e91109. [PMID: 24603769 PMCID: PMC3946347 DOI: 10.1371/journal.pone.0091109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/07/2014] [Indexed: 01/31/2023] Open
Abstract
Background Sexual dimorphism in human brain structure is well recognised, but less is known about gender differences in white matter microstructure. We used diffusion tensor imaging to explore gender differences in fractional anisotropy (FA), an index of microstructural integrity. We previously found increased FA in the corpus callosum in women, and increased FA in the cerebellum and left superior longitudinal fasciculus (SLF) in men, using a whole-brain voxel-based analysis. Methods A whole-brain tract-based spatial statistics analysis of 120 matched subjects from the previous analysis, and 134 new subjects (147 men and 107 women in total) using a 1.5T scanner, with division into tract-based regions of interest. Results Men had higher FA in the superior cerebellar peduncles and women had higher FA in corpus callosum in both the first and second samples. The higher SLF FA in men was not found in either sample. Discussion We confirmed our previous, controversial finding of increased FA in the corpus callosum in women, and increased cerebellar FA in men. The corpus callosum FA difference offers some explanation for the otherwise puzzling advantage in inter-callosal transfer time shown in women; the cerebellar FA difference may be associated with the developmental motor advantage shown in men.
Collapse
Affiliation(s)
- Richard A. Kanaan
- University of Melbourne, Department of Psychiatry, Austin Health, Heidelberg, Victoria, Australia
- * E-mail:
| | - Christopher Chaddock
- King’s College London, Institute of Psychiatry, Department of Psychosis Studies, London, United Kingdom
| | - Matthew Allin
- King’s College London, Institute of Psychiatry, Department of Psychosis Studies, London, United Kingdom
| | - Marco M. Picchioni
- King’s College London, Institute of Psychiatry, Department of Psychosis Studies, London, United Kingdom
- St Andrew’s Academic Centre, King’s College London, Northampton, United Kingdom
| | - Eileen Daly
- King’s College London, Institute of Psychiatry, Department of Developmental Psychiatry, London, United Kingdom
| | - Sukhi S. Shergill
- King’s College London, Institute of Psychiatry, Department of Psychosis Studies, London, United Kingdom
| | - Philip K. McGuire
- King’s College London, Institute of Psychiatry, Department of Psychosis Studies, London, United Kingdom
| |
Collapse
|
33
|
Du G, Lewis MM, Sterling NW, Kong L, Chen H, Mailman RB, Huang X. Microstructural changes in the substantia nigra of asymptomatic agricultural workers. Neurotoxicol Teratol 2013; 41:60-4. [PMID: 24334261 DOI: 10.1016/j.ntt.2013.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/23/2013] [Accepted: 12/02/2013] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is marked by the loss of dopamine neurons in the substantia nigra (SN). Although the exact etiology is unknown, sporadic PD is hypothesized to be a result of genetic susceptibility interacting with environmental insult. Epidemiological studies suggest that pesticide exposure is linked to higher PD risk, but there are no studies demonstrating SN changes with chronic pesticide exposure in human subjects. Thus, high resolution T2-weighted magnetic resonance imaging (MRI) and diffusion tensor (DTI) images were obtained from 12 agricultural workers with chronic pesticide exposure, 12 controls, and 12 PD subjects. Neither controls nor pesticide-exposed subjects, had any parkinsonian symptoms. Exposure history to pesticides was assessed by a structured questionnaire. DTI measures in the SN, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), were obtained for all subjects and compared among groups. Compared to controls, PD patients showed the expected significant changes in all DTI measurements in the SN. The pesticide-exposed subjects, compared to controls, had significantly lower FA values (p=0.022, after multiple comparisons correction), but no significant differences in RD, MD, or AD measures. The study is the first to demonstrate microstructural changes in the SN of human subjects with chronic pesticide exposure. The changes detected by MRI may mark "one of the hits" leading to PD, and underlie the increased risk of PD in pesticide users found in epidemiological studies. Further human studies assisted by these imaging markers may be useful in understanding the etiology of PD.
