1
|
Amador-Tejada A, McGillivray JE, Kumbhare DA, Noseworthy MD. Denoising of the gradient artifact present in simultaneous studies of muscle blood oxygen level dependent (BOLD) signal and electromyography (EMG). Magn Reson Imaging 2024; 111:179-185. [PMID: 38723782 DOI: 10.1016/j.mri.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
The MR-induced gradient artifact affects EMG recordings during simultaneous muscle BOLD/EMG acquisitions. However, no dedicated hardware can remove the gradient artifact easily, and alternative methods are expensive and time-consuming. This study aimed to develop three denoising methods requiring different processing levels and MR-compatible hardware. At two time points, surface EMG was recorded from the lower leg of 6 participants (50:50 sex ratio, age = 26.24.6 yrs., height = 173.59.2 cm, weight = 71.511.4 kg) using a plantar flexion-based block design consisting of 30s of rest followed by 30s of flexion for 5 min, under three conditions: inside the MRI bore, with and without a BOLD sequence (3 T, BOLD sequence, GRE EPI, 10 slices, 64×64 matrix, 2 mm thickness, and TE/TR/flip = 35/3000 ms/70), and outside the MRI environment. Simultaneous BOLD/EMG recordings were denoised using average artifact subtraction with three methods of artifact template creation, each having varying timing and hardware requirements. Method M1 builds the artifact template by recording the scanner triggers coming from the MRI; M2 creates the artifact template with a constant artifact period computed as TR/[number of slices]; M3 estimates the artifact template by looking at the periodicity of the gradient artifact located in the EMG recordings. Following postprocessing, SNR analysis was performed, comparing rest-to-flexion periods, to assess the efficacy of denoising methods and to compare differences between conditions. Linear mixed-effects models showed no significant differences in the mean SNR between denoising methods (p = 0.656). Furthermore, EMG SNR measurements were significantly affected by the magnetic environment (p < 0.05) but not by muscle fatigue over time (p = 0.975). EMG recordings contaminated with gradient artifacts during simultaneous BOLD/EMG can be efficiently denoised using all proposed methods, with two methods requiring no extra hardware. With minimal post-processing, EMG can easily be performed during muscle BOLD MRI studies.
Collapse
Affiliation(s)
- Alejandro Amador-Tejada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Imaging Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Joshua E McGillivray
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Imaging Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Dinesh A Kumbhare
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada
| | - Michael D Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Imaging Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada; Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada; Department of Radiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Gallego-Rudolf J, Corsi-Cabrera M, Concha L, Ricardo-Garcell J, Pasaye-Alcaraz E. Simultaneous and independent electroencephalography and magnetic resonance imaging: A multimodal neuroimaging dataset. Data Brief 2023; 51:109661. [PMID: 37869627 PMCID: PMC10585622 DOI: 10.1016/j.dib.2023.109661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
We introduce an open access, multimodal neuroimaging dataset comprising simultaneously and independently collected Electroencephalography (EEG) and Magnetic Resonance Imaging (MRI) data from twenty healthy, young male individuals (mean age = 26 years; SD = 3.8 years). The dataset adheres to the BIDS standard specification and is structured into two components: 1) EEG data recorded outside the Magnetic Resonance (MR) environment, inside the MR scanner without image collection and during simultaneous functional MRI acquisition (EEG-fMRI) and 2) Functional MRI data acquired with and without simultaneous EEG recording and structural MRI data obtained with and without the participants wearing the EEG cap. EEG data were recorded with an MR-compatible EEG recording system (GES 400 MR, Electrical Geodesics Inc.) using a 32-channel sponge-based EEG cap (Geodesic Sensor Net). Eyes-closed resting-state EEG data were recorded for two minutes in both the outside and inside scanner conditions and for ten minutes during simultaneous EEG-fMRI. Eyes-open resting-state EEG data were recorded for two minutes under each condition. Participants also performed an eyes opening-eyes closure block-design task outside the scanner (two minutes) and during simultaneous EEG-fMRI (four minutes). The EEG data recorded outside the scanner provides a reference signal devoid of MR-related artifacts. The data collected inside the scanner without image acquisition captures the contribution of the ballistocardiographic (BCG) without the gradient artifact, making it suitable for testing and validating BCG artifact correction methods. The EEG-fMRI data is affected by both the gradient and BCG artifacts. Brain images were acquired using a 3T GE MR750-Discovery MR scanner equipped with a 32-channel head coil. Whole-brain functional images were obtained using a GRE-EPI T2* weighted sequence (TR = 2000 ms, TE = 40 ms, 35 interleaved axial slices with 4 mm isometric voxels). Structural images were acquired using an SPGR sequence (TR = 8.1 ms, TE = 3.2 ms, flip angle = 12°, 176 sagittal slices with 1 mm isometric voxels). This stands as one of the largest open access EEG-fMRI datasets available, which allows researchers to: 1) Assess the impact of gradient and BCG artifacts on EEG data, 2) Evaluate the effectiveness of novel artifact removal techniques to minimize artifact contribution and preserve EEG signal integrity, 3) Conduct hardware/setup comparison studies, 4) Evaluate the quality of structural and functional MRI data obtained with this particular EEG system, and 5) Implement and validate multimodal integrative analysis approaches on simultaneous EEG-fMRI data.
Collapse
Affiliation(s)
- Jonathan Gallego-Rudolf
- Instituto de Neurobiología - Universidad Nacional Autónoma de México, campus Juriquilla. Blvd. Juriquilla 3001, Juriquilla, Santiago de Querétaro, Querétaro, México
| | - María Corsi-Cabrera
- Instituto de Neurobiología - Universidad Nacional Autónoma de México, campus Juriquilla. Blvd. Juriquilla 3001, Juriquilla, Santiago de Querétaro, Querétaro, México
| | - Luis Concha
- Instituto de Neurobiología - Universidad Nacional Autónoma de México, campus Juriquilla. Blvd. Juriquilla 3001, Juriquilla, Santiago de Querétaro, Querétaro, México
| | - Josefina Ricardo-Garcell
- Instituto de Neurobiología - Universidad Nacional Autónoma de México, campus Juriquilla. Blvd. Juriquilla 3001, Juriquilla, Santiago de Querétaro, Querétaro, México
| | - Erick Pasaye-Alcaraz
- Instituto de Neurobiología - Universidad Nacional Autónoma de México, campus Juriquilla. Blvd. Juriquilla 3001, Juriquilla, Santiago de Querétaro, Querétaro, México
| |
Collapse
|
3
|
Caetano G, Esteves I, Vourvopoulos A, Fleury M, Figueiredo P. NeuXus open-source tool for real-time artifact reduction in simultaneous EEG-fMRI. Neuroimage 2023; 280:120353. [PMID: 37652114 DOI: 10.1016/j.neuroimage.2023.120353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
The simultaneous acquisition of electroencephalography and functional magnetic resonance imaging (EEG-fMRI) allows the complementary study of the brain's electrophysiology and hemodynamics with high temporal and spatial resolution. One application with great potential is neurofeedback training of targeted brain activity, based on the real-time analysis of the EEG and/or fMRI signals. This depends on the ability to reduce in real time the severe artifacts affecting the EEG signal acquired with fMRI, mainly the gradient and pulse artifacts. A few methods have been proposed for this purpose, but they are either slow, hardware-dependent, publicly unavailable, or proprietary software. Here, we present a fully open-source and publicly available tool for real-time EEG artifact reduction in simultaneous EEG-fMRI recordings that is fast and applicable to any hardware. Our tool is integrated in the Python toolbox NeuXus for real-time EEG processing and adapts to a real-time scenario well-established artifact average subtraction methods combined with a long short-term memory network for R peak detection. We benchmarked NeuXus on three different datasets, in terms of artifact power reduction and background signal preservation in resting state, alpha-band power reactivity to eyes closure, and event-related desynchronization during motor imagery. We showed that NeuXus performed at least as well as the only available real-time tool for conventional hardware setups (BrainVision's RecView) and a well-established offline tool (EEGLAB's FMRIB plugin). We also demonstrated NeuXus' real-time ability by reporting execution times under 250 ms. In conclusion, we present and validate the first fully open-source and hardware-independent solution for real-time artifact reduction in simultaneous EEG-fMRI studies.
Collapse
Affiliation(s)
- Gustavo Caetano
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Inês Esteves
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Athanasios Vourvopoulos
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Mathis Fleury
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
4
|
Telesford QK, Gonzalez-Moreira E, Xu T, Tian Y, Colcombe SJ, Cloud J, Russ BE, Falchier A, Nentwich M, Madsen J, Parra LC, Schroeder CE, Milham MP, Franco AR. An open-access dataset of naturalistic viewing using simultaneous EEG-fMRI. Sci Data 2023; 10:554. [PMID: 37612297 PMCID: PMC10447527 DOI: 10.1038/s41597-023-02458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
In this work, we present a dataset that combines functional magnetic imaging (fMRI) and electroencephalography (EEG) to use as a resource for understanding human brain function in these two imaging modalities. The dataset can also be used for optimizing preprocessing methods for simultaneously collected imaging data. The dataset includes simultaneously collected recordings from 22 individuals (ages: 23-51) across various visual and naturalistic stimuli. In addition, physiological, eye tracking, electrocardiography, and cognitive and behavioral data were collected along with this neuroimaging data. Visual tasks include a flickering checkerboard collected outside and inside the MRI scanner (EEG-only) and simultaneous EEG-fMRI recordings. Simultaneous recordings include rest, the visual paradigm Inscapes, and several short video movies representing naturalistic stimuli. Raw and preprocessed data are openly available to download. We present this dataset as part of an effort to provide open-access data to increase the opportunity for discoveries and understanding of the human brain and evaluate the correlation between electrical brain activity and blood oxygen level-dependent (BOLD) signals.
