1
|
Tomasi D, Volkow ND. Brain asymmetry and its association with inattention and heritability during neurodevelopment. Transl Psychiatry 2025; 15:96. [PMID: 40140344 PMCID: PMC11947263 DOI: 10.1038/s41398-025-03327-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The relationship between brain asymmetry and inattention, and their heritability is not well understood. Utilizing advanced neuroimaging, we examined brain asymmetry with data from the Adolescent Brain Cognitive Development (ABCD; n = 8943; 9-10 y) and the Human Connectome Project (HCP) cohorts (n = 1033; 5-100 y). Data-driven metrics from resting-state fMRI and morphometrics revealed reproducible and stable brain asymmetry patterns across the lifespan. In children, high levels of inattention were highly heritable (61%) and linked to reduced leftward asymmetry of functional connectivity in the dorsal posterior superior temporal sulcus (dpSTS), a region interconnected with a left-lateralized language network. However, reduced dpSTS asymmetry had low heritability (16%) and was associated with lower cognitive performance suggesting that non-genetic factors, such as those mediating cognitive performance, might underlie its association with dpSTS asymmetry. Interventions that enhance cognition might help optimize brain function and reduce inattention.
Collapse
Affiliation(s)
- Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| |
Collapse
|
2
|
Bruner E. Hemispheric asymmetries, paleoneurology, and the evolution of the human genus. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:231-240. [PMID: 40074399 DOI: 10.1016/b978-0-443-15646-5.00026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Brain asymmetries are a distinctive feature of Homo sapiens and are associated with key evolutionary functions including language and handedness. Nonetheless, differences between humans and apes could be just a matter of degree and size and not the expression of unique traits of our species. In this chapter, I introduce paleoneurology and the study of brain morphology in fossil hominids, reviewing the anatomic factors that can influence the main asymmetries of the endocranial cavity (cortical volumes, sulcal patterns, and craniovascular features). The paleoneurological evidence suggests that most extinct human species displayed a pattern of gross endocranial asymmetries similar to modern humans. In addition, the behavioral information on handedness also points to a similar degree of laterality in archaic species of the human genus and in Neandertals. At present, there is therefore no evidence suggesting that the brain asymmetries in H. sapiens are part of a derived set of features. Of course, even a simple proportional change due to brain size increase can anyway prompt crucial cognitive changes, mostly if threshold effects are considered. Nonetheless, we still lack much information in basic anatomy to support consistent hypotheses on the biologic factors involved in endocranial asymmetries in fossil hominids. This missing information concerns endocranial morphogenesis and topology, spatial conflicts and constraints, the biomechanical balance between cerebral tissues, and the actual histologic changes associated with encephalization.
Collapse
Affiliation(s)
- Emiliano Bruner
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain; Reina Sofia Alzheimer Center, CIEN Foundation, ISCIII, Madrid, Spain.
| |
Collapse
|
3
|
Achorn AM, Mulholland MM, Cox CM, Phillips KA, Bennett AJ, Pierre PJ, Sherwood CC, Schapiro SJ, Hopkins WD. Planum Temporale Asymmetries in Primates: A Comparative Study in Great Apes and Monkeys. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e25060. [PMID: 39815716 DOI: 10.1002/ajpa.25060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/18/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025]
Abstract
OBJECTIVES Most human brains exhibit left hemisphere asymmetry for planum temporale (PT) surface area and gray matter volume, which is interpreted as cerebral lateralization for language. Once considered a uniquely human feature, PT asymmetries have now been documented in chimpanzees and olive baboons. The goal of the current study was to further investigate the evolution of PT asymmetries in nonhuman primates. MATERIALS AND METHODS We measured PT surface area in chimpanzees (Pan troglodytes, n = 90), bonobos (Pan paniscus, n = 21), gorillas (Gorilla gorilla, n = 34), orangutans (Pongo spp., n = 33), olive baboons (Papio anubis, n = 105), rhesus macaques (Macaca mulatta, n = 144), and tufted capuchins (Sapajus apella, n = 29) from magnetic resonance imaging scans. RESULTS Our findings reveal significant leftward biases in PT surface area among chimpanzees, gorillas, olive baboons, rhesus macaques, and capuchins. We did not find significant population-level asymmetries among orangutans and bonobos, which could be due, in part, to small sample sizes. We also detected significant age effects for rhesus macaques only, and no significant sex effects for any species. DISCUSSION The observation of a population-level leftward bias for PT surface area among not only hominids (chimpanzees and gorillas), but also two cercopithecoids (olive baboons and rhesus macaques) and one platyrrhine (tufted capuchins) suggests that PT lateralization was likely present in some early anthropoid primate ancestors and relatives. This provides further evidence that human brains have since undergone changes to the size and connectivity of the PT in response to selection for the cognitive processes needed to support the evolution of language and speech.
Collapse
Affiliation(s)
- Angela M Achorn
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Michele M Mulholland
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Chelsea M Cox
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Kimberley A Phillips
- Department of Psychology, Trinity University, San Antonio, Texas, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Allyson J Bennett
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Peter J Pierre
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Steven J Schapiro
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - William D Hopkins
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| |
Collapse
|
4
|
Hathaway CB, Voorhies WI, Sathishkumar N, Mittal C, Yao JK, Miller JA, Parker BJ, Weiner KS. Defining putative tertiary sulci in lateral prefrontal cortex in chimpanzees using human predictions. Brain Struct Funct 2024; 229:2059-2068. [PMID: 37195311 DOI: 10.1007/s00429-023-02638-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/05/2023] [Indexed: 05/18/2023]
Abstract
Similarities and differences in brain structure and function across species are of major interest in systems neuroscience, comparative biology, and brain mapping. Recently, increased emphasis has been placed on tertiary sulci, which are shallow indentations of the cerebral cortex that appear last in gestation, continue to develop after birth, and are largely either human or hominoid specific. While tertiary sulcal morphology in lateral prefrontal cortex (LPFC) has been linked to functional representations and cognition in humans, it is presently unknown if small and shallow LPFC sulci also exist in non-human hominoids. To fill this gap in knowledge, we leveraged two freely available multimodal datasets to address the following main question: Can small and shallow LPFC sulci be defined in chimpanzee cortical surfaces from human predictions of LPFC tertiary sulci? We found that 1-3 components of the posterior middle frontal sulcus (pmfs) in the posterior middle frontal gyrus are identifiable in nearly all chimpanzee hemispheres. In stark contrast to the consistency of the pmfs components, we could only identify components of the paraintermediate frontal sulcus (pimfs) in two chimpanzee hemispheres. Putative LPFC tertiary sulci were relatively smaller and shallower in chimpanzees compared to humans. In both species, two of the pmfs components were deeper in the right compared to the left hemisphere. As these results have direct implications for future studies interested in the functional and cognitive role of LPFC tertiary sulci, we share probabilistic predictions of the three pmfs components to guide the definitions of these sulci in future studies.
Collapse
Affiliation(s)
| | - Willa I Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Neha Sathishkumar
- Cognitive Science, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Chahat Mittal
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jewelia K Yao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA
| | - Jacob A Miller
- Wu Tsai Institute for Neuroscience, Yale University, New Haven, CT, 06510, USA
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
5
|
Chauvel M, Uszynski I, Herlin B, Popov A, Leprince Y, Mangin JF, Hopkins WD, Poupon C. In vivo mapping of the deep and superficial white matter connectivity in the chimpanzee brain. Neuroimage 2023; 282:120362. [PMID: 37722605 PMCID: PMC11751957 DOI: 10.1016/j.neuroimage.2023.120362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/27/2023] [Accepted: 09/03/2023] [Indexed: 09/20/2023] Open
Abstract
Mapping the chimpanzee brain connectome and comparing it to that of humans is key to our understanding of similarities and differences in primate evolution that occurred after the split from their common ancestor around 6 million years ago. In contrast to studies on macaque species' brains, fewer studies have specifically addressed the structural connectivity of the chimpanzee brain and its comparison with the human brain. Most comparative studies in the literature focus on the anatomy of the cortex and deep nuclei to evaluate how their morphology and asymmetry differ from that of the human brain, and some studies have emerged concerning the study of brain connectivity among humans, monkeys, and apes. In this work, we established a new white matter atlas of the deep and superficial white matter structural connectivity in chimpanzees. In vivo anatomical and diffusion-weighted magnetic resonance imaging (MRI) data were collected on a 3-Tesla MRI system from 39 chimpanzees. These datasets were subsequently processed using a novel fiber clustering pipeline adapted to the chimpanzee brain, enabling us to create two novel deep and superficial white matter connectivity atlases representative of the chimpanzee brain. These atlases provide the scientific community with an important and novel set of reference data for understanding the commonalities and differences in structural connectivity between the human and chimpanzee brains. We believe this study to be innovative both in its novel approach and in mapping the superficial white matter bundles in the chimpanzee brain, which will contribute to a better understanding of hominin brain evolution.