Collapse
Affiliation(s)
- Guangwei Du
- Departments of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Mechelle M Lewis
- Departments of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Departments of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Nicholas W Sterling
- Departments of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Lan Kong
- Departments of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Honglei Chen
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27705, USA
| | - Richard B Mailman
- Departments of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Departments of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Xuemei Huang
- Departments of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Departments of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Departments of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Departments of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Departments of Kinesiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Departments of Bioengineering, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| |
Collapse
|
34
|
Ng SH, Hsu WC, Wai YY, Lee JD, Chan HL, Chen YL, Fung HC, Wu YR, Tsai ML, Wang JJ. Sex dimorphism of cortical water diffusion in normal aging measured by magnetic resonance imaging. Front Aging Neurosci 2013; 5:71. [PMID: 24324433 PMCID: PMC3840722 DOI: 10.3389/fnagi.2013.00071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/19/2013] [Indexed: 02/01/2023] Open
Abstract
Background: The purpose of this study was to examine sex dimorphism in water diffusion in the brain throughout the normal aging process by magnetic resonance imaging. Methods: Diffusion-weighted images covering the majority of the brain were acquired from 77 healthy participants. Both the mean water diffusivity and diffusion kurtosis were calculated from the cortical regions and parcellated according to the template in anatomical automatic labeling. The mean water diffusivity and diffusion kurtosis from both sexes were examined and subsequently correlated with age. Statistical significance was set at a threshold of p < 0.01 after correction for multiple comparisons. In regions that reached statistical significance, a linear regression model was performed. Analysis of variance was conducted to determine the interaction between aging and sex. Results: Sex differences were observed for three aspects. First, compared to females, males presented increased mean water diffusivity and a decreased diffusion kurtosis in the frontal and temporal lobes. Second, a widespread age-related increase in mean water diffusivity was observed, which was more significant in the frontal, occipital, and temporal areas and in the cingulum in females. Third, the diffusion kurtosis decreased with aging but only in restricted areas for both sexes. For the interaction of aging and sex, the most significant change was observed with regards to mean diffusivity, mostly in the right amygdala. Conclusions: A sex-related dimorphism in water diffusion throughout the aging process was observed in the cortex using magnetic resonance imaging.
Collapse
Affiliation(s)
- Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital Linkou, Taiwan, Republic of China ; Department of Medical Imaging and Radiological Sciences, Chang Gung University Taoyuan County, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Phillips OR, Clark KA, Luders E, Azhir R, Joshi SH, Woods RP, Mazziotta JC, Toga AW, Narr KL. Superficial white matter: effects of age, sex, and hemisphere. Brain Connect 2013; 3:146-59. [PMID: 23461767 DOI: 10.1089/brain.2012.0111] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Structural and diffusion imaging studies demonstrate effects of age, sex, and asymmetry in many brain structures. However, few studies have addressed how individual differences might influence the structural integrity of the superficial white matter (SWM), comprised of short-range association (U-fibers), and intracortical axons. This study thus applied a sophisticated computational analysis approach to structural and diffusion imaging data obtained from healthy individuals selected from the International Consortium for Brain Mapping (ICBM) database across a wide adult age range (n=65, age: 18-74 years, all Caucasian). Fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were sampled and compared at thousands of spatially matched SWM locations and within regions-of-interest to examine global and local variations in SWM integrity across age, sex, and hemisphere. Results showed age-related reductions in FA that were more pronounced in the frontal SWM than in the posterior and ventral brain regions, whereas increases in RD and AD were observed across large areas of the SWM. FA was significantly greater in left temporoparietal regions in men and in the posterior callosum in women. Prominent leftward FA and rightward AD and RD asymmetries were observed in the temporal, parietal, and frontal regions. Results extend previous findings restricted to the deep white matter pathways to demonstrate regional changes in the SWM microstructure relating to processes of demyelination and/or to the number, coherence, or integrity of axons with increasing age. SWM fiber organization/coherence appears greater in the left hemisphere regions spanning language and other networks, while more localized sex effects could possibly reflect sex-specific advantages in information strategies.