Collapse
Affiliation(s)
- Qawi K Telesford
- Center for Brain Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Eduardo Gonzalez-Moreira
- Center for Brain Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Yiwen Tian
- Center for Brain Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Stanley J Colcombe
- Center for Brain Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Jessica Cloud
- Center for Brain Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Brian E Russ
- Center for Brain Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Arnaud Falchier
- Center for Brain Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Maximilian Nentwich
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| | - Jens Madsen
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| | - Charles E Schroeder
- Center for Brain Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Departments of Psychiatry and Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Michael P Milham
- Center for Brain Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Alexandre R Franco
- Center for Brain Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Gallego-Rudolf J, Corsi-Cabrera M, Concha L, Ricardo-Garcell J, Pasaye-Alcaraz E. Preservation of EEG spectral power features during simultaneous EEG-fMRI. Front Neurosci 2022; 16:951321. [PMID: 36620439 PMCID: PMC9816433 DOI: 10.3389/fnins.2022.951321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Electroencephalographic (EEG) data quality is severely compromised when recorded inside the magnetic resonance (MR) environment. Here we characterized the impact of the ballistocardiographic (BCG) artifact on resting-state EEG spectral properties and compared the effectiveness of seven common BCG correction methods to preserve EEG spectral features. We also assessed if these methods retained posterior alpha power reactivity to an eyes closure-opening (EC-EO) task and compared the results from EEG-informed fMRI analysis using different BCG correction approaches. Method Electroencephalographic data from 20 healthy young adults were recorded outside the MR environment and during simultaneous fMRI acquisition. The gradient artifact was effectively removed from EEG-fMRI acquisitions using Average Artifact Subtraction (AAS). The BCG artifact was corrected with seven methods: AAS, Optimal Basis Set (OBS), Independent Component Analysis (ICA), OBS followed by ICA, AAS followed by ICA, PROJIC-AAS and PROJIC-OBS. EEG signal preservation was assessed by comparing the spectral power of traditional frequency bands from the corrected rs-EEG-fMRI data with the data recorded outside the scanner. We then assessed the preservation of posterior alpha functional reactivity by computing the ratio between the EC and EO conditions during the EC-EO task. EEG-informed fMRI analysis of the EC-EO task was performed using alpha power-derived BOLD signal predictors obtained from the EEG signals corrected with different methods. Results The BCG artifact caused significant distortions (increased absolute power, altered relative power) across all frequency bands. Artifact residuals/signal losses were present after applying all correction methods. The EEG reactivity to the EC-EO task was better preserved with ICA-based correction approaches, particularly when using ICA feature extraction to isolate alpha power fluctuations, which allowed to accurately predict hemodynamic signal fluctuations during the EEG-informed fMRI analysis. Discussion Current software solutions for the BCG artifact problem offer limited efficiency to preserve the EEG spectral power properties using this particular EEG setup. The state-of-the-art approaches tested here can be further refined and should be combined with hardware implementations to better preserve EEG signal properties during simultaneous EEG-fMRI. Existing and novel BCG artifact correction methods should be validated by evaluating signal preservation of both ERPs and spontaneous EEG spectral power.
Collapse
Affiliation(s)
- Jonathan Gallego-Rudolf
- Unidad de Resonancia Magnética, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - María Corsi-Cabrera
- Laboratorio de Sueño, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Unidad de Neurodesarrollo, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Luis Concha
- Laboratorio de Conectividad Cerebral, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Josefina Ricardo-Garcell
- Unidad de Neurodesarrollo, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Erick Pasaye-Alcaraz
- Unidad de Resonancia Magnética, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
6
|
Kraljič A, Matkovič A, Purg N, Demšar J, Repovš G. Evaluation and comparison of most prevalent artifact reduction methods for EEG acquired simultaneously with fMRI. FRONTIERS IN NEUROIMAGING 2022; 1:968363. [PMID: 37555133 PMCID: PMC10406266 DOI: 10.3389/fnimg.2022.968363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/02/2022] [Indexed: 08/10/2023]
Abstract
Multimodal neuroimaging using EEG and fMRI provides deeper insights into brain function by improving the spatial and temporal resolution of the acquired data. However, simultaneous EEG-fMRI inevitably compromises the quality of the EEG and fMRI signals due to the high degree of interaction between the two systems. Fluctuations in the magnetic flux flowing through the participant and the EEG system, whether due to movement within the magnetic field of the scanner or to changes in magnetic field strength, induce electrical potentials in the EEG recordings that mask the much weaker electrical activity of the neuronal populations. A number of different methods have been proposed to reduce MR artifacts. We present an overview of the most commonly used methods and an evaluation of the methods using three sets of diverse EEG data. We limited the evaluation to open-access and easy-to-use methods and a reference signal regression method using a set of six carbon-wire loops (CWL), which allowed evaluation of their added value. The evaluation was performed by comparing EEG signals recorded outside the MRI scanner with artifact-corrected EEG signals recorded simultaneously with fMRI. To quantify and evaluate the quality of artifact reduction methods in terms of the spectral content of the signal, we analyzed changes in oscillatory activity during a resting-state and a finger tapping motor task. The quality of artifact reduction in the time domain was assessed using data collected during a visual stimulation task. In the study we utilized hierarchical Bayesian probabilistic modeling for statistical inference and observed significant differences between the evaluated methods in the success of artifact reduction and associated signal quality in both the frequency and time domains. In particular, the CWL system proved superior to the other methods evaluated in improving spectral contrast in the alpha and beta bands and in recovering visual evoked responses. Based on the results of the evaluation study, we proposed guidelines for selecting the optimal method for MR artifact reduction.
Collapse
Affiliation(s)
- Aleksij Kraljič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Andraž Matkovič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Purg
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Jure Demšar
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Grega Repovš
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Warbrick T. Simultaneous EEG-fMRI: What Have We Learned and What Does the Future Hold? SENSORS (BASEL, SWITZERLAND) 2022; 22:2262. [PMID: 35336434 PMCID: PMC8952790 DOI: 10.3390/s22062262] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023]
Abstract
Simultaneous EEG-fMRI has developed into a mature measurement technique in the past 25 years. During this time considerable technical and analytical advances have been made, enabling valuable scientific contributions to a range of research fields. This review will begin with an introduction to the measurement principles involved in EEG and fMRI and the advantages of combining these methods. The challenges faced when combining the two techniques will then be considered. An overview of the leading application fields where EEG-fMRI has made a significant contribution to the scientific literature and emerging applications in EEG-fMRI research trends is then presented.
Collapse
Affiliation(s)
- Tracy Warbrick
- Brain Products GmbH, Zeppelinstrasse 7, 82205 Gilching, Germany
| |
Collapse
|
8
|
Scrivener CL. When Is Simultaneous Recording Necessary? A Guide for Researchers Considering Combined EEG-fMRI. Front Neurosci 2021; 15:636424. [PMID: 34267620 PMCID: PMC8276697 DOI: 10.3389/fnins.2021.636424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) provide non-invasive measures of brain activity at varying spatial and temporal scales, offering different views on brain function for both clinical and experimental applications. Simultaneous recording of these measures attempts to maximize the respective strengths of each method, while compensating for their weaknesses. However, combined recording is not necessary to address all research questions of interest, and experiments may have greater statistical power to detect effects by maximizing the signal-to-noise ratio in separate recording sessions. While several existing papers discuss the reasons for or against combined recording, this article aims to synthesize these arguments into a flow chart of questions that researchers can consider when deciding whether to record EEG and fMRI separately or simultaneously. Given the potential advantages of simultaneous EEG-fMRI, the aim is to provide an initial overview of the most important concepts and to direct readers to relevant literature that will aid them in this decision.
Collapse
Affiliation(s)
- Catriona L. Scrivener
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Sammartino F, Taylor P, Chen G, Reynolds RC, Glen D, Krishna V. Functional Neuroimaging During Asleep DBS Surgery: A Proof of Concept Study. Front Neurol 2021; 12:659002. [PMID: 34262518 PMCID: PMC8273165 DOI: 10.3389/fneur.2021.659002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
Object: A real-time functional magnetic resonance imaging (fMRI) feedback during ventral intermediate nucleus (VIM) deep brain stimulation (DBS) under general anesthesia (or “asleep” DBS) does not exist. We hypothesized that it was feasible to acquire a reliable and responsive fMRI during asleep VIM DBS surgery. Methods: We prospectively enrolled 10 consecutive patients who underwent asleep DBS for the treatment of medication-refractory essential tremor. Under general anesthesia, we acquired resting-state functional MRI immediately before and after the cannula insertion. Reliability was determined by a temporal signal-to-noise-ratio >100. Responsiveness was determined based on the fMRI signal change upon insertion of the cannula to the VIM. Results: It was feasible to acquire reliable fMRI during asleep DBS surgery. The fMRI signal was responsive to the brain cannula insertion, revealing a reduction in the tremor network's functional connectivity, which did not reach statistical significance in the group analysis. Conclusions: It is feasible to acquire a reliable and responsive fMRI signal during asleep DBS. The acquisition steps and the preprocessing pipeline developed in these experiments will be useful for future investigations to develop fMRI-based feedback for asleep DBS surgery.
Collapse
Affiliation(s)
- Francesco Sammartino
- Department of Neurosurgery, The Ohio State University, Columbus, OH, United States
| | - Paul Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Richard C Reynolds
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Vibhor Krishna
- Department of Neurosurgery, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Soon CS, Vinogradova K, Ong JL, Calhoun VD, Liu T, Zhou JH, Ng KK, Chee MWL. Respiratory, cardiac, EEG, BOLD signals and functional connectivity over multiple microsleep episodes. Neuroimage 2021; 237:118129. [PMID: 33951513 DOI: 10.1016/j.neuroimage.2021.118129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/04/2021] [Accepted: 04/28/2021] [Indexed: 01/16/2023] Open
Abstract
Falling asleep is common in fMRI studies. By using long eyelid closures to detect microsleep onset, we showed that the onset and termination of short sleep episodes invokes a systematic sequence of BOLD signal changes that are large, widespread, and consistent across different microsleep durations. The signal changes are intimately intertwined with shifts in respiration and heart rate, indicating that autonomic contributions are integral to the brain physiology evaluated using fMRI and cannot be simply treated as nuisance signals. Additionally, resting state functional connectivity (RSFC) was altered in accord with the frequency of falling asleep and in a manner that global signal regression does not eliminate. Our findings point to the need to develop a consensus among neuroscientists using fMRI on how to deal with microsleep intrusions. SIGNIFICANCE STATEMENT: Sleep, breathing and cardiac action are influenced by common brainstem nuclei. We show that falling asleep and awakening are associated with a sequence of BOLD signal changes that are large, widespread and consistent across varied durations of sleep onset and awakening. These signal changes follow closely those associated with deceleration and acceleration of respiration and heart rate, calling into question the separation of the latter signals as 'noise' when the frequency of falling asleep, which is commonplace in RSFC studies, correlates with the extent of RSFC perturbation. Autonomic and central nervous system contributions to BOLD signal have to be jointly considered when interpreting fMRI and RSFC studies.
