1
|
Chen HB, Li L, Sun YK, Liu Y, Chen W, Liu P, Liao YH, Xie A. Functional Connectivity Alterations Associated with COVID-19-Related Sleep Problems: A Longitudinal Resting-State fMRI Study. Nat Sci Sleep 2025; 17:97-113. [PMID: 39839964 PMCID: PMC11748004 DOI: 10.2147/nss.s488911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/30/2024] [Indexed: 01/23/2025] Open
Abstract
Background COVID-19 has led to reports of fatigue and sleep problems. Brain function changes underlying sleep problems (SP) post-COVID-19 are unclear. Purpose This study investigated SP-related brain functional connectivity (FC) alterations. Patients and methods Fifty-five COVID-19 survivors with SP (COVID_SP) and 33 without SP (COVID_NSP), matched for demographics, completed PSQI and underwent rs-fMRI at baseline and 2-month follow-up. Correlations between FC and clinical data were analyzed by Pearson correlation analysis with Gaussian random field (GRF) correction. The repeated-measures analysis of variance (R-M ANOVA) was completed to explore the interaction with time. Results At baseline, COVID_SP exhibited elevated FC: right precentral gyrus (PrG) with left lateral occipital cortex (LOcC)/right PrG, left inferior parietal lobule (IPL) with right superior frontal gyrus (SFG), left hippocampus with right inferior frontal gyrus (IFG). Higher FC between left hippocampus and right SFG correlated with PSQI scores. At 2-month follow-up, decreased FC implicated in emotion regulation, executive function, and memory; increased FC in semantics, attention, and auditory-visual processing. The changes in these regions are correlated with the scores of PSQI, GAD, and PHQ. The Repeated-Measures Analysis of Variance (R-M ANOVA) revealed a significant time interaction effect between sleep and various emotion scales. Moreover, the analysis of the functional connectivity between the right PrG and the right PrG as well as that between the left IPL and the right SFG also discovered a significant time interaction effect. Conclusion This study provides insight into the changes in brain function associated with SP after COVID-19. These changes may partially explain the development of SP, and they also changed over time.
Collapse
Affiliation(s)
- Hao-bo Chen
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
| | - Ling Li
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yun-kai Sun
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yi Liu
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Wei Chen
- MR Research Collaboration Team, Siemens Healthineers Ltd., Guangzhou, People’s Republic of China
| | - Peng Liu
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
| | - Yan-Hui Liao
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - An Xie
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
| |
Collapse
|
2
|
Fenerci C, Setton R, Baracchini G, Snytte J, Spreng RN, Sheldon S. Lifespan differences in hippocampal subregion connectivity patterns during movie watching. Neurobiol Aging 2024; 141:182-193. [PMID: 38968875 DOI: 10.1016/j.neurobiolaging.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/17/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Age-related episodic memory decline is attributed to functional alternations in the hippocampus. Less clear is how aging affects the functional connections of the hippocampus to the rest of the brain during episodic memory processing. We examined fMRI data from the CamCAN dataset, in which a large cohort of participants watched a movie (N = 643; 18-88 years), a proxy for naturalistic episodic memory encoding. We examined connectivity profiles across the lifespan both within the hippocampus (anterior, posterior), and between the hippocampal subregions and cortical networks. Aging was associated with reductions in contralateral (left, right) but not ipsilateral (anterior, posterior) hippocampal subregion connectivity. Aging was primarily associated with increased coupling between the anterior hippocampus and regions affiliated with Control, Dorsal Attention and Default Mode networks, yet decreased coupling between the posterior hippocampus and a selection of these regions. Differences in age-related hippocampal-cortical, but not within-hippocampus circuitry selectively predicted worse memory performance. Our findings comprehensively characterize hippocampal functional topography in relation to cognition in older age, suggesting that shifts in cortico-hippocampal connectivity may be sensitive markers of age-related episodic memory decline.
Collapse
Affiliation(s)
- Can Fenerci
- Department of Psychology, McGill University, Montreal, QC, Canada.