Collapse
Affiliation(s)
- Owen R Phillips
- Laboratory of Neuro Imaging, Department of Neurology, Geffen School of Medicine at UCLA, Los Angeles, California 90095-7334, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhao X, Pu J, Fan Y, Niu X, Yu D, Zhang Y. Characteristics of diffusion-tensor imaging for healthy adult rhesus monkey brains. Neural Regen Res 2013; 8:2951-61. [PMID: 25206616 PMCID: PMC4146173 DOI: 10.3969/j.issn.1673-5374.2013.31.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/27/2013] [Indexed: 11/18/2022] Open
Abstract
Diffusion-tensor imaging can be used to observe the microstructure of brain tissue. Fractional sotropy reflects the integrity of white matter fibers. Fractional anisotropy of a young adult brain is low in gray matter, high in white matter, and highest in the splenium of the corpus callosum. Thus, we selected the anterior and posterior limbs of the internal capsule, head of the caudate nucleus, semioval center, thalamus, and corpus callosum (splenium and genu) as regions of interest when using diffusion-tensor imaging to observe fractional anisotropy of major white matter fiber tracts and the deep gray matter of healthy rhesus monkeys aged 4-8 years. Results showed no laterality ferences in fractional anisotropy values. Fractional anisotropy values were low in the head of date nucleus and thalamus in gray matter. Fractional anisotropy values were highest in the splenium of corpus callosum in the white matter, followed by genu of the corpus callosum and the posterior limb of the internal capsule. Fractional anisotropy values were lowest in the semioval center and posterior limb of internal capsule. These results suggest that fractional anisotropy values in major white matter fibers and the deep gray matter of 4-8-year-old rhesus monkeys are similar to those of healthy young people.
Collapse
Affiliation(s)
- Xinxiang Zhao
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Jun Pu
- Department of Neurosurgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China,
Corresponding author: Jun Pu, Associate chief physician, Department of Neurosurgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China. ; . (N20120814010)
| | - Yaodong Fan
- Department of Neurosurgery, Third Affiliated Hospital of Kunming Medical University, Kunming 650106, Yunnan Province, China
| | - Xiaoqun Niu
- Department of Pneumology, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Danping Yu
- Yiwu Hospital Affiliated to Zhejiang University School of Medicine, Yiwu 322001, Zhejiang Province, China
| | - Yanglin Zhang
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| |
Collapse
|
37
|
Nelson WL, Suls J. New approaches to understand cognitive changes associated with chemotherapy for non-central nervous system tumors. J Pain Symptom Manage 2013; 46:707-21. [PMID: 23522517 DOI: 10.1016/j.jpainsymman.2012.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/05/2012] [Accepted: 12/07/2012] [Indexed: 01/01/2023]
Abstract
CONTEXT Researchers have described a constellation of cognitive deficits (e.g., impairments in executive functions, working memory, attention, and information-processing speed) associated with cancer treatment, and specifically chemotherapy, for non-central nervous system tumors. However, findings have been inconsistent, largely because of measurement and study design issues. OBJECTIVES To propose ways for researchers to more clearly delineate and characterize the mild cognitive deficits and related outcomes that appear to affect a subset of cancer patients and suggest methods to make more effective use of the existing data to understand risk factors for impaired neuropsychological functioning. METHODS We examined the literature on the relationship between chemotherapy and cognitive impairment, as well as related literature on neuropsychological measurement, structural and functional neuroimaging, alternative measures of health outcomes, and integrative data analysis. RESULTS A more comprehensive picture of cognitive functioning might be obtained by incorporating nontraditional ecological measures, self-reports, computational modeling, new neuroimaging methods, and markers of occupational functioning. Case-control and integrative data analytic techniques potentially could leverage existing data to identify risk factors for cognitive dysfunction and test hypotheses about the etiology of these effects. CONCLUSION There is a need to apply new research approaches to understand the real-world functional implications of the cognitive side effects of chemotherapy to develop and implement strategies to minimize and remediate these effects before, during, and after cancer treatment.
Collapse
Affiliation(s)
- Wendy L Nelson
- Basic Biobehavioral and Psychological Sciences Branch, Behavioral Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland, USA.