Collapse
Affiliation(s)
- Chun Siong Soon
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Translational MR Imaging, Yong Loo Lin School of Medicine, National Unviersity of Singapore, Singapore.
| | - Ksenia Vinogradova
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ju Lynn Ong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, USA
| | - Thomas Liu
- UCSD Center for Functional MRI and Department of Radiology, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Juan Helen Zhou
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Translational MR Imaging, Yong Loo Lin School of Medicine, National Unviersity of Singapore, Singapore
| | - Kwun Kei Ng
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Translational MR Imaging, Yong Loo Lin School of Medicine, National Unviersity of Singapore, Singapore.
| |
Collapse
|
11
|
Betta M, Handjaras G, Leo A, Federici A, Farinelli V, Ricciardi E, Siclari F, Meletti S, Ballotta D, Benuzzi F, Bernardi G. Cortical and subcortical hemodynamic changes during sleep slow waves in human light sleep. Neuroimage 2021; 236:118117. [PMID: 33940148 DOI: 10.1016/j.neuroimage.2021.118117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022] Open
Abstract
EEG slow waves, the hallmarks of NREM sleep are thought to be crucial for the regulation of several important processes, including learning, sensory disconnection and the removal of brain metabolic wastes. Animal research indicates that slow waves may involve complex interactions within and between cortical and subcortical structures. Conventional EEG in humans, however, has a low spatial resolution and is unable to accurately describe changes in the activity of subcortical and deep cortical structures. To overcome these limitations, here we took advantage of simultaneous EEG-fMRI recordings to map cortical and subcortical hemodynamic (BOLD) fluctuations time-locked to slow waves of light sleep. Recordings were performed in twenty healthy adults during an afternoon nap. Slow waves were associated with BOLD-signal increases in the posterior brainstem and in portions of thalamus and cerebellum characterized by preferential functional connectivity with limbic and somatomotor areas, respectively. At the cortical level, significant BOLD-signal decreases were instead found in several areas, including insula and somatomotor cortex. Specifically, a slow signal increase preceded slow-wave onset and was followed by a delayed, stronger signal decrease. Similar hemodynamic changes were found to occur at different delays across most cortical brain areas, mirroring the propagation of electrophysiological slow waves, from centro-frontal to inferior temporo-occipital cortices. Finally, we found that the amplitude of electrophysiological slow waves was positively related to the magnitude and inversely related to the delay of cortical and subcortical BOLD-signal changes. These regional patterns of brain activity are consistent with theoretical accounts of the functions of sleep slow waves.
Collapse
Affiliation(s)
- Monica Betta
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Giacomo Handjaras
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Andrea Leo
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Alessandra Federici
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Valentina Farinelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Emiliano Ricciardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Neurology Dept., Azienda Ospedaliera Universitaria di Modena, Modena, Italy
| | - Daniela Ballotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy.
| |
Collapse
|
12
|
Bullock M, Jackson GD, Abbott DF. Artifact Reduction in Simultaneous EEG-fMRI: A Systematic Review of Methods and Contemporary Usage. Front Neurol 2021; 12:622719. [PMID: 33776886 PMCID: PMC7991907 DOI: 10.3389/fneur.2021.622719] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Simultaneous electroencephalography-functional MRI (EEG-fMRI) is a technique that combines temporal (largely from EEG) and spatial (largely from fMRI) indicators of brain dynamics. It is useful for understanding neuronal activity during many different event types, including spontaneous epileptic discharges, the activity of sleep stages, and activity evoked by external stimuli and decision-making tasks. However, EEG recorded during fMRI is subject to imaging, pulse, environment and motion artifact, causing noise many times greater than the neuronal signals of interest. Therefore, artifact removal methods are essential to ensure that artifacts are accurately removed, and EEG of interest is retained. This paper presents a systematic review of methods for artifact reduction in simultaneous EEG-fMRI from literature published since 1998, and an additional systematic review of EEG-fMRI studies published since 2016. The aim of the first review is to distill the literature into clear guidelines for use of simultaneous EEG-fMRI artifact reduction methods, and the aim of the second review is to determine the prevalence of artifact reduction method use in contemporary studies. We find that there are many published artifact reduction techniques available, including hardware, model based, and data-driven methods, but there are few studies published that adequately compare these methods. In contrast, recent EEG-fMRI studies show overwhelming use of just one or two artifact reduction methods based on literature published 15–20 years ago, with newer methods rarely gaining use outside the group that developed them. Surprisingly, almost 15% of EEG-fMRI studies published since 2016 fail to adequately describe the methods of artifact reduction utilized. We recommend minimum standards for reporting artifact reduction techniques in simultaneous EEG-fMRI studies and suggest that more needs to be done to make new artifact reduction techniques more accessible for the researchers and clinicians using simultaneous EEG-fMRI.
Collapse
Affiliation(s)
- Madeleine Bullock
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Graeme D Jackson
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia
| | - David F Abbott
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Wirsich J, Jorge J, Iannotti GR, Shamshiri EA, Grouiller F, Abreu R, Lazeyras F, Giraud AL, Gruetter R, Sadaghiani S, Vulliémoz S. The relationship between EEG and fMRI connectomes is reproducible across simultaneous EEG-fMRI studies from 1.5T to 7T. Neuroimage 2021; 231:117864. [PMID: 33592241 DOI: 10.1016/j.neuroimage.2021.117864] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 01/01/2023] Open
Abstract
Both electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) are non-invasive methods that show complementary aspects of human brain activity. Despite measuring different proxies of brain activity, both the measured blood-oxygenation (fMRI) and neurophysiological recordings (EEG) are indirectly coupled. The electrophysiological and BOLD signal can map the underlying functional connectivity structure at the whole brain scale at different timescales. Previous work demonstrated a moderate but significant correlation between resting-state functional connectivity of both modalities, however there is a wide range of technical setups to measure simultaneous EEG-fMRI and the reliability of those measures between different setups remains unknown. This is true notably with respect to different magnetic field strengths (low and high field) and different spatial sampling of EEG (medium to high-density electrode coverage). Here, we investigated the reproducibility of the bimodal EEG-fMRI functional connectome in the most comprehensive resting-state simultaneous EEG-fMRI dataset compiled to date including a total of 72 subjects from four different imaging centers. Data was acquired from 1.5T, 3T and 7T scanners with simultaneously recorded EEG using 64 or 256 electrodes. We demonstrate that the whole-brain monomodal connectivity reproducibly correlates across different datasets and that a moderate crossmodal correlation between EEG and fMRI connectivity of r ≈ 0.3 can be reproducibly extracted in low- and high-field scanners. The crossmodal correlation was strongest in the EEG-β frequency band but exists across all frequency bands. Both homotopic and within intrinsic connectivity network (ICN) connections contributed the most to the crossmodal relationship. This study confirms, using a considerably diverse range of recording setups, that simultaneous EEG-fMRI offers a consistent estimate of multimodal functional connectomes in healthy subjects that are dominantly linked through a functional core of ICNs across spanning across the different timescales measured by EEG and fMRI. This opens new avenues for estimating the dynamics of brain function and provides a better understanding of interactions between EEG and fMRI measures. This observed level of reproducibility also defines a baseline for the study of alterations of this coupling in pathological conditions and their role as potential clinical markers.
Collapse
Affiliation(s)
- Jonathan Wirsich
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland.
| | - João Jorge
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Systems Division, Swiss Center for Electronics and Microtechnology (CSEM), Neuchâtel, Switzerland
| | - Giannina Rita Iannotti
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| | - Elhum A Shamshiri
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| | - Frédéric Grouiller
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Rodolfo Abreu
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - François Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Anne-Lise Giraud
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Department of Radiology, University of Lausanne, Lausanne, Switzerland
| | - Sepideh Sadaghiani
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Psychology Department, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
McIntosh JR, Yao J, Hong L, Faller J, Sajda P. Ballistocardiogram Artifact Reduction in Simultaneous EEG-fMRI Using Deep Learning. IEEE Trans Biomed Eng 2020; 68:78-89. [PMID: 32746037 DOI: 10.1109/tbme.2020.3004548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much attention due to its potential for combined high temporal and spatial resolution. However, the ballistocardiogram (BCG), a large-amplitude artifact caused by cardiac induced movement contaminates the EEG during EEG-fMRI recordings. Removal of BCG in software has generally made use of linear decompositions of the corrupted EEG. This is not ideal as the BCG signal propagates in a manner which is non-linearly dependent on the electrocardiogram (ECG). In this paper, we present a novel method for BCG artifact suppression using recurrent neural networks (RNNs). METHODS EEG signals were recovered by training RNNs on the nonlinear mappings between ECG and the BCG corrupted EEG. We evaluated our model's performance against the commonly used Optimal Basis Set (OBS) method at the level of individual subjects, and investigated generalization across subjects. RESULTS We show that our algorithm can generate larger average power reduction of the BCG at critical frequencies, while simultaneously improving task relevant EEG based classification. CONCLUSION The presented deep learning architecture can be used to reduce BCG related artifacts in EEG-fMRI recordings. SIGNIFICANCE We present a deep learning approach that can be used to suppress the BCG artifact in EEG-fMRI without the use of additional hardware. This method may have scope to be combined with current hardware methods, operate in real-time and be used for direct modeling of the BCG.