Collapse
Affiliation(s)
- Maëlig Chauvel
- BAOBAB, UMR 9027, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-sur-Yvette, France.
| | - Ivy Uszynski
- BAOBAB, UMR 9027, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-sur-Yvette, France
| | - Bastien Herlin
- BAOBAB, UMR 9027, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-sur-Yvette, France; Hôpital de la Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013 Paris, France
| | - Alexandros Popov
- BAOBAB, UMR 9027, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-sur-Yvette, France
| | - Yann Leprince
- UNIACT, NeuroSpin, Université Paris-Saclay, CEA, Gif-sur-Yvette, France
| | - Jean-François Mangin
- BAOBAB, UMR 9027, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-sur-Yvette, France
| | - William D Hopkins
- Department of Comparative Medicine, Michale E Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States of America
| | - Cyril Poupon
- BAOBAB, UMR 9027, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Barton SA, Kent M, Hecht EE. Neuroanatomical asymmetry in the canine brain. Brain Struct Funct 2023; 228:1657-1669. [PMID: 37436502 DOI: 10.1007/s00429-023-02677-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
The brains of humans and non-human primates exhibit left/right asymmetries in grey matter morphology, white matter connections, and functional responses. These asymmetries have been implicated in specialized behavioral adaptations such as language, tool use, and handedness. Left/right asymmetries are also observed in behavioral tendencies across the animal kingdom, suggesting a deep evolutionary origin for the neural mechanisms underlying lateralized behavior. However, it is still unclear to what extent brain asymmetries supporting lateralized behaviors are present in other large-brained animals outside the primate order. Canids and other carnivorans evolved large, complex brains independently and convergently with primates, and exhibit lateralized behaviors. Therefore, domestic dogs offer an opportunity to address this question. We examined T2-weighted MRI images of 62 dogs from 33 breeds, opportunistically collected from a veterinary MRI scanner from dogs who were referred for neurological examination but were not found to show any neuropathology. Volumetrically asymmetric regions of gray matter included portions of the temporal and frontal cortex, in addition to portions of the cerebellum, brainstem, and other subcortical regions. These results are consistent with the perspective that asymmetry may be a common feature underlying the evolution of complex brains and behavior across clades, and provide neuro-organizational information that is likely relevant to the growing field of canine behavioral neuroscience.
Collapse
Affiliation(s)
- Sophie A Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, 02138, USA.
| | - Marc Kent
- College of Veterinary Medicine, University of Georgia, Athens, 30602, USA
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, 02138, USA
| |
Collapse
|
7
|
Hopkins WD, Coulon O, Meguerditchian A, Staes N, Sherwood CC, Schapiro SJ, Mangin JF, Bradley B. Genetic determinants of individual variation in the superior temporal sulcus of chimpanzees (Pan troglodytes). Cereb Cortex 2023; 33:1925-1940. [PMID: 35697647 PMCID: PMC9977371 DOI: 10.1093/cercor/bhac183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/22/2022] Open
Abstract
The superior temporal sulcus (STS) is a conserved fold that divides the middle and superior temporal gyri. In humans, there is considerable variation in the shape, folding pattern, lateralization, and depth of the STS that have been reported to be associated with social cognition and linguistic functions. We examined the role that genetic factors play on individual variation in STS morphology in chimpanzees. The surface area and depth of the STS were quantified in sample of 292 captive chimpanzees comprised of two genetically isolated population of individuals. The chimpanzees had been previously genotyped for AVPR1A and KIAA0319, two genes that play a role in social cognition and communication in humans. Single nucleotide polymorphisms in the KIAA0319 and AVPR1A genes were associated with average depth as well as asymmetries in the STS. By contrast, we found no significant effects of these KIA0319 and AVPR1A polymorphism on surface area and depth measures for the central sulcus. The overall findings indicate that genetic factors account for a small to moderate amount of variation in STS morphology in chimpanzees. These findings are discussed in the context of the role of the STS in social cognition and language in humans and their potential evolutionary origins.
Collapse
Affiliation(s)
- William D Hopkins
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
- IMéRA – Institut d’Etudes Avancées, Aix-Marseille Universite, Marseille 13004, France
- Institute of Language, Communication and The Brain, Aix-Marseille Universite, CNRS, Aix-en-Provence 13604, France
| | - Oliver Coulon
- Institute of Language, Communication and The Brain, Aix-Marseille Universite, CNRS, Aix-en-Provence 13604, France
- Aix-Marseille Univ, CNRS, Institut de Neurosciences de La Timone, UMR7289, Marseille 13284, France
| | - Adrien Meguerditchian
- Institute of Language, Communication and The Brain, Aix-Marseille Universite, CNRS, Aix-en-Provence 13604, France
- Laboratoire de Psychologie Cognitive, UMR 7290, LPC, Aix-Marseille Univ, CNRS, Marseille 13284, France
| | - Nicky Staes
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Steven J Schapiro
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
- Department of Experimental Medicine, University of Copenhagen, Copenhagen 2200N, Denmark
| | | | - Brenda Bradley
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
8
|
Hopkins WD. Neuroanatomical asymmetries in nonhuman primates in the homologs to Broca's and Wernicke's areas: a mini-review. Emerg Top Life Sci 2022; 6:ETLS20210279. [PMID: 36073786 PMCID: PMC9472819 DOI: 10.1042/etls20210279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/01/2023]
Abstract
Population-level lateralization in structure and function is a fundamental measure of the human nervous system. To what extent nonhuman primates exhibit similar patterns of asymmetry remains a topic of considerable scientific interest. In this mini-review, a brief summary of findings on brain asymmetries in nonhuman primates in brain regions considered to the homolog's to Broca's and Wernicke's area are presented. Limitations of existing and directions for future studies are discussed in the context of facilitating comparative investigations in primates.
Collapse
Affiliation(s)
- William D. Hopkins
- Department of Comparative Medicine, Michale E Keeling Center for Comparative Medicine and Research, M D Anderson Cancer Center, Bastrop, TX 78602, U.S.A
| |
Collapse
|
9
|
Abstract
We are interested here in the central organ of our thoughts: the brain. Advances in neuroscience have made it possible to obtain increasing information on the anatomy of this organ, at ever-higher resolutions, with different imaging techniques, on ever-larger samples. At the same time, paleoanthropology has to deal with partial reflections on the shape of the brain, on fragmentary specimens and small samples in an attempt to approach the morphology of the brain of past human species. It undeniably emerges from the perspective we propose here that paleoanthropology has much to gain from interacting more with the field of neuroimaging. Improving our understanding of the morphology of the endocast necessarily involves studying the external surface of the brain and the link it maintains with the internal surface of the skull. The contribution of neuroimaging will allow us to better define the relationship between brain and endocast. Models of intra- and inter-species variability in brain morphology inferred from large neuroimaging databases will help make the most of the rare endocasts of extinct species. We also conclude that exchanges between these two disciplines will also be beneficial to our knowledge of the Homo sapiens brain. Documenting the anatomy among other human species and including the variation over time within our own species are approaches that offer us a new perspective through which to appreciate what really characterizes the brain of humanity today.