| | | |
Collapse
|
38
|
Takao H, Hayashi N, Ohtomo K. Sex dimorphism in the white matter: Fractional anisotropy and brain size. J Magn Reson Imaging 2013; 39:917-23. [DOI: 10.1002/jmri.24225] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 04/18/2013] [Indexed: 11/08/2022] Open
Affiliation(s)
- Hidemasa Takao
- Department of Radiology; Graduate School of Medicine, University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Naoto Hayashi
- Department of Computational Diagnostic Radiology and Preventive Medicine; Graduate School of Medicine; University of Tokyo Tokyo Japan
| | - Kuni Ohtomo
- Department of Radiology; Graduate School of Medicine, University of Tokyo; Bunkyo-ku Tokyo Japan
| |
Collapse
|
39
|
Kochunov P, Chiappelli J, Hong LE. Permeability-diffusivity modeling vs. fractional anisotropy on white matter integrity assessment and application in schizophrenia. NEUROIMAGE-CLINICAL 2013; 3:18-26. [PMID: 24179845 PMCID: PMC3791292 DOI: 10.1016/j.nicl.2013.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/23/2013] [Accepted: 06/28/2013] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Diffusion tensor imaging (DTI) assumes a single pool of anisotropically diffusing water to calculate fractional anisotropy (FA) and is commonly used to ascertain white matter (WM) deficits in schizophrenia. At higher b-values, diffusion-signal decay becomes bi-exponential, suggesting the presence of two, unrestricted and restricted, water pools. Theoretical work suggests that semi-permeable cellular membrane rather than the presence of two physical compartments is the cause. The permeability-diffusivity (PD) parameters measured from bi-exponential modeling may offer advantages, over traditional DTI-FA, in identifying WM deficits in schizophrenia. METHODS Imaging was performed in N = 26/26 patients/controls (age = 20-61 years, average age = 40.5 ± 12.6). Imaging consisted of fifteen b-shells: b = 250-3800 s/mm(2) with 30 directions/shell, covering seven slices of mid-sagittal corpus callosum (CC) at 1.7 × 1.7 × 4.6 mm. 64-direction DTI was also collected. Permeability-diffusivity-index (PDI), the ratio of restricted to unrestricted apparent diffusion coefficients, and the fraction of unrestricted compartment (Mu) were calculated for CC and cingulate gray matter (GM). FA values for CC were calculated using tract-based-spatial-statistics. RESULTS Patients had significantly reduced PDI in CC (p ≅ 10(- 4)) and cingulate GM (p = 0.002), while differences in CC FA were modest (p ≅ .03). There was no group-related difference in Mu. Additional theoretical-modeling analysis suggested that reduced PDI in patients may be caused by reduced cross-membrane water molecule exchanges. CONCLUSION PDI measurements for cerebral WM and GM yielded more robust patient-control differences than DTI-FA. Theoretical work offers an explanation that patient-control PDI differences should implicate abnormal active membrane permeability. This would implicate abnormal activities in ion-channels that use water as substrate for ion exchange, in cerebral tissues of schizophrenia patients.
Collapse
Affiliation(s)
- P Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA ; Department of Physics, University of Maryland Baltimore County, USA
| | | | | |
Collapse
|
40
|
Nagy SA, Aradi M, Orsi G, Perlaki G, Kamson DO, Mike A, Komaromy H, Schwarcz A, Kovacs A, Janszky J, Pfund Z, Illes Z, Bogner P. Bi-exponential diffusion signal decay in normal appearing white matter of multiple sclerosis. Magn Reson Imaging 2013; 31:286-95. [DOI: 10.1016/j.mri.2012.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 07/03/2012] [Accepted: 07/15/2012] [Indexed: 10/28/2022]
|
41
|
Watanabe M, Sakai O, Ozonoff A, Kussman S, Jara H. Age-related apparent diffusion coefficient changes in the normal brain. Radiology 2012; 266:575-82. [PMID: 23143020 DOI: 10.1148/radiol.12112420] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To measure the mean diffusional age-related changes of the brain over the full human life span by using diffusion-weighted spin-echo single-shot echo-planar magnetic resonance (MR) imaging and sequential whole-brain apparent diffusion coefficient (ADC) histogram analysis and, secondarily, to build mathematical models of these normal age-related changes throughout human life. MATERIALS AND METHODS After obtaining institutional review board approval, a HIPAA-compliant retrospective search was conducted for brain MR imaging studies performed in 2007 for various clinical indications. Informed consent was waived. The brain data of 414 healthy subjects (189 males and 225 females; mean age, 33.7 years; age range, 2 days to 89.3 years) were obtained with diffusion-weighted spin-echo single-shot echo-planar MR imaging. ADC histograms of the whole brain were generated. ADC peak values, histogram widths, and intracranial volumes were plotted against age, and model parameters were estimated by using nonlinear regression. RESULTS Four different stages were identified for aging changes in ADC peak values, as characterized by specific mathematical terms: There were age-associated exponential decays for the maturation period and the development period, a constant term for adulthood, and a linear increase for the senescence period. The age dependency of ADC peak value was simulated by using four-term six-coefficient function, including biexponential and linear terms. This model fit the data very closely (R(2) = 0.91). CONCLUSION Brain diffusivity as a whole demonstrated age-related changes through four distinct periods of life. These results could contribute to establishing an ADC baseline of the normal brain, covering the full human life span.