Collapse
|
15
|
Chen JCC, Forsyth A, Dubowitz DJ, Muthukumaraswamy SD. On the Quality, Statistical Efficiency, and Safety of Simultaneously Recorded Multiband fMRI/EEG. Brain Topogr 2020; 33:303-316. [PMID: 32144628 DOI: 10.1007/s10548-020-00761-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/24/2020] [Indexed: 01/19/2023]
Abstract
The recent development of multiband functional magnetic resonance imaging (MB-fMRI) allows for the reduction of sampling period by simultaneously exciting multiple slices-the number of which is referred to as the multiband factor. Simultaneously recorded electroencephalography (EEG)/MB-fMRI has yet to be validated for data quality against conventional single band (SB)-fMRI. Pilot scans were conducted on phantoms twice and on a healthy volunteer to ensure no heating effects. In the main study, two thermometer probes were attached to 16 healthy individuals (ages 20-39, 9 females) whilst they completed two sets of 16-min resting-state and two sets of 9-min n-back task scans-each set consisting of one MB4 and one SB pulse sequence. No heating effects were reported and thermometer data showed mean increases of < 1.0 °C. Minimal differences between the two scan types were found in EEG channel variance and spectra. Expected decreases in MB4-fMRI tSNR were observed. In n-back task scans, little to no differences were detected in both EEG source analyses and fMRI local analyses for mixed effects. Resting-state posterior cingulate cortex seed-based analyses of the default mode network along with EEG-informed fMRI analysis of the occipital alpha anticorrelation effect showed improved statistical and spatial sensitivity at lower scan durations. Using EEG/MB4-fMRI for n-back tasks provided no statistical advantages nor disadvantages. However, for studying the resting-state, MB4-fMRI potentially allows for reduced scanning durations for equivalent statistical significance to be obtained or alternatively, larger effect sizes for the same scanning duration. As such, simultaneous EEG/MB4-fMRI is a viable alternative to EEG/SB-fMRI.
Collapse
Affiliation(s)
- Joseph C C Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - David J Dubowitz
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Advanced MRI, Auckland UniServices Limited, Auckland, New Zealand
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
16
|
Sadaghiani S, Wirsich J. Intrinsic connectome organization across temporal scales: New insights from cross-modal approaches. Netw Neurosci 2020; 4:1-29. [PMID: 32043042 PMCID: PMC7006873 DOI: 10.1162/netn_a_00114] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
The discovery of a stable, whole-brain functional connectivity organization that is largely independent of external events has drastically extended our view of human brain function. However, this discovery has been primarily based on functional magnetic resonance imaging (fMRI). The role of this whole-brain organization in fast oscillation-based connectivity as measured, for example, by electroencephalography (EEG) and magnetoencephalography (MEG) is only beginning to emerge. Here, we review studies of intrinsic connectivity and its whole-brain organization in EEG, MEG, and intracranial electrophysiology with a particular focus on direct comparisons to connectome studies in fMRI. Synthesizing this literature, we conclude that irrespective of temporal scale over four orders of magnitude, intrinsic neurophysiological connectivity shows spatial similarity to the connectivity organization commonly observed in fMRI. A shared structural connectivity basis and cross-frequency coupling are possible mechanisms contributing to this similarity. Acknowledging that a stable whole-brain organization governs long-range coupling across all timescales of neural processing motivates researchers to take "baseline" intrinsic connectivity into account when investigating brain-behavior associations, and further encourages more widespread exploration of functional connectomics approaches beyond fMRI by using EEG and MEG modalities.
Collapse
Affiliation(s)
- Sepideh Sadaghiani
- Psychology Department, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan Wirsich
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
17
|
Piorecky M, Koudelka V, Strobl J, Brunovsky M, Krajca V. Artifacts in Simultaneous hdEEG/fMRI Imaging: A Nonlinear Dimensionality Reduction Approach. SENSORS 2019; 19:s19204454. [PMID: 31615138 PMCID: PMC6832374 DOI: 10.3390/s19204454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/22/2019] [Accepted: 10/10/2019] [Indexed: 12/02/2022]
Abstract
Simultaneous recordings of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) are at the forefront of technologies of interest to physicians and scientists because they combine the benefits of both modalities—better time resolution (hdEEG) and space resolution (fMRI). However, EEG measurements in the scanner contain an electromagnetic field that is induced in leads as a result of gradient switching slight head movements and vibrations, and it is corrupted by changes in the measured potential because of the Hall phenomenon. The aim of this study is to design and test a methodology for inspecting hidden EEG structures with respect to artifacts. We propose a top-down strategy to obtain additional information that is not visible in a single recording. The time-domain independent component analysis algorithm was employed to obtain independent components and spatial weights. A nonlinear dimension reduction technique t-distributed stochastic neighbor embedding was used to create low-dimensional space, which was then partitioned using the density-based spatial clustering of applications with noise (DBSCAN). The relationships between the found data structure and the used criteria were investigated. As a result, we were able to extract information from the data structure regarding electrooculographic, electrocardiographic, electromyographic and gradient artifacts. This new methodology could facilitate the identification of artifacts and their residues from simultaneous EEG in fMRI.
Collapse
Affiliation(s)
- Marek Piorecky
- National Institute of Mental Health, 25067 Klecany, Czech Republic.
- Dep. of Biomedical Technology, Faculty of Biomedical Engineering, CTU in Prague, 27201 Prague, Czech Republic.
| | | | - Jan Strobl
- National Institute of Mental Health, 25067 Klecany, Czech Republic.
- Dep. of Biomedical Technology, Faculty of Biomedical Engineering, CTU in Prague, 27201 Prague, Czech Republic.
| | - Martin Brunovsky
- National Institute of Mental Health, 25067 Klecany, Czech Republic.
- Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic.
| | - Vladimir Krajca
- Dep. of Biomedical Technology, Faculty of Biomedical Engineering, CTU in Prague, 27201 Prague, Czech Republic.
| |
Collapse
|
18
|
Reinelt J, Uhlig M, Müller K, Lauckner ME, Kumral D, Schaare HL, Baczkowski BM, Babayan A, Erbey M, Roebbig J, Reiter A, Bae YJ, Kratzsch J, Thiery J, Hendler T, Villringer A, Gaebler M. Acute psychosocial stress alters thalamic network centrality. Neuroimage 2019; 199:680-690. [PMID: 31173902 DOI: 10.1016/j.neuroimage.2019.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022] Open
Abstract
Acute stress triggers a broad psychophysiological response that is adaptive if rapidly activated and terminated. While the brain controls the stress response, it is strongly affected by it. Previous research of stress effects on brain activation and connectivity has mainly focused on pre-defined brain regions or networks, potentially missing changes in the rest of the brain. We here investigated how both stress reactivity and stress recovery are reflected in whole-brain network topology and how changes in functional connectivity relate to other stress measures. Healthy young males (n = 67) completed the Trier Social Stress Test or a control task. From 60 min before until 105 min after stress onset, blocks of resting-state fMRI were acquired. Subjective, autonomic, and endocrine measures of the stress response were assessed throughout the experiment. Whole-brain network topology was quantified using Eigenvector centrality (EC) mapping, which detects central hubs of a network. Stress influenced subjective affect, autonomic activity, and endocrine measures. EC differences between groups as well as before and after stress exposure were found in the thalamus, due to widespread connectivity changes in the brain. Stress-driven EC increases in the thalamus were significantly correlated with subjective stress ratings and showed non-significant trends for a correlation with heart rate variability and saliva cortisol. Furthermore, increases in thalamic EC and in saliva cortisol persisted until 105 min after stress onset. We conclude that thalamic areas are central for information processing after stress exposure and may provide an interface for the stress response in the rest of the body and in the mind.
Collapse
Affiliation(s)
- Janis Reinelt
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Marie Uhlig
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Karsten Müller
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Mark E Lauckner
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Deniz Kumral
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; MindBrainBody Institute at the Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - H Lina Schaare
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Blazej M Baczkowski
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; International Max Planck Research School NeuroCom, Leipzig, Germany; Institute of Psychology, University of Leipzig, Leipzig, Germany
| | - Anahit Babayan
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Miray Erbey
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; MindBrainBody Institute at the Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; International Max Planck School on the Life Course, Max Planck Institute for Human Development, Berlin, Germany
| | - Josefin Roebbig
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andrea Reiter
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Lifespan Developmental Neuroscience, Technische Universität Dresden, Dresden, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
| | - Yoon-Ju Bae
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM) of the Medical Faculty at the University of Leipzig, Leipzig, Germany
| | - Juergen Kratzsch
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM) of the Medical Faculty at the University of Leipzig, Leipzig, Germany
| | - Joachim Thiery
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM) of the Medical Faculty at the University of Leipzig, Leipzig, Germany
| | - Talma Hendler
- School of Psychological Science, Departments of Physiology and Pharmacology and Psychiatry, Faculty of Medicine, Sagol School Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; MindBrainBody Institute at the Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Gaebler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; MindBrainBody Institute at the Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
19
|
Neuner I, Rajkumar R, Brambilla CR, Ramkiran S, Ruch A, Orth L, Farrher E, Mauler J, Wyss C, Kops ER, Scheins J, Tellmann L, Lang M, Ermert J, Dammers J, Neumaier B, Lerche C, Heekeren K, Kawohl W, Langen KJ, Herzog H, Shah NJ. Simultaneous PET-MR-EEG: Technology, Challenges and Application in Clinical Neuroscience. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2018.2886525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Steyrl D, Müller-Putz GR. Artifacts in EEG of simultaneous EEG-fMRI: pulse artifact remainders in the gradient artifact template are a source of artifact residuals after average artifact subtraction. J Neural Eng 2018; 16:016011. [PMID: 30523809 DOI: 10.1088/1741-2552/aaec42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The simultaneous application of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) opens up new ways to investigate the human brain. The EEG recordings of simultaneous EEG-fMRI, however, are overlaid to a great degree by fMRI related artifacts and an artifact reduction is mandatory before any EEG analysis. The most severe artifacts-the gradient artifact and the pulse artifact-are repetitive. Average artifact subtraction (AAS) technique exploits the repetitiveness and is presumably the most often used artifact reduction technique. In this method artifact templates are calculated by averaging over adjacent artifact epochs and subsequently the templates are subtracted to reduce the artifacts. Although the AAS technique is one of the best performing methods, artifact residuals are usually present in the resulting EEG after applying the AAS technique. This work aims at identifying sources of the artifact residuals. APPROACH Application of the AAS technique to artificial EEG that is contaminated with artificial fMRI related artifacts. MAIN RESULTS A new source of artifact residuals was identified. It was found that the AAS technique itself adds artifacts to the EEG during gradient artifact reduction, because the gradient artifact template is corrupted by pulse artifact remainders. SIGNIFICANCE This work shows that using a standard number of 25 epochs to calculate the gradient artifact template-as suggested by the inventors of AAS-results in substantial artifact residuals and consequently to a low EEG quality. Furthermore, the work discusses how potential solutions to this problem have serious side effects such as loss of adaptivity of the AAS technique. Hence, this problem must be considered carefully already in the design of simultaneous EEG-fMRI experiments.