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jamie Snytte
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - R Nathan Spreng
- Department of Psychology, McGill University, Montreal, QC, Canada; Department of Psychology, Harvard University, Cambridge, MA, USA; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Balajoo SM, Eickhoff SB, Masouleh SK, Plachti A, Waite L, Saberi A, Bahri MA, Bastin C, Salmon E, Hoffstaedter F, Palomero-Gallagher N, Genon S. Hippocampal metabolic subregions and networks: Behavioral, molecular, and pathological aging profiles. Alzheimers Dement 2023; 19:4787-4804. [PMID: 37014937 PMCID: PMC10698199 DOI: 10.1002/alz.13056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION Hippocampal local and network dysfunction is the hallmark of Alzheimer's disease (AD). METHODS We characterized the spatial patterns of hippocampus differentiation based on brain co-metabolism in healthy elderly participants and demonstrated their relevance to study local metabolic changes and associated dysfunction in pathological aging. RESULTS The hippocampus can be differentiated into anterior/posterior and dorsal cornu ammonis (CA)/ventral (subiculum) subregions. While anterior/posterior CA show co-metabolism with different regions of the subcortical limbic networks, the anterior/posterior subiculum are parts of cortical networks supporting object-centered memory and higher cognitive demands, respectively. Both networks show relationships with the spatial patterns of gene expression pertaining to cell energy metabolism and AD's process. Finally, while local metabolism is generally lower in posterior regions, the anterior-posterior imbalance is maximal in late mild cognitive impairment with the anterior subiculum being relatively preserved. DISCUSSION Future studies should consider bidimensional hippocampal differentiation and in particular the posterior subicular region to better understand pathological aging.
Collapse
Affiliation(s)
- Somayeh Maleki Balajoo
- Institute of Systems Neuroscience, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany
| | - Shahrzad Kharabian Masouleh
- Institute of Systems Neuroscience, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany
| | - Anna Plachti
- Institute of Systems Neuroscience, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Laura Waite
- Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany
| | - Amin Saberi
- Institute of Systems Neuroscience, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Eric Salmon
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
- Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM‑1), Research Centre Juelich, Juelich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Sarah Genon
- Institute of Systems Neuroscience, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
4
|
Raud L, Sneve MH, Vidal-Piñeiro D, Sørensen Ø, Folvik L, Ness HT, Mowinckel AM, Grydeland H, Walhovd KB, Fjell AM. Hippocampal-cortical functional connectivity during memory encoding and retrieval. Neuroimage 2023; 279:120309. [PMID: 37544416 DOI: 10.1016/j.neuroimage.2023.120309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/16/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023] Open
Abstract
Memory encoding and retrieval are critical sub-processes of episodic memory. While the hippocampus is involved in both, less is known about its connectivity with the neocortex during memory processing in humans. This is partially due to variations in demands in common memory tasks, which inevitably recruit cognitive processes other than episodic memory. Conjunctive analysis of data from different tasks with the same core elements of encoding and retrieval can reduce the intrusion of patterns related to subsidiary perceptual and cognitive processing. Leveraging data from two large-scale functional resonance imaging studies with different episodic memory tasks (514 and 237 participants), we identified hippocampal-cortical networks active during memory tasks. Whole-brain functional connectivity maps were similar during resting state, encoding, and retrieval. Anterior and posterior hippocampus had distinct connectivity profiles, which were also stable across resting state and memory tasks. When contrasting encoding and retrieval connectivity, conjunctive encoding-related connectivity was sparse. During retrieval hippocampal connectivity was increased with areas known to be active during recollection, including medial prefrontal, inferior parietal, and parahippocampal cortices. This indicates that the stable functional connectivity of the hippocampus along its longitudinal axis is superposed by increased functional connectivity with the recollection network during retrieval, while auxiliary encoding connectivity likely reflects contextual factors.
Collapse
Affiliation(s)
- Liisa Raud
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway.
