1
|
Ibarra-Castaneda N, Lopez-Virgen V, Moy-Lopez N, Gonzalez-Perez O. Permanent tactile sensory loss reduces neuronal activity in the amygdala and ventral hippocampus and alters anxiety-like behaviors. Behav Brain Res 2025; 482:115456. [PMID: 39880100 DOI: 10.1016/j.bbr.2025.115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/11/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Tactile information from the whiskers (vibrissae) travels through the somatosensory cortex to the entorhinal cortex and the hippocampus, influencing development and psychological well-being. The lack of whiskers affects cognitive functions, spatial memory, neuronal firing, spatial mapping, and neurogenesis in the dorsal hippocampus. Recent studies underline the importance of tactile experiences in emotional health, noting that while tactile stimuli modulate the dorsal hippocampus, the effects of tactile deprivation on anxiety-like behaviors and neural activity in regions like the ventral hippocampus and amygdala are less understood. This study aims to investigate the impact of permanent tactile deprivation on modifying anxiety-like behaviors and c-Fos expression (a marker of neuronal activity) in the dorsolateral and central nucleus of the amygdala and the ventral hippocampus, two regions involved in emotional memory and anxiety. We sectioned the infraorbital nerve, responsible for transmitting whisker information, in CD1 mice to examine how tactile deprivation modifies the behavioral activity in the Elevated Plus Maze and Open-Field Test. Our data revealed a reduction in anxiety-related behaviors post-deprivation, which was linked to a significant decrease in c-Fos expression in the barrel cortex, as well as ventral hippocampus (CA1, dentate gyrus) and dorsolateral, central nucleus of the amygdala, suggesting impaired processing in emotional-regulator brain regions. In conclusion, tactile inputs reduce neuronal activity regulators in brain regions related to emotional regulation, which may trigger possible failures in risk perception or self-protective behaviors associated with the lack of appropriate anxiety responses.
Collapse
Affiliation(s)
- Nereida Ibarra-Castaneda
- Laboratorio de Neurociencias, Facultad de Psicología, Universidad de Colima, Colima 28040, Mexico; Medical Sciences Ph.D. Program. Facultad de Medicina, Universidad de Colima, Colima 28040, Mexico
| | - Veronica Lopez-Virgen
- Laboratorio de Neurociencias, Facultad de Psicología, Universidad de Colima, Colima 28040, Mexico
| | - Norma Moy-Lopez
- Laboratorio de Neurociencias, Facultad de Psicología, Universidad de Colima, Colima 28040, Mexico
| | - Oscar Gonzalez-Perez
- Laboratorio de Neurociencias, Facultad de Psicología, Universidad de Colima, Colima 28040, Mexico.
| |
Collapse
|
2
|
de Sampaio Barros MF, Stefano Filho CA, de Menezes LT, Araújo-Moreira FM, Trevelin LC, Pimentel Maia R, Radel R, Castellano G. Psycho-physio-neurological correlates of qualitative attention, emotion and flow experiences in a close-to-real-life extreme sports situation: low- and high-altitude slackline walking. PeerJ 2024; 12:e17743. [PMID: 39076780 PMCID: PMC11285370 DOI: 10.7717/peerj.17743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
It has been indicated that extreme sport activities result in a highly rewarding experience, despite also providing fear, stress and anxiety. Studies have related this experience to the concept of flow, a positive feeling that individuals undergo when they are completely immersed in an activity. However, little is known about the exact nature of these experiences, and, there are still no empirical results to characterize the brain dynamics during extreme sport practice. This work aimed at investigating changes in psychological responses while recording physiological (heart rate-HR, and breathing rate-BR) and neural (electroencephalographic-EEG) data of eight volunteers, during outdoors slackline walking in a mountainous environment at two different altitude conditions (1 m-low-walk- and 45 m-high-walk-from the ground). Low-walk showed a higher score on flow scale, while high-walk displayed a higher score in the negative affect aspects, which together point to some level of flow restriction during high-walk. The order of task performance was shown to be relevant for the physiological and neural variables. The brain behavior during flow, mainly considering attention networks, displayed the stimulus-driven ventral attention network-VAN, regionally prevailing (mainly at the frontal lobe), over the goal-directed dorsal attention network-DAN. Therefore, we suggest an interpretation of flow experiences as an opened attention to more changing details in the surroundings, i.e., configured as a 'task-constantly-opened-to-subtle-information experience', rather than a 'task-focused experience'.