Collapse
Affiliation(s)
- David Steyrl
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | | |
Collapse
|
21
|
Liu S, Poh JH, Koh HL, Ng KK, Loke YM, Lim JKW, Chong JSX, Zhou J. Carrying the past to the future: Distinct brain networks underlie individual differences in human spatial working memory capacity. Neuroimage 2018; 176:1-10. [DOI: 10.1016/j.neuroimage.2018.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 03/07/2018] [Accepted: 04/08/2018] [Indexed: 10/17/2022] Open
|
22
|
Adaptive optimal basis set for BCG artifact removal in simultaneous EEG-fMRI. Sci Rep 2018; 8:8902. [PMID: 29891929 PMCID: PMC5995808 DOI: 10.1038/s41598-018-27187-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/30/2018] [Indexed: 11/13/2022] Open
Abstract
Electroencephalography (EEG) signals recorded during simultaneous functional magnetic resonance imaging (fMRI) are contaminated by strong artifacts. Among these, the ballistocardiographic (BCG) artifact is the most challenging, due to its complex spatio-temporal dynamics associated with ongoing cardiac activity. The presence of BCG residuals in EEG data may hide true, or generate spurious correlations between EEG and fMRI time-courses. Here, we propose an adaptive Optimal Basis Set (aOBS) method for BCG artifact removal. Our method is adaptive, as it can estimate the delay between cardiac activity and BCG occurrence on a beat-to-beat basis. The effective creation of an optimal basis set by principal component analysis (PCA) is therefore ensured by a more accurate alignment of BCG occurrences. Furthermore, aOBS can automatically estimate which components produced by PCA are likely to be BCG artifact-related and therefore need to be removed. The aOBS performance was evaluated on high-density EEG data acquired with simultaneous fMRI in healthy subjects during visual stimulation. As aOBS enables effective reduction of BCG residuals while preserving brain signals, we suggest it may find wide application in simultaneous EEG-fMRI studies.
Collapse
|
23
|
Lamoš M, Mareček R, Slavíček T, Mikl M, Rektor I, Jan J. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics. J Neural Eng 2018. [PMID: 29536946 DOI: 10.1088/1741-2552/aab66b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. APPROACH The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component's time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. MAIN RESULTS We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. SIGNIFICANCE Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.
Collapse
Affiliation(s)
- Martin Lamoš
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno. Department of Biomedical Engineering, Brno University of Technology, Technická 12, 61600, Brno
| | | | | | | | | | | |
Collapse
|
24
|
Abreu R, Leal A, Figueiredo P. EEG-Informed fMRI: A Review of Data Analysis Methods. Front Hum Neurosci 2018; 12:29. [PMID: 29467634 PMCID: PMC5808233 DOI: 10.3389/fnhum.2018.00029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/18/2018] [Indexed: 01/17/2023] Open
Abstract
The simultaneous acquisition of electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD) fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest.
Collapse
Affiliation(s)
- Rodolfo Abreu
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Alberto Leal
- Department of Neurophysiology, Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal
| | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
25
|
Sahib AK, Erb M, Marquetand J, Martin P, Elshahabi A, Klamer S, Vulliemoz S, Scheffler K, Ethofer T, Focke NK. Evaluating the impact of fast-fMRI on dynamic functional connectivity in an event-based paradigm. PLoS One 2018; 13:e0190480. [PMID: 29357371 PMCID: PMC5777653 DOI: 10.1371/journal.pone.0190480] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 12/15/2017] [Indexed: 01/08/2023] Open
Abstract
The human brain is known to contain several functional networks that interact dynamically. Therefore, it is desirable to analyze the temporal features of these networks by dynamic functional connectivity (dFC). A sliding window approach was used in an event-related fMRI (visual stimulation using checkerboards) to assess the impact of repetition time (TR) and window size on the temporal features of BOLD dFC. In addition, we also examined the spatial distribution of dFC and tested the feasibility of this approach for the analysis of interictal epileptiforme discharges. 15 healthy controls (visual stimulation paradigm) and three patients with epilepsy (EEG-fMRI) were measured with EPI-fMRI. We calculated the functional connectivity degree (FCD) by determining the total number of connections of a given voxel above a predefined threshold based on Pearson correlation. FCD could capture hemodynamic changes relative to stimulus onset in controls. A significant effect of TR and window size was observed on FCD estimates. At a conventional TR of 2.6 s, FCD values were marginal compared to FCD values using sub-seconds TRs achievable with multiband (MB) fMRI. Concerning window sizes, a specific maximum of FCD values (inverted u-shape behavior) was found for each TR, indicating a limit to the possible gain in FCD for increasing window size. In patients, a dynamic FCD change was found relative to the onset of epileptiform EEG patterns, which was compatible with their clinical semiology. Our findings indicate that dynamic FCD transients are better detectable with sub-second TR than conventional TR. This approach was capable of capturing neuronal connectivity across various regions of the brain, indicating a potential to study the temporal characteristics of interictal epileptiform discharges and seizures in epilepsy patients or other brain diseases with brief events.
Collapse
Affiliation(s)
- Ashish Kaul Sahib
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, Germany
- Department of Biomedical Magnetic Resonance, University Hospital Tuebingen, Tuebingen, Germany
- Department of Neurology/Epileptology, University Hospital Tuebingen and Hertie Institute of Clinical Brain Research, Tuebingen, Germany
- Graduate School of Neural and Behavioural Sciences/International Max Planck Research School, University of Tuebingen, Tuebingen, Germany
| | - Michael Erb
- Department of Biomedical Magnetic Resonance, University Hospital Tuebingen, Tuebingen, Germany
| | - Justus Marquetand
- Department of Neurology/Epileptology, University Hospital Tuebingen and Hertie Institute of Clinical Brain Research, Tuebingen, Germany
| | - Pascal Martin
- Department of Neurology/Epileptology, University Hospital Tuebingen and Hertie Institute of Clinical Brain Research, Tuebingen, Germany
| | - Adham Elshahabi
- Department of Neurology/Epileptology, University Hospital Tuebingen and Hertie Institute of Clinical Brain Research, Tuebingen, Germany
- MEG-Center, University of Tuebingen, Tuebingen, Germany
| | - Silke Klamer
- Department of Neurology/Epileptology, University Hospital Tuebingen and Hertie Institute of Clinical Brain Research, Tuebingen, Germany
| | - Serge Vulliemoz
- Department of Neurology, University Hospital of Geneva, Geneva, Switzerland
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance, University Hospital Tuebingen, Tuebingen, Germany
- Max-Planck-Institute for Biological Cybernetics, Tuebingen, Germany
| | - Thomas Ethofer
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, Germany
- Department of Biomedical Magnetic Resonance, University Hospital Tuebingen, Tuebingen, Germany
| | - Niels K. Focke
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, Germany
- Department of Neurology/Epileptology, University Hospital Tuebingen and Hertie Institute of Clinical Brain Research, Tuebingen, Germany
- Clinical Neurophysiology, University Medicine, Goettingen, Germany
- * E-mail:
| |
Collapse
|
26
|
Steyrl D, Krausz G, Koschutnig K, Edlinger G, Müller-Putz GR. Online Reduction of Artifacts in EEG of Simultaneous EEG-fMRI Using Reference Layer Adaptive Filtering (RLAF). Brain Topogr 2018; 31:129-149. [PMID: 29124547 PMCID: PMC5772120 DOI: 10.1007/s10548-017-0606-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/31/2017] [Indexed: 11/29/2022]
Abstract
Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow us to study the active human brain from two perspectives concurrently. Signal processing based artifact reduction techniques are mandatory for this, however, to obtain reasonable EEG quality in simultaneous EEG-fMRI. Current artifact reduction techniques like average artifact subtraction (AAS), typically become less effective when artifact reduction has to be performed on-the-fly. We thus present and evaluate a new technique to improve EEG quality online. This technique adds up with online AAS and combines a prototype EEG-cap for reference recordings of artifacts, with online adaptive filtering and is named reference layer adaptive filtering (RLAF). We found online AAS + RLAF to be highly effective in improving EEG quality. Online AAS + RLAF outperformed online AAS and did so in particular online in terms of the chosen performance metrics, these being specifically alpha rhythm amplitude ratio between closed and opened eyes (3-45% improvement), signal-to-noise-ratio of visual evoked potentials (VEP) (25-63% improvement), and VEPs variability (16-44% improvement). Further, we found that EEG quality after online AAS + RLAF is occasionally even comparable with the offline variant of AAS at a 3T MRI scanner. In conclusion RLAF is a very effective add-on tool to enable high quality EEG in simultaneous EEG-fMRI experiments, even when online artifact reduction is necessary.