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Line Folvik
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Hedda T Ness
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Athanasia M Mowinckel
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0372 Oslo, Norway
| |
Collapse
|
5
|
Zhong S, Zhang L, Wang M, Shen J, Mao Y, Du X, Ma J. Abnormal resting-state functional connectivity of hippocampal subregions in children with primary nocturnal enuresis. Front Psychiatry 2022; 13:966362. [PMID: 36072465 PMCID: PMC9441761 DOI: 10.3389/fpsyt.2022.966362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Previous neuroimaging studies have shown abnormal brain-bladder control network in children with primary nocturnal enuresis (PNE). The hippocampus, which has long been considered to be an important nerve center for memory and emotion, has also been confirmed to be activating during micturition in several human imaging studies. However, few studies have explored hippocampus-related functional networks of PNE in children. In this study, the whole resting-state functional connectivity (RSFC) of hippocampus was investigated in children with PNE. Methods Functional magnetic resonance imaging data of 30 children with PNE and 29 matched healthy controls (HCs) were analyzed in our study. We used the seed-based RSFC method to evaluate the functional connectivity of hippocampal subregions defined according to the Human Brainnetome Atlas. Correlation analyses were also processed to investigate their relationship with disease duration time, bed-wetting frequency, and bladder volume. Results Compared with HCs, children with PNE showed abnormal RSFC of the left rostral hippocampus (rHipp) with right fusiform gyrus, right Rolandic operculum, left inferior parietal lobule, and right precentral gyrus, respectively. Moreover, decreased RSFC of the left caudal hippocampus (cHipp) with right fusiform gyrus and right supplementary motor area was discovered in the PNE group. There were no significant results in the right rHipp and cHipp seeds after multiple comparison corrections. In addition, disease duration time was negatively correlated with RSFC of the left rHipp with right Rolandic operculum (r = -0.386, p = 0.035, uncorrected) and the left cHipp with right fusiform gyrus (r = -0.483, p = 0.007, uncorrected) in the PNE group, respectively. In the Receiver Operating Characteristic (ROC) analysis, all the above results of RSFC achieved significant performance. Conclusions To our knowledge, this is the first attempt to examine the RSFC patterns of hippocampal subregions in children with PNE. These findings indicated that children with PNE have potential dysfunctions in the limbic network, sensorimotor network, default mode network, and frontoparietal network. These networks may become less efficient with disease duration time, inducing impairments in brain-bladder control, cognition, memory, and emotion. Further prospective research with dynamic observation of brain imaging, bladder function, cognition, memory, and emotion is warranted.
Collapse
Affiliation(s)
- Shaogen Zhong
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lichi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Mengxing Wang
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiayao Shen
- Department of Nephrology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Mao
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxia Du
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Jun Ma
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Sparse representations of high dimensional neural data. Sci Rep 2022; 12:7295. [PMID: 35508638 PMCID: PMC9068763 DOI: 10.1038/s41598-022-10459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/01/2022] [Indexed: 11/08/2022] Open
Abstract
Conventional Vector Autoregressive (VAR) modelling methods applied to high dimensional neural time series data result in noisy solutions that are dense or have a large number of spurious coefficients. This reduces the speed and accuracy of auxiliary computations downstream and inflates the time required to compute functional connectivity networks by a factor that is at least inversely proportional to the true network density. As these noisy solutions have distorted coefficients, thresholding them as per some criterion, statistical or otherwise, does not alleviate the problem. Thus obtaining a sparse representation of such data is important since it provides an efficient representation of the data and facilitates its further analysis. We propose a fast Sparse Vector Autoregressive Greedy Search (SVARGS) method that works well for high dimensional data, even when the number of time points is relatively low, by incorporating only statistically significant coefficients. In numerical experiments, our methods show high accuracy in recovering the true sparse model. The relative absence of spurious coefficients permits accurate, stable and fast evaluation of derived quantities such as power spectrum, coherence and Granger causality. Consequently, sparse functional connectivity networks can be computed, in a reasonable time, from data comprising tens of thousands of channels/voxels. This enables a much higher resolution analysis of functional connectivity patterns and community structures in such large networks than is possible using existing time series methods. We apply our method to EEG data where computed network measures and community structures are used to distinguish emotional states as well as to ADHD fMRI data where it is used to distinguish children with ADHD from typically developing children.