Collapse
|
10
|
Wang X, Li XH, Cho JW, Russ BE, Rajamani N, Omelchenko A, Ai L, Korchmaros A, Sawiak S, Benn RA, Garcia-Saldivar P, Wang Z, Kalin NH, Schroeder CE, Craddock RC, Fox AS, Evans AC, Messinger A, Milham MP, Xu T. U-net model for brain extraction: Trained on humans for transfer to non-human primates. Neuroimage 2021; 235:118001. [PMID: 33789137 PMCID: PMC8529630 DOI: 10.1016/j.neuroimage.2021.118001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 01/21/2023] Open
Abstract
Brain extraction (a.k.a. skull stripping) is a fundamental step in the neuroimaging pipeline as it can affect the accuracy of downstream preprocess such as image registration, tissue classification, etc. Most brain extraction tools have been designed for and applied to human data and are often challenged by non-human primates (NHP) data. Amongst recent attempts to improve performance on NHP data, deep learning models appear to outperform the traditional tools. However, given the minimal sample size of most NHP studies and notable variations in data quality, the deep learning models are very rarely applied to multi-site samples in NHP imaging. To overcome this challenge, we used a transfer-learning framework that leverages a large human imaging dataset to pretrain a convolutional neural network (i.e. U-Net Model), and then transferred this to NHP data using a small NHP training sample. The resulting transfer-learning model converged faster and achieved more accurate performance than a similar U-Net Model trained exclusively on NHP samples. We improved the generalizability of the model by upgrading the transfer-learned model using additional training datasets from multiple research sites in the Primate Data-Exchange (PRIME-DE) consortium. Our final model outperformed brain extraction routines from popular MRI packages (AFNI, FSL, and FreeSurfer) across a heterogeneous sample from multiple sites in the PRIME-DE with less computational cost (20 s~10 min). We also demonstrated the transfer-learning process enables the macaque model to be updated for use with scans from chimpanzees, marmosets, and other mammals (e.g. pig). Our model, code, and the skull-stripped mask repository of 136 macaque monkeys are publicly available for unrestricted use by the neuroimaging community at https://github.com/HumanBrainED/NHP-BrainExtraction.
Collapse
Affiliation(s)
- Xindi Wang
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.
| | - Xin-Hui Li
- The Child Mind Institute, 101 East 56th Street, New York, NY 10022, USA
| | - Jae Wook Cho
- The Child Mind Institute, 101 East 56th Street, New York, NY 10022, USA
| | - Brian E Russ
- Nathan Kline Institute, 140 Old Orangeburg Rd, Orangeburg, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Department of Psychiatry, New York University School of Medicine, New York City, NY, USA
| | - Nanditha Rajamani
- The Child Mind Institute, 101 East 56th Street, New York, NY 10022, USA
| | - Alisa Omelchenko
- The Child Mind Institute, 101 East 56th Street, New York, NY 10022, USA
| | - Lei Ai
- The Child Mind Institute, 101 East 56th Street, New York, NY 10022, USA
| | | | - Stephen Sawiak
- Translational Neuroimaging Laboratory, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge CB2 3EG, UK
| | - R Austin Benn
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pamela Garcia-Saldivar
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, México
| | - Zheng Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Science, Shanghai, China; University of Chinese Academy of Science, China
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Charles E Schroeder
- Nathan Kline Institute, 140 Old Orangeburg Rd, Orangeburg, NY, USA; Departments of Psychiatry and Neurology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - R Cameron Craddock
- Department of Diagnostic Medicine, The University of Texas at Austin Dell Medical School, USA
| | - Andrew S Fox
- Department of Psychology, and the California National Primate Research Center, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Adam Messinger
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, USA
| | - Michael P Milham
- The Child Mind Institute, 101 East 56th Street, New York, NY 10022, USA; Nathan Kline Institute, 140 Old Orangeburg Rd, Orangeburg, NY, USA
| | - Ting Xu
- The Child Mind Institute, 101 East 56th Street, New York, NY 10022, USA.
| |
Collapse
|
11
|
Vickery S, Hopkins WD, Sherwood CC, Schapiro SJ, Latzman RD, Caspers S, Gaser C, Eickhoff SB, Dahnke R, Hoffstaedter F. Chimpanzee brain morphometry utilizing standardized MRI preprocessing and macroanatomical annotations. eLife 2020; 9:e60136. [PMID: 33226338 PMCID: PMC7723405 DOI: 10.7554/elife.60136] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022] Open
Abstract
Chimpanzees are among the closest living relatives to humans and, as such, provide a crucial comparative model for investigating primate brain evolution. In recent years, human brain mapping has strongly benefited from enhanced computational models and image processing pipelines that could also improve data analyses in animals by using species-specific templates. In this study, we use structural MRI data from the National Chimpanzee Brain Resource (NCBR) to develop the chimpanzee brain reference template Juna.Chimp for spatial registration and the macro-anatomical brain parcellation Davi130 for standardized whole-brain analysis. Additionally, we introduce a ready-to-use image processing pipeline built upon the CAT12 toolbox in SPM12, implementing a standard human image preprocessing framework in chimpanzees. Applying this approach to data from 194 subjects, we find strong evidence for human-like age-related gray matter atrophy in multiple regions of the chimpanzee brain, as well as, a general rightward asymmetry in brain regions.
Collapse
Affiliation(s)
- Sam Vickery
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-UniversityDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM-7) Research Centre JülichJülichGermany
| | - William D Hopkins
- Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer CenterBastropUnited States
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonUnited States
| | - Steven J Schapiro
- Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer CenterBastropUnited States
- Department of Experimental Medicine, University of CopenhagenCopenhagenDenmark
| | - Robert D Latzman
- Department of Psychology, Georgia State UniversityAtlantaUnited States
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre JülichJülichGermany
- Institute for Anatomy I, Medical Faculty, Heinrich-Heine-UniversityDüsseldorfGermany
- JARA-BRAIN, Jülich-Aachen Research AllianceJülichGermany
| | - Christian Gaser
- Structural Brain Mapping Group, Department of Neurology, Jena University HospitalJenaGermany
- Structural Brain Mapping Group, Department of Psychiatry and Psychotherapy, Jena University HospitalJenaGermany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-UniversityDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM-7) Research Centre JülichJülichGermany
| | - Robert Dahnke
- Structural Brain Mapping Group, Department of Neurology, Jena University HospitalJenaGermany
- Structural Brain Mapping Group, Department of Psychiatry and Psychotherapy, Jena University HospitalJenaGermany
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-UniversityDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM-7) Research Centre JülichJülichGermany
| |
Collapse
|
12
|
Abstract
The asymmetry of the cerebral sulcal morphology is particularly obvious in higher primates. The sulcal asymmetry in macaque monkeys, a genus of the Old World monkeys, in our previous studies and others is summarized, and its evolutionary significance is speculated. Cynomolgus macaques displayed fetal sulcation and gyration symmetrically, and the sulcal asymmetry appeared after adolescence. Population-level rightward asymmetry was revealed in the length of arcuate sulcus (ars) and the surface area of superior temporal sulcus (sts) in adult macaques. When compared to other nonhuman primates, the superior postcentral sulcus (spcs) was left-lateralized in chimpanzees, opposite of the direction of asymmetry in the ars, anatomically-identical to the spcs, in macaques. This may be associated with handedness: either right-handedness in chimpanzees or left-handedness/ambidexterity in macaques. The rightward asymmetry in the sts surface area was seen in macaques, and it was similar to humans. However, no left/right side differences were identified in the sts morphology among great apes, which suggests the evolutionary discontinuity of the sts asymmetry. The diversity of the cortical lateralization among primate species suggests that the sulcal asymmetry reflects the species-related specialization of the cortical morphology and function, which is facilitated by evolutionary expansion in higher primates.
Collapse
|
13
|
Spocter MA, Sherwood CC, Schapiro SJ, Hopkins WD. Reproducibility of leftward planum temporale asymmetries in two genetically isolated populations of chimpanzees ( Pan troglodytes). Proc Biol Sci 2020; 287:20201320. [PMID: 32900313 PMCID: PMC7542794 DOI: 10.1098/rspb.2020.1320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
Once considered a hallmark of human uniqueness, brain asymmetry has emerged as a feature shared with several other species, including chimpanzees, one of our closest living relatives. Most notable has been the discovery of asymmetries in homologues of cortical language areas in apes, particularly in the planum temporale (PT), considered a central node of the human language network. Several lines of evidence indicate a role for genetic mechanisms in the emergence of PT asymmetry; however, the genetic determinants of cerebral asymmetries have remained elusive. Studies in humans suggest that there is heritability of brain asymmetries of the PT, but this has not been explored to any extent in chimpanzees. Furthermore, the potential influence of non-genetic factors has raised questions about the reproducibility of earlier observations of PT asymmetry reported in chimpanzees. As such, the present study was aimed at examining both the heritability of phenotypic asymmetries in PT morphology, as well as their reproducibility. Using magnetic resonance imaging, we evaluated morphological asymmetries of PT surface area (mm2) and mean depth (mm) in captive chimpanzees (n = 291) derived from two genetically isolated populations. Our results confirm that chimpanzees exhibit a significant population-level leftward asymmetry for PT surface area, as well as significant heritability in the surface area and mean depth of the PT. These results conclusively demonstrate the existence of a leftward bias in PT asymmetry in chimpanzees and suggest that genetic mechanisms play a key role in the emergence of anatomical asymmetry in this region.