Collapse
Affiliation(s)
- Marcelo Felipe de Sampaio Barros
- Programa de Pós-graduação em Biotecnologia, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
- Laboratoire LAMHESS, Université de Nice Sophia Antipolis, Nice, Côte d’Azur, France
| | - Carlos Alberto Stefano Filho
- Neurophysics Group, Gleb Wataghin Institute of Physics, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Lucas Toffoli de Menezes
- Neurophysics Group, Gleb Wataghin Institute of Physics, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Fernando Manuel Araújo-Moreira
- Programa de Pós-graduação em Biotecnologia, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
- Programa de pós-graduação em Engenharia Nuclear, Instituto Militar de Engenharia/IME, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Carlos Trevelin
- Programa de Pós-graduação em Biotecnologia, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
- Departamento de Computação, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Rafael Pimentel Maia
- Department of Statistics, Institute of Mathematics, Statistics and Scientific Computing, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Rémi Radel
- Laboratoire LAMHESS, Université de Nice Sophia Antipolis, Nice, Côte d’Azur, France
| | - Gabriela Castellano
- Neurophysics Group, Gleb Wataghin Institute of Physics, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Litwińczuk MC, Trujillo-Barreto N, Muhlert N, Cloutman L, Woollams A. Relating Cognition to both Brain Structure and Function: A Systematic Review of Methods. Brain Connect 2023; 13:120-132. [PMID: 36106601 PMCID: PMC10079251 DOI: 10.1089/brain.2022.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Cognitive neuroscience explores the mechanisms of cognition by studying its structural and functional brain correlates. Many studies have combined structural and functional neuroimaging techniques to uncover the complex relationship between them. In this study, we report the first systematic review that assesses how information from structural and functional neuroimaging methods can be integrated to investigate the brain substrates of cognition. Procedure: Web of Science and Scopus databases were searched for studies of healthy young adult populations that collected cognitive data and structural and functional neuroimaging data. Results: Five percent of screened studies met all inclusion criteria. Next, 50% of included studies related cognitive performance to brain structure and function without quantitative analysis of the relationship. Finally, 31% of studies formally integrated structural and functional brain data. Overall, many studies consider either structural or functional neural correlates of cognition, and of those that consider both, they have rarely been integrated. We identified four emergent approaches to the characterization of the relationship between brain structure, function, and cognition; comparative, predictive, fusion, and complementary. Discussion: We discuss the insights provided in each approach about the relationship between brain structure and function and how it impacts cognitive performance. In addition, we discuss how authors can select approaches to suit their research questions. Impact statement The relationship between structural and functional brain networks and their relationship to cognition is a matter of current investigations. This work surveys how researchers have studied the relationship between brain structure and function and its impact on cognitive function in healthy adult populations. We review four emergent approaches of quantitative analysis of this multivariate problem; comparative, predictive, fusion, and complementary. We explain the characteristics of each approach, discuss the insights provided in each approach, and how authors can combine approaches to suit their research questions.
Collapse
Affiliation(s)
- Marta Czime Litwińczuk
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nelson Trujillo-Barreto
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nils Muhlert
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lauren Cloutman
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Anna Woollams
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Roberts AG, Peckins MK, Gard AM, Hein TC, Hardi FA, Mitchell C, Monk CS, Hyde LW, Lopez-Duran NL. Amygdala reactivity during socioemotional processing and cortisol reactivity to a psychosocial stressor. Psychoneuroendocrinology 2022; 144:105855. [PMID: 35835021 PMCID: PMC10485794 DOI: 10.1016/j.psyneuen.2022.105855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 05/18/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Threat-related amygdala reactivity and the activation of the Hypothalamic-Pituitary-Adrenal (HPA) axis have been linked to negative psychiatric outcomes. The amygdala and HPA axis have bidirectional connections, suggesting that functional variation in one system may influence the other. However, research on the functional associations between these systems has demonstrated mixed findings, potentially due to small sample sizes and cortisol sampling and data analytic procedures that investigate only pre-post differences in cortisol rather than the specific phases of the cortisol stress response. Further, previous research has primarily utilized samples of adults of mostly European descent, limiting generalizability to those of other ethnoracial identities and ages. Therefore, studies addressing these limitations are needed in order to investigate the functional relations between amygdala reactivity to threat and HPA axis stress responsivity. Using a sample of 159 adolescents from a diverse cohort (75% African American, ages 15-17 years), the present study evaluated associations between amygdala reactivity during socioemotional processing using fMRI and HPA axis reactivity to a socially-evaluative cold pressor task. Greater amygdala activation to fearful and neutral faces was associated with greater cortisol peak values and steeper activation slope. As cortisol peak values and cortisol activation slope capture the intensity of the cortisol stress response, these data suggest that greater activation of the amygdala in response to social distress and ambiguity among adolescents may be related to hyper-reactivity of the HPA axis.