Collapse
|
7
|
Persson N, Andersson M. Hippocampal volume, and the anterior-posterior sub regions relates to recall and recognition over five years: Bidirectional brain-behaviour associations. Neuroimage 2022; 256:119239. [PMID: 35462034 DOI: 10.1016/j.neuroimage.2022.119239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022] Open
Abstract
Longitudinal studies of brain-behavior links between episodic memory (EM) and the hippocampus (HC), including anterior-posterior subregions, are few. This study assessed brain-cognition relationships between HC volumes, including the anterior-posterior subregions, item recall, and recognition, in 358 adults (52%♀; 20-80 yrs. at baseline, 221 returned at follow-up). Bivariate latent change score models assessed mean change, variance, and bidirectional associations between the hippocampal regions and the EM tasks. The influence of chronological age, sex, and education were included as covariates. The results showed that: larger baseline HC volume slowed subsequent decline in EM scores; higher associative memory scores at offset mitigated five-year HC volume loss; larger anterior HC volumes slowed decline in recognition memory, while larger posterior volumes mitigated decline in recall scores; the volume of the anterior HC was not associated with change in recall scores; and posterior HC volume did not predict change in recognition memory scores. The covariates examined - age, sex, and education- had some cross-sectional influence, but only limited longitudinal effects. The results explain the bidirectional associations in brain-cognition links, and how the distinct sub-regional HC correlates for recall and recognition, respectively. These results also shed light on potential links between maintained brain volumes and restored cognitive functions during the aging process.
Collapse
Affiliation(s)
- Ninni Persson
- Department of Psychology, Uppsala University, Uppsala, Sweden; Institute for Globally Distributed Open Research and Education (IGDORE), Sweden.
| | - Micael Andersson
- Department of Radiation Sciences, Umeå University Hospital, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Deshpande G, Zhao X, Robinson J. Functional Parcellation of the Hippocampus based on its Layer-specific Connectivity with Default Mode and Dorsal Attention Networks. Neuroimage 2022; 254:119078. [PMID: 35276366 DOI: 10.1016/j.neuroimage.2022.119078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 12/25/2022] Open
Abstract
Recent neuroimaging evidence suggests that there might be an anterior-posterior functional differentiation of the hippocampus along the long-axis. The HERNET (hippocampal encoding/retrieval and network) model proposed an encoding/retrieval dichotomy with the anterior hippocampus more connected to the dorsal attention network (DAN) during memory encoding, and the posterior portions more connected to the default mode network (DMN) during retrieval. Evidence both for and against the HERNET model has been reported. In this study, we test the validity of the HERNET model non-invasively in humans by computing functional connectivity (FC) in layer-specific cortico-hippocampal microcircuits. This was achieved by acquiring sub-millimeter functional magnetic resonance imaging (fMRI) data during encoding/retrieval tasks at 7T. Specifically, FC between infra-granular output layers of DAN with hippocampus during encoding and FC between supra-granular input layers of DMN with hippocampus during retrieval were computed to test the predictions of the HERNET model. Our results support some predictions of the HERNET model including anterior-posterior gradient along the long axis of the hippocampus. While preferential relationships between the entire hippocampus and DAN/DMN during encoding/retrieval, respectively, were observed as predicted, anterior-posterior specificity in these network relationships could not be confirmed. The strength and clarity of evidence for/against the HERNET model were superior with layer-specific data compared to conventional volume data.
Collapse
Affiliation(s)
- Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr, Suite 266D, Auburn, AL 36849, USA; Department of Psychological Sciences, Auburn University, Auburn, AL, USA; Alabama Advanced Imaging Consortium, Birmingham, AL, USA; Center for Neuroscience, Auburn University, Auburn, AL, USA; Key Laboratory for Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Centre for Brain Research, Indian Institute of Science, Bangalore, India.
| | - Xinyu Zhao
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr, Suite 266D, Auburn, AL 36849, USA; Quora Inc., Mountain View, CA, USA
| | - Jennifer Robinson
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr, Suite 266D, Auburn, AL 36849, USA; Department of Psychological Sciences, Auburn University, Auburn, AL, USA; Alabama Advanced Imaging Consortium, Birmingham, AL, USA; Center for Neuroscience, Auburn University, Auburn, AL, USA
| |
Collapse
|
9
|
Won J, Callow DD, Pena GS, Gogniat MA, Kommula Y, Arnold-Nedimala NA, Jordan LS, Smith JC. Evidence for exercise-related plasticity in functional and structural neural network connectivity. Neurosci Biobehav Rev 2021; 131:923-940. [PMID: 34655658 PMCID: PMC8642315 DOI: 10.1016/j.neubiorev.2021.10.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/10/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
The number of studies investigating exercise and cardiorespiratory fitness (CRF)-related changes in the functional and structural organization of brain networks continues to rise. Functional and structural connectivity are critical biomarkers for brain health and many exercise-related benefits on the brain are better represented by network dynamics. Here, we reviewed the neuroimaging literature to better understand how exercise or CRF may facilitate and maintain the efficiency and integrity of functional and structural aspects of brain networks in both younger and older adults. Converging evidence suggests that increased exercise performance and CRF modulate functional connectivity of the brain in a way that corresponds to behavioral changes such as cognitive and motor performance improvements. Similarly, greater physical activity levels and CRF are associated with better cognitive and motor function, which may be brought about by enhanced structural network integrity. This review will provide a comprehensive understanding of trends in exercise-network studies as well as future directions based on the gaps in knowledge that are currently present in the literature.