Collapse
Affiliation(s)
- Muhammad A. Spocter
- Department of Anatomy, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA
- School of Anatomical Sciences, University of Witwatersrand, Johannesburg 2094, South Africa
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Steven J. Schapiro
- Department of Comparative Medicine, UT MD Anderson Cancer Center Bastrop, TX 78602, USA
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - William D. Hopkins
- Department of Comparative Medicine, UT MD Anderson Cancer Center Bastrop, TX 78602, USA
| |
Collapse
|
14
|
Variation and Correlations in Departures from Symmetry of Brain Torque, Humeral Morphology and Handedness in an Archaeological Sample of Homo sapiens. Symmetry (Basel) 2020. [DOI: 10.3390/sym12030432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The anatomical asymmetries of the human brain are the subject of a great deal of scientific interest because of their links with handedness and lateralized cognitive functions. Information about lateralization in humans is also available from the post-cranial skeleton, particularly the arm bones, in which differences in size and shape are related to hand/arm preference. Our objective here is to characterize the possible correlations between the endocranial and post-cranial asymmetries of an archaeological sample. This, in turn, will allow us to try to identify and interpret prospective functional traits in the archaeological and fossil records. We observe that directional asymmetry (DA) is present both for some endocranial and humeral traits because of brain lateralization and lateralized behaviors, while patterns of fluctuating asymmetry (FA) vary. The combined study of these anatomical elements and of their asymmetries can shed light on the ways in which the body responds to dependent asymmetrical stimuli across biologically independent anatomical areas. Variations in FA are, in this context, indicators of differences in answers to lateralized factors. Humeri tend to show a much larger range of variation than the endocast. We show that important but complex information may be extracted from the combined study of the endocast and the arms in an archaeological sample of Homo sapiens.
Collapse
|
15
|
Xia J, Wang F, Wu Z, Wang L, Zhang C, Shen D, Li G. Mapping hemispheric asymmetries of the macaque cerebral cortex during early brain development. Hum Brain Mapp 2019; 41:95-106. [PMID: 31532054 PMCID: PMC7267900 DOI: 10.1002/hbm.24789] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 11/10/2022] Open
Abstract
Studying cortical hemispheric asymmetries during the dynamic early postnatal stages in macaque monkeys (with close phylogenetic relationship to humans) would increase our limited understanding on the possible origins, developmental trajectories, and evolutional mechanisms of brain asymmetries in nonhuman primates, but remains a blind spot to the community. Via cortical surface-based morphometry, we comprehensively analyze hemispheric structural asymmetries in 134 longitudinal MRI scans from birth to 20 months of age from 32 healthy macaque monkeys. We reveal that most clusters of hemispheric asymmetries of cortical properties, such as surface area, cortical thickness, sulcal depth, and vertex positions, expand in the first 4 months of life, and evolve only moderately thereafter. Prominent hemispheric asymmetries are found at the inferior frontal gyrus, precentral gyrus, posterior temporal cortex, superior temporal gyrus (STG), superior temporal sulcus (STS), and cingulate cortex. Specifically, the left planum temporale and left STG consistently have larger area and thicker cortices than those on the right hemisphere, while the right STS, right cingulate cortex, and right anterior insula are consistently deeper than the left ones, partially consistent with the findings in human infants and adults. Our results thus provide a valuable reference in studying early brain development and evolution.
Collapse
Affiliation(s)
- Jing Xia
- Department of Computer Science and Technology, Shandong University, Jinan, Shandong, China.,Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Fan Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Caiming Zhang
- Department of Computer Science and Technology, Shandong University, Jinan, Shandong, China
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
16
|
Abstract
To aid in the analysis of rhesus macaque brain images, we aligned digitized anatomical regions from the widely used atlas of Paxinos et al. to a published magnetic resonance imaging (MRI) template based on a large number of subjects. Digitally labelled atlas images were aligned to the template in 2D and then in 3D. The resulting grey matter regions appear qualitatively to be well registered to the template. To quantitatively validate the procedure, MR brain images of 20 rhesus macaques were aligned to the template along with regions drawn by hand in striatal and cortical areas in each subject's MRI. There was good geometric overlap between the hand drawn regions and the template regions. Positron emission tomography (PET) images of the same subjects showing uptake of a dopamine D2 receptor ligand were aligned to the template space, and good agreement was found between tracer binding measures calculated using the hand drawn and template regions. In conclusion, an anatomically defined set of rhesus macaque brain regions has been aligned to an MRI template and has been validated for analysis of PET imaging in a subset of striatal and cortical areas. The entire set of over 200 regions is publicly available at https://www.nitrc.org/ . Graphical Abstract ᅟ.
Collapse
|
17
|
Hou L, Xiang L, Crow TJ, Leroy F, Rivière D, Mangin JF, Roberts N. Measurement of Sylvian Fissure asymmetry and occipital bending in humans and Pan troglodytes. Neuroimage 2018; 184:855-870. [PMID: 30170149 DOI: 10.1016/j.neuroimage.2018.08.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022] Open
Abstract
The evolution of human-specific lateralised functions such as language has been linked to the development of structural asymmetries in the brain. Here we applied state of the art image analysis techniques to measure Sylvian Fissure (SF) asymmetry and Occipital Bending (OB) in 3D Magnetic Resonance (MR) images of the brain obtained in-vivo for 30 humans and 30 chimpanzees (Pan troglodytes). SF morphology differed between species, with the human SF terminating more superiorly in right inferior parietal lobe, an asymmetry that was on average absent in chimpanzees (F (1,52) = 5.963, p = 0.018). Irrespective of morphology, Total SF Length was, as previously reported, leftward in humans but not in chimpanzees, although the difference did not reach significance between species. However, when only brains possessing comparable bilateral SF bifurcation morphology were compared, humans showed previously reported "Typical" left-lateralised Anterior-Horizontal (AH-SF) and right-lateralised Vertical (V-SF) SF asymmetries. In contrast, chimpanzees lacked both asymmetries, and this approached being a significant difference between-species in the AH-SF segment (F (1, 34) = 3.680, p = 0.064). On average in humans the left occipital lobe crossed the midline toward the right (Rightward OB) which was significantly different from the chimpanzee cohort that showed no average OB (Independent-Samples Mann-Whitney U Test, p = 0.012). Furthermore, OB was related to SF asymmetry in humans, such that the more rightward V-SF and leftward AH-SF, the more rightward the OB. This "Default" pattern of SF and OB asymmetries was found in 41.7% of human individuals with bilateral SF bifurcation but none of the chimpanzees. To our knowledge, this is the first study highlighting that a pattern of SF and OB asymmetry distinguishes the human from the chimpanzee brain, and suggests this may be associated with a unique trajectory of brain development and functional abilities in humans.
Collapse
Affiliation(s)
- Lewis Hou
- Edinburgh Imaging, School of Clinical Sciences, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom.
| | - Li Xiang
- Edinburgh Imaging, School of Clinical Sciences, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom.
| | - Timothy J Crow
- Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, United Kingdom.
| | - François Leroy
- Neurospin, Cognitive Neuroimaging Unit, INSERM, CEA, Paris-Saclay University, Gif-sur-Yvette, France.
| | - Denis Rivière
- Neurospin, CEA, Paris-Saclay University, Gif-sur-Yvette, France.
| | | | - Neil Roberts
- Edinburgh Imaging, School of Clinical Sciences, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom.
| |
Collapse
|
18
|
Li X, Crow TJ, Hopkins WD, Gong Q, Roberts N. Human torque is not present in chimpanzee brain. Neuroimage 2017; 165:285-293. [PMID: 29031530 DOI: 10.1016/j.neuroimage.2017.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/03/2017] [Accepted: 10/08/2017] [Indexed: 02/05/2023] Open
Abstract
We searched for positional brain surface asymmetries measured as displacements between corresponding vertex pairs in relation to a mid-sagittal plane in Magnetic Resonance (MR) images of the brains of 223 humans and 70 chimpanzees. In humans deviations from symmetry were observed: 1) a Torque pattern comprising right-frontal and left-occipital "petalia" together with downward and rightward "bending" of the occipital extremity, 2) leftward displacement of the anterior temporal lobe and the anterior and central segments of superior temporal sulcus (STS), and 3) posteriorly in the position of left occipito-temporal surface accompanied by a clockwise rotation of the left Sylvian Fissure around the left-right axis. None of these asymmetries was detected in the chimpanzee, nor was associated with a sex difference. However, 4) an area of cortex with its long axis parallel to the olfactory tract in the orbital surface of the frontal lobe was found in humans to be located higher on the left in females and higher on the right in males. In addition whereas the two hemispheres of the chimpanzee brain are equal in extent in each of the three dimensions of space, in the human brain the left hemisphere is longer (p = 3.6e-12), and of less height (p = 1.9e-3), but equal in width compared to the right. Thus the asymmetries in the human brain are potential correlates of the evolution of the faculty of language.