Collapse
Affiliation(s)
- David Steyrl
- Laboratory of Brain-Computer Interfaces, Institute of Neural Engineering, Graz University of Technology, 8010, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | | - Karl Koschutnig
- Department of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | | - Gernot R Müller-Putz
- Laboratory of Brain-Computer Interfaces, Institute of Neural Engineering, Graz University of Technology, 8010, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
27
|
Wendt J, Löw A, Weymar M, Lotze M, Hamm AO. Active avoidance and attentive freezing in the face of approaching threat. Neuroimage 2017; 158:196-204. [PMID: 28669911 DOI: 10.1016/j.neuroimage.2017.06.054] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/14/2017] [Accepted: 06/21/2017] [Indexed: 01/21/2023] Open
Abstract
Defensive behaviors in animals and humans vary dynamically with increasing proximity of a threat and depending upon the behavioral repertoire at hand. The current study investigated physiological and behavioral adjustments and associated brain activation when participants were exposed to dynamically approaching threat that was either inevitable or could be avoided by motor action. When the approaching threat was inevitable, attentive freezing was observed as indicated by fear bradycardia, startle potentiation, and a dynamic increase in activation of the anterior insula and the periaqueductal grey. In preparation for active avoidance a switch in defensive behavior was observed characterized by startle inhibition and heart rate acceleration along with potentiated activation of the amygdala and the periaqueductal grey. Importantly, the modulation of defensive behavior according to threat imminence and the behavioral option at hand was associated with activity changes in the ventromedial prefrontal cortex. These findings improve our understanding of brain mechanisms guiding human behavior during approaching threat depending on available resources.
Collapse
Affiliation(s)
- Julia Wendt
- Department of Biological and Clinical Psychology, University of Greifswald, 17487 Greifswald, Germany.
| | - Andreas Löw
- Helmut-Schmidt-University, University of the Federal Armed Forces Hamburg, 22043 Hamburg, Germany
| | - Mathias Weymar
- University of Potsdam, Department of Psychology, 14476 Potsdam, Germany
| | - Martin Lotze
- Functional Imaging Unit, Center of Diagnostic Radiology and Neuroradiology, University of Greifswald, 17475 Greifswald, Germany
| | - Alfons O Hamm
- Department of Biological and Clinical Psychology, University of Greifswald, 17487 Greifswald, Germany
| |
Collapse
|
28
|
Mano M, Lécuyer A, Bannier E, Perronnet L, Noorzadeh S, Barillot C. How to Build a Hybrid Neurofeedback Platform Combining EEG and fMRI. Front Neurosci 2017; 11:140. [PMID: 28377691 PMCID: PMC5359276 DOI: 10.3389/fnins.2017.00140] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/07/2017] [Indexed: 01/18/2023] Open
Abstract
Multimodal neurofeedback estimates brain activity using information acquired with more than one neurosignal measurement technology. In this paper we describe how to set up and use a hybrid platform based on simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), then we illustrate how to use it for conducting bimodal neurofeedback experiments. The paper is intended for those willing to build a multimodal neurofeedback system, to guide them through the different steps of the design, setup, and experimental applications, and help them choose a suitable hardware and software configuration. Furthermore, it reports practical information from bimodal neurofeedback experiments conducted in our lab. The platform presented here has a modular parallel processing architecture that promotes real-time signal processing performance and simple future addition and/or replacement of processing modules. Various unimodal and bimodal neurofeedback experiments conducted in our lab showed high performance and accuracy. Currently, the platform is able to provide neurofeedback based on electroencephalography and functional magnetic resonance imaging, but the architecture and the working principles described here are valid for any other combination of two or more real-time brain activity measurement technologies.
Collapse
Affiliation(s)
- Marsel Mano
- Institut National de Recherche en Informatique et en Automatique (INRIA) Rennes, France
| | - Anatole Lécuyer
- Institut National de Recherche en Informatique et en Automatique (INRIA)Rennes, France; Institut de Recherche en Informatique et Systèmes Aléatoires (IIRISA)Rennes, France
| | - Elise Bannier
- Institut de Recherche en Informatique et Systèmes Aléatoires (IIRISA)Rennes, France; CHU PontchaillouRennes, France
| | - Lorraine Perronnet
- Institut National de Recherche en Informatique et en Automatique (INRIA) Rennes, France
| | - Saman Noorzadeh
- Institut National de Recherche en Informatique et en Automatique (INRIA) Rennes, France
| | - Christian Barillot
- Institut National de Recherche en Informatique et en Automatique (INRIA)Rennes, France; Institut de Recherche en Informatique et Systèmes Aléatoires (IIRISA)Rennes, France; Institut National de la Santé et de la Recherche MédicaleRennes, France
| |
Collapse
|
29
|
Steyrl D, Krausz G, Koschutnig K, Edlinger G, Müller-Putz GR. Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI. J Neural Eng 2017; 14:026003. [PMID: 28155841 DOI: 10.1088/1741-2552/14/2/026003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. APPROACH To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. MAIN RESULTS The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. SIGNIFICANCE In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We introduce new algorithms for reducing EEG artifacts due to simultaneous fMRI The algorithms combine a reference layer and adaptive filtering Several evaluation criteria suggest superior effectivity in terms of artifact reduction We demonstrate that physiological EEG components are preserved.
Collapse
Affiliation(s)
- David Steyrl
- Laboratory of Brain-Computer Interfaces, Institute of Neural Engineering, Graz University of Technology, Graz, Austria. BioTechMed-Graz, Graz, Austria
| | | | | | | | | |
Collapse
|
30
|
Yu Q, Wu L, Bridwell DA, Erhardt EB, Du Y, He H, Chen J, Liu P, Sui J, Pearlson G, Calhoun VD. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study. Front Hum Neurosci 2016; 10:476. [PMID: 27733821 PMCID: PMC5039193 DOI: 10.3389/fnhum.2016.00476] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/08/2016] [Indexed: 12/21/2022] Open
Abstract
The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics.
Collapse
Affiliation(s)
- Qingbao Yu
- The Mind Research Network Albuquerque, NM, USA
| | - Lei Wu
- The Mind Research Network Albuquerque, NM, USA
| | | | - Erik B Erhardt
- Department of Mathematics and Statistics, University of New Mexico Albuquerque, NM, USA
| | - Yuhui Du
- The Mind Research NetworkAlbuquerque, NM, USA; School of Information and Communication Engineering, North University of ChinaTaiyuan, China
| | - Hao He
- Department of Electrical and Computer Engineering, University of New Mexico Albuquerque, NM, USA
| | - Jiayu Chen
- The Mind Research Network Albuquerque, NM, USA
| | - Peng Liu
- The Mind Research NetworkAlbuquerque, NM, USA; Department of Electrical and Computer Engineering, University of New MexicoAlbuquerque, NM, USA; Life Science Research Center, School of Life Sciences and Technology, Xidian UniversityShanxi, China
| | - Jing Sui
- The Mind Research NetworkAlbuquerque, NM, USA; Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijing, China
| | - Godfrey Pearlson
- Olin Neuropsychiatry Research CenterHartford, CT, USA; Department of Psychiatry, Yale UniversityNew Haven, CT, USA; Department of Neurobiology, Yale UniversityNew Haven, CT, USA
| | - Vince D Calhoun
- The Mind Research NetworkAlbuquerque, NM, USA; Department of Electrical and Computer Engineering, University of New MexicoAlbuquerque, NM, USA; Department of Psychiatry, Yale UniversityNew Haven, CT, USA
| |
Collapse
|
31
|
Assecondi S, Lavallee C, Ferrari P, Jovicich J. Length matters: Improved high field EEG-fMRI recordings using shorter EEG cables. J Neurosci Methods 2016; 269:74-87. [PMID: 27222442 DOI: 10.1016/j.jneumeth.2016.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/16/2016] [Accepted: 05/16/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND The use of concurrent EEG-fMRI recordings has increased in recent years, allowing new avenues of medical and cognitive neuroscience research; however, currently used setups present problems with data quality and reproducibility. NEW METHOD We propose a compact experimental setup for concurrent EEG-fMRI at 4T and compare it to a more standard reference setup. The compact setup uses short EEG cables connecting to the amplifiers, which are placed right at the back of the head RF coil on a form-fitting extension force-locked to the patient MR bed. We compare the two setups in terms of sensitivity to MR-room environmental noise, interferences between measuring devices (EEG or fMRI), and sensitivity to functional responses in a visual stimulation paradigm. RESULTS The compact setup reduces the system sensitivity to both external noise and MR-induced artefacts by at least 60%, with negligible EEG noise induced from the mechanical vibrations of the cryogenic cooling compression pump. COMPARISON WITH EXISTING METHODS The compact setup improved EEG data quality and the overall performance of MR-artifact correction techniques. Both setups were similar in terms of the fMRI data, with higher reproducibility for cable placement within the scanner in the compact setup. CONCLUSIONS This improved compact setup may be relevant to MR laboratories interested in reducing the sensitivity of their EEG-fMRI experimental setup to external noise sources, setting up an EEG-fMRI workplace for the first time, or for creating a more reproducible configuration of equipment and cables. Implications for safety and ergonomics are discussed.
Collapse
Affiliation(s)
- Sara Assecondi
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | | | - Paolo Ferrari
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
| |
Collapse
|
32
|
van der Meer J, Pampel A, van Someren E, Ramautar J, van der Werf Y, Gomez-Herrero G, Lepsien J, Hellrung L, Hinrichs H, Möller H, Walter M. "Eyes Open - Eyes Closed" EEG/fMRI data set including dedicated "Carbon Wire Loop" motion detection channels. Data Brief 2016; 7:990-994. [PMID: 27761491 PMCID: PMC5063756 DOI: 10.1016/j.dib.2016.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 11/15/2022] Open
Abstract
This data set contains electroencephalography (EEG) data as well as simultaneous EEG with functional magnetic resonance imaging (EEG/fMRI) data. During EEG/fMRI, the EEG cap was outfitted with a hardware-based add-on consisting of carbon-wire loops (CWL). These yielded six extra׳CWL׳ signals related to Faraday induction of these loops in the main magnetic field “Measurement and reduction of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings” (Masterton et al., 2007) [1]. In this data set, the CWL data make it possible to do a direct regression approach to deal with the BCG and specifically He artifact. The CWL-EEG/fMRI data in this paper has been recorded on two MRI scanners with different Helium pump systems (4 subjects on a 3 T TIM Trio and 4 subjects on a 3T VERIO). Separate EEG/fMRI data sets have been recorded for the helium pump ON as well as the helium pump OFF conditions. The EEG-only data (same subjects) has been recorded for a motion artifact-free reference EEG signal outside of the scanner. This paper also links to an EEGlab “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis” (Delorme and Makeig, 2004) [2] plugin to perform a CWL regression approach to deal with the He pump artifact, as published in the main paper “Carbon-wire loop based artifact correction outperforms post-processing EEG/fMRI corrections-A validation of a real-time simultaneous EEG/fMRI correction method” (van der Meer et al., 2016) [3].
