1
|
Zhou L, Liu X, He G, Chen M, Zeng S, Sun C. Alteration of fractional anisotropy in preterm-born individuals: a systematic review and meta-analysis. J OBSTET GYNAECOL 2024; 44:2371956. [PMID: 38984803 DOI: 10.1080/01443615.2024.2371956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUD Neurological disorders are common in preterm (PT) born individuals. Diffusion tensor imaging (DTI) studies using tract-based spatial statistics (TBSS) effectively detect microstructural white matter (WM) abnormalities in the brain. We conducted this systematic review to integrate the findings of TBSS studies to determine the most consistent WM alterations in PT born individuals. METHODS PubMed, Embase, Web of Science and Science Direct were searched. DTI studies using TBSS in PT born individuals were screened up to October 2022. The systematic review included studies reporting alterations in FA values for the entire brain in a stereotactic space, with three coordinates (x, y, z), according to the seed-based d mapping method. RESULTS The search strategy identified seventeen studies that fulfilled our inclusion criteria, with a total of 911 PT-born individuals and 563 matched controls were analysed. Of the seventeen studies, eight were dedicated to 650 adults, five to 411 children and four to 413 infants. Ten studies recruited 812 individuals born very prematurely (GA <29 weeks), six studies recruited 386 moderately premature individuals (GA = 29-32 weeks) and one study recruited 276 individuals born late prematurely (GA >32 weeks). This meta-analysis of six studies including 388 individuals highlighted four brain regions in which fractional anisotropy (FA) was lower in PT group than in people born at term. The quantitative meta-analysis found that the most robust WM alterations were located in the corpus callosum (CC), the bilateral thalamus and the left superior longitudinal fasciculus (SLF) II. Significant changes in FA reflect WM abnormalities in PT born individuals from infant to young adulthood. CONCLUSIONS Significant changes in FA reflect WM abnormalities in individuals born PT from infancy to young adulthood. The abnormal development of the CC, bilateral thalamus and left SLF may play a vital role in the neurodevelopment of PT individuals.
Collapse
Affiliation(s)
- Le Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Guolin He
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Meng Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Shuai Zeng
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Center for Healthcare Quality Management in Obstetrics, Peking University Third Hospital, Beijing, China
| | - Chuntang Sun
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
2
|
White TA, Miller SL, Sutherland AE, Allison BJ, Camm EJ. Perinatal compromise affects development, form, and function of the hippocampus part one; clinical studies. Pediatr Res 2024; 95:1698-1708. [PMID: 38519794 PMCID: PMC11245394 DOI: 10.1038/s41390-024-03105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/25/2024]
Abstract
The hippocampus is a neuron-rich specialised brain structure that plays a central role in the regulation of emotions, learning and memory, cognition, spatial navigation, and motivational processes. In human fetal development, hippocampal neurogenesis is principally complete by mid-gestation, with subsequent maturation comprising dendritogenesis and synaptogenesis in the third trimester of pregnancy and infancy. Dendritogenesis and synaptogenesis underpin connectivity. Hippocampal development is exquisitely sensitive to perturbations during pregnancy and at birth. Clinical investigations demonstrate that preterm birth, fetal growth restriction (FGR), and acute hypoxic-ischaemic encephalopathy (HIE) are common perinatal complications that alter hippocampal development. In turn, deficits in hippocampal development and structure mediate a range of neurodevelopmental disorders, including cognitive and learning problems, autism, and Attention-Deficit/Hyperactivity Disorder (ADHD). In this review, we summarise the developmental profile of the hippocampus during fetal and neonatal life and examine the hippocampal deficits observed following common human pregnancy complications. IMPACT: The review provides a comprehensive summary of the developmental profile of the hippocampus in normal fetal and neonatal life. We address a significant knowledge gap in paediatric research by providing a comprehensive summary of the relationship between pregnancy complications and subsequent hippocampal damage, shedding new light on this critical aspect of early neurodevelopment.
Collapse
Affiliation(s)
- Tegan A White
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Emily J Camm
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
3
|
Deferm W, Tang T, Moerkerke M, Daniels N, Steyaert J, Alaerts K, Ortibus E, Naulaers G, Boets B. Subtle microstructural alterations in white matter tracts involved in socio-emotional processing after very preterm birth. Neuroimage Clin 2024; 41:103580. [PMID: 38401459 PMCID: PMC10944182 DOI: 10.1016/j.nicl.2024.103580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/10/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
Children born very preterm (VPT, < 32 weeks of gestation) have an increased risk of developing socio-emotional difficulties. Possible neural substrates for these socio-emotional difficulties are alterations in the structural connectivity of the social brain due to premature birth. The objective of the current study was to study microstructural white matter integrity in VPT versus full-term (FT) born school-aged children along twelve white matter tracts involved in socio-emotional processing. Diffusion MRI scans were obtained from a sample of 35 VPT and 38 FT 8-to-12-year-old children. Tractography was performed using TractSeg, a state-of-the-art neural network-based approach, which offers investigation of detailed tract profiles of fractional anisotropy (FA). Group differences in FA along the tracts were investigated using both a traditional and complementary functional data analysis approach. Exploratory correlations were performed between the Social Responsiveness Scale (SRS-2), a parent-report questionnaire assessing difficulties in social functioning, and FA along the tract. Both analyses showed significant reductions in FA for the VPT group along the middle portion of the right SLF I and an anterior portion of the left SLF II. These group differences possibly indicate altered white matter maturation due to premature birth and may contribute to altered functional connectivity in the Theory of Mind network which has been documented in earlier work with VPT samples. Apart from reduced social motivation in the VPT group, there were no significant group differences in reported social functioning, as assessed by SRS-2. We found that in the VPT group higher FA values in segments of the left SLF I and right SLF II were associated with better social functioning. Surprisingly, the opposite was found for segments in the right IFO, where higher FA values were associated with worse reported social functioning. Since no significant correlations were found for the FT group, this relationship may be specific for VPT children. The current study overcomes methodological limitations of previous studies by more accurately segmenting white matter tracts using constrained spherical deconvolution based tractography, by applying complementary tractometry analysis approaches to estimate changes in FA more accurately, and by investigating the FA profile along the three components of the SLF.
Collapse
Affiliation(s)
- Ward Deferm
- Center for Developmental Psychiatry, KU Leuven, Belgium.
| | - Tiffany Tang
- Center for Developmental Psychiatry, KU Leuven, Belgium
| | | | - Nicky Daniels
- Neuromotor Rehabilitation Research Group, KU Leuven, Belgium
| | - Jean Steyaert
- Center for Developmental Psychiatry, KU Leuven, Belgium; Child Psychiatry, UZ Leuven, Belgium
| | - Kaat Alaerts
- Neuromotor Rehabilitation Research Group, KU Leuven, Belgium
| | | | - Gunnar Naulaers
- Neonatal Intensive Care Unit - Neonatology, UZ Leuven, Belgium; UZ Leuven & Center for Developmental Disorders, Belgium
| | - Bart Boets
- Center for Developmental Psychiatry, KU Leuven, Belgium
| |
Collapse
|
4
|
Lapidaire W, Clayden JD, Fewtrell MS, Clark CA. Increased white matter fibre dispersion and lower IQ scores in adults born preterm. Hum Brain Mapp 2024; 45:e26545. [PMID: 38070181 PMCID: PMC10789207 DOI: 10.1002/hbm.26545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024] Open
Abstract
Preterm birth has been associated with altered microstructural properties of the white matter and lower cognitive ability in childhood and adulthood. Due to methodological limitations of the diffusion tensor model, it is not clear whether alterations in myelination or variation in fibre orientation are driving these differences. Novel models applied to multi-shell diffusion imaging have been used to disentangle these effects, but to date this has not been used to study the preterm brain in adulthood. This study investigated whether novel advanced diffusion MRI metrics such as microscopic anisotropy and orientation dispersion are altered in adults born preterm, and whether this was associated with cognitive performance. Seventy-two preterm born participants (<37 weeks gestational age) were recruited from a 1982-1984 cohort (33 males, mean age 33.5 ± 1.0 years). Seventy-two term born (>37 weeks gestational age) controls (34 males, mean age 30.9 ± 4.0 years) were recruited from the general population. Tensor FA was calculated with FSL, while microscopic FA and orientation dispersion entropy (ODE) were estimated using the Spherical Mean Technique (SMT). Estimated Full Scale IQ (FSIQ), Verbal Comprehension Index (VCI) and Perceptual Reasoning Index (PRI) were obtained from the WASI-II (abbreviated) IQ test. Voxel-wise comparisons using FSL's tract-based spatial statistics were performed to test between-group differences in diffusion MRI metrics as well as within-group associations of diffusion MRI metrics and IQ outcomes. The preterm group had significantly lower FSIQ, VCI and PRI scores. Preterm subjects demonstrated widespread decreases in ODE reflecting increased fibre dispersion, but no differences in microscopic FA. Tensor FA was increased in a small area in the anterior corona radiata. Lower FA values in the preterm population were associated with lower FSIQ and PRI scores. An increase in fibre dispersion in white matter and lower IQ scores after preterm birth exist in adulthood. Advanced diffusion MRI metrics such as the orientation dispersion entropy can be used to monitor white matter alterations across the lifespan in preterm born individuals. Although not significantly different between preterm and term groups, tensor FA values in the preterm group were associated with cognitive outcome.