Collapse
Affiliation(s)
- Memi Watanabe
- Department of Radiology, Boston Medical Center, Boston University School of Medicine, 820 Harrison Ave, FGH Bldg, 3rd Floor, Boston, MA 02118, USA.
| | | | | | | | | |
Collapse
|
42
|
Mensen A, Khatami R. Advanced EEG analysis using threshold-free cluster-enhancement and non-parametric statistics. Neuroimage 2012; 67:111-8. [PMID: 23123297 DOI: 10.1016/j.neuroimage.2012.10.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 01/16/2023] Open
Abstract
Advances in EEG signal analysis and its combination with other investigative techniques make appropriate statistical analysis of large EEG datasets a crucial issue. With an increasing number of available channels and samples, as well as more exploratory experimental designs, it has become necessary to develop a statistical process with a high level of statistical integrity, signal sensitivity which nonetheless produces results which are interpretable to the common user. Threshold-free cluster-enhancement has recently been proposed as a useful analysis tool for fMRI datasets. This approach essentially takes into account both a data point's statistical intensity and neighbourhood to transform the original signal into a more intuitive understanding of 'real' differences between groups or conditions. Here we adapt this approach to optimally deal with EEG datasets and use permutation-based statistics to build an efficient statistical analysis. Furthermore we compare the results with several other non-parametric and parametric approaches currently available using realistic simulated EEG signals. The proposed method is shown to be generally more sensitive to the variety of signal types common to EEG datasets without the need for any arbitrary adjusting of parameters. Moreover, a unique p-value is produced for each channel-sample pair such that specific questions can still be asked of the dataset while providing general information regarding the large-scale experimental effects.
Collapse
Affiliation(s)
- Armand Mensen
- University of Zürich, Raemistrasse 71, CH-8006, Zurich, Switzerland; Clinic Barmelweid, CH-5017, Barmelweid, Switzerland.
| | | |
Collapse
|
43
|
O'Dwyer L, Lamberton F, Bokde ALW, Ewers M, Faluyi YO, Tanner C, Mazoyer B, O'Neill D, Bartley M, Collins R, Coughlan T, Prvulovic D, Hampel H. Sexual dimorphism in healthy aging and mild cognitive impairment: a DTI study. PLoS One 2012; 7:e37021. [PMID: 22768288 PMCID: PMC3388101 DOI: 10.1371/journal.pone.0037021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/12/2012] [Indexed: 11/18/2022] Open
Abstract
Previous PET and MRI studies have indicated that the degree to which pathology translates into clinical symptoms is strongly dependent on sex with women more likely to express pathology as a diagnosis of AD, whereas men are more resistant to clinical symptoms in the face of the same degree of pathology. Here we use DTI to investigate the difference between male and female white matter tracts in healthy older participants (24 women, 16 men) and participants with mild cognitive impairment (21 women, 12 men). Differences between control and MCI participants were found in fractional anisotropy (FA), radial diffusion (DR), axial diffusion (DA) and mean diffusion (MD). A significant main effect of sex was also reported for FA, MD and DR indices, with male control and male MCI participants having significantly more microstructural damage than their female counterparts. There was no sex by diagnosis interaction. Male MCIs also had significantly less normalised grey matter (GM) volume than female MCIs. However, in terms of absolute brain volume, male controls had significantly more brain volume than female controls. Normalised GM and WM volumes were found to decrease significantly with age with no age by sex interaction. Overall, these data suggest that the same degree of cognitive impairment is associated with greater structural damage in men compared with women.