Collapse
Affiliation(s)
- Andrea G Roberts
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Pritzker Department of Psychiatry and Behavioral Health, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | | | - Arianna M Gard
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Psychology and Neuroscience and Cognitive Neuroscience Program, University of Maryland, College Park, MD, USA
| | - Tyler C Hein
- TRAILS to Wellness, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Felicia A Hardi
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Colter Mitchell
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Christopher S Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
5
|
Inflammation, Anxiety, and Stress in Attention-Deficit/Hyperactivity Disorder. Biomedicines 2021; 9:biomedicines9101313. [PMID: 34680430 PMCID: PMC8533349 DOI: 10.3390/biomedicines9101313] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent and serious neurodevelopmental disorder characterized by symptoms of inattention and/or hyperactivity/impulsivity. Chronic and childhood stress is involved in ADHD development, and ADHD is highly comorbid with anxiety. Similarly, inflammatory diseases and a pro-inflammatory state have been associated with ADHD. However, while several works have studied the relationship between peripheral inflammation and stress in affective disorders such as depression or bipolar disorder, fewer have explored this association in ADHD. In this narrative review we synthetize evidence showing an interplay between stress, anxiety, and immune dysregulation in ADHD, and we discuss the implications of a potential disrupted neuroendocrine stress response in ADHD. Moreover, we highlight confounding factors and limitations of existing studies on this topic and critically debate multidirectional hypotheses that either suggest inflammation, stress, or anxiety as a cause in ADHD pathophysiology or inflammation as a consequence of this disease. Untangling these relationships will have diagnostic, therapeutic and prognostic implications for ADHD patients.
Collapse
|
6
|
Saccaro LF, Schilliger Z, Dayer A, Perroud N, Piguet C. Inflammation, anxiety, and stress in bipolar disorder and borderline personality disorder: A narrative review. Neurosci Biobehav Rev 2021; 127:184-192. [PMID: 33930472 DOI: 10.1016/j.neubiorev.2021.04.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 11/30/2022]
Abstract
Bipolar disorder (BD) and borderline personality disorder (BPD) are serious and prevalent psychiatric diseases that share common phenomenological characteristics: symptoms (such as anxiety, affective lability or emotion dysregulation), neuroimaging features, risk factors and comorbidities. While several studies have focused on the link between stress and peripheral inflammation in other affective disorders such as anxiety or depression, fewer have explored this relationship in BD and BPD. This review reports on evidence showing an interplay between immune dysregulation, anxiety and stress, and how an altered acute neuroendocrine stress response may exist in these disorders. Moreover, we highlight limitations and confounding factors of these existing studies and discuss multidirectional hypotheses that either suggest inflammation or stress and anxiety as the primum movens in BD and BPD pathophysiology, or inflammation as a consequence of the pathophysiology of these diseases. Untangling these associations and implementing a transdiagnostic approach will have diagnostic, therapeutic and prognostic implications for BD and BPD patients.
Collapse
Affiliation(s)
- L F Saccaro
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Z Schilliger
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Prilly-Lausanne, Switzerland
| | - A Dayer
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Neuroscience Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - N Perroud
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - C Piguet
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Child and Adolescent Psychiatry Division, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
7
|
Pilozzi A, Carro C, Huang X. Roles of β-Endorphin in Stress, Behavior, Neuroinflammation, and Brain Energy Metabolism. Int J Mol Sci 2020; 22:E338. [PMID: 33396962 PMCID: PMC7796446 DOI: 10.3390/ijms22010338] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/25/2022] Open
Abstract
β-Endorphins are peptides that exert a wide variety of effects throughout the body. Produced through the cleavage pro-opiomelanocortin (POMC), β-endorphins are the primarily agonist of mu opioid receptors, which can be found throughout the body, brain, and cells of the immune system that regulate a diverse set of systems. As an agonist of the body's opioid receptors, β-endorphins are most noted for their potent analgesic effects, but they also have their involvement in reward-centric and homeostasis-restoring behaviors, among other effects. These effects have implicated the peptide in psychiatric and neurodegenerative disorders, making it a research target of interest. This review briefly summarizes the basics of endorphin function, goes over the behaviors and regulatory pathways it governs, and examines the variability of β-endorphin levels observed between normal and disease/disorder affected individuals.
Collapse
Affiliation(s)
| | | | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (A.P.); (C.C.)
| |
Collapse
|
8
|
Neural correlates of aversive anticipation: An activation likelihood estimate meta-analysis across multiple sensory modalities. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:1379-1390. [DOI: 10.3758/s13415-019-00747-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Buades-Rotger M, Krämer UM. From words to action: Implicit attention to antisocial semantic cues predicts aggression and amygdala reactivity to angry faces in healthy young women. Aggress Behav 2018; 44:624-637. [PMID: 30141188 DOI: 10.1002/ab.21787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022]
Abstract
Implicit measures of aggressiveness are able to circumvent response biases that plague self-reports, but it is unclear how they link to neural activation during aggressive interactions and to aggression-related endocrine function. Here, we tested whether an implicit attentional bias toward antisocial semantic information was associated with endogenous testosterone (T) and cortisol (C) levels, as well as with aggressive behavior and amygdala reactivity to angry faces in a separate competitive paradigm. On Day one, participants (39 healthy young women) completed an emotional word Stroop task in which they had to indicate the font color of antisocial, prosocial, or neutral words. On Day two, we measured subjects' brain activity during a competitive reaction time task in which the female opponent displayed angry or neutral facial expressions at the start of each trial and provoked participants with increasingly strong sound blasts. T and C were measured in saliva during a regular weekday as well as before and after scanning. We previously showed that aggression was associated with enhanced amygdala reactivity to angry faces in this sample. The present analyses revealed that subjects were slower to identify the font color of antisocial relative to neutral words, and that this attentional bias predicted higher aggression. T and C were uncorrelated with Stroop scores. Crucially, the relationship between implicit attention to antisocial words and aggression was mediated by amygdala reactivity to angry faces. Our data indicate that a tendency to dwell on implicit hostile cues reflects enhanced responsivity to overt anger displays.