Collapse
Affiliation(s)
- Winok Lapidaire
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Jonathan D. Clayden
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Mary S. Fewtrell
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Christopher A. Clark
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| |
Collapse
|
5
|
Christians JK, Ahmadzadeh-Seddeighi S, Bilal A, Bogdanovic A, Ho R, Leung EV, MacGregor MA, Nadasdy NM, Principe GM. Sex differences in the effects of prematurity and/or low birthweight on neurodevelopmental outcomes: systematic review and meta-analyses. Biol Sex Differ 2023; 14:47. [PMID: 37434174 DOI: 10.1186/s13293-023-00532-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Premature birth and/or low birthweight have long-lasting effects on cognition. The purpose of the present systematic review is to examine whether the effects of prematurity and/or low birth weight on neurodevelopmental outcomes differ between males and females. METHODS Web of Science, Scopus, and Ovid MEDLINE were searched for studies of humans born premature and/or of low birthweight, where neurodevelopmental phenotypes were measured at 1 year of age or older. Studies must have reported outcomes in such a way that it was possible to assess whether effects were greater in one sex than the other. Risk of bias was assessed using both the Newcastle-Ottawa scale and the National Institutes of Health Quality assessment tool for observational cohort and cross-sectional studies. RESULTS Seventy-five studies were included for descriptive synthesis, although only 24 presented data in a way that could be extracted for meta-analyses. Meta-analyses found that severe and moderate prematurity/low birthweight impaired cognitive function, and severe prematurity/low birthweight also increased internalizing problem scores. Moderate, but not severe, prematurity/low birthweight significantly increased externalizing problem scores. In no case did effects of prematurity/low birthweight differ between males and females. Heterogeneity among studies was generally high and significant, although age at assessment was not a significant moderator of effect. Descriptive synthesis did not identify an obvious excess or deficiency of male-biased or female-biased effects for any trait category. Individual study quality was generally good, and we found no evidence of publication bias. CONCLUSIONS We found no evidence that the sexes differ in their susceptibility to the effects of severe or moderate prematurity/low birthweight on cognitive function, internalizing traits or externalizing traits. Result heterogeneity tended to be high, but this reflects that one sex is not consistently more affected than the other. Frequently stated generalizations that one sex is more susceptible to prenatal adversity should be re-evaluated.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
- Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, BC, Canada.
| | | | - Alishba Bilal
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Anastasia Bogdanovic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Rebecca Ho
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Estee V Leung
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Megan A MacGregor
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Nolan M Nadasdy
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|
6
|
Rimol LM, Rise HH, Evensen KAI, Yendiki A, Løhaugen GC, Indredavik MS, Brubakk AM, Bjuland KJ, Eikenes L, Weider S, Håberg A, Skranes J. Atypical brain structure mediates reduced IQ in young adults born preterm with very low birth weight. Neuroimage 2023; 266:119816. [PMID: 36528311 DOI: 10.1016/j.neuroimage.2022.119816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Preterm birth with very low birth weight (VLBW) confers heightened risk for perinatal brain injury and long-term cognitive deficits, including a reduction in IQ of up to one standard deviation. Persisting gray and white matter aberrations have been documented well into adolescence and adulthood in preterm born individuals. What has not been documented so far is a plausible causal link between reductions in cortical surface area or subcortical brain structure volumes, and the observed reduction in IQ. The NTNU Low Birth Weight in a Lifetime Perspective study is a prospective longitudinal cohort study, including a preterm born VLBW group (birthweight ≤1500 g) and a term born control group. Structural magnetic resonance imaging data were obtained from 38 participants aged 19, born preterm with VLBW, and 59 term-born peers. The FreeSurfer software suite was used to obtain measures of cortical thickness, cortical surface area, and subcortical brain structure volumes. Cognitive ability was estimated using the Wechsler Adult Intelligence Scale, 3rd Edition, including four IQ-indices: Verbal comprehension, Working memory, Perceptual organization, and Processing speed. Statistical mediation analyses were employed to test for indirect effects of preterm birth with VLBW on IQ, mediated by atypical brain structure. The mediation analyses revealed negative effects of preterm birth with VLBW on IQ that were partially mediated by reduced surface area in multiple regions of frontal, temporal, parietal and insular cortex, and by reductions in several subcortical brain structure volumes. The analyses did not yield sufficient evidence of mediation effects of cortical thickness on IQ. This is, to our knowledge, the first time a plausible causal relationship has been established between regional cortical area reductions, as well as reductions in specific subcortical and cerebellar structures, and general cognitive ability in preterm born survivors with VLBW.
Collapse
Affiliation(s)
- Lars M Rimol
- Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Radiology and Nuclear Medicine, St. Olav University Hospital, Trondheim, Norway.
| | - Henning Hoel Rise
- Department of Radiology and Nuclear Medicine, St. Olav University Hospital, Trondheim, Norway
| | - Kari Anne I Evensen
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway; Department of Public Health and Nursing, NTNU, Trondheim, Norway
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, United States
| | - Gro C Løhaugen
- Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | | | - Ann-Mari Brubakk
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
| | | | - Live Eikenes
- Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway
| | - Siri Weider
- Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Asta Håberg
- Department of Radiology and Nuclear Medicine, St. Olav University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | - Jon Skranes
- Department of Radiology and Nuclear Medicine, St. Olav University Hospital, Trondheim, Norway; Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| |
Collapse
|
7
|
Effect of antenatal magnesium sulphate on MRI biomarkers of white matter development at term equivalent age: The MagNUM Study. EBioMedicine 2022; 78:103923. [PMID: 35331677 PMCID: PMC9043972 DOI: 10.1016/j.ebiom.2022.103923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022] Open
Abstract
Background Magnesium sulphate given to women prior to very
preterm birth protects the perinatal brain, so fewer babies die or develop
cerebral palsy. How magnesium sulphate exerts these beneficial effects remains
uncertain. The MagNUM Study aimed to assess the effect of exposure to antenatal
magnesium sulphate on MRI measures of brain white matter microstructure at term
equivalent age. Methods Nested cohort study within the Magnesium sulphate at
30 to <34 weeks’ Gestational age Neuroprotection Trial (MAGENTA).
Australian New Zealand Clinical Trials Registry ACTRN12611000491965. Mothers at
risk of preterm birth at 30 to <34 weeks’ gestation were randomised to
receive either 4 g of magnesium sulphate heptahydrate [8 mmol magnesium ions],
or saline placebo, when preterm birth was planned or expected within 24 h.
Participating babies underwent diffusion tensor MRI at term equivalent age. The
main outcomes were fractional anisotropy across the white matter tract skeleton
compared using Tract-based Spatial Statistics (TBSS), with adjustment for
postmenstrual age at birth and at MRI, and MRI site. Researchers and families
were blind to treatment group allocation during data collection and
analyses. Findings Of the 109 babies the demographics of the 49 babies
exposed to magnesium sulphate were similar to the 60 babies exposed to placebo.
In babies whose mothers were allocated to magnesium sulphate, fractional
anisotropy was lower within the corticospinal tracts and corona radiata, the
superior and inferior longitudinal fasciculi, and the inferior fronto-occipital
fasciculi compared to babies whose mothers were allocated placebo
(P < 0·05). Interpretation In babies born preterm after 30 weeks’ gestation,
antenatal magnesium sulphate exposure did not promote development of white
matter microstructure in pathways affecting motor or cognitive function. This
suggests that if the neuroprotective effect of magnesium sulphate treatment
prior to preterm birth is confirmed at this gestation, the mechanisms are not
related to accelerated white matter maturation inferred from fractional
anisotropy. Funding This study was funded by a project grant from the
Health Research Council of New Zealand (HRC 14/153).
Collapse
|
8
|
Kanel D, Vanes LD, Pecheva D, Hadaya L, Falconer S, Counsell SJ, Edwards DA, Nosarti C. Neonatal White Matter Microstructure and Emotional Development during the Preschool Years in Children Who Were Born Very Preterm. eNeuro 2021; 8:ENEURO.0546-20.2021. [PMID: 34373253 PMCID: PMC8489022 DOI: 10.1523/eneuro.0546-20.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
Children born very preterm (<33 weeks of gestation) are at a higher risk of developing socio-emotional difficulties compared with those born at term. In this longitudinal study, we tested the hypothesis that diffusion characteristics of white matter (WM) tracts implicated in socio-emotional processing assessed in the neonatal period are associated with socio-emotional development in 151 very preterm children previously enrolled into the Evaluation of Preterm Imaging study (EudraCT 2009-011602-42). All children underwent diffusion tensor imaging at term-equivalent age and fractional anisotropy (FA) was quantified in the uncinate fasciculus (UF), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), and superior longitudinal fasciculus (SLF). Children's socio-emotional development was evaluated at preschool age (median = 4.63 years). Exploratory factor analysis conducted on the outcome variables revealed a three-factor structure, with latent constructs summarized as: "emotion moderation," "social function," and "empathy." Results of linear regression analyses, adjusting for full-scale IQ and clinical and socio-demographic variables, showed an association between lower FA in the right UF and higher "emotion moderation" scores (β = -0.280; p < 0.001), which was mainly driven by negative affectivity scores (β = -0.281; p = 0.001). Results further showed an association between higher full-scale IQ and better social functioning (β = -0.334, p < 0.001). Girls had higher empathy scores than boys (β = -0.341, p = 0.006). These findings suggest that early alterations of diffusion characteristics of the UF could represent a biological substrate underlying the link between very preterm birth and emotional dysregulation in childhood and beyond.