Collapse
Affiliation(s)
- Xiang Li
- School of Clinical Sciences, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Timothy J Crow
- POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, United Kingdom
| | - William D Hopkins
- Yerkes National Primate Research Center, Atlanta, GA 30029, USA; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Neil Roberts
- School of Clinical Sciences, University of Edinburgh, EH16 4TJ, United Kingdom.
| |
Collapse
|
19
|
Balbastre Y, Rivière D, Souedet N, Fischer C, Hérard AS, Williams S, Vandenberghe ME, Flament J, Aron-Badin R, Hantraye P, Mangin JF, Delzescaux T. Primatologist: A modular segmentation pipeline for macaque brain morphometry. Neuroimage 2017; 162:306-321. [PMID: 28899745 DOI: 10.1016/j.neuroimage.2017.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/10/2017] [Accepted: 09/04/2017] [Indexed: 02/08/2023] Open
Abstract
Because they bridge the genetic gap between rodents and humans, non-human primates (NHPs) play a major role in therapy development and evaluation for neurological disorders. However, translational research success from NHPs to patients requires an accurate phenotyping of the models. In patients, magnetic resonance imaging (MRI) combined with automated segmentation methods has offered the unique opportunity to assess in vivo brain morphological changes. Meanwhile, specific challenges caused by brain size and high field contrasts make existing algorithms hard to use routinely in NHPs. To tackle this issue, we propose a complete pipeline, Primatologist, for multi-region segmentation. Tissue segmentation is based on a modular statistical model that includes random field regularization, bias correction and denoising and is optimized by expectation-maximization. To deal with the broad variety of structures with different relaxing times at 7 T, images are segmented into 17 anatomical classes, including subcortical regions. Pre-processing steps insure a good initialization of the parameters and thus the robustness of the pipeline. It is validated on 10 T2-weighted MRIs of healthy macaque brains. Classification scores are compared with those of a non-linear atlas registration, and the impact of each module on classification scores is thoroughly evaluated.
Collapse
Affiliation(s)
- Yaël Balbastre
- UMR9199, CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Fontenay-aux-Roses, France; MIRCen, Institut de biologie François Jacob, DRF, CEA, Fontenay-aux-Roses, France; UNATI, NeuroSpin, Institut des sciences du vivant Frédéric Joliot, DRF, CEA, Univ. Paris-Saclay, Gif-sur-Yvette, France
| | - Denis Rivière
- UNATI, NeuroSpin, Institut des sciences du vivant Frédéric Joliot, DRF, CEA, Univ. Paris-Saclay, Gif-sur-Yvette, France; CATI Multicenter Neuroimaging Platform, France
| | - Nicolas Souedet
- UMR9199, CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Fontenay-aux-Roses, France; MIRCen, Institut de biologie François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Clara Fischer
- UNATI, NeuroSpin, Institut des sciences du vivant Frédéric Joliot, DRF, CEA, Univ. Paris-Saclay, Gif-sur-Yvette, France; CATI Multicenter Neuroimaging Platform, France
| | - Anne-Sophie Hérard
- UMR9199, CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Fontenay-aux-Roses, France; MIRCen, Institut de biologie François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Susannah Williams
- UMR9199, CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Fontenay-aux-Roses, France; MIRCen, Institut de biologie François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Michel E Vandenberghe
- UMR9199, CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Fontenay-aux-Roses, France; MIRCen, Institut de biologie François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Julien Flament
- MIRCen, Institut de biologie François Jacob, DRF, CEA, Fontenay-aux-Roses, France; US27, INSERM, Fontenay-aux-Roses, France
| | - Romina Aron-Badin
- UMR9199, CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Fontenay-aux-Roses, France; MIRCen, Institut de biologie François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Philippe Hantraye
- UMR9199, CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Fontenay-aux-Roses, France; MIRCen, Institut de biologie François Jacob, DRF, CEA, Fontenay-aux-Roses, France; US27, INSERM, Fontenay-aux-Roses, France
| | - Jean-François Mangin
- UNATI, NeuroSpin, Institut des sciences du vivant Frédéric Joliot, DRF, CEA, Univ. Paris-Saclay, Gif-sur-Yvette, France; CATI Multicenter Neuroimaging Platform, France
| | - Thierry Delzescaux
- UMR9199, CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Fontenay-aux-Roses, France; MIRCen, Institut de biologie François Jacob, DRF, CEA, Fontenay-aux-Roses, France; Sorbonne Universités, Université Pierre and Marie Curie, Paris, France.
| |
Collapse
|
20
|
Hopkins WD, Meguerditchian A, Coulon O, Misiura M, Pope S, Mareno MC, Schapiro SJ. Motor skill for tool-use is associated with asymmetries in Broca's area and the motor hand area of the precentral gyrus in chimpanzees (Pan troglodytes). Behav Brain Res 2017; 318:71-81. [PMID: 27816558 PMCID: PMC5459306 DOI: 10.1016/j.bbr.2016.10.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023]
Abstract
Among nonhuman primates, chimpanzees are well known for their sophistication and diversity of tool use in both captivity and the wild. The evolution of tool manufacture and use has been proposed as a driving mechanism for the development of increasing brain size, complex cognition and motor skills, as well as the population-level handedness observed in modern humans. Notwithstanding, our understanding of the neurological correlates of tool use in chimpanzees and other primates remains poorly understood. Here, we assessed the hand preference and performance skill of chimpanzees on a tool use task and correlated these data with measures of neuroanatomical asymmetries in the inferior frontal gyrus (IFG) and the pli-de-passage fronto-parietal moyen (PPFM). The IFG is the homolog to Broca's area in the chimpanzee brain and the PPFM is a buried gyrus that connects the pre- and post-central gyri and corresponds to the motor-hand area of the precentral gyrus. We found that chimpanzees that performed the task better with their right compared to left hand showed greater leftward asymmetries in the IFG and PPFM. This association between hand performance and PPFM asymmetry was particularly robust for right-handed individuals. Based on these findings, we propose that the evolution of tool use was associated with increased left hemisphere specialization for motor skill. We further suggest that lateralization in motor planning, rather than hand preference per se, was selected for with increasing tool manufacture and use in Hominid evolution.
Collapse
Affiliation(s)
- William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, United States; Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30029, United States.
| | - Adrien Meguerditchian
- Laboratory of Cognitive Psychology, UMR 7290, Aix-Marseille University, CNRS, Marseille, France
| | - Olivier Coulon
- Aix-Marseille Université, LSIS, UMR CNRS 7296, Marseille, France
| | - Maria Misiura
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, United States
| | - Sarah Pope
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, United States
| | - Mary Catherine Mareno
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, United States
| | - Steven J Schapiro
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, United States
| |
Collapse
|
21
|
Hopkins WD, Li X, Crow T, Roberts N. Vertex- and atlas-based comparisons in measures of cortical thickness, gyrification and white matter volume between humans and chimpanzees. Brain Struct Funct 2017; 222:229-245. [PMID: 27100220 PMCID: PMC8401708 DOI: 10.1007/s00429-016-1213-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 03/06/2016] [Indexed: 12/27/2022]
Abstract
What changes in cortical organisation characterise global and localised variation between humans and chimpanzees remains a topic of considerable interest in evolutionary neuroscience. Here, we examined regional variation in cortical thickness, gyrification and white matter in samples of human and chimpanzee brains. Both species were MRI scanned on the same platform using identical procedures. The images were processed and segmented by FSL and FreeSurfer and the relative changes in cortical thickness, gyrification and white matter across the entire cortex were compared between species. In general, relative to chimpanzees, humans had significantly greater gyrification and significantly thinner cortex, particularly in the frontal lobe. Human brains also had disproportionately higher white matter volumes in the frontal lobe, particularly in prefrontal regions. Collectively, the findings suggest that after the split from the common ancestor, white matter expansion and subsequently increasing gyrification occurred in the frontal lobe possibly due to increased selection for human cognitive and motor specialisations.