Collapse
Affiliation(s)
- Macià Buades-Rotger
- Department of Neurology; University of Lübeck; Lübeck Germany
- Institute of Psychology II; University of Lübeck; Lübeck Germany
| | - Ulrike M. Krämer
- Department of Neurology; University of Lübeck; Lübeck Germany
- Institute of Psychology II; University of Lübeck; Lübeck Germany
| |
Collapse
|
10
|
Abstract
Emotions are a signaling system, evolved by providing selective advantage through enhanced survival and reproduction. The selective advantage conferred by thrill or exhilaration, however, remains unknown. Hypotheses, as yet untested, include overcoming phobias or honing physical skills as juveniles, or exhibiting desirability during mate selection. Extreme sports can provide an ethically and experimentally feasible tool to analyze thrill. To use this tool, extreme sports must first be defined in a non-circular way, independent of participant psychology. Existing concepts, from different disciplines, focus, respectively, on drama, activity types, or consequences of error. Here, I draw upon academic and popular literature, and autoethnographic experience, to distinguish extreme from adventurous levels for a range of different outdoor sports. I conclude that extreme outdoor adventure sports can be defined objectively as those activities, conditions, and levels, where participant survival relies on moment-by-moment skill, and any error is likely to prove fatal. This allows us to examine the motivations, experiences, and transformations of individuals who undertake these activities. In particular, it will allow us to examine the emotional experience of thrill, previously studied principally as an aspect of personality, from new neurophysiological and evolutionary perspectives.
Collapse
Affiliation(s)
- Ralf C Buckley
- International Chair in Ecotourism Research, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
11
|
Huang YH, Liu HC, Tsai FJ, Sun FJ, Huang KY, Chiu YC, Huang YH, Huang YP, Liu SI. Correlation of impulsivity with self-harm and suicidal attempt: a community study of adolescents in Taiwan. BMJ Open 2017; 7:e017949. [PMID: 29217724 PMCID: PMC5728252 DOI: 10.1136/bmjopen-2017-017949] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate differences and similarities in risk factors for deliberate self-harm (DSH) and suicidal attempt (SA), and the role of impulsivity among a group of community adolescents. SETTING This is a cross-sectional study conducted at high schools in Northern Taiwan. DATA AND PARTICIPANTS We recruited grade 1 students from 14 high schools. A total of 5879 participants (mean age 16.02 years, female adolescents: 57.7%) completed the online assessment. OUTCOME MEASURES Participants completed online questionnaires about sociodemographic data, suicidality, history of DSH and SA, depressed mood, self-esteem, social support, family discord, impulsivity (Barratt Impulsiveness Scale Version 11 (BIS-11)) and the use of alcohol, tobacco and illicit drugs. A subsample was interviewed about lifetime SA, and the results were compared with those from the online questionnaires. RESULTS In our sample, 25% of the students had lifetime DSH and 3.5% had lifetime SA. Two hundred and seventy-two students received face-to-face interviews. The concordance between the online questionnaires and interviews in terms of ascertaining cases of SA was moderate (concordance rate 82.76%; kappa value 0.59). Similar risk factors for DSH/SA among the whole sample included female gender, lower academic performance, depression, substance use (tobacco and alcohol) and low self-esteem. The BIS-11 score was correlated with DSH. Factor 3 score of the BIS-11 (novelty seeking) was correlated with DSH in both boys and girls, whereas factor 2 score (lack of self-control) was correlated with SA in boys. Social support was a protective factor against SA among the female adolescents. Gender modulated the association of impulsivity and DSH/SA. Associations between impulsivity and DSH and SA were particularly strong among boys. CONCLUSIONS Risk factors for DSH and SA were similar, but not identical. Early identification of those at risk and appropriate interventions may be helpful.