Collapse
Affiliation(s)
- Dana Kanel
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Lucy D Vanes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Diliana Pecheva
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Laila Hadaya
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - David A Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| |
Collapse
|
9
|
Advances in functional and diffusion neuroimaging research into the long-term consequences of very preterm birth. J Perinatol 2021; 41:689-706. [PMID: 33099576 DOI: 10.1038/s41372-020-00865-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022]
Abstract
Very preterm birth (<32 weeks of gestation) has been associated with lifelong difficulties in a variety of neurocognitive functions. Magnetic resonance imaging (MRI) combined with advanced analytical approaches have been employed in order to increase our understanding of the neurodevelopmental problems that many very preterm born individuals face as they grow up. In this review, we will focus on two novel imaging techniques that have explored relationships between specific brain mechanisms and behavioural outcomes. These are functional MRI, which maps regional, time-varying changes in brain metabolism and diffusion-weighted MRI, which measures the displacement of water molecules in tissue and provides quantitative information about tissue microstructure. Identifying the neurobiological underpinning of the long-term sequelae associated with very preterm birth could inform the development and implementation of preventative interventions (before any cognitive problem emerges) and could facilitate the identification of behavioural targets for improving the life course outcomes of very preterm individuals.
Collapse
|
10
|
Lapidaire W, Clark C, Fewtrell MS, Lucas A, Leeson P, Lewandowski AJ. The Preterm Heart-Brain Axis in Young Adulthood: The Impact of Birth History and Modifiable Risk Factors. J Clin Med 2021; 10:jcm10061285. [PMID: 33808886 PMCID: PMC8003804 DOI: 10.3390/jcm10061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
People born preterm are at risk of developing both cardiac and brain abnormalities. We aimed to investigate whether cardiovascular physiology may directly affect brain structure in young adulthood and whether cardiac changes are associated with modifiable biomarkers. Forty-eight people born preterm, followed since birth, underwent cardiac MRI at age 25.1 ± 1.4 years and brain MRI at age 33.4 ± 1.0 years. Term born controls were recruited at both time points for comparison. Cardiac left and right ventricular stroke volume, left and right ventricular end diastolic volume and right ventricular ejection fraction were significantly different between preterm and term born controls and associated with subcortical brain volumes and fractional anisotropy in the corpus callosum in the preterm group. This suggests that cardiovascular abnormalities in young adults born preterm are associated with potentially adverse future brain health. Associations between left ventricular stroke volume indexed to body surface area and right putamen volumes, as well as left ventricular end diastolic length and left thalamus volumes, remained significant when adjusting for early life factors related to prematurity. Although no significant associations were found between modifiable biomarkers and cardiac physiology, this highlights that cardiovascular health interventions may also be important for brain health in preterm born adults.
Collapse
Affiliation(s)
- Winok Lapidaire
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- UCL GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Chris Clark
- UCL GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mary S Fewtrell
- UCL GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Alan Lucas
- UCL GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Paul Leeson
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Adam J Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
11
|
Fernández de Gamarra-Oca L, Zubiaurre-Elorza L, Junqué C, Solana E, Soria-Pastor S, Vázquez É, Delgado I, Macaya A, Ojeda N, Poca MA. Reduced hippocampal subfield volumes and memory performance in preterm children with and without germinal matrix-intraventricular hemorrhage. Sci Rep 2021; 11:2420. [PMID: 33510243 PMCID: PMC7844245 DOI: 10.1038/s41598-021-81802-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
Preterm newborns with germinal matrix-intraventricular hemorrhage (GM-IVH) are at a higher risk of evidencing neurodevelopmental alterations. Present study aimed to explore the long-term effects that GM-IVH have on hippocampal subfields, and their correlates with memory. The sample consisted of 58 participants, including 36 preterm-born (16 with GM-IVH and 20 without neonatal brain injury), and 22 full-term children aged between 6 and 15 years old. All participants underwent a cognitive assessment and magnetic resonance imaging study. GM-IVH children evidenced lower scores in Full Intelligence Quotient and memory measures compared to their low-risk preterm and full-term peers. High-risk preterm children with GM-IVH evidenced significantly lower total hippocampal volumes bilaterally and hippocampal subfield volumes compared to both low-risk preterm and full-term groups. Finally, significant positive correlations between memory and hippocampal subfield volumes were only found in preterm participants together; memory and the right CA-field correlation remained significant after Bonferroni correction was applied (p = .002). In conclusion, memory alterations and both global and regional volumetric reductions in the hippocampus were found to be specifically related to a preterm sample with GM-IVH. Nevertheless, results also suggest that prematurity per se has a long-lasting impact on the association between the right CA-field volume and memory during childhood.
Collapse
Affiliation(s)
- Lexuri Fernández de Gamarra-Oca
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Basque Country, Spain
| | - Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Basque Country, Spain.
| | - Carme Junqué
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Hospital Clinic, Barcelona, Catalonia, Spain
- Institute of Biomedical Research August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Elisabeth Solana
- Institute of Biomedical Research August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic, Barcelona, Catalonia, Spain
| | - Sara Soria-Pastor
- Department of Psychiatry, Consorci Sanitari del Maresme, Hospital of Mataró, Mataró, Catalonia, Spain
| | - Élida Vázquez
- Department of Pediatric Radiology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Catalonia, Spain
| | - Ignacio Delgado
- Department of Pediatric Radiology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Catalonia, Spain
| | - Alfons Macaya
- Grup de Recerca en Neurologia Pediàtrica, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Catalonia, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Basque Country, Spain
| | - Maria A Poca
- Department of Neurosurgery and Neurotraumatology and Neurosurgery Research Unit, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Poppe T, Thompson B, Boardman JP, Bastin ME, Alsweiler J, Deib G, Harding JE, Crowther CA. Effect of antenatal magnesium sulphate on MRI biomarkers of white matter development at term equivalent age: The magnum study. EBioMedicine 2020; 59:102957. [PMID: 32858399 PMCID: PMC7452670 DOI: 10.1016/j.ebiom.2020.102957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background Magnesium sulphate given to women immediately prior to very preterm birth protects the perinatal brain, so fewer babies die or develop cerebral palsy. How magnesium sulphate exerts these beneficial effects remains uncertain. The aim of the MagNUM Study was to assess the effect of exposure to antenatal magnesium sulphate on MRI measures of brain white matter microstructure at term equivalent age. Methods Nested cohort study within the randomised Magnesium sulphate at 30 to <34 weeks’ Gestational age Neuroprotection Trial (MAGENTA). Mothers at risk of preterm birth at 30 to <34 weeks’ gestation were randomised to receive either 4 g of magnesium sulphate heptahydrate [8 mmol magnesium ions], or saline placebo, infused over 30 min when preterm birth was planned or expected within 24 h. Participating babies underwent diffusion tensor MRI at term equivalent age. The main outcomes were fractional anisotropy across the white matter tract skeleton compared using Tract-based Spatial Statistics (TBSS), with adjustment for postmenstrual age at birth and at MRI, and MRI site. Researchers and families were blind to treatment group allocation during data collection and analyses. Findings Of the 109 participating babies the demographics of the 60 babies exposed to magnesium sulphate were similar to the 49 babies exposed to placebo. In babies whose mothers were allocated to magnesium sulphate, fractional anisotropy was higher within the corticospinal tracts and corona radiata, the superior and inferior longitudinal fasciculi, and the inferior fronto-occipital fasciculi compared to babies whose mothers were allocated placebo (P < 0.05). Interpretation In babies born preterm, antenatal magnesium sulphate exposure promotes development of white matter microstructure in pathways affecting both motor and cognitive function. This may be one mechanism for the neuroprotective effect of magnesium sulphate treatment prior to preterm birth. Funding Health Research Council of New Zealand.
Collapse
Affiliation(s)
- Tanya Poppe
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; Centre for the Developing Brain, Department of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Benjamin Thompson
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - James P Boardman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom; MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jane Alsweiler
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - Gerard Deib
- Department of Radiology, West Virginia University Hospital, W.Va, United States
| | - Jane E Harding
- Liggins Institute, University of Auckland, Building 503, Level 2, 85 Park Road, Auckland 1142, New Zealand
| | - Caroline A Crowther
- Liggins Institute, University of Auckland, Building 503, Level 2, 85 Park Road, Auckland 1142, New Zealand.
| | | |
Collapse
|
13
|
Tokariev M, Vuontela V, Lönnberg P, Lano A, Perkola J, Wolford E, Andersson S, Metsäranta M, Carlson S. Altered working memory-related brain responses and white matter microstructure in extremely preterm-born children at school age. Brain Cogn 2019; 136:103615. [PMID: 31563082 DOI: 10.1016/j.bandc.2019.103615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 11/28/2022]
Abstract
Preterm birth poses a risk for neurocognitive and behavioral development. Preterm children, who have not been diagnosed with neurological or cognitive deficits, enter normal schools and are expected to succeed as their term-born peers. Here we tested the hypotheses that despite an uneventful development after preterm birth, these children might exhibit subtle abnormalities in brain function and white-matter microstructure at school-age. We recruited 7.5-year-old children born extremely prematurely (<28 weeks' gestation), and age- and gender-matched term-born controls (≥37 weeks' gestation). We applied fMRI during working-memory (WM) tasks, and investigated white-matter microstructure with diffusion tensor imaging. Compared with controls, preterm-born children performed WM tasks less accurately, had reduced activation in several right prefrontal areas, and weaker deactivation of right temporal lobe areas. The weaker prefrontal activation correlated with poorer WM performance. Preterm-born children had higher fractional anisotropy (FA) and lower diffusivity than controls in several white-matter areas, and in the posterior cerebellum, the higher FA associated with poorer visuospatial test scores. In controls, higher FA and lower diffusivity correlated with faster WM performance. Together these findings demonstrate weaker WM-related brain activations and altered white matter microstructure in children born extremely preterm, who had normal global cognitive ability.