Collapse
Affiliation(s)
- Laurence O'Dwyer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Stadlbauer A, Ganslandt O, Salomonowitz E, Buchfelder M, Hammen T, Bachmair J, Eberhardt K. Magnetic resonance fiber density mapping of age-related white matter changes. Eur J Radiol 2012; 81:4005-12. [PMID: 22705186 DOI: 10.1016/j.ejrad.2012.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/20/2012] [Accepted: 05/25/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To introduce fiber density mapping (FDM) for investigation of age-related white matter (WM) changes and to compare its capabilities with conventional diffusion tensor imaging (DTI) post-processing. METHODS DTI data with 1.9 mm(3) isotropic voxels were acquired from 44 healthy volunteers (18-88 years) at 3T. FDM is a 3-step approach which includes diagonalization of the diffusion tensor, fiber reconstruction for the whole brain, and calculation of fiber density (FD) values. Maps of fractional anisotropy (FA) and mean diffusivity (MD) were additionally calculated. Voxel-based analyses were performed to determine volume clusters of significant correlation with age. Bivariate linear regression models and Hotelling-Williams tests were used to detect significant differences between correlations. RESULTS FDM detected a larger WM volume affected by age-related changes concomitant with fewer significant clusters compared to FA and MD. This indicates that WM alterations due to normal aging occur rather globally than locally. FD values showed a significant stronger correlation with age in frontal lobes (prefrontal and precentral gyrus), limbic lobes (cingulate and parahippocampal gyrus), the corpus callosum (genu) and temporal lobes. CONCLUSIONS FDM shows higher sensitivity for detection of age-related WM changes because it includes all surrounding fiber structures into the evaluation of each DTI data voxel.
Collapse
Affiliation(s)
- Andreas Stadlbauer
- MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, A-3100 St. Poelten, Austria.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Background Sexual dimorphism in human brain structure is well recognised, but little is known about gender differences in white matter microstructure. We used diffusion tensor imaging to explore differences in fractional anisotropy (FA), an index of microstructural integrity. Methods A whole brain analysis of 135 matched subjects (90 men and 45 women) using a 1.5 T scanner. A region of interest (ROI) analysis was used to confirm those results where proximity to CSF raised the possibility of partial-volume artefact. Results Men had higher fractional anisotropy (FA) in cerebellar white matter and in the left superior longitudinal fasciculus; women had higher FA in the corpus callosum, confirmed by ROI. Discussion The size of the differences was substantial - of the same order as that attributed to some pathology – suggesting gender may be a potentially significant confound in unbalanced clinical studies. There are several previous reports of difference in the corpus callosum, though they disagree on the direction of difference; our findings in the cerebellum and the superior longitudinal fasciculus have not previously been noted. The higher FA in women may reflect greater efficiency of a smaller corpus callosum. The relatively increased superior longitudinal fasciculus and cerebellar FA in men may reflect their increased language lateralisation and enhanced motor development, respectively.
Collapse
|
46
|
Smith CD. Structural imaging in early pre-states of dementia. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:317-24. [PMID: 21777674 PMCID: PMC3223541 DOI: 10.1016/j.bbadis.2011.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/19/2011] [Accepted: 07/06/2011] [Indexed: 01/18/2023]
Abstract
In this review focus is on structural imaging in the Alzheimer's disease (AD) pre-states, particularly cognitively normal (CN) persons at future dementia risk. Findings in mild cognitive impairment (MCI) are described here only for comparison with CN. Cited literature evidence and commentary address issues of structural imaging alterations in CN that precede MCI and AD, regional patterns of such alterations, and the time relationship between structural imaging alterations and the appearance of symptoms of AD, issues relevant to the conduct of future AD prevention trials. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.
Collapse
Affiliation(s)
- Charles D Smith
- Alzheimer's Disease Center, Sanders-Brown Center on Aging, University of Kentucky, USA.
| |
Collapse
|
47
|
Alexander AL, Hurley SA, Samsonov AA, Adluru N, Hosseinbor AP, Mossahebi P, Tromp DPM, Zakszewski E, Field AS. Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect 2012; 1:423-46. [PMID: 22432902 DOI: 10.1089/brain.2011.0071] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The image contrast in magnetic resonance imaging (MRI) is highly sensitive to several mechanisms that are modulated by the properties of the tissue environment. The degree and type of contrast weighting may be viewed as image filters that accentuate specific tissue properties. Maps of quantitative measures of these mechanisms, akin to microstructural/environmental-specific tissue stains, may be generated to characterize the MRI and physiological properties of biological tissues. In this article, three quantitative MRI (qMRI) methods for characterizing white matter (WM) microstructural properties are reviewed. All of these measures measure complementary aspects of how water interacts with the tissue environment. Diffusion MRI, including diffusion tensor imaging, characterizes the diffusion of water in the tissues and is sensitive to the microstructural density, spacing, and orientational organization of tissue membranes, including myelin. Magnetization transfer imaging characterizes the amount and degree of magnetization exchange between free water and macromolecules like proteins found in the myelin bilayers. Relaxometry measures the MRI relaxation constants T1 and T2, which in WM have a component associated with the water trapped in the myelin bilayers. The conduction of signals between distant brain regions occurs primarily through myelinated WM tracts; thus, these methods are potential indicators of pathology and structural connectivity in the brain. This article provides an overview of the qMRI stain mechanisms, acquisition and analysis strategies, and applications for these qMRI stains.