Collapse
Affiliation(s)
- Yu-Hsin Huang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Psychiatry, MacKay Memorial Hospital, Taipei, Taiwan
- Suicide Prevention Centre, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Hui-Ching Liu
- Department of Psychiatry, MacKay Memorial Hospital, Taipei, Taiwan
- Suicide Prevention Centre, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Fang-Ju Tsai
- Department of Psychiatry, En Chu Kong Hospital, New Taipei City, Taiwan
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Fang-Ju Sun
- MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Kuo-Yang Huang
- Department of Psychiatry, Taiwan Adventist Hospital, Taipei, Taiwan
| | - Yu-Ching Chiu
- Department of Psychiatry, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Yen-Hsun Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Yo-Ping Huang
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Shen-Ing Liu
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Psychiatry, MacKay Memorial Hospital, Taipei, Taiwan
- Suicide Prevention Centre, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Shakra MA, Leyton M, Moghnieh H, Pruessner J, Dagher A, Pihl R. Neurobiological Correlates and Predictors of Two Distinct Personality Trait Pathways to Escalated Alcohol Use. EBioMedicine 2017; 27:86-93. [PMID: 29292030 PMCID: PMC5828056 DOI: 10.1016/j.ebiom.2017.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The delineation of the behavioral neurobiological mechanisms underlying the heterogeneous pathways for alcohol use disorders (AUDs) is ostensibly imperative for the development of more cost-effective treatments predicated on better understanding of this complex psychopathology. METHODS 1) Forty-eight high anxiety sensitive (HAS) and high sensation seeking (HSS) psychopathology-free emerging adults (mean (SD) age: 20.4 (1.9) years) completed a Face Emotion Processing Task and a social stress paradigm (Montreal Imaging Stress Task) during functional magnetic resonance imaging sessions with and without alcohol ingestion (1ml/kg of 95% USP alcohol, p.o.). Drug and alcohol use was reassessed during follow-up interviews 2-3years later. OUTCOMES The effects of alcohol (versus placebo) ingestion depended upon the task and risk group. In response to negative (versus neutral) faces, alcohol diminished amygdala (AMYG) activations in HAS but not HSS subjects. In response to psychosocial evaluative stress, alcohol enhanced activations of the medial orbitofrontal cortex (mOFC), perigenual anterior cingulate cortex, and nucleus accumbens in HAS male subjects (HASMS), but decreased mOFC activity in HSS male subjects (HSSMS). At follow-up, a greater alcohol versus placebo differential for threat-related AMYG activations predicted escalating drinking and/or illicit drug use among HAS but not HSS participants, whereas a greater differential for mOFC activations during acute social stress predicted escalating substance use among HSS but not HAS participants. INTERPRETATION This double dissociation provides evidence of distinct neurobiological profiles in a priori identified personality trait-based risk groups for AUDs, and links these signatures to clinically relevant substance use outcomes at follow-up. AUD subtypes might benefit from motivationally and personality-specific ameliorative and preventative interventions.
Collapse
Affiliation(s)
- Malak Abu Shakra
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Marco Leyton
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Hussein Moghnieh
- FastPay Financial Institution, Beverly Blvd, Los Angeles, CA, United States
| | - Jens Pruessner
- Department of Psychology, University of Konstanz, Konstanz, Baden-Württemberg, Germany
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Robert Pihl
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Mujica-Parodi LR, Cha J, Gao J. From Anxious to Reckless: A Control Systems Approach Unifies Prefrontal-Limbic Regulation Across the Spectrum of Threat Detection. Front Syst Neurosci 2017; 11:18. [PMID: 28439230 PMCID: PMC5383661 DOI: 10.3389/fnsys.2017.00018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/21/2017] [Indexed: 12/21/2022] Open
Abstract
Here we provide an integrative review of basic control circuits, and introduce techniques by which their regulation can be quantitatively measured using human neuroimaging. We illustrate the utility of the control systems approach using four human neuroimaging threat detection studies (N = 226), to which we applied circuit-wide analyses in order to identify the key mechanism underlying individual variation. In so doing, we build upon the canonical prefrontal-limbic control system to integrate circuit-wide influence from the inferior frontal gyrus (IFG). These were incorporated into a computational control systems model constrained by neuroanatomy and designed to replicate our experimental data. In this model, the IFG acts as an informational set point, gating signals between the primary prefrontal-limbic negative feedback loop and its cortical information-gathering loop. Along the cortical route, if the sensory cortex provides sufficient information to make a threat assessment, the signal passes to the ventromedial prefrontal cortex (vmPFC), whose threat-detection threshold subsequently modulates amygdala outputs. However, if signal outputs from the sensory cortex do not provide sufficient information during the first pass, the signal loops back to the sensory cortex, with each cycle providing increasingly fine-grained processing of sensory data. Simulations replicate IFG (chaotic) dynamics experimentally observed at both ends at the threat-detection spectrum. As such, they identify distinct types of IFG disconnection from the circuit, with associated clinical outcomes. If IFG thresholds are too high, the IFG and sensory cortex cycle for too long; in the meantime the coarse-grained (excitatory) pathway will dominate, biasing ambiguous stimuli as false positives. On the other hand, if cortical IFG thresholds are too low, the inhibitory pathway will suppress the amygdala without cycling back to the sensory cortex for much-needed fine-grained sensory cortical data, biasing ambiguous stimuli as false negatives. Thus, the control systems model provides a consistent mechanism for IFG regulation, capable of producing results consistent with our data for the full spectrum of threat-detection: from fearful to optimal to reckless. More generally, it illustrates how quantitative characterization of circuit dynamics can be used to unify a fundamental dimension across psychiatric affective symptoms, with implications for populations that range from anxiety disorders to addiction.