Collapse
Affiliation(s)
- Maksym Tokariev
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Virve Vuontela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Piia Lönnberg
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aulikki Lano
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Perkola
- Department of Clinical Neurophysiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elina Wolford
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Sture Andersson
- Department of Pediatrics, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjo Metsäranta
- Department of Pediatrics, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Synnöve Carlson
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto University School of Science, Espoo, Finland.
| |
Collapse
|
14
|
Shang J, Fisher P, Bäuml JG, Daamen M, Baumann N, Zimmer C, Bartmann P, Boecker H, Wolke D, Sorg C, Koutsouleris N, Dwyer DB. A machine learning investigation of volumetric and functional MRI abnormalities in adults born preterm. Hum Brain Mapp 2019; 40:4239-4252. [PMID: 31228329 DOI: 10.1002/hbm.24698] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Imaging studies have characterized functional and structural brain abnormalities in adults after premature birth, but these investigations have mostly used univariate methods that do not account for hypothesized interdependencies between brain regions or quantify accuracy in identifying individuals. To overcome these limitations, we used multivariate machine learning to identify gray matter volume (GMV) and amplitude of low frequency fluctuations (ALFF) brain patterns that best classify young adults born very preterm/very low birth weight (VP/VLBW; n = 94) from those born full-term (FT; n = 92). We then compared the spatial maps of the structural and functional brain signatures and validated them by assessing associations with clinical birth history and basic cognitive variables. Premature birth could be predicted with a balanced accuracy of 80.7% using GMV and 77.4% using ALFF. GMV predictions were mediated by a pattern of subcortical and middle temporal reductions and volumetric increases of the lateral prefrontal, medial prefrontal, and superior temporal gyrus regions. ALFF predictions were characterized by a pattern including increases in the thalamus, pre- and post-central gyri, and parietal lobes, in addition to decreases in the superior temporal gyri bilaterally. Decision scores from each classification, assessing the degree to which an individual was classified as a VP/VLBW case, were predicted by the number of days in neonatal hospitalization and birth weight. ALFF decision scores also contributed to the prediction of general IQ, which highlighted their potential clinical significance. Combined, the results clarified previous research and suggested that primary subcortical and temporal damage may be accompanied by disrupted neurodevelopment of the cortex.
Collapse
Affiliation(s)
- Jing Shang
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany.,TUM-NIC Neuroimaging Center, Technische Universität München
| | - Paul Fisher
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Josef G Bäuml
- TUM-NIC Neuroimaging Center, Technische Universität München.,Department of Neuroradiology, Klinikum rechts der Isar and Technische Universität München, Munich, Germany
| | - Marcel Daamen
- Department of Neonatology, University Hospital Bonn, Bonn, Germany.,Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Nicole Baumann
- Department of Psychology, University of Warwick, Coventry, United Kingdom
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar and Technische Universität München, Munich, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom.,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Christian Sorg
- TUM-NIC Neuroimaging Center, Technische Universität München.,Department of Neuroradiology, Klinikum rechts der Isar and Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar and Technische Universität München, Munich, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Dominic B Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| |
Collapse
|
15
|
Froudist-Walsh S, Browning PG, Young JJ, Murphy KL, Mars RB, Fleysher L, Croxson PL. Macro-connectomics and microstructure predict dynamic plasticity patterns in the non-human primate brain. eLife 2018; 7:34354. [PMID: 30462609 PMCID: PMC6249000 DOI: 10.7554/elife.34354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
The brain displays a remarkable ability to adapt following injury by altering its connections through neural plasticity. Many of the biological mechanisms that underlie plasticity are known, but there is little knowledge as to when, or where in the brain plasticity will occur following injury. This knowledge could guide plasticity-promoting interventions and create a more accurate roadmap of the recovery process following injury. We causally investigated the time-course of plasticity after hippocampal lesions using multi-modal MRI in monkeys. We show that post-injury plasticity is highly dynamic, but also largely predictable on the basis of the functional connectivity of the lesioned region, gradients of cell densities across the cortex and the pre-lesion network structure of the brain. The ability to predict which brain areas will plastically adapt their functional connectivity following injury may allow us to decipher why some brain lesions lead to permanent loss of cognitive function, while others do not. The brain has the ability to adapt after injury, a process known as plasticity. When one area sustains damage, for example following a car accident or stroke, other areas change their activity and structure to compensate. Understanding how this happens is critical to helping people recover from brain injuries. Certain factors may affect how well the brain can repair itself. These include how much the damaged area interacts with other areas, and which cell types different areas of the brain contain. Froudist-Walsh et al. set out to determine how these factors influence recovery from brain injury in monkeys, whose brains are similar to our own. The monkeys had damage to a structure called the hippocampus. This part of the brain has a key role in memory, which is often impaired in patients with brain injuries. The hippocampus cannot repair itself because the brain has only a limited capacity to grow new neurons. Instead, the brain attempts to compensate for disruption to the hippocampus via changes in other, undamaged areas. Using brain imaging, Froudist-Walsh et al. show that the types of changes that occur depend on how much time has passed since the injury. In the first three months, many areas of the brain change how much they coordinate their activity with other areas. Highly connected areas reduce their communication with other areas the most. In the long-term, the responses of brain areas depend more on which cell types they contain. Areas with more support cells known as “glia” – which supply nutrients and energy to neurons – are better able to adapt their connectivity up to a year after the injury. These findings may ultimately benefit people who have suffered brain injuries after accidents or stroke. They suggest that stimulating intact brain areas may be helpful in the months immediately after an injury. By contrast, long-term therapy may need to focus more on structural repair. Future studies must build on these results to discover the best ways to induce successful recovery from brain injury.
Collapse
Affiliation(s)
- Sean Froudist-Walsh
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Philip Gf Browning
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, United States
| | - James J Young
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Kathy L Murphy
- Comparative Biology Centre, Medical School, Newcastle University, United Kingdom
| | - Rogier B Mars
- Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lazar Fleysher
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Paula L Croxson
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
16
|
Sripada K, Bjuland KJ, Sølsnes AE, Håberg AK, Grunewaldt KH, Løhaugen GC, Rimol LM, Skranes J. Trajectories of brain development in school-age children born preterm with very low birth weight. Sci Rep 2018; 8:15553. [PMID: 30349084 PMCID: PMC6197262 DOI: 10.1038/s41598-018-33530-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022] Open
Abstract
Preterm birth (gestational age < 37 weeks) with very low birth weight (VLBW, birth weight ≤ 1500 g) is associated with lifelong cognitive deficits, including in executive function, and persistent alterations in cortical and subcortical structures. However, it remains unclear whether “catch-up” growth is possible in the preterm/VLBW brain. Longitudinal structural MRI was conducted with children born preterm with VLBW (n = 41) and term-born peers participating in the Norwegian Mother and Child Cohort Study (MoBa) (n = 128) at two timepoints in early school age (mean ages 8.0 and 9.3 years). Images were analyzed with the FreeSurfer 5.3.0 longitudinal stream to assess differences in development of cortical thickness, surface area, and brain structure volumes, as well as associations with executive function development (NEPSY Statue and WMS-III Spatial Span scores) and perinatal health markers. No longitudinal group × time effects in cortical thickness, surface area, or subcortical volumes were seen, indicating similar brain growth trajectories in the groups over an approximately 16-month period in middle childhood. Higher IQ scores within the VLBW group were associated with greater surface area in left parieto-occipital and inferior temporal regions. Among VLBW preterm-born children, cortical surface area was smaller across the cortical mantle, and cortical thickness was thicker occipitally and frontally and thinner in lateral parietal and posterior temporal areas. Smaller volumes of corpus callosum, right globus pallidus, and right thalamus persisted in the VLBW group from timepoint 1 to 2. VLBW children had on average IQ 1 SD below term-born MoBa peers and significantly worse scores on WMS-III Spatial Span. Executive function scores did not show differential associations with morphometry between groups cross-sectionally or longitudinally. This study investigated divergent or “catch-up” growth in terms of cortical thickness, surface area, and volumes of subcortical gray matter structures and corpus callosum in children born preterm/VLBW and did not find group × time interactions. Greater surface area at mean age 9.3 in left parieto-occipital and inferior temporal cortex was associated with higher IQ in the VLBW group. These results suggest that preterm VLBW children may have altered cognitive networks, yet have structural growth trajectories that appear generally similar to their term-born peers in this early school age window.
Collapse
Affiliation(s)
- K Sripada
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, Trondheim, Norway.
| | - K J Bjuland
- Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | - A E Sølsnes
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, Trondheim, Norway
| | - A K Håberg
- Department of Neuromedicine & Movement Science, Norwegian University of Science & Technology, Trondheim, Norway.,Department of Radiology & Nuclear Medicine, St. Olav's Hospital, Trondheim, Norway
| | - K H Grunewaldt
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, Trondheim, Norway.,Department of Pediatrics, St. Olav's Hospital, Trondheim, Norway
| | - G C Løhaugen
- Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | - L M Rimol
- Department of Radiology & Nuclear Medicine, St. Olav's Hospital, Trondheim, Norway.,Department of Circulation & Medical Imaging, Norwegian University of Science & Technology, Trondheim, Norway
| | - J Skranes
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, Trondheim, Norway.,Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| |
Collapse
|
17
|
Schiller R, IJsselstijn H, Hoskote A, White T, Verhulst F, van Heijst A, Tibboel D. Memory deficits following neonatal critical illness: a common neurodevelopmental pathway. THE LANCET CHILD & ADOLESCENT HEALTH 2018; 2:281-289. [PMID: 30169299 DOI: 10.1016/s2352-4642(17)30180-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 01/03/2023]
Abstract
Over the past decade, evidence has emerged that children growing up after neonatal critical illness, irrespective of underlying diagnosis, are at risk of memory impairment and academic problems. These difficulties are manifest even when intelligence is within the normal range. In this Review, we propose a common neurodevelopmental pathway following neonatal critical illness by showing that survivors of preterm birth, congenital heart disease, and severe respiratory failure share an increased risk of long-term memory deficits and associated hippocampal alterations. Rather than a consequence of underlying diagnosis, we suggest that this shared vulnerability is probably related to common conditions associated with neonatal critical illness, including hypoxia, neuroinflammation, stress, exposure to anaesthetics, or a complex interplay of these factors at different postconceptional ages. Future work should be aimed at improvement of early identification of patients at risk and evaluation of intervention modalities, such as exercise or cognitive training.