Collapse
Affiliation(s)
- Junyeon Won
- Department of Kinesiology, University of Maryland, College Park, MD, United States
| | - Daniel D Callow
- Department of Kinesiology, University of Maryland, College Park, MD, United States; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| | - Gabriel S Pena
- Department of Kinesiology, University of Maryland, College Park, MD, United States
| | - Marissa A Gogniat
- Department of Psychology, University of Georgia, Athens, GA, United States
| | - Yash Kommula
- Department of Kinesiology, University of Maryland, College Park, MD, United States; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| | | | - Leslie S Jordan
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, United States; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States.
| |
Collapse
|
10
|
Robinson JL, Zhou X, Bird RT, Leavitt MJ, Nichols SJ, Blaine SK, Deshpande G. Neurofunctional Segmentation Shifts in the Hippocampus. Front Hum Neurosci 2021; 15:729836. [PMID: 34790106 PMCID: PMC8592061 DOI: 10.3389/fnhum.2021.729836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
The hippocampus is one of the most phylogenetically preserved structures in the mammalian brain. Engaged in a host of diverse cognitive processes, there has been increasing interest in understanding how the hippocampus dynamically supports these functions. One of the lingering questions is how to reconcile the seemingly disparate cytoarchitectonic organization, which favors a dorsal-ventral layering, with the neurofunctional topography, which has strong support for longitudinal axis (anterior-posterior) and medial-lateral orientation. More recently, meta-analytically driven (e.g., big data) approaches have been employed, however, the question remains whether they are sensitive to important task-specific features such as context, cognitive processes recruited, or the type of stimulus being presented. Here, we used hierarchical clustering on functional magnetic resonance imaging (fMRI) data acquired from healthy individuals at 7T using a battery of tasks that engage the hippocampus to determine whether stimulus or task features influence cluster profiles in the left and right hippocampus. Our data suggest that resting state clustering appears to favor the cytoarchitectonic organization, while task-based clustering favors the neurofunctional clustering. Furthermore, encoding tasks were more sensitive to stimulus type than were recognition tasks. Interestingly, a face-name paired associate task had nearly identical clustering profiles for both the encoding and recognition conditions of the task, which were qualitatively morphometrically different than simple encoding of words or faces. Finally, corroborating previous research, the left hippocampus had more stable cluster profiles compared to the right hippocampus. Together, our data suggest that task-based and resting state cluster profiles are different and may account for the disparity or inconsistency in results across studies.