Collapse
Affiliation(s)
- Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University School of MedicineStony Brook, NY, USA
| | - Jiook Cha
- Department of Psychiatry, Columbia University College of Physicians and SurgeonsNew York, NY, USA
| | - Jonathan Gao
- Department of Biomedical Engineering, Stony Brook University School of MedicineStony Brook, NY, USA
| |
Collapse
|
14
|
Rădulescu AR, Hannon ER. Applying fMRI complexity analyses to the single subject: a case study for proposed neurodiagnostics. Neurocase 2017; 23:120-137. [PMID: 28562172 DOI: 10.1080/13554794.2017.1316410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nonlinear dynamic tools have been statistically validated at the group level to identify subtle differences in system wide regulation of brain meso-circuits, often increasing clinical sensitivity over conventional analyses alone. We explored the feasibility of extracting information at the single-subject level, illustrating two pairs of healthy individuals with psychological differences in stress reactivity. We applied statistical and nonlinear dynamic tools to capture key characteristics of the prefrontal-limbic loop. We compared single subject results with statistical results for the larger group. We concluded that complexity analyses may identify important differences at the single-subject level, supporting their potential towards neurodiagnostic applications.
Collapse
Affiliation(s)
| | - Emily R Hannon
- b Department of Ecology and Evolutionary Biology , University of Colorado at Boulder , Boulder , CO , USA
| |
Collapse
|
15
|
Raglan GB, Schmidt LA, Schulkin J. The role of glucocorticoids and corticotropin-releasing hormone regulation on anxiety symptoms and response to treatment. Endocr Connect 2017; 6:R1-R7. [PMID: 28119322 PMCID: PMC5424777 DOI: 10.1530/ec-16-0100] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/24/2017] [Indexed: 11/08/2022]
Abstract
The stress response has been linked to the expression of anxiety and depression, but the mechanisms for these connections are under continued consideration. The activation and expression of glucocorticoids and CRH are variable and may hold important clues to individual experiences of mood disorders. This paper explores the interactions of glucocorticoids and CRH in the presentation of anxiety and depressive disorders in an effort to better describe their differing roles in each of these clinical presentations. In addition, it focuses on ways in which extra-hypothalamic glucocorticoids and CRH, often overlooked, may play important roles in the presentation of clinical disorders.
Collapse
Affiliation(s)
- Greta B Raglan
- Department of PsychologyAmerican University, Washington, District of Columbia, USA
| | - Louis A Schmidt
- Department of PsychologyNeuroscience & Behavior, McMaster University, Hamilton, Ontario, Canada
| | - Jay Schulkin
- Department of ResearchAmerican College of Obstetricians and Gynecologists, Washington, District of Columbia, USA
- Department of NeuroscienceGeorgetown University, Washington, District of Columbia, USA
| |
Collapse
|
16
|
Flow. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2017. [DOI: 10.1007/s00398-016-0115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Buades-Rotger M, Engelke C, Beyer F, Keevil BG, Brabant G, Krämer UM. Endogenous testosterone is associated with lower amygdala reactivity to angry faces and reduced aggressive behavior in healthy young women. Sci Rep 2016; 6:38538. [PMID: 27924836 PMCID: PMC5141420 DOI: 10.1038/srep38538] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/11/2016] [Indexed: 01/01/2023] Open
Abstract
Testosterone and cortisol have been proposed to influence aggressive behavior by altering the neural processing of facial threat signals. However, this has not been investigated in direct social interactions. Here, we explored the joint impact of testosterone, cortisol, and brain reactivity to anger expressions on women’s reactive aggression in the Social Threat Aggression Paradigm (STAP). The STAP is a competitive reaction time task in which the purported opponent displays either an angry or a neutral facial expression at the beginning of each trial and delivers increasingly loud sound blasts to the participants, successfully provoking them. Strikingly, salivary testosterone at scan-time was negatively related to both aggression and basolateral amygdala (BLA) reactivity to angry faces, whereas cortisol had no effect. When the opponent looked angry, BLA-orbitofrontal coupling was reduced, and BLA reactivity was positively related to aggression. The latter relationship was fully mediated by bilateral superior temporal gyrus (STG) activation. Our results thus support previous neurobiological models of aggression, and extend them by demonstrating that fast amygdala responses to threat modulate STG activity in order to favor aggressive retaliation. Furthermore, our study agrees with recent evidence underscoring a fear-reducing and strategically prosocial effect of testosterone on human social behavior.