Collapse
Affiliation(s)
- Raisa Schiller
- Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Hanneke IJsselstijn
- Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Aparna Hoskote
- Cardiac Intensive Care, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Frank Verhulst
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands; Department of Clinical Medicine at the Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arno van Heijst
- Department of Neonatology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands.
| |
Collapse
|
18
|
Neonatal erythropoietin mitigates impaired gait, social interaction and diffusion tensor imaging abnormalities in a rat model of prenatal brain injury. Exp Neurol 2017; 302:1-13. [PMID: 29288070 DOI: 10.1016/j.expneurol.2017.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/13/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
Abstract
Children who are born preterm are at risk for encephalopathy of prematurity, a leading cause of cerebral palsy, cognitive delay and behavioral disorders. Current interventions are limited and none have been shown to reverse cognitive and behavioral impairments, a primary determinant of poor quality of life for these children. Moreover, the mechanisms of perinatal brain injury that result in functional deficits and imaging abnormalities in the mature brain are poorly defined, limiting the potential to target interventions to those who may benefit most. To determine whether impairments are reversible after a prenatal insult, we investigated a spectrum of functional deficits and diffusion tensor imaging (DTI) abnormalities in young adult animals. We hypothesized that prenatal transient systemic hypoxia-ischemia (TSHI) would induce multiple functional deficits concomitant with reduced microstructural white and gray matter integrity, and tested whether these abnormalities could be ameliorated using postnatal erythropoietin (EPO), an emerging neurorestorative intervention. On embryonic day 18 uterine arteries were transiently occluded for 60min via laparotomy. Shams underwent anesthesia and laparotomy for 60min. Pups were born and TSHI pups were randomized to receive EPO or vehicle via intraperitoneal injection on postnatal days 1 to 5. Gait, social interaction, olfaction and open field testing was performed from postnatal day 25-35 before brains underwent ex vivo DTI to measure fractional anisotropy, axial diffusivity and radial diffusivity. Prenatal TSHI injury causes hyperactivity, impaired gait and poor social interaction in young adult rats that mimic the spectrum of deficits observed in children born preterm. Collectively, these data show for the first time in a model of encephalopathy of prematurity that postnatal EPO treatment mitigates impairments in social interaction, in addition to gait deficits. EPO also normalizes TSHI-induced microstructural abnormalities in fractional anisotropy and radial diffusivity in multiple regions, consistent with improved structural integrity and recovery of myelination. Taken together, these results show behavioral and memory deficits from perinatal brain injury are reversible. Furthermore, resolution of DTI abnormalities may predict responsiveness to emerging interventions, and serve as a biomarker of CNS injury and recovery.
Collapse
|
19
|
Fingher N, Dinstein I, Ben-Shachar M, Haar S, Dale AM, Eyler L, Pierce K, Courchesne E. Toddlers later diagnosed with autism exhibit multiple structural abnormalities in temporal corpus callosum fibers. Cortex 2017; 97:291-305. [PMID: 28202133 PMCID: PMC5522774 DOI: 10.1016/j.cortex.2016.12.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/06/2016] [Accepted: 12/31/2016] [Indexed: 01/09/2023]
Abstract
Interhemispheric functional connectivity abnormalities are often reported in autism and it is thus not surprising that structural defects of the corpus callosum (CC) are consistently found using both traditional MRI and DTI techniques. Past DTI studies however, have subdivided the CC into 2 or 3 segments without regard for where fibers may project to within the cortex, thus placing limitations on our ability to understand the nature, timing and neurobehavioral impact of early CC abnormalities in autism. Leveraging a unique cohort of 97 toddlers (68 autism; 29 typical) we utilized a novel technique that identified seven CC tracts according to their cortical projections. Results revealed that younger (<2.5 years old), but not older toddlers with autism exhibited abnormally low mean, radial, and axial diffusivity values in the CC tracts connecting the occipital lobes and the temporal lobes. Fractional anisotropy and the cross sectional area of the temporal CC tract were significantly larger in young toddlers with autism. These findings indicate that water diffusion is more restricted and unidirectional in the temporal CC tract of young toddlers who develop autism. Such results may be explained by a potential overabundance of small caliber axons generated by excessive prenatal neural proliferation as proposed by previous genetic, animal model, and postmortem studies of autism. Furthermore, early diffusion measures in the temporal CC tract of the young toddlers were correlated with outcome measures of autism severity at later ages. These findings regarding the potential nature, timing, and location of early CC abnormalities in autism add to accumulating evidence, which suggests that altered inter-hemispheric connectivity, particularly across the temporal lobes, is a hallmark of the disorder.
Collapse
Affiliation(s)
- Noa Fingher
- Department of Brain and Cognitive Sciences, Ben-Gurion University, Israel.
| | - Ilan Dinstein
- Department of Brain and Cognitive Sciences, Ben-Gurion University, Israel; Department of Psychology, Ben-Gurion University, Israel
| | - Michal Ben-Shachar
- Department of English Literature and Linguistics, Bar Ilan University, Israel; The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Shlomi Haar
- Department of Brain and Cognitive Sciences, Ben-Gurion University, Israel
| | - Anders M Dale
- Department of Neurosciences, University of California San Diego, USA; Department of Radiology, University of California San Diego, USA
| | - Lisa Eyler
- Department of Radiology, University of California San Diego, USA; Desert-Pacific Mental Illness Research, Education, and Clinical Center, VA San Diego Healthcare System, USA
| | - Karen Pierce
- Department of Neurosciences, University of California San Diego, USA
| | - Eric Courchesne
- Department of Neurosciences, University of California San Diego, USA
| |
Collapse
|
20
|
Olsen A, Dennis EL, Evensen KAI, Husby Hollund IM, Løhaugen GCC, Thompson PM, Brubakk AM, Eikenes L, Håberg AK. Preterm birth leads to hyper-reactive cognitive control processing and poor white matter organization in adulthood. Neuroimage 2017; 167:419-428. [PMID: 29191480 PMCID: PMC6625518 DOI: 10.1016/j.neuroimage.2017.11.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 11/30/2022] Open
Abstract
Individuals born preterm with very low birth weight (VLBW; birth weight ≤ 1500 g) are at high risk for perinatal brain injuries and deviant brain development, leading to increased chances of later cognitive, emotional, and behavioral problems. Here we investigated the neuronal underpinnings of both reactive and proactive cognitive control processes in adults with VLBW. We included 32 adults born preterm with VLBW (before 37th week of gestation) and 32 term-born controls (birth weight ≥10th percentile for gestational age) between 22 and 24 years of age that have been followed prospectively since birth. Participants performed a well-validated Not-X continuous performance test (CPT) adapted for use in a mixed block- and event-related fMRI protocol. BOLD fMRI and DTI data was acquired on a 3T scanner. Performance on the Not-X CPT was highly similar between groups. However, the VLBW group demonstrated hyper-reactive cognitive control processing and disrupted white matter organization. The hyper-reactive brain activation signature in VLBW adults was associated with lower gestational age, lower fluid intelligence score, and anxiety problems. Automated Multi-Atlas Tract Extraction (AutoMATE) analyses revealed that this disruption of normal brain function was accompanied by poorer white matter organization in the anterior thalamic radiation and the cingulum, as reflected in both reduced fractional anisotropy and increased mean diffusivity. These findings show that the preterm behavioral phenotype is associated with predominantly reactive-, rather than proactive cognitive control processing, as well as white matter abnormalities, that may underlie common difficulties that many preterm born individuals experience in everyday life.