Collapse
Affiliation(s)
- Johan van der Meer
- Clinical Affective Neuroimaging Laboratory, Otto-von-Guericke University, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Department of Medical Psychology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University and Medical Center, Amsterdam, The Netherlands
- Corresponding author.
| | - André Pampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Eus van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University and Medical Center, Amsterdam, The Netherlands
| | - Jennifer Ramautar
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Ysbrand van der Werf
- Department of Cognition and Emotion, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University and Medical Center, Amsterdam, The Netherlands
- Department of Medical Psychology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University and Medical Center, Amsterdam, The Netherlands
| | - German Gomez-Herrero
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Jöran Lepsien
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lydia Hellrung
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Hermann Hinrichs
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Harald Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, Otto-von-Guericke University, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Psychiatry, Otto-von-Guericke University, Magdeburg, Germany
- Department of Psychiatry, University Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Grouiller F, Jorge J, Pittau F, van der Zwaag W, Iannotti GR, Michel CM, Vulliémoz S, Vargas MI, Lazeyras F. Presurgical brain mapping in epilepsy using simultaneous EEG and functional MRI at ultra-high field: feasibility and first results. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:605-16. [PMID: 26946508 DOI: 10.1007/s10334-016-0536-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this study was to demonstrate that eloquent cortex and epileptic-related hemodynamic changes can be safely and reliably detected using simultaneous electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) recordings at ultra-high field (UHF) for clinical evaluation of patients with epilepsy. MATERIALS AND METHODS Simultaneous EEG-fMRI was acquired at 7 T using an optimized setup in nine patients with lesional epilepsy. According to the localization of the lesion, mapping of eloquent cortex (language and motor) was also performed in two patients. RESULTS Despite strong artifacts, efficient correction of intra-MRI EEG could be achieved with optimized artifact removal algorithms, allowing robust identification of interictal epileptiform discharges. Noise-sensitive topography-related analyses and electrical source localization were also performed successfully. Localization of epilepsy-related hemodynamic changes compatible with the lesion were detected in three patients and concordant with findings obtained at 3 T. Local loss of signal in specific regions, essentially due to B 1 inhomogeneities were found to depend on the geometric arrangement of EEG leads over the cap. CONCLUSION These results demonstrate that presurgical mapping of epileptic networks and eloquent cortex is both safe and feasible at UHF, with the benefits of greater spatial resolution and higher blood-oxygenation-level-dependent sensitivity compared with the more traditional field strength of 3 T.
Collapse
Affiliation(s)
- Frédéric Grouiller
- Department of Radiology and Medical Informatics, University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland.
| | - João Jorge
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Francesca Pittau
- EEG and Epilepsy Unit, Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Wietske van der Zwaag
- Biomedical Imaging Research Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| | - Giannina Rita Iannotti
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Christoph Martin Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Maria Isabel Vargas
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| |
Collapse
|
34
|
Carbon-wire loop based artifact correction outperforms post-processing EEG/fMRI corrections--A validation of a real-time simultaneous EEG/fMRI correction method. Neuroimage 2015; 125:880-894. [PMID: 26505301 DOI: 10.1016/j.neuroimage.2015.10.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 11/22/2022] Open
Abstract
Simultaneous EEG-fMRI combines two powerful neuroimaging techniques, but the EEG signal suffers from severe artifacts in the MRI environment that are difficult to remove. These are the MR scanning artifact and the blood-pulsation artifact--strategies to remove them are a topic of ongoing research. Additionally large, unsystematic artifacts are produced across the full frequency spectrum by the magnet's helium pump (and ventilator) systems which are notoriously hard to remove. As a consequence, experimenters routinely deactivate the helium pump during simultaneous EEG-fMRI acquisitions which potentially risks damaging the MRI system and necessitates more frequent and expensive helium refills. We present a novel correction method addressing both helium pump and ballisto-cardiac (BCG) artifacts, consisting of carbon-wire loops (CWL) as additional sensors to accurately track unpredictable artifacts related to subtle movements in the scanner, and an EEGLAB plugin to perform artifact correction. We compare signal-to-noise metrics of EEG data, corrected with CWL and three conventional correction methods, for helium pump off and on measurements. Because the CWL setup records signals in real-time, it fits requirements of applications where immediate correction is necessary, such as neuro-feedback applications or stimulation time-locked to specific sleep oscillations. The comparison metrics in this paper relate to: (1) the EEG signal itself, (2) the "eyes open vs. eyes closed" effect, and (3) an assessment of how the artifact corrections impacts the ability to perform meaningful correlations between EEG alpha power and the BOLD signal. Results show that the CWL correction corrects for He pump artifact and also produces EEG data more comparable to EEG obtained outside the magnet than conventional post-processing methods.
Collapse
|
35
|
Connections between intraparietal sulcus and a sensorimotor network underpin sustained tactile attention. J Neurosci 2015; 35:7938-49. [PMID: 25995478 DOI: 10.1523/jneurosci.3421-14.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies on sustained tactile attention draw conclusions about underlying cortical networks by averaging over experimental conditions without considering attentional variance in single trials. This may have formed an imprecise picture of brain processes underpinning sustained tactile attention. In the present study, we simultaneously recorded EEG-fMRI and used modulations of steady-state somatosensory evoked potentials (SSSEPs) as a measure of attentional trial-by-trial variability. Therefore, frequency-tagged streams of vibrotactile stimulations were simultaneously presented to both index fingers. Human participants were cued to sustain attention to either the left or right finger stimulation and to press a button whenever they perceived a target pulse embedded in the to-be-attended stream. In-line with previous studies, a classical general linear model (GLM) analysis based on cued attention conditions revealed increased activity mainly in somatosensory and cerebellar regions. Yet, parametric modeling of the BOLD response using simultaneously recorded SSSEPs as a marker of attentional trial-by-trial variability quarried the intraparietal sulcus (IPS). The IPS in turn showed enhanced functional connectivity to a modality-unspecific attention network. However, this was only revealed on the basis of cued attention conditions in the classical GLM. By considering attentional variability as captured by SSSEPs, the IPS showed increased connectivity to a sensorimotor network, underpinning attentional selection processes between competing tactile stimuli and action choices (press a button or not). Thus, the current findings highlight the potential value by considering attentional variations in single trials and extend previous knowledge on the role of the IPS in tactile attention.
Collapse
|
36
|
Steyrl D, Patz F, Krausz G, Edlinger G, Müller-Putz GR. Reduction of EEG artifacts in simultaneous EEG-fMRI: Reference layer adaptive filtering (RLAF). 2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) 2015; 2015:3803-6. [PMID: 26737122 DOI: 10.1109/embc.2015.7319222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Jorge J, Grouiller F, Gruetter R, van der Zwaag W, Figueiredo P. Towards high-quality simultaneous EEG-fMRI at 7 T: Detection and reduction of EEG artifacts due to head motion. Neuroimage 2015; 120:143-53. [PMID: 26169325 DOI: 10.1016/j.neuroimage.2015.07.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 11/16/2022] Open
Abstract
The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7 T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field.
Collapse
Affiliation(s)
- João Jorge
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Institute for Systems and Robotics/Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | | | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology, University of Geneva, Geneva, Switzerland; Department of Radiology, University of Lausanne, Lausanne, Switzerland
| | - Wietske van der Zwaag
- Biomedical Imaging Research Center, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| | - Patrícia Figueiredo
- Institute for Systems and Robotics/Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
38
|
Abolghasemi V, Ferdowsi S. EEG–fMRI: Dictionary learning for removal of ballistocardiogram artifact from EEG. Biomed Signal Process Control 2015. [DOI: 10.1016/j.bspc.2015.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment. Neuroimage 2014; 105:132-44. [PMID: 25449743 DOI: 10.1016/j.neuroimage.2014.10.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 11/21/2022] Open
Abstract
The simultaneous recording of scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide unique insights into the dynamics of human brain function, and the increased functional sensitivity offered by ultra-high field fMRI opens exciting perspectives for the future of this multimodal approach. However, simultaneous recordings are susceptible to various types of artifacts, many of which scale with magnetic field strength and can seriously compromise both EEG and fMRI data quality in recordings above 3T. The aim of the present study was to implement and characterize an optimized setup for simultaneous EEG-fMRI in humans at 7 T. The effects of EEG cable length and geometry for signal transmission between the cap and amplifiers were assessed in a phantom model, with specific attention to noise contributions from the MR scanner coldheads. Cable shortening (down to 12 cm from cap to amplifiers) and bundling effectively reduced environment noise by up to 84% in average power and 91% in inter-channel power variability. Subject safety was assessed and confirmed via numerical simulations of RF power distribution and temperature measurements on a phantom model, building on the limited existing literature at ultra-high field. MRI data degradation effects due to the EEG system were characterized via B0 and B1(+) field mapping on a human volunteer, demonstrating important, although not prohibitive, B1 disruption effects. With the optimized setup, simultaneous EEG-fMRI acquisitions were performed on 5 healthy volunteers undergoing two visual paradigms: an eyes-open/eyes-closed task, and a visual evoked potential (VEP) paradigm using reversing-checkerboard stimulation. EEG data exhibited clear occipital alpha modulation and average VEPs, respectively, with concomitant BOLD signal changes. On a single-trial level, alpha power variations could be observed with relative confidence on all trials; VEP detection was more limited, although statistically significant responses could be detected in more than 50% of trials for every subject. Overall, we conclude that the proposed setup is well suited for simultaneous EEG-fMRI at 7 T.