Collapse
Affiliation(s)
- Andrew L Alexander
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C. Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage 2011; 60:340-52. [PMID: 22178809 DOI: 10.1016/j.neuroimage.2011.11.094] [Citation(s) in RCA: 804] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/31/2011] [Accepted: 11/30/2011] [Indexed: 01/12/2023] Open
Abstract
Diffusion tensor imaging (DTI) has been used widely to show structural brain changes during both development and aging. Lifespan studies are valuable because they connect these two processes, yet few DTI studies have been conducted that include both children and elderly subjects. This study used DTI tractography to investigate 12 major white matter connections in 403 healthy subjects aged 5-83 years. Poisson fits were used to model changes of fractional anisotropy (FA) and mean diffusivity (MD) across the age span, and were highly significant for all tracts. FA increased during childhood and adolescence, reached a peak between 20 and 42 years of age, and then decreased. MD showed an opposite trend, decreasing first, reaching a minimum at 18-41 years, and then increasing later in life. These trajectories demonstrate rates and timing of development and degradation that vary regionally in the brain. The corpus callosum and fornix showed early reversals of development trends, while frontal-temporal connections (cingulum, uncinate, superior longitudinal) showed more prolonged maturation and delayed declines. FA changes were driven by perpendicular diffusivity, suggesting changes of myelination and/or axonal density. Tract volume changed significantly with age for most tracts, but did not greatly influence the FA and MD trajectories. This study demonstrates clear age-related microstructural changes throughout the brain white matter, and provides normative data that will be useful for studying white matter development in a variety of diseases and abnormal conditions.
Collapse
Affiliation(s)
- C Lebel
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Age-related changes in the surface morphology of the central sulcus. Neuroimage 2011; 58:381-90. [DOI: 10.1016/j.neuroimage.2011.06.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/23/2011] [Accepted: 06/16/2011] [Indexed: 11/19/2022] Open
|
50
|
Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ). Neuroimage 2011; 55:1423-34. [PMID: 21277375 PMCID: PMC3093621 DOI: 10.1016/j.neuroimage.2011.01.052] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 01/12/2023] Open
Abstract
Normal ageing is associated with characteristic changes in brain microstructure. Although in vivo neuroimaging captures spatial and temporal patterns of age-related changes of anatomy at the macroscopic scale, our knowledge of the underlying (patho)physiological processes at cellular and molecular levels is still limited. The aim of this study is to explore brain tissue properties in normal ageing using quantitative magnetic resonance imaging (MRI) alongside conventional morphological assessment. Using a whole-brain approach in a cohort of 26 adults, aged 18–85 years, we performed voxel-based morphometric (VBM) analysis and voxel-based quantification (VBQ) of diffusion tensor, magnetization transfer (MT), R1, and R2* relaxation parameters. We found age-related reductions in cortical and subcortical grey matter volume paralleled by changes in fractional anisotropy (FA), mean diffusivity (MD), MT and R2*. The latter were regionally specific depending on their differential sensitivity to microscopic tissue properties. VBQ of white matter revealed distinct anatomical patterns of age-related change in microstructure. Widespread and profound reduction in MT contrasted with local FA decreases paralleled by MD increases. R1 reductions and R2* increases were observed to a smaller extent in overlapping occipito-parietal white matter regions. We interpret our findings, based on current biophysical models, as a fingerprint of age-dependent brain atrophy and underlying microstructural changes in myelin, iron deposits and water. The VBQ approach we present allows for systematic unbiased exploration of the interaction between imaging parameters and extends current methods for detection of neurodegenerative processes in the brain. The demonstrated parameter-specific distribution patterns offer insights into age-related brain structure changes in vivo and provide essential baseline data for studying disease against a background of healthy ageing.
Collapse
|