Collapse
Affiliation(s)
- Alexander Olsen
- Department of Psychology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Emily L Dennis
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Kari Anne I Evensen
- Department of Laboratory Medicine, Children's and Women's Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Physiotherapy, Trondheim Municipality, Trondheim, Norway
| | - Ingrid Marie Husby Hollund
- Department of Laboratory Medicine, Children's and Women's Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ann-Mari Brubakk
- Department of Laboratory Medicine, Children's and Women's Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asta K Håberg
- Department of Neuromedicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Medical Imaging, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
21
|
Salvan P, Tournier JD, Batalle D, Falconer S, Chew A, Kennea N, Aljabar P, Dehaene‐Lambertz G, Arichi T, Edwards AD, Counsell SJ. Language ability in preterm children is associated with arcuate fasciculi microstructure at term. Hum Brain Mapp 2017; 38:3836-3847. [PMID: 28470961 PMCID: PMC5518442 DOI: 10.1002/hbm.23632] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/31/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022] Open
Abstract
In the mature human brain, the arcuate fasciculus mediates verbal working memory, word learning, and sublexical speech repetition. However, its contribution to early language acquisition remains unclear. In this work, we aimed to evaluate the role of the direct segments of the arcuate fasciculi in the early acquisition of linguistic function. We imaged a cohort of 43 preterm born infants (median age at birth of 30 gestational weeks; median age at scan of 42 postmenstrual weeks) using high b value high-angular resolution diffusion-weighted neuroimaging and assessed their linguistic performance at 2 years of age. Using constrained spherical deconvolution tractography, we virtually dissected the arcuate fasciculi and measured fractional anisotropy (FA) as a metric of white matter development. We found that term equivalent FA of the left and right arcuate fasciculi was significantly associated with individual differences in linguistic and cognitive abilities in early childhood, independent of the degree of prematurity. These findings suggest that differences in arcuate fasciculi microstructure at the time of normal birth have a significant impact on language development and modulate the first stages of language learning. Hum Brain Mapp 38:3836-3847, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Piergiorgio Salvan
- Centre for the Developing BrainDivision of Imaging Sciences & Biomedical Engineering, King's College LondonUnited Kingdom
| | - J. Donald Tournier
- Centre for the Developing BrainDivision of Imaging Sciences & Biomedical Engineering, King's College LondonUnited Kingdom
| | - Dafnis Batalle
- Centre for the Developing BrainDivision of Imaging Sciences & Biomedical Engineering, King's College LondonUnited Kingdom
| | - Shona Falconer
- Centre for the Developing BrainDivision of Imaging Sciences & Biomedical Engineering, King's College LondonUnited Kingdom
| | - Andrew Chew
- Centre for the Developing BrainDivision of Imaging Sciences & Biomedical Engineering, King's College LondonUnited Kingdom
| | - Nigel Kennea
- Neonatal unit, St. George's University Hospital NHSLondonUnited Kingdom
| | - Paul Aljabar
- Centre for the Developing BrainDivision of Imaging Sciences & Biomedical Engineering, King's College LondonUnited Kingdom
| | | | - Tomoki Arichi
- Centre for the Developing BrainDivision of Imaging Sciences & Biomedical Engineering, King's College LondonUnited Kingdom
- Department of BioengineeringImperial College LondonUnited Kingdom
| | - A. David Edwards
- Centre for the Developing BrainDivision of Imaging Sciences & Biomedical Engineering, King's College LondonUnited Kingdom
- Department of BioengineeringImperial College LondonUnited Kingdom
| | - Serena J. Counsell
- Centre for the Developing BrainDivision of Imaging Sciences & Biomedical Engineering, King's College LondonUnited Kingdom
| |
Collapse
|
22
|
White matter alterations to cingulum and fornix following very preterm birth and their relationship with cognitive functions. Neuroimage 2017; 150:373-382. [PMID: 28216430 PMCID: PMC5405171 DOI: 10.1016/j.neuroimage.2017.02.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 11/12/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
Very preterm birth (VPT; <32 weeks of gestation) has been associated with impairments in memory abilities and functional neuroanatomical brain alterations in medial temporal and fronto-parietal areas. Here we investigated the relationship between structural connectivity in memory-related tracts and various aspects of memory in VPT adults (mean age 19) who sustained differing degrees of perinatal brain injury (PBI), as assessed by neonatal cerebral ultrasound. We showed that the neurodevelopmental consequences of VPT birth persist into young adulthood and are associated with neonatal cranial ultrasound classification. At a cognitive level, VPT young adults showed impairments specific to effective organization of verbal information and visuospatial memory, whereas at an anatomical level they displayed reduced volume of memory-related tracts, the cingulum and the fornix, with greater alterations in those individuals who experienced high-grade PBI. When investigating the association between these tracts and memory scores, perseveration errors were associated with the volume of the fornix and dorsal cingulum (connecting medial frontal and parietal lobes). Visuospatial memory scores were associated with the volume of the ventral cingulum (connecting medial parietal and temporal lobes). These results suggest that structural connectivity alterations could underlie memory difficulties in preterm born individuals. Very preterm born adults exhibit memory and learning impairments. White matter tracts implicated in memory are altered following perinatal brain injury. Structural alterations to memory tracts may underlie specific memory impairments.
Collapse
|
23
|
Tseng CEJ, Froudist-Walsh S, Brittain PJ, Karolis V, Caldinelli C, Kroll J, Counsell SJ, Williams SCR, Murray RM, Nosarti C. A multimodal imaging study of recognition memory in very preterm born adults. Hum Brain Mapp 2016; 38:644-655. [PMID: 27647705 PMCID: PMC5244672 DOI: 10.1002/hbm.23405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 11/11/2022] Open
Abstract
Very preterm (<32 weeks of gestation) birth is associated with structural brain alterations and memory impairments throughout childhood and adolescence. Here, we used functional MRI (fMRI) to study the neuroanatomy of recognition memory in 49 very preterm‐born adults and 50 controls (mean age: 30 years) during completion of a task involving visual encoding and recognition of abstract pictures. T1‐weighted and diffusion‐weighted images were also collected. Bilateral hippocampal volumes were calculated and tractography of the fornix and cingulum was performed and assessed in terms of volume and hindrance modulated orientational anisotropy (HMOA). Online recognition memory task performance, assessed with A scores, was poorer in the very preterm compared with the control group. Analysis of fMRI data focused on differences in neural activity between the recognition and encoding trials. Very preterm born adults showed decreased activation in the right middle frontal gyrus and posterior cingulate cortex/precuneus and increased activation in the left inferior frontal gyrus and bilateral lateral occipital cortex (LOC) compared with controls. Hippocampi, fornix and cingulum volume was significantly smaller and fornix HMOA was lower in very preterm adults. Among all the structural and functional brain metrics that showed statistically significant group differences, LOC activation was the best predictor of online task performance (P = 0.020). In terms of association between brain function and structure, LOC activation was predicted by fornix HMOA in the preterm group only (P = 0.020). These results suggest that neuroanatomical alterations in very preterm born individuals may be underlying their poorer recognition memory performance. Hum Brain Mapp 38:644–655, 2017. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chieh-En Jane Tseng
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Seán Froudist-Walsh
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Philip J Brittain
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Vyacheslav Karolis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Chiara Caldinelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Jasmin Kroll
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom
| | - Steven C R Williams
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|
24
|
Very Early Brain Damage Leads to Remodeling of the Working Memory System in Adulthood: A Combined fMRI/Tractography Study. J Neurosci 2016; 35:15787-99. [PMID: 26631462 DOI: 10.1523/jneurosci.4769-14.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The human brain can adapt to overcome injury even years after an initial insult. One hypothesis states that early brain injury survivors, by taking advantage of critical periods of high plasticity during childhood, should recover more successfully than those who suffer injury later in life. This hypothesis has been challenged by recent studies showing worse cognitive outcome in individuals with early brain injury, compared with individuals with later brain injury, with working memory particularly affected. We invited individuals who suffered perinatal brain injury (PBI) for an fMRI/diffusion MRI tractography study of working memory and hypothesized that, 30 years after the initial injury, working memory deficits in the PBI group would remain, despite compensatory activation in areas outside the typical working memory network. Furthermore we hypothesized that the amount of functional reorganization would be related to the level of injury to the dorsal cingulum tract, which connects medial frontal and parietal working memory structures. We found that adults who suffered PBI did not significantly differ from controls in working memory performance. They exhibited less activation in classic frontoparietal working memory areas and a relative overactivation of bilateral perisylvian cortex compared with controls. Structurally, the dorsal cingulum volume and hindrance-modulated orientational anisotropy was significantly reduced in the PBI group. Furthermore there was uniquely in the PBI group a significant negative correlation between the volume of this tract and activation in the bilateral perisylvian cortex and a positive correlation between this activation and task performance. This provides the first evidence of compensatory plasticity of the working memory network following PBI.
Collapse
|
25
|
Nosarti C, Froudist‐Walsh S. Alterations in development of hippocampal and cortical memory mechanisms following very preterm birth. Dev Med Child Neurol 2016; 58 Suppl 4:35-45. [PMID: 27027606 PMCID: PMC4819886 DOI: 10.1111/dmcn.13042] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2015] [Indexed: 11/30/2022]
Abstract
Deficits in memory function have been described in children and adolescents who were born very preterm (VPT), which can have profound effects on their school achievement and everyday life. However, to date, little is known about the development of the neuroanatomical substrates of memory following VPT birth. Here we focus on episodic and working memory and highlight key recent functional and structural magnetic resonance imaging (MRI) studies that have advanced our understanding of the relationship between alterations seen in the VPT brain and typical neurodevelopment of networks supporting these memory functions. We contrast evidence from the episodic and working memory literatures and suggest that knowledge gained from these functional and neuroanatomical studies may point to specific time windows in which working memory interventions may be most effective.
Collapse
Affiliation(s)
- Chiara Nosarti
- Department of Psychosis StudiesInstitute of Psychiatry, Psychology and NeuroscienceKing's CollegeLondonUK
| | - Seán Froudist‐Walsh
- Department of Psychosis StudiesInstitute of Psychiatry, Psychology and NeuroscienceKing's CollegeLondonUK
| |
Collapse
|
26
|
Sølsnes AE, Sripada K, Yendiki A, Bjuland KJ, Østgård HF, Aanes S, Grunewaldt KH, Løhaugen GC, Eikenes L, Håberg AK, Rimol LM, Skranes J. Limited microstructural and connectivity deficits despite subcortical volume reductions in school-aged children born preterm with very low birth weight. Neuroimage 2015; 130:24-34. [PMID: 26712340 DOI: 10.1016/j.neuroimage.2015.12.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/24/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022] Open
Abstract
Preterm birth and very low birth weight (VLBW, ≤1500 g) are worldwide problems that burden survivors with lifelong cognitive, psychological, and physical challenges. In this multimodal structural magnetic resonance imaging (MRI) and diffusion MRI (dMRI) study, we investigated differences in subcortical brain volumes and white matter tract properties in children born preterm with VLBW compared to term-born controls (mean age=8 years). Subcortical brain structure volumes and cortical thickness estimates were obtained, and fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were generated for 18 white matter tracts. We also assessed structural relationships between white matter tracts and cortical thickness of the tract endpoints. Compared to controls, the VLBW group had reduced volumes of thalamus, globus pallidus, corpus callosum, cerebral white matter, ventral diencephalon, and brain stem, while the ventricular system was larger in VLBW subjects, after controlling for age, sex, IQ, and estimated total intracranial volume. For the dMRI parameters, group differences were not significant at the whole-tract level, though pointwise analysis found shorter segments affected in forceps minor and left superior longitudinal fasciculus - temporal bundle. IQ did not correlate with subcortical volumes or dMRI measures in the VLBW group. While the deviations in subcortical volumes were substantial, there were few differences in dMRI measures between the two groups, which may reflect the influence of advances in perinatal care on white matter development.