Collapse
Affiliation(s)
- William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, P.O. Box 5030, 30302, Atlanta, Georgia.
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, 30329, Atlanta, Georgia.
| | - Xiang Li
- Clinical Research Imaging Centre (CRIC), School of Clinical Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH13 0HT, UK
| | - Tim Crow
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Neil Roberts
- Clinical Research Imaging Centre (CRIC), School of Clinical Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH13 0HT, UK
| |
Collapse
|
22
|
Gómez-Robles A, Hopkins WD, Schapiro SJ, Sherwood CC. The heritability of chimpanzee and human brain asymmetry. Proc Biol Sci 2016; 283:20161319. [PMID: 28003442 PMCID: PMC5204159 DOI: 10.1098/rspb.2016.1319] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
Human brains are markedly asymmetric in structure and lateralized in function, which suggests a relationship between these two properties. The brains of other closely related primates, such as chimpanzees, show similar patterns of asymmetry, but to a lesser degree, indicating an increase in anatomical and functional asymmetry during hominin evolution. We analysed the heritability of cerebral asymmetry in chimpanzees and humans using classic morphometrics, geometric morphometrics, and quantitative genetic techniques. In our analyses, we separated directional asymmetry and fluctuating asymmetry (FA), which is indicative of environmental influences during development. We show that directional patterns of asymmetry, those that are consistently present in most individuals in a population, do not have significant heritability when measured through simple linear metrics, but they have marginally significant heritability in humans when assessed through three-dimensional configurations of landmarks that reflect variation in the size, position, and orientation of different cortical regions with respect to each other. Furthermore, genetic correlations between left and right hemispheres are substantially lower in humans than in chimpanzees, which points to a relatively stronger environmental influence on left-right differences in humans. We also show that the level of FA has significant heritability in both species in some regions of the cerebral cortex. This suggests that brain responsiveness to environmental influences, which may reflect neural plasticity, has genetic bases in both species. These results have implications for the evolvability of brain asymmetry and plasticity among humans and our close relatives.
Collapse
Affiliation(s)
- Aida Gómez-Robles
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - William D Hopkins
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322, USA
| | - Steven J Schapiro
- National Center for Chimpanzee Care, Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
23
|
Atkinson EG, Rogers J, Cheverud JM. Evolutionary and developmental implications of asymmetric brain folding in a large primate pedigree. Evolution 2016; 70:707-15. [PMID: 26813679 PMCID: PMC4801758 DOI: 10.1111/evo.12867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/26/2015] [Accepted: 01/18/2016] [Indexed: 11/28/2022]
Abstract
Bilateral symmetry is a fundamental property of the vertebrate central nervous system. Local deviations from symmetry provide various types of information about the development, evolution, and function of elements within the CNS, especially the cerebral hemispheres. Here, we quantify the pattern and extent of asymmetry in cortical folding within the cerebrum of Papio baboons and assess the evolutionary and developmental implications of the findings. Analyses of directional asymmetry show a population-level trend in length measurements indicating that baboons are genetically predisposed to be asymmetrical, with the right side longer than the left in the anterior cerebrum while the left side is longer than the right posteriorly. We also find a corresponding bias to display a right frontal petalia (overgrowth of the anterior pole of the cerebral cortex on the right side). By quantifying fluctuating asymmetry, we assess canalization of brain features and the susceptibility of the baboon brain to developmental perturbations. We find that features are differentially canalized depending on their ontogenetic timing. We further deduce that development of the two hemispheres is to some degree independent. This independence has important implications for the evolution of cerebral hemispheres and their separate specialization. Asymmetry is a major feature of primate brains and is characteristic of both brain structure and function.
Collapse
Affiliation(s)
- Elizabeth G. Atkinson
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Dept. of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - James M. Cheverud
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, Missouri, 63110
| |
Collapse
|
24
|
Gómez-Robles A, Hopkins WD, Schapiro SJ, Sherwood CC. Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proc Natl Acad Sci U S A 2015; 112:14799-804. [PMID: 26627234 PMCID: PMC4672807 DOI: 10.1073/pnas.1512646112] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The study of hominin brain evolution has focused largely on the neocortical expansion and reorganization undergone by humans as inferred from the endocranial fossil record. Comparisons of modern human brains with those of chimpanzees provide an additional line of evidence to define key neural traits that have emerged in human evolution and that underlie our unique behavioral specializations. In an attempt to identify fundamental developmental differences, we have estimated the genetic bases of brain size and cortical organization in chimpanzees and humans by studying phenotypic similarities between individuals with known kinship relationships. We show that, although heritability for brain size and cortical organization is high in chimpanzees, cerebral cortical anatomy is substantially less genetically heritable than brain size in humans, indicating greater plasticity and increased environmental influence on neurodevelopment in our species. This relaxed genetic control on cortical organization is especially marked in association areas and likely is related to underlying microstructural changes in neural circuitry. A major result of increased plasticity is that the development of neural circuits that underlie behavior is shaped by the environmental, social, and cultural context more intensively in humans than in other primate species, thus providing an anatomical basis for behavioral and cognitive evolution.
Collapse
Affiliation(s)
- Aida Gómez-Robles
- Department of Anthropology, The George Washington University, Washington, DC 20052; Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052;
| | - William D Hopkins
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302; Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322
| | - Steven J Schapiro
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC 20052; Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| |
Collapse
|
25
|
Hopkins WD, Misiura M, Pope SM, Latash EM. Behavioral and brain asymmetries in primates: a preliminary evaluation of two evolutionary hypotheses. Ann N Y Acad Sci 2015; 1359:65-83. [PMID: 26426409 PMCID: PMC4715693 DOI: 10.1111/nyas.12936] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Contrary to many historical views, recent evidence suggests that species-level behavioral and brain asymmetries are evident in nonhuman species. Here, we briefly present evidence of behavioral, perceptual, cognitive, functional, and neuroanatomical asymmetries in nonhuman primates. In addition, we describe two historical accounts of the evolutionary origins of hemispheric specialization and present data from nonhuman primates that address these specific theories. Specifically, we first discuss the evidence that genes play specific roles in determining left-right differences in anatomical and functional asymmetries in primates. We next consider and present data on the hypothesis that hemispheric specialization evolved as a by-product of increasing brain size relative to the surface area of the corpus callosum in different primate species. Last, we discuss some of the challenges in the study of hemispheric specialization in primates and offer some suggestions on how to advance the field.
Collapse
Affiliation(s)
- William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, Georgia
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Maria Misiura
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Sarah M Pope
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, Georgia
| | - Elitaveta M Latash
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, Georgia
| |
Collapse
|
26
|
Theofanopoulou C. Brain asymmetry in the white matter making and globularity. Front Psychol 2015; 6:1355. [PMID: 26441731 PMCID: PMC4564653 DOI: 10.3389/fpsyg.2015.01355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/24/2015] [Indexed: 12/15/2022] Open
Abstract
Recent studies from the field of language genetics and evolutionary anthropology have put forward the hypothesis that the emergence of our species-specific brain is to be understood not in terms of size, but in light of developmental changes that gave rise to a more globular braincase configuration after the split from Neanderthals-Denisovans. On the grounds that (i) white matter myelination is delayed relative to other brain structures and, in humans, is protracted compared with other primates and that (ii) neural connectivity is linked genetically to our brain/skull morphology and language-ready brain, I argue that one significant evolutionary change in Homo sapiens' lineage is the interhemispheric connectivity mediated by the Corpus Callosum. The size, myelination and fiber caliber of the Corpus Callosum present an anterior-to-posterior increase, in a way that inter-hemispheric connectivity is more prominent in the sensory motor areas, whereas "high- order" areas are more intra-hemispherically connected. Building on evidence from language-processing studies that account for this asymmetry ('lateralization') in terms of brain rhythms, I present an evo-devo hypothesis according to which the myelination of the Corpus Callosum, Brain Asymmetry, and Globularity are conjectured to make up the angles of a co-evolutionary triangle that gave rise to our language-ready brain.