Collapse
Affiliation(s)
- Jennifer L Robinson
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States.,Department of Electrical and Computer Engineering, Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, United States.,Center for Neuroscience Initiative, Auburn University, Auburn, AL, United States.,Alabama Advanced Imaging Consortium, Birmingham, AL, United States
| | - Xinyu Zhou
- Department of Electrical and Computer Engineering, Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, United States.,Quora Inc., Mountain View, CA, United States
| | - Ryan T Bird
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
| | - Mackenzie J Leavitt
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
| | - Steven J Nichols
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
| | - Sara K Blaine
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States.,Center for Neuroscience Initiative, Auburn University, Auburn, AL, United States.,Alabama Advanced Imaging Consortium, Birmingham, AL, United States
| | - Gopikrishna Deshpande
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States.,Department of Electrical and Computer Engineering, Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, United States.,Center for Neuroscience Initiative, Auburn University, Auburn, AL, United States.,Alabama Advanced Imaging Consortium, Birmingham, AL, United States.,Key Lab for Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India.,Center for Brain Research, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
11
|
Panitz DY, Berkovich-Ohana A, Mendelsohn A. Age-related functional connectivity along the hippocampal longitudinal axis. Hippocampus 2021; 31:1115-1127. [PMID: 34319631 DOI: 10.1002/hipo.23377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 01/13/2023]
Abstract
Accumulated evidence points toward a long-axis functional division of the hippocampus, with its anterior part primarily associated with emotional processes and the posterior with navigation and cognition. It is yet unclear, however, how functional connectivity between areas along the hippocampal longitudinal axis and other brain regions differ, and how they are affected by age. Applying an anatomically driven general linear model-based functional connectivity analysis on a large database of resting-state fMRI data, we demonstrate that independent of age, the posterior hippocampus is functionally connected primarily with sensory and motor areas, the middle hippocampus with the default mode network, and the anterior with limbic and prefrontal regions. Along with an age-related disintegration of intra-hippocampal BOLD signal uniformity, the middle and posterior sub-regions exhibit mostly decreases in their functional connectivity with cortical regions, whereas the anterior hippocampus and ventral striatum appear to become more synchronized with age. These findings indicate that long-axis hippocampal areas are tuned to particular functional networks, which do not age in a unified manner.
Collapse
Affiliation(s)
- Daniel Yochai Panitz
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,The Institute of Information Processing and Decision Making (IIPDM), University of Haifa, Haifa, Israel
| | - Aviva Berkovich-Ohana
- Faculty of Education, Department of Learning, Instruction and Teacher Education, and Department of Counseling and Human Development, University of Haifa, Haifa, Israel.,Edmond Safra Brain Research Center, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Avi Mendelsohn
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,The Institute of Information Processing and Decision Making (IIPDM), University of Haifa, Haifa, Israel
| |
Collapse
|
12
|
Moog NK, Nolvi S, Kleih TS, Styner M, Gilmore JH, Rasmussen JM, Heim CM, Entringer S, Wadhwa PD, Buss C. Prospective association of maternal psychosocial stress in pregnancy with newborn hippocampal volume and implications for infant social-emotional development. Neurobiol Stress 2021; 15:100368. [PMID: 34355050 PMCID: PMC8319845 DOI: 10.1016/j.ynstr.2021.100368] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Maternal psychosocial stress during pregnancy can impact the developing fetal brain and influence offspring mental health. In this context, animal studies have identified the hippocampus and amygdala as key brain regions of interest, however, evidence in humans is sparse. We, therefore, examined the associations between maternal prenatal psychosocial stress, newborn hippocampal and amygdala volumes, and child social-emotional development. In a sample of 86 mother-child dyads, maternal perceived stress was assessed serially in early, mid and late pregnancy. Following birth, newborn (aged 5–64 postnatal days, mean: 25.8 ± 12.9) hippocampal and amygdala volume was assessed using structural magnetic resonance imaging. Infant social-emotional developmental milestones were assessed at 6- and 12-months age using the Bayley-III. After adjusting for covariates, maternal perceived stress during pregnancy was inversely associated with newborn left hippocampal volume (β = −0.26, p = .019), but not with right hippocampal (β = −0.170, p = .121) or bilateral amygdala volumes (ps > .5). Furthermore, newborn left hippocampal volume was positively associated with infant social-emotional development across the first year of postnatal life (B = 0.01, p = .011). Maternal perceived stress was indirectly associated with infant social-emotional development via newborn left hippocampal volume (B = −0.34, 95% CIBC [-0.97, −0.01]), suggesting mediation. This study provides prospective evidence in humans linking maternal psychosocial stress in pregnancy with newborn hippocampal volume and subsequent infant social-emotional development across the first year of life. These findings highlight the importance of maternal psychosocial state during pregnancy as a target amenable to interventions to prevent or attenuate its potentially unfavorable neural and behavioral consequences in the offspring. Maternal perceived stress predicted smaller neonatal left hippocampal volume (HCV). Neonatal left HCV was positively associated with infant social-emotional function. Variation in HCV may mediate maternal stress-related effects on child mental health.