Collapse
Affiliation(s)
- Anne Elisabeth Sølsnes
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kam Sripada
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Anastasia Yendiki
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Knut Jørgen Bjuland
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Heidi Furre Østgård
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Synne Aanes
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristine Hermansen Grunewaldt
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Pediatrics, St. Olav's Hospital, Trondheim, Norway
| | - Gro C Løhaugen
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asta K Håberg
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Department of Medical Imaging, St. Olav's Hospital, Trondheim, Norway
| | - Lars M Rimol
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jon Skranes
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| |
Collapse
|
27
|
Akazawa K, Chang L, Yamakawa R, Hayama S, Buchthal S, Alicata D, Andres T, Castillo D, Oishi K, Skranes J, Ernst T, Oishi K. Probabilistic maps of the white matter tracts with known associated functions on the neonatal brain atlas: Application to evaluate longitudinal developmental trajectories in term-born and preterm-born infants. Neuroimage 2015; 128:167-179. [PMID: 26712341 DOI: 10.1016/j.neuroimage.2015.12.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 01/23/2023] Open
Abstract
Diffusion tensor imaging (DTI) has been widely used to investigate the development of the neonatal and infant brain, and deviations related to various diseases or medical conditions like preterm birth. In this study, we created a probabilistic map of fiber pathways with known associated functions, on a published neonatal multimodal atlas. The pathways-of-interest include the superficial white matter (SWM) fibers just beneath the specific cytoarchitectonically defined cortical areas, which were difficult to evaluate with existing DTI analysis methods. The Jülich cytoarchitectonic atlas was applied to define cortical areas related to specific brain functions, and the Dynamic Programming (DP) method was applied to delineate the white matter pathways traversing through the SWM. Probabilistic maps were created for pathways related to motor, somatosensory, auditory, visual, and limbic functions, as well as major white matter tracts, such as the corpus callosum, the inferior fronto-occipital fasciculus, and the middle cerebellar peduncle, by delineating these structures in eleven healthy term-born neonates. In order to characterize maturation-related changes in diffusivity measures of these pathways, the probabilistic maps were then applied to DTIs of 49 healthy infants who were longitudinally scanned at three time-points, approximately five weeks apart. First, we investigated the normal developmental pattern based on 19 term-born infants. Next, we analyzed 30 preterm-born infants to identify developmental patterns related to preterm birth. Last, we investigated the difference in diffusion measures between these groups to evaluate the effects of preterm birth on the development of these functional pathways. Term-born and preterm-born infants both demonstrated a time-dependent decrease in diffusivity, indicating postnatal maturation in these pathways, with laterality seen in the corticospinal tract and the optic radiation. The comparison between term- and preterm-born infants indicated higher diffusivity in the preterm-born infants than in the term-born infants in three of these pathways: the body of the corpus callosum; the left inferior longitudinal fasciculus; and the pathway connecting the left primary/secondary visual cortices and the motion-sensitive area in the occipitotemporal visual cortex (V5/MT+). Probabilistic maps provided an opportunity to investigate developmental changes of each white matter pathway. Whether alterations in white matter pathways can predict functional outcomes will be further investigated in a follow-up study.
Collapse
Affiliation(s)
- Kentaro Akazawa
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda Chang
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Robyn Yamakawa
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Sara Hayama
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Steven Buchthal
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Daniel Alicata
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Tamara Andres
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Deborrah Castillo
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kumiko Oishi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jon Skranes
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thomas Ernst
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Scheinost D, Kwon SH, Shen X, Lacadie C, Schneider KC, Dai F, Ment LR, Constable RT. Preterm birth alters neonatal, functional rich club organization. Brain Struct Funct 2015; 221:3211-22. [PMID: 26341628 DOI: 10.1007/s00429-015-1096-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/25/2015] [Indexed: 10/23/2022]
Abstract
Alterations in neural networks are associated with the cognitive difficulties of the prematurely born. Using functional magnetic resonance imaging, we analyzed functional connectivity for preterm (PT) and term neonates at term equivalent age. Specifically, we constructed whole-brain networks and examined rich club (RC) organization, a common construct among complex systems where important (or "rich") nodes connect preferentially to other important nodes. Both PT and term neonates showed RC organization with PT neonates exhibiting significantly reduced connections between these RC nodes. Additionally, PT neonates showed evidence of weaker functional segregation. Our results suggest that PT birth is associated with fundamental changes of functional organization in the developing brain.
Collapse
Affiliation(s)
- Dustin Scheinost
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Soo Hyun Kwon
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Xilin Shen
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Cheryl Lacadie
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Karen C Schneider
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Feng Dai
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - Laura R Ment
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA.,Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
29
|
Kwon SH, Scheinost D, Lacadie C, Sze G, Schneider KC, Dai F, Constable RT, Ment LR. Adaptive mechanisms of developing brain: cerebral lateralization in the prematurely-born. Neuroimage 2014; 108:144-50. [PMID: 25528658 DOI: 10.1016/j.neuroimage.2014.12.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/31/2014] [Accepted: 12/12/2014] [Indexed: 11/30/2022] Open
Abstract
Preterm birth results in alterations in neural connectivity, but the impact of prematurity on the functional organization of the developing brain has yet to be explored. To test the hypothesis that preterm birth alters cortical organization during the late second and third trimesters of gestation, we interrogated cerebral lateralization at rest in 26 very preterm subjects (birth weight 500-1500g) with no evidence of brain injury and 25 healthy term control subjects at term equivalent age. Employing an unbiased voxel-based measure of functional connectivity, these data demonstrated that cerebral lateralization is impaired in the prematurely-born. At term equivalent age, preterm neonates showed significantly less lateralization in regions subserving both receptive and expressive language, left Brodmann (BA) areas insula-BA22-BA21 and L BA45-BA47 (p<0.05 corrected for multiple comparisons for both). Exploratory region of interest analyses demonstrated significantly less inter-hemispheric connectivity from L BA22 to R BA22 in preterm infants compared to term controls (p<0.005) and from R BA22 to its homolog (p<0.005). L BA22, Wernicke's area, was more strongly connected to R BA39, foreshadowing neural networks for language in preterm subjects at school age, adolescence and young adulthood. For these very preterm neonates born at less than 30weeks' PMA, the degree of prematurity had no influence on lateralization in these differential regions.
Collapse
Affiliation(s)
- Soo Hyun Kwon
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA.
| | - Dustin Scheinost
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Cheryl Lacadie
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Gordon Sze
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Karen C Schneider
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Feng Dai
- Department of Epidemiology and Public Health, Yale School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Laura R Ment
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
30
|
Kalpakidou AK, Allin MPG, Walshe M, Giampietro V, McGuire PK, Rifkin L, Murray RM, Nosarti C. Functional neuroanatomy of executive function after neonatal brain injury in adults who were born very preterm. PLoS One 2014; 9:e113975. [PMID: 25438043 PMCID: PMC4250191 DOI: 10.1371/journal.pone.0113975] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/01/2014] [Indexed: 02/01/2023] Open
Abstract
Individuals who were born very preterm (VPT; <33 gestational weeks) are at risk of experiencing deficits in tasks involving executive function in childhood and beyond. In addition, the type and severity of neonatal brain injury associated with very preterm birth may exert differential effects on executive functioning by altering its neuroanatomical substrates. Here we addressed this question by investigating with functional magnetic resonance imaging (fMRI) the haemodynamic response during executive-type processing using a phonological verbal fluency and a working memory task in VPT-born young adults who had experienced differing degrees of neonatal brain injury. 12 VPT individuals with a history of periventricular haemorrhage and ventricular dilatation (PVH+VD), 17 VPT individuals with a history of uncomplicated periventricular haemorrhage (UPVH), 13 VPT individuals with no history of neonatal brain injury and 17 controls received an MRI scan whilst completing a verbal fluency task with two cognitive loads (‘easy’ and ‘hard’ letters). Two groups of VPT individuals (PVH+VD; n = 10, UPVH; n = 8) performed an n-back task with three cognitive loads (1-, 2-, 3-back). Results demonstrated that VPT individuals displayed hyperactivation in frontal, temporal, and parietal cortices and in caudate nucleus, insula and thalamus compared to controls, as demands of the verbal fluency task increased, regardless of type of neonatal brain injury. On the other hand, during the n-back task and as working memory load increased, the PVH+VD group showed less engagement of the frontal cortex than the UPVH group. In conclusion, this study suggests that the functional neuroanatomy of different executive-type processes is altered following VPT birth and that neural activation associated with specific aspects of executive function (i.e., working memory) may be particularly sensitive to the extent of neonatal brain injury.