Collapse
|
40
|
Rothlübbers S, Relvas V, Leal A, Murta T, Lemieux L, Figueiredo P. Characterisation and reduction of the EEG artefact caused by the helium cooling pump in the MR environment: validation in epilepsy patient data. Brain Topogr 2014; 28:208-20. [PMID: 25344750 DOI: 10.1007/s10548-014-0408-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 10/06/2014] [Indexed: 11/26/2022]
Abstract
The EEG acquired simultaneously with fMRI is distorted by a number of artefacts related to the presence of strong magnetic fields, which must be reduced in order to allow for a useful interpretation and quantification of the EEG data. For the two most prominent artefacts, associated with magnetic field gradient switching and the heart beat, reduction methods have been developed and applied successfully. However, a number of artefacts related to the MR-environment can be found to distort the EEG data acquired even without ongoing fMRI acquisition. In this paper, we investigate the most prominent of those artefacts, caused by the Helium cooling pump, and propose a method for its reduction and respective validation in data collected from epilepsy patients. Since the Helium cooling pump artefact was found to be repetitive, an average template subtraction method was developed for its reduction with appropriate adjustments for minimizing the degradation of the physiological part of the signal. The new methodology was validated in a group of 15 EEG-fMRI datasets collected from six consecutive epilepsy patients, where it successfully reduced the amplitude of the artefact spectral peaks by 95 ± 2 % while the background spectral amplitude within those peaks was reduced by only -5 ± 4 %. Although the Helium cooling pump should ideally be switched off during simultaneous EEG-fMRI acquisitions, we have shown here that in cases where this is not possible the associated artefact can be effectively reduced in post processing.
Collapse
Affiliation(s)
- Sven Rothlübbers
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
41
|
Iannotti GR, Pittau F, Michel CM, Vulliemoz S, Grouiller F. Pulse artifact detection in simultaneous EEG-fMRI recording based on EEG map topography. Brain Topogr 2014; 28:21-32. [PMID: 25307731 DOI: 10.1007/s10548-014-0409-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/08/2014] [Indexed: 11/28/2022]
Abstract
One of the major artifact corrupting electroencephalogram (EEG) acquired during functional magnetic resonance imaging (fMRI) is the pulse artifact (PA). It is mainly due to the motion of the head and attached electrodes and wires in the magnetic field occurring after each heartbeat. In this study we propose a novel method to improve PA detection by considering the strong gradient and inversed polarity between left and right EEG electrodes. We acquired high-density EEG-fMRI (256 electrodes) with simultaneous electrocardiogram (ECG) at 3 T. PA was estimated as the voltage difference between right and left signals from the electrodes showing the strongest artifact (facial and temporal). Peaks were detected on this estimated signal and compared to the peaks in the ECG recording. We analyzed data from eleven healthy subjects, two epileptic patients and four healthy subjects with an insulating layer between electrodes and scalp. The accuracy of the two methods was assessed with three criteria: (i) standard deviation, (ii) kurtosis and (iii) confinement into the physiological range of the inter-peak intervals. We also checked whether the new method has an influence on the identification of epileptic spikes. Results show that estimated PA improved artifact detection in 15/17 cases, when compared to the ECG method. Moreover, epileptic spike identification was not altered by the correction. The proposed method improves the detection of pulse-related artifacts, particularly crucial when the ECG is of poor quality or cannot be recorded. It will contribute to enhance the quality of the EEG increasing the reliability of EEG-informed fMRI analysis.
Collapse
Affiliation(s)
- Giannina R Iannotti
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, Geneva University Hospital, 1211, Geneva 14, Switzerland
| | | | | | | | | |
Collapse
|
42
|
Kim HC, Yoo SS, Lee JH. Recursive approach of EEG-segment-based principal component analysis substantially reduces cryogenic pump artifacts in simultaneous EEG-fMRI data. Neuroimage 2014; 104:437-51. [PMID: 25284302 DOI: 10.1016/j.neuroimage.2014.09.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 09/08/2014] [Accepted: 09/22/2014] [Indexed: 12/15/2022] Open
Abstract
Electroencephalography (EEG) data simultaneously acquired with functional magnetic resonance imaging (fMRI) data are preprocessed to remove gradient artifacts (GAs) and ballistocardiographic artifacts (BCAs). Nonetheless, these data, especially in the gamma frequency range, can be contaminated by residual artifacts produced by mechanical vibrations in the MRI system, in particular the cryogenic pump that compresses and transports the helium that chills the magnet (the helium-pump). However, few options are available for the removal of helium-pump artifacts. In this study, we propose a recursive approach of EEG-segment-based principal component analysis (rsPCA) that enables the removal of these helium-pump artifacts. Using the rsPCA method, feature vectors representing helium-pump artifacts were successfully extracted as eigenvectors, and the reconstructed signals of the feature vectors were subsequently removed. A test using simultaneous EEG-fMRI data acquired from left-hand (LH) and right-hand (RH) clenching tasks performed by volunteers found that the proposed rsPCA method substantially reduced helium-pump artifacts in the EEG data and significantly enhanced task-related gamma band activity levels (p=0.0038 and 0.0363 for LH and RH tasks, respectively) in EEG data that have had GAs and BCAs removed. The spatial patterns of the fMRI data were estimated using a hemodynamic response function (HRF) modeled from the estimated gamma band activity in a general linear model (GLM) framework. Active voxel clusters were identified in the post-/pre-central gyri of motor area, only from the rsPCA method (uncorrected p<0.001 for both LH/RH tasks). In addition, the superior temporal pole areas were consistently observed (uncorrected p<0.001 for the LH task and uncorrected p<0.05 for the RH task) in the spatial patterns of the HRF model for gamma band activity when the task paradigm and movement were also included in the GLM.
Collapse
Affiliation(s)
- Hyun-Chul Kim
- Department of Brain and Cognitive Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713, Republic of Korea
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong-Hwan Lee
- Department of Brain and Cognitive Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713, Republic of Korea.
| |
Collapse
|
43
|
Data quality in fMRI and simultaneous EEG-fMRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2014; 28:23-31. [PMID: 24770631 DOI: 10.1007/s10334-014-0443-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
OBJECT To evaluate functional magnetic resonance imaging (fMRI) and simultaneous electroencephalography (EEG)-fMRI data quality in an organization using several magnetic resonance imaging (MRI) systems. MATERIALS AND METHODS Functional magnetic resonance imaging measurements were carried out twice with a uniform gel phantom on five different MRI systems with field strengths of 1.5 and 3.0 T. Several image quality parameters were measured with automatic analysis software. For simultaneous EEG-fMRI, data quality was evaluated on 3.0 T systems, and the phantom results were compared to data on human volunteers. RESULTS The fMRI quality parameters measured with different MRI systems were on an acceptable level. The presence of the EEG equipment caused superficial artifacts on the phantom image. The typical artifact depth was 15 mm, and no artifacts were observed in the brain area in the images of volunteers. Average signal-to-noise ratio (SNR) reduction in the phantom measurements was 15 %, a reduction of SNR similar to that observed in the human data. We also detected minor changes in the noise of the EEG signal during the phantom measurement. CONCLUSION The phantom proved valuable in the successful evaluation of the data quality of fMRI and EEG-fMRI. The results fell within acceptable limits. This study demonstrated a repeatable method to measure and follow up on the data quality of simultaneous EEG-fMRI.
Collapse
|
44
|
Neuner I, Arrubla J, Felder J, Shah NJ. Simultaneous EEG-fMRI acquisition at low, high and ultra-high magnetic fields up to 9.4 T: perspectives and challenges. Neuroimage 2013; 102 Pt 1:71-9. [PMID: 23796544 DOI: 10.1016/j.neuroimage.2013.06.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 01/25/2023] Open
Abstract
In this perspectives article we highlight the advantages of simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). As MRI moves towards using ultra-high magnetic fields in the quest for increased signal-to-noise, the question arises whether combined EEG-fMRI measurements are feasible at magnetic fields of 7 T and higher. We describe the challenges of MRI-EEG at 1.5, 3, 7 and 9.4 T and review the proposed solutions. In an outlook, we discuss further developments such as simultaneous trimodal imaging using MR, positron emission tomography (PET) and EEG under the same physiological conditions in the same subject.
Collapse
Affiliation(s)
- Irene Neuner
- Institute of Neuroscience and Medicine 4, INM 4, Forschungszentrum Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Germany; JARA - BRAIN - Translational Medicine, Germany.
| | - Jorge Arrubla
- Institute of Neuroscience and Medicine 4, INM 4, Forschungszentrum Jülich, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine 4, INM 4, Forschungszentrum Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM 4, Forschungszentrum Jülich, Germany; Department of Neurology, RWTH Aachen University, Germany; JARA - BRAIN - Translational Medicine, Germany
| |
Collapse
|
45
|
Jorge J, van der Zwaag W, Figueiredo P. EEG-fMRI integration for the study of human brain function. Neuroimage 2013; 102 Pt 1:24-34. [PMID: 23732883 DOI: 10.1016/j.neuroimage.2013.05.114] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 12/21/2022] Open
Abstract
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have proved to be extremely valuable tools for the non-invasive study of human brain function. Moreover, due to a notable degree of complementarity between the two modalities, the combination of EEG and fMRI data has been actively sought in the last two decades. Although initially focused on epilepsy, EEG-fMRI applications were rapidly extended to the study of healthy brain function, yielding new insights into its underlying mechanisms and pathways. Nevertheless, EEG and fMRI have markedly different spatial and temporal resolutions, and probe neuronal activity through distinct biophysical processes, many aspects of which are still poorly understood. The remarkable conceptual and methodological challenges associated with EEG-fMRI integration have motivated the development of a wide range of analysis approaches over the years, each relying on more or less restrictive assumptions, and aiming to shed further light on the mechanisms of brain function along with those of the EEG-fMRI coupling itself. Here, we present a review of the most relevant EEG-fMRI integration approaches yet proposed for the study of brain function, supported by a general overview of our current understanding of the biophysical mechanisms coupling the signals obtained from the two modalities.
Collapse
Affiliation(s)
- João Jorge
- Institute for Systems and Robotics, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal; Biomedical Imaging Research Center, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Wietske van der Zwaag
- Biomedical Imaging Research Center, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Patrícia Figueiredo
- Institute for Systems and Robotics, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal.
| |
Collapse
|