Collapse
|
27
|
Cai Q, Van der Haegen L. What can atypical language hemispheric specialization tell us about cognitive functions? Neurosci Bull 2015; 31:220-6. [PMID: 25822216 PMCID: PMC5563700 DOI: 10.1007/s12264-014-1505-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/28/2014] [Indexed: 10/23/2022] Open
Abstract
Recent studies have made substantial progress in understanding the interactions between cognitive functions, from language to cognitive control, attention, and memory. However, dissociating these functions has been hampered by the close proximity of regions involved, as in the case in the prefrontal and parietal cortex. In this article, we review a series of studies that investigated the relationship between language and other cognitive functions in an alternative way - by examining their functional (co-)lateralization. We argue that research on the hemispheric lateralization of language and its link with handedness can offer an appropriate starting-point to shed light on the relationships between different functions. Besides functional interactions, anatomical asymmetries in non-human primates and those underlying language in humans can provide unique information about cortical organization. Finally, some open questions and criteria are raised for an ideal theoretical model of the cortex based on hemispheric specialization.
Collapse
Affiliation(s)
- Qing Cai
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China,
| | | |
Collapse
|
28
|
New human-specific brain landmark: the depth asymmetry of superior temporal sulcus. Proc Natl Acad Sci U S A 2015; 112:1208-13. [PMID: 25583500 DOI: 10.1073/pnas.1412389112] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying potentially unique features of the human cerebral cortex is a first step to understanding how evolution has shaped the brain in our species. By analyzing MR images obtained from 177 humans and 73 chimpanzees, we observed a human-specific asymmetry in the superior temporal sulcus at the heart of the communication regions and which we have named the "superior temporal asymmetrical pit" (STAP). This 45-mm-long segment ventral to Heschl's gyrus is deeper in the right hemisphere than in the left in 95% of typical human subjects, from infanthood till adulthood, and is present, irrespective of handedness, language lateralization, and sex although it is greater in males than in females. The STAP also is seen in several groups of atypical subjects including persons with situs inversus, autistic spectrum disorder, Turner syndrome, and corpus callosum agenesis. It is explained in part by the larger number of sulcal interruptions in the left than in the right hemisphere. Its early presence in the infants of this study as well as in fetuses and premature infants suggests a strong genetic influence. Because this asymmetry is barely visible in chimpanzees, we recommend the STAP region during midgestation as an important phenotype to investigate asymmetrical variations of gene expression among the primate lineage. This genetic target may provide important insights regarding the evolution of the crucial cognitive abilities sustained by this sulcus in our species, namely communication and social cognition.
Collapse
|
29
|
Autrey MM, Reamer LA, Mareno MC, Sherwood CC, Herndon JG, Preuss T, Schapiro SJ, Hopkins WD. Age-related effects in the neocortical organization of chimpanzees: gray and white matter volume, cortical thickness, and gyrification. Neuroimage 2014; 101:59-67. [PMID: 24983715 PMCID: PMC4165649 DOI: 10.1016/j.neuroimage.2014.06.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/03/2014] [Accepted: 06/23/2014] [Indexed: 12/15/2022] Open
Abstract
Among primates, humans exhibit the most profound degree of age-related brain volumetric decline in particular regions, such as the hippocampus and the frontal lobe. Recent studies have shown that our closest living relatives, the chimpanzees, experience little to no volumetric decline in gray and white matter over the adult lifespan. However, these previous studies were limited with a small sample of chimpanzees of the most advanced ages. In the present study, we sought to further test for potential age-related decline in cortical organization in chimpanzees by expanding the sample size of aged chimpanzees. We used the BrainVisa software to measure total brain volume, gray and white matter volumes, gray matter thickness, and gyrification index in a cross-sectional sample of 219 captive chimpanzees (8-53 years old), with 38 subjects being 40 or more years of age. Mean depth and cortical fold opening of 11 major sulci of the chimpanzee brains were also measured. We found that chimpanzees showed increased gyrification with age and a cubic relationship between age and white matter volume. For the association between age and sulcus depth and width, the results were mostly non-significant with the exception of one negative correlation between age and the fronto-orbital sulcus. In short, results showed that chimpanzees exhibit few age-related changes in global cortical organization, sulcus folding and sulcus width. These findings support previous studies and the theory that the age-related changes in the human brain is due to an extended lifespan.
Collapse
Affiliation(s)
- Michelle M Autrey
- Department of Psychology, Agnes Scott College, Decatur, GA 30030, USA
| | - Lisa A Reamer
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Mary Catherine Mareno
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington DC 20052, USA
| | - James G Herndon
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Todd Preuss
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Steve J Schapiro
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, USA; Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30329, USA.
| |
Collapse
|
30
|
Balzeau A, Gilissen E, Holloway RL, Prima S, Grimaud-Hervé D. Variations in size, shape and asymmetries of the third frontal convolution in hominids: Paleoneurological implications for hominin evolution and the origin of language. J Hum Evol 2014; 76:116-28. [DOI: 10.1016/j.jhevol.2014.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
|
31
|
Gómez-Robles A, Hopkins WD, Sherwood CC. Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans. Nat Commun 2014; 5:4469. [PMID: 25047085 PMCID: PMC4144426 DOI: 10.1038/ncomms5469] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/19/2014] [Indexed: 12/03/2022] Open
Abstract
Different brain components can evolve in a coordinated manner or they can show divergent evolutionary trajectories according to a mosaic pattern of variation. Understanding the relationship between these brain evolutionary patterns, which are not mutually exclusive, can be informed by the examination of intraspecific variation. Our study evaluates patterns of brain anatomical covariation in chimpanzees and humans to infer their influence on brain evolution in the hominin clade. We show that chimpanzee and human brains have a modular structure that may have facilitated mosaic evolution from their last common ancestor. Spatially adjacent regions covary with one another to the strongest degree and separated regions are more independent from each other, which might be related to a predominance of local association connectivity. Despite the undoubted importance of developmental and functional factors in determining brain morphology, we find that these constraints are subordinate to the primary effect of local spatial interactions.
Collapse
Affiliation(s)
- Aida Gómez-Robles
- Department of Anthropology, The George Washington University, Washington, DC 20052
| | - William D. Hopkins
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC 20052
| |
Collapse
|
32
|
Zhang T, Chen H, Guo L, Li K, Li L, Zhang S, Shen D, Hu X, Liu T. Characterization of U-shape streamline fibers: Methods and applications. Med Image Anal 2014; 18:795-807. [PMID: 24835185 PMCID: PMC4122429 DOI: 10.1016/j.media.2014.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/09/2014] [Accepted: 04/12/2014] [Indexed: 01/29/2023]
Abstract
Diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI), and diffusion spectrum imaging (DSI) have been widely used in the neuroimaging field to examine the macro-scale fiber connection patterns in the cerebral cortex. However, the topographic and geometric relationships between diffusion imaging derived streamline fiber connection patterns and cortical folding patterns remain largely unknown. This paper specifically identifies and characterizes the U-shapes of diffusion imaging derived streamline fibers via a novel fiber clustering framework and examines their co-localization patterns with cortical sulci based on DTI, HARDI, and DSI datasets of human, chimpanzee and macaque brains. We verified the presence of these U-shaped streamline fibers that connect neighboring gyri by coursing around cortical sulci such as the central sulcus, pre-central sulcus, post-central sulcus, superior temporal sulcus, inferior frontal sulcus, and intra-parietal sulcus. This study also verified the existence of U-shape fibers across data modalities (DTI/HARDI/DSI) and primate species (macaque, chimpanzee and human), and suggests that the common pattern of U-shape fibers coursing around sulci is evolutionarily-preserved in cortical architectures.
Collapse
Affiliation(s)
- Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, United States
| | - Hanbo Chen
- Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, United States
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Kaiming Li
- Biomedical Imaging Technology Center, Emory University, Atlanta, GA, United States
| | - Longchuan Li
- Biomedical Imaging Technology Center, Emory University, Atlanta, GA, United States
| | - Shu Zhang
- Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, United States
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center, UNC, Chapel Hill, NC, United States
| | - Xiaoping Hu
- Biomedical Imaging Technology Center, Emory University, Atlanta, GA, United States
| | - Tianming Liu
- Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, United States.
| |
Collapse
|
33
|
Bogart SL, Bennett AJ, Schapiro SJ, Reamer LA, Hopkins WD. Different early rearing experiences have long-term effects on cortical organization in captive chimpanzees (Pan troglodytes). Dev Sci 2014; 17:161-74. [PMID: 24206013 PMCID: PMC3959747 DOI: 10.1111/desc.12106] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 06/27/2013] [Indexed: 11/29/2022]
Abstract
Consequences of rearing history in chimpanzees (Pan troglodytes) have been explored in relation to behavioral abnormalities and cognition; however, little is known about the effects of rearing conditions on anatomical brain development. Human studies have revealed that experiences of maltreatment and neglect during infancy and childhood can have detrimental effects on brain development and cognition. In this study, we evaluated the effects of early rearing experience on brain morphology in 92 captive chimpanzees (ages 11-43) who were either reared by their mothers (n = 46) or in a nursery (n = 46) with age-group peers. Magnetic resonance brain images were analyzed with a processing program (BrainVISA) that extracts cortical sulci. We obtained various measurements from 11 sulci located throughout the brain, as well as whole brain gyrification and white and grey matter volumes. We found that mother-reared chimpanzees have greater global white-to-grey matter volume, more cortical folding and thinner grey matter within the cortical folds than nursery-reared animals. The findings reported here are the first to demonstrate that differences in early rearing conditions have significant consequences on brain morphology in chimpanzees and suggests potential differences in the development of white matter expansion and myelination.