Collapse
Affiliation(s)
- Anastasia K. Kalpakidou
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, United Kingdom
- * E-mail:
| | - Matthew P. G. Allin
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, United Kingdom
| | - Muriel Walshe
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, United Kingdom
| | - Vincent Giampietro
- Department of Neuroimaging, Institute of Psychiatry, King's Health Partners, King's College London, London, United Kingdom
| | - Philip K. McGuire
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, United Kingdom
| | - Larry Rifkin
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, United Kingdom
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, United Kingdom
| | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, United Kingdom
| |
Collapse
|
31
|
Cimadevilla JM, Roldán L, París M, Arnedo M, Roldán S. Spatial learning in a virtual reality-based task is altered in very preterm children. J Clin Exp Neuropsychol 2014; 36:1002-8. [DOI: 10.1080/13803395.2014.963520] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Baldoli C, Scola E, Della Rosa PA, Pontesilli S, Longaretti R, Poloniato A, Scotti R, Blasi V, Cirillo S, Iadanza A, Rovelli R, Barera G, Scifo P. Maturation of preterm newborn brains: a fMRI–DTI study of auditory processing of linguistic stimuli and white matter development. Brain Struct Funct 2014; 220:3733-51. [DOI: 10.1007/s00429-014-0887-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/08/2014] [Indexed: 11/30/2022]
|
33
|
Brittain PJ, Froudist Walsh S, Nam KW, Giampietro V, Karolis V, Murray RM, Bhattacharyya S, Kalpakidou A, Nosarti C. Neural compensation in adulthood following very preterm birth demonstrated during a visual paired associates learning task. NEUROIMAGE-CLINICAL 2014; 6:54-63. [PMID: 25379416 PMCID: PMC4215530 DOI: 10.1016/j.nicl.2014.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 10/25/2022]
Abstract
Very preterm birth (VPT; < 33 weeks of gestation) is associated with an increased risk of learning disability, which contributes to more VPT-born children repeating grades and underachieving in school. Learning problems associated with VPT birth may be caused by pathophysiological alterations in neurodevelopment resulting from perinatal brain insult; however, adaptive neuroplastic processes may subsequently occur in the developing preterm brain which ameliorate, to an extent, the potential sequelae of altered neurophysiology. Here, we used functional magnetic resonance imaging (fMRI) to compare neuronal activation in 24 VPT individuals and 22 controls (CT) in young adulthood during a learning task consisting of the encoding and subsequent recognition of repeated visual paired associates. Structural MRI data were also collected and analysed in order to explore possible structure-function associations. Whilst the two groups did not differ in their learning ability, as demonstrated by their capacity to recognize previously-seen and previously-unseen visual pairs, between-group differences in linear patterns of Blood Oxygenation Level Dependant (BOLD) activity were observed across the four repeated blocks of the task for both the encoding and recognition conditions, suggesting that the way learning takes place differs between the two groups. During encoding, significant between-group differences in patterns of BOLD activity were seen in clusters centred on the cerebellum, the anterior cingulate gyrus, the midbrain/substantia nigra, medial temporal (including parahippocampal) gyrus and inferior and superior frontal gyri. During the recognition condition, significant between-group differences in patterns of BOLD activity were seen in clusters centred on the claustrum and the posterior cerebellum. Structural analysis revealed smaller grey matter volume in right middle temporal gyrus in VPT individuals compared to controls, however volume in this region was not significantly associated with functional activation. These results demonstrate that although cognitive task performance between VPT individuals and controls may be comparable on certain measures, differences in BOLD signal may also be evident, some of which could represent compensatory neural processes following VPT-related brain insult.
Collapse
Affiliation(s)
- Philip J Brittain
- Department of Psychosis Studies, Neurodevelopment and Mental Health Group, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Sean Froudist Walsh
- Department of Psychosis Studies, Neurodevelopment and Mental Health Group, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Kie-Woo Nam
- Department of Psychosis Studies, Neurodevelopment and Mental Health Group, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Vincent Giampietro
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Vyacheslav Karolis
- Department of Psychosis Studies, Neurodevelopment and Mental Health Group, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Robin M Murray
- Department of Psychosis Studies, Neurodevelopment and Mental Health Group, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Neurodevelopment and Mental Health Group, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Anastasia Kalpakidou
- Department of Psychosis Studies, Neurodevelopment and Mental Health Group, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Chiara Nosarti
- Department of Psychosis Studies, Neurodevelopment and Mental Health Group, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|
34
|
Nosarti C, Nam KW, Walshe M, Murray RM, Cuddy M, Rifkin L, Allin MPG. Preterm birth and structural brain alterations in early adulthood. NEUROIMAGE-CLINICAL 2014; 6:180-91. [PMID: 25379430 PMCID: PMC4215396 DOI: 10.1016/j.nicl.2014.08.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/05/2014] [Accepted: 08/10/2014] [Indexed: 12/15/2022]
Abstract
Alterations in cortical development and impaired neurodevelopmental outcomes have been described following very preterm (VPT) birth in childhood and adolescence, but only a few studies to date have investigated grey matter (GM) and white matter (WM) maturation in VPT samples in early adult life. Using voxel-based morphometry (VBM) we studied regional GM and WM volumes in 68 VPT-born individuals (mean gestational age 30 weeks) and 43 term-born controls aged 19–20 years, and their association with cognitive outcomes (Hayling Sentence Completion Test, Controlled Oral Word Association Test, Visual Reproduction test of the Wechsler Memory Scale-Revised) and gestational age. Structural MRI data were obtained with a 1.5 Tesla system and analysed using the VBM8 toolbox in SPM8 with a customized study-specific template. Similarly to results obtained at adolescent assessment, VPT young adults compared to controls demonstrated reduced GM volume in temporal, frontal, insular and occipital areas, thalamus, caudate nucleus and putamen. Increases in GM volume were noted in medial/anterior frontal gyrus. Smaller subcortical WM volume in the VPT group was observed in temporal, parietal and frontal regions, and in a cluster centred on posterior corpus callosum/thalamus/fornix. Larger subcortical WM volume was found predominantly in posterior brain regions, in areas beneath the parahippocampal and occipital gyri and in cerebellum. Gestational age was associated with GM and WM volumes in areas where VPT individuals demonstrated GM and WM volumetric alterations, especially in temporal, parietal and occipital regions. VPT participants scored lower than controls on measures of IQ, executive function and non-verbal memory. When investigating GM and WM alterations and cognitive outcome scores, subcortical WM volume in an area beneath the left inferior frontal gyrus accounted for 14% of the variance of full-scale IQ (F = 12.9, p < 0.0001). WM volume in posterior corpus callosum/thalamus/fornix and GM volume in temporal gyri bilaterally, accounted for 21% of the variance of executive function (F = 9.9, p < 0.0001) and WM in the posterior corpus callosum/thalamus/fornix alone accounted for 17% of the variance of total non-verbal memory scores (F = 9.9, p < 0.0001). These results reveal that VPT birth continues to be associated with altered structural brain anatomy in early adult life, although it remains to be ascertained whether these changes reflect neurodevelopmental delays or long lasting structural alterations due to prematurity. GM and WM alterations correlate with length of gestation and mediate cognitive outcome. Preterm birth is associated with brain alterations in early adulthood Preterm birth affects maturation of both white and grey matter Volume alterations are observed in temporal, frontal, parietal and occipital areas Regional alterations mediate the effects of preterm birth on cognitive functioning
Collapse
Affiliation(s)
- Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, SE58AF London, UK
| | - Kie Woo Nam
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, SE58AF London, UK
| | - Muriel Walshe
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, SE58AF London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, SE58AF London, UK
| | - Marion Cuddy
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, SE58AF London, UK
| | - Larry Rifkin
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, SE58AF London, UK
| | - Matthew P G Allin
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, SE58AF London, UK
| |
Collapse
|
35
|
Lawrence EJ, Froudist-Walsh S, Neilan R, Nam KW, Giampietro V, McGuire P, Murray RM, Nosarti C. Motor fMRI and cortical grey matter volume in adults born very preterm. Dev Cogn Neurosci 2014; 10:1-9. [PMID: 25016248 PMCID: PMC4256062 DOI: 10.1016/j.dcn.2014.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 06/03/2014] [Accepted: 06/09/2014] [Indexed: 11/15/2022] Open
Abstract
Adults born very preterm (VPT) and controls performed a motor fMRI task. VPT adults activated the cerebellum and adjacent temporal lobe more than controls. Grey matter volume in the premotor cortex was smaller in the VPT group. Grey matter volume in premotor cortex explained 33% of activation in the cerebellum. Preterm birth is associated with functional neuroanatomical alterations in adulthood.
The primary aim of this study was to investigate the functional neuroanatomy of motor planning, initiation and execution in a cohort of young adults (mean age 20 years) who were born very preterm (VPT; <33 weeks of gestation), as these individuals are at increased risk of experiencing neuromotor difficulties compared to controls. A cued motor task was presented to 20 right-handed VPT individuals and 20 controls within a functional magnetic resonance imaging (fMRI) paradigm. Whole-brain grey matter volume was also quantified and associations with functional data were examined. Despite comparable task performance, fMRI results showed that the VPT group displayed greater brain activation compared to controls in a region comprising the right cerebellum and the lingual, parahippocampal and middle temporal gyri. The VPT group also displayed decreased grey matter volume in the right superior frontal/premotor cortex and left middle temporal gyri. Grey matter volume in the premotor and middle temporal clusters was significantly negatively correlated with BOLD activation in the cerebellum. Overall, these data suggest that preterm birth is associated with functional neuronal differences that persist into adulthood, which are likely to reflect neural reorganisation following early brain injury.
Collapse
Affiliation(s)
- E J Lawrence
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, London SE5 8AF, UK.
| | - S Froudist-Walsh
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, London SE5 8AF, UK.
| | - R Neilan
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, London SE5 8AF, UK.
| | - K W Nam
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, London SE5 8AF, UK.
| | - V Giampietro
- Department of Neuroimaging, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, London SE5 8AF, UK.
| | - P McGuire
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, London SE5 8AF, UK.
| | - R M Murray
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, London SE5 8AF, UK.
| | - C Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, London SE5 8AF, UK; Centre for the Developing Brain, King's Health Partners, King's College London, First Floor, South Wing, St Thomas' Hospital, London SE1 7EH, UK.
| |
Collapse
|