Collapse
Affiliation(s)
- Nora K Moog
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Saara Nolvi
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany.,Turku Institute for Advanced Studies, Department of Psychology and Speech-Language Pathology, University of Turku, Finland
| | - Theresa S Kleih
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany.,Institute of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Styner
- Departments of Psychiatry and Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jerod M Rasmussen
- Development, Health, and Disease Research Program, Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA, USA
| | - Christine M Heim
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Biobehavioral Health, Pennsylvania State University, College of Health and Human Development, University Park, PA, USA
| | - Sonja Entringer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany.,Development, Health, and Disease Research Program, Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA, USA
| | - Pathik D Wadhwa
- Development, Health, and Disease Research Program, Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA, USA.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Orange, CA, USA
| | - Claudia Buss
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany.,Development, Health, and Disease Research Program, Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA, USA
| |
Collapse
|
13
|
Reckziegel D, Abdullah T, Wu B, Wu B, Huang L, Schnitzer TJ, Apkarian AV. Hippocampus shape deformation: a potential diagnostic biomarker for chronic back pain in women. Pain 2021; 162:1457-1467. [PMID: 33181581 PMCID: PMC8049947 DOI: 10.1097/j.pain.0000000000002143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
ABSTRACT Sex differences in the quality and prevalence of chronic pain are manifold, with women generally presenting higher incidence and severity. Uncovering chronic pain-related sex differences inform neural mechanisms and may lead to novel treatment routes. In a multicenter morphological study (total n = 374), we investigated whether the shape of subcortical regions would reflect sex differences in back pain. Given the hormone-dependent functions of the hippocampus, and its role in the transition to chronic pain, this region constituted our primary candidate. We found that the anterior part of the left hippocampus (alHP) presented outer deformation in women with chronic back pain (CBP), identified in CBP in the United States (n = 77 women vs n = 78 men) and validated in a Chinese data set (n = 29 women vs n = 58 men with CBP, in contrast to n = 53 female and n = 43 male healthy controls). Next, we examined this region in subacute back pain who persisted with back pain a year later (SBPp; n = 18 women vs n = 18 men) and in a subgroup with persistent back pain for 3 years. Weeks after onset of back pain, there was no deformation within alHP, but at 1 and 3 years women exhibited a trend for outer deformation. The alHP partly overlapped with the subiculum and entorhinal cortex, whose functional connectivity, in healthy subjects, was associated with emotional and episodic memory related terms (Neurosynth, reverse inference). These findings suggest that in women the alHP undergoes anatomical changes with pain persistence, highlighting sexually dimorphic involvement of emotional and episodic memory-related circuitry with chronic pain.
Collapse
Affiliation(s)
- Diane Reckziegel
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Taha Abdullah
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Touro College of Osteopathic Medicine, New York, USA
| | - Binbin Wu
- Department of Pain Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bo Wu
- Department of Information, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lejian Huang
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Thomas J Schnitzer
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Rheumatology, Northwestern University, Feinberg School of Medicine, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - A Vania Apkarian
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Anesthesia, Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
14
|
Better the devil you know than the devil you don't: Neural processing of risk and ambiguity. Neuroimage 2021; 236:118109. [PMID: 33940147 DOI: 10.1016/j.neuroimage.2021.118109] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 11/23/2022] Open
Abstract
Risk and ambiguity are inherent in virtually all human decision-making. Risk refers to a situation in which we know the precise probability of potential outcomes of each option, whereas ambiguity refers to a situation in which outcome probabilities are not known. A large body of research has shown that individuals prefer known risks to ambiguity, a phenomenon known as ambiguity aversion. One heated debate concerns whether risky and ambiguous decisions rely on the same or distinct neural circuits. In the current meta-analyses, we integrated the results of neuroimaging research on decision-making under risk (n = 69) and ambiguity (n = 31). Our results showed that both processing of risk and ambiguity showed convergence in anterior insula, indicating a key role of anterior insula in encoding uncertainty. Risk additionally engaged dorsomedial prefrontal cortex (dmPFC) and ventral striatum, whereas ambiguity specifically recruited the dorsolateral prefrontal cortex (dlPFC), inferior parietal lobe (IPL) and right anterior insula. Our findings demonstrate overlapping and distinct neural substrates underlying different types of uncertainty, guiding future neuroimaging research on risk-taking and ambiguity aversion.
Collapse
|
15