Collapse
Affiliation(s)
- Stephanie L Bogart
- Neuroscience Institute and the Language Research Center, Georgia State University, USA; Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, USA; Department of Anthropology, Lawrence University, USA
| | | | | | | | | |
Collapse
|
34
|
Gómez-Robles A, Hopkins WD, Sherwood CC. Increased morphological asymmetry, evolvability and plasticity in human brain evolution. Proc Biol Sci 2013; 280:20130575. [PMID: 23615289 PMCID: PMC3652445 DOI: 10.1098/rspb.2013.0575] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 03/26/2013] [Indexed: 01/15/2023] Open
Abstract
The study of hominin brain evolution relies mostly on evaluation of the endocranial morphology of fossil skulls. However, only some general features of external brain morphology are evident from endocasts, and many anatomical details can be difficult or impossible to examine. In this study, we use geometric morphometric techniques to evaluate inter- and intraspecific differences in cerebral morphology in a sample of in vivo magnetic resonance imaging scans of chimpanzees and humans, with special emphasis on the study of asymmetric variation. Our study reveals that chimpanzee-human differences in cerebral morphology are mainly symmetric; by contrast, there is continuity in asymmetric variation between species, with humans showing an increased range of variation. Moreover, asymmetric variation does not appear to be the result of allometric scaling at intraspecific levels, whereas symmetric changes exhibit very slight allometric effects within each species. Our results emphasize two key properties of brain evolution in the hominine clade: first, evolution of chimpanzee and human brains (and probably their last common ancestor and related species) is not strongly morphologically constrained, thus making their brains highly evolvable and responsive to selective pressures; second, chimpanzee and, especially, human brains show high levels of fluctuating asymmetry indicative of pronounced developmental plasticity. We infer that these two characteristics can have a role in human cognitive evolution.
Collapse
Affiliation(s)
- Aida Gómez-Robles
- Department of Anthropology, The George Washington University, Washington, DC 20052, USA.
| | | | | |
Collapse
|
35
|
Hopkins WD. Neuroanatomical asymmetries and handedness in chimpanzees (Pan troglodytes): a case for continuity in the evolution of hemispheric specialization. Ann N Y Acad Sci 2013; 1288:17-35. [PMID: 23647534 PMCID: PMC3676728 DOI: 10.1111/nyas.12109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Many historical and contemporary theorists have proposed that population-level behavioral and brain asymmetries are unique to humans and evolved as a consequence of human-specific adaptations such as language, tool manufacture and use, and bipedalism. Recent studies in nonhuman animals, notably primates, have begun to challenge this view. Here, I summarize comparative data on neuroanatomical asymmetries in the planum temporale (PT) and inferior frontal gyrus (IFG) of humans and chimpanzees, regions considered the morphological equivalents to Broca's and Wernicke's areas. I also review evidence of population-level handedness in captive and wild chimpanzees. When similar methods and landmarks are used to define the PT and IFG, humans and chimpanzees show similar patterns of asymmetry in both cortical regions, though humans show more pronounced directional biases. Similarly, there is good evidence that chimpanzees show population-level handedness, though, again, the expression of handedness is less robust compared to humans. These results stand in contrast to reported claims of significant differences in the distribution of handedness in humans and chimpanzees, and I discuss some possible explanations for the discrepancies in the neuroanatomical and behavioral data.
Collapse
Affiliation(s)
- William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, P.O. Box 5030, Atlanta, GA 30302, USA.
| |
Collapse
|
36
|
Regional and hemispheric variation in cortical thickness in chimpanzees (Pan troglodytes). J Neurosci 2013; 33:5241-8. [PMID: 23516289 DOI: 10.1523/jneurosci.2996-12.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent advances in structural magnetic resonance imaging technology and analysis now allows for accurate in vivo measurement of cortical thickness, an important aspect of cortical organization that has historically only been conducted on postmortem brains. In this study, for the first time, we examined regional and lateralized cortical thickness in a sample of 71 chimpanzees for comparison with previously reported findings in humans. We also measured gray and white matter volumes for each subject. The results indicated that chimpanzees showed significant regional variation in cortical thickness with lower values in primary motor and sensory cortex compared with association cortex. Furthermore, chimpanzees showed significant rightward asymmetries in cortical thickness for a number of regions of interest throughout the cortex and leftward asymmetries in white but not gray matter volume. We also found that total and region-specific cortical thickness was significantly negatively correlated with white matter volume. Thus, chimpanzees with greater white matter volumes had thinner cortical thickness. The collective findings are discussed within the context of previous findings in humans and theories on the evolution of cortical organization and lateralization in primates.
Collapse
|
37
|
Smaers JB, Steele J, Case CR, Amunts K. Laterality and the evolution of the prefronto-cerebellar system in anthropoids. Ann N Y Acad Sci 2013; 1288:59-69. [PMID: 23647442 PMCID: PMC4298027 DOI: 10.1111/nyas.12047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is extensive evidence for an early vertebrate origin of lateralized motor behavior and of related asymmetries in underlying brain systems. We investigate human lateralized motor functioning in a broad comparative context of evolutionary neural reorganization. We quantify evolutionary trends in the fronto-cerebellar system (involved in motor learning) across 46 million years of divergent primate evolution by comparing rates of evolution of prefrontal cortex, frontal motor cortex, and posterior cerebellar hemispheres along individual branches of the primate tree of life. We provide a detailed evolutionary model of the neuroanatomical changes leading to modern human lateralized motor functioning, demonstrating an increased role for the fronto-cerebellar system in the apes dating to their evolutionary divergence from the monkeys (∼30 million years ago (Mya)), and a subsequent shift toward an increased role for prefrontal cortex over frontal motor cortex in the fronto-cerebellar system in the Homo-Pan ancestral lineage (∼10 Mya) and in the human ancestral lineage (∼6 Mya). We discuss these results in the context of cortico-cerebellar functions and their likely role in the evolution of human tool use and speech.
Collapse
Affiliation(s)
- Jeroen B Smaers
- Department of Anthropology, University College London, London, United Kingdom.
| | | | | | | |
Collapse
|
38
|
Hopkins WD, Taglialatela JP. Initiation of joint attention is associated with morphometric variation in the anterior cingulate cortex of chimpanzees (Pan troglodytes). Am J Primatol 2013; 75:441-9. [PMID: 23300067 PMCID: PMC3609881 DOI: 10.1002/ajp.22120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 11/14/2012] [Accepted: 11/23/2012] [Indexed: 11/11/2022]
Abstract
In developing human children, joint attention (JA) is an important preverbal skill fundamental to the development of language. Poor JA skills have been described as a behavioral risk factor for some neurodevelopmental disorders, such as autism spectrum disorder. It has been hypothesized that the anterior cingulate cortex (ACC) plays an important role in the development of JA in human children. Here, we tested whether the morphometry and lateralization of the ACC differed between chimpanzees that were classified as either consistently or inconsistently engaging in JA with a human experimenter. Results showed that chimpanzees that performed poorly on the JA task had larger gray matter (GM) volumes in the ACC compared to apes that performed well on the task. In addition, both population-level asymmetries and sex differences in the volume of GM were found within the ACC. Specifically, females had relatively larger GM volumes in two of the three subregions of the ACC compared to males, and significant leftward asymmetries were found for two of the subregions whereas a rightward bias was observed in the third. Based on these findings, we suggest that the ACC plays an important role in mediating JA, not just in humans, but also chimpanzees. We further suggest that the differences found between groups may reflect inherent differences in the amount of white matter within the ACC, thereby suggesting reduced connectivity between the ACC and other cortical regions in chimpanzees with poor JA skills.
Collapse
Affiliation(s)
- William D Hopkins
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA.
| | | |
Collapse
|