Collapse
Affiliation(s)
- Macià Buades-Rotger
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | | | - Frederike Beyer
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Brian G Keevil
- Department of Clinical Biochemistry, University Hospital of South Manchester, Manchester, UK
| | - Georg Brabant
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Ulrike M Krämer
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| |
Collapse
|
18
|
Buades-Rotger M, Serfling G, Harbeck B, Brabant G, Krämer UM. Prednisolone increases neural reactivity to negative socio-emotional stimuli in healthy young men. Eur Neuropsychopharmacol 2016; 26:1176-89. [PMID: 27178366 DOI: 10.1016/j.euroneuro.2016.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/20/2016] [Accepted: 04/27/2016] [Indexed: 12/19/2022]
Abstract
Exogenous glucocorticoids are known to trigger affective changes, but these are highly variable across individuals. A better understanding of how synthetic glucocorticoids impact the processing of negative emotions in the human brain might help to predict such changes. In the present functional magnetic resonance imaging (fMRI) study, we sought to uncover the slow effects of a synthetic glucocorticoid infusion on the neural response to socio-emotional scenes using a within-participant, double-blind, placebo-controlled design. In two separate sessions, 20 young males were given either an intravenous prednisolone dose (250mg) or placebo in a cross-over, randomized order. Four hours later, they were scanned while viewing drawings of persons in a neutral or negative emotional situation. On the next morning participants provided a blood sample for serum cortisol measurement, which served as a manipulation check. Prednisolone strongly suppressed morning cortisol, and heightened brain reactivity to emotional stimuli in left amygdala, left caudate head, right inferior frontal gyrus, bilateral supplementary motor area, and right somatosensory cortex. Amygdala reactivity was related to lower self-reported fatigue and higher irritability in the prednisolone condition. Moreover, prednisolone blunted inferior frontal and amygdala connectivity with other regions of the emotion-processing neural circuitry. Our results suggest specific brain pathways through which exogenous glucocorticoids may labilize affect.
Collapse
Affiliation(s)
- Macià Buades-Rotger
- Department of Neurology, University of Lübeck, Lübeck, Germany; Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Georg Serfling
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Birgit Harbeck
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Georg Brabant
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Ulrike M Krämer
- Department of Neurology, University of Lübeck, Lübeck, Germany; Institute of Psychology II, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
19
|
Cha J, DeDora D, Nedic S, Ide J, Greenberg T, Hajcak G, Mujica-Parodi LR. Clinically Anxious Individuals Show Disrupted Feedback between Inferior Frontal Gyrus and Prefrontal-Limbic Control Circuit. J Neurosci 2016; 36:4708-18. [PMID: 27122030 PMCID: PMC6601720 DOI: 10.1523/jneurosci.1092-15.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 02/10/2016] [Accepted: 03/08/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Clinical anxiety is associated with generalization of conditioned fear, in which innocuous stimuli elicit alarm. Using Pavlovian fear conditioning (electric shock), we quantify generalization as the degree to which subjects' neurobiological responses track perceptual similarity gradients to a conditioned stimulus. Previous studies show that the ventromedial prefrontal cortex (vmPFC) inversely and ventral tegmental area directly track the gradient of perceptual similarity to the conditioned stimulus in healthy individuals, whereas clinically anxious individuals fail to discriminate. Here, we extend this work by identifying specific functional roles within the prefrontal-limbic circuit. We analyzed fMRI time-series acquired from 57 human subjects during a fear generalization task using entropic measures of circuit-wide regulation and feedback (power spectrum scale invariance/autocorrelation), in combination with structural (diffusion MRI-probabilistic tractography) and functional (stochastic dynamic causal modeling) measures of prefrontal-limbic connectivity within the circuit. Group comparison and correlations with anxiety severity across 57 subjects revealed dysregulatory dynamic signatures within the inferior frontal gyrus (IFG), which our prior work has linked to impaired feedback within the circuit. Bayesian model selection then identified a fully connected prefrontal-limbic model comprising the IFG, vmPFC, and amygdala. Dysregulatory IFG dynamics were associated with weaker reciprocal excitatory connectivity between the IFG and the vmPFC. The vmPFC exhibited inhibitory influence on the amygdala. Our current results, combined with our previous work across a threat-perception spectrum of 137 subjects and a meta-analysis of 366 fMRI studies, dissociate distinct roles for three prefrontal-limbic regions, wherein the IFG provides evaluation of stimulus meaning, which then informs the vmPFC in inhibiting the amygdala. SIGNIFICANCE STATEMENT Affective neuroscience has generally treated prefrontal regions (orbitofrontal cortex, dorsolateral prefrontal cortex, inferior frontal gyrus, ventromedial prefrontal cortex) equivalently as inhibitory components of the prefrontal-limbic system. Yet research across the anxiety spectrum suggests that the inferior frontal gyrus may have a more complex role in emotion regulation, as this region shows abnormal function in disorders of both hyperarousal and hypoarousal. Using entropic measures of circuit-wide regulation and feedback, in combination with measures of structural and functional connectivity, we dissociate distinct roles for three prefrontal-limbic regions, wherein the inferior frontal gyrus provides evaluation of stimulus meaning, which then informs the ventromedial prefrontal cortex in inhibiting the amygdala. This reconfiguration coheres with studies of conceptual disambiguation also implicating the inferior frontal gyrus.
Collapse
Affiliation(s)
- Jiook Cha
- Department of Psychiatry, Columbia University Medical Center and the New York State Psychiatric Institute, New York, New York 10032
| | - Daniel DeDora
- Department of Biomedical Engineering, Stony Brook University School of Medicine, Stony Brook, New York 11794, Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, and
| | - Sanja Nedic
- Department of Biomedical Engineering, Stony Brook University School of Medicine, Stony Brook, New York 11794, Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, and
| | - Jaime Ide
- Department of Biomedical Engineering, Stony Brook University School of Medicine, Stony Brook, New York 11794, Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, and
| | - Tsafrir Greenberg
- Department of Psychology, Stony Brook University, Stony Brook, New York 11794
| | - Greg Hajcak
- Department of Psychology, Stony Brook University, Stony Brook, New York 11794
| | - Lilianne Rivka Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University School of Medicine, Stony Brook, New York 11794, Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, and
| |
Collapse
|
20
|
Ide JS, Hu S, Zhang S, Mujica-Parodi LR, Li CSR. Power spectrum scale invariance as a neural marker of cocaine misuse and altered cognitive control. NEUROIMAGE-CLINICAL 2016; 11:349-356. [PMID: 27294029 PMCID: PMC4888196 DOI: 10.1016/j.nicl.2016.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) has highlighted the effects of chronic cocaine exposure on cerebral structures and functions, and implicated the prefrontal cortices in deficits of cognitive control. Recent investigations suggest power spectrum scale invariance (PSSI) of cerebral blood oxygenation level dependent (BOLD) signals as a neural marker of cerebral activity. We examined here how PSSI is altered in association with cocaine misuse and impaired cognitive control. METHODS Eighty-eight healthy (HC) and seventy-five age and gender matched cocaine dependent (CD) adults participated in functional MRI of a stop signal task (SST). BOLD images were preprocessed using standard procedures in SPM, including detrending, band-pass filtering (0.01-0.25 Hz), and correction for head motions. Voxel-wise PSSI measures were estimated by a linear fit of the power spectrum with a log-log scale. In group analyses, we examined differences in PSSI between HC and CD, and its association with clinical and behavioral variables using a multiple regression. A critical component of cognitive control is post-signal behavioral adjustment, which is compromised in cocaine dependence. Therefore, we examined the PSSI changes in association with post-signal slowing (PSS) in the SST. RESULTS Compared to HC, CD showed decreased PSS and PSSI in multiple frontoparietal regions. PSSI was positively correlated with PSS in HC in multiple regions, including the left inferior frontal gyrus (IFG) and right supramarginal gyrus (SMG), which showed reduced PSSI in CD. CONCLUSIONS These findings suggest disrupted connectivity dynamics in the fronto-parietal areas in association with post-signal behavioral adjustment in cocaine addicts. These new findings support PSSI as a neural marker of impaired cognitive control in cocaine addiction.
Collapse
Affiliation(s)
- Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, United States.
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, United States.
| |
Collapse
|
21
|
Breen MS, Beliakova-Bethell N, Mujica-Parodi LR, Carlson JM, Ensign WY, Woelk CH, Rana BK. Acute psychological stress induces short-term variable immune response. Brain Behav Immun 2016; 53:172-182. [PMID: 26476140 DOI: 10.1016/j.bbi.2015.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/01/2015] [Accepted: 10/13/2015] [Indexed: 11/19/2022] Open
Abstract
In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific.
Collapse
Affiliation(s)
- Michael S Breen
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | | | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-5281, USA
| | - Joshua M Carlson
- Department of Psychology, Northern Michigan University, Marquette, MI 49855, USA
| | - Wayne Y Ensign
- Space and Naval Warfare Systems Center - Pacific, Applied Sciences Division, San Diego, CA 92152, USA
| | - Christopher H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Brinda K Rana
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; VA San Diego Center for Stress and Mental Health, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Left medial orbitofrontal cortex volume correlates with skydive-elicited euphoric experience. Brain Struct Funct 2015; 221:4269-4279. [PMID: 26547313 DOI: 10.1007/s00429-015-1139-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022]
Abstract
The medial orbitofrontal cortex has been linked to the experience of positive affect. Greater medial orbitofrontal cortex volume is associated with greater expression of positive affect and reduced medial orbital frontal cortex volume is associated with blunted positive affect. However, little is known about the experience of euphoria, or extreme joy, and how this state may relate to variability in medial orbitofrontal cortex structure. To test the hypothesis that variability in euphoric experience correlates with the volume of the medial orbitofrontal cortex, we measured individuals' (N = 31) level of self-reported euphoria in response to a highly anticipated first time skydive and measured orbitofrontal cortical volumes with structural magnetic resonance imaging. Skydiving elicited a large increase in self-reported euphoria. Participants' euphoric experience was predicted by the volume of their left medial orbitofrontal cortex such that, the greater the volume, the greater the euphoria. Further analyses indicated that the left medial orbitofrontal cortex and amygdalo-hippocampal complex independently explain variability in euphoric experience and that medial orbitofrontal cortex volume, in conjunction with other structures within the mOFC-centered corticolimbic circuit, can be used to predict individuals' euphoric experience.
Collapse
|
23
|
Norbury A, Husain M. Sensation-seeking: Dopaminergic modulation and risk for psychopathology. Behav Brain Res 2015; 288:79-93. [DOI: 10.1016/j.bbr.2015.04.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/06/2015] [Accepted: 04/10/2015] [Indexed: 12/22/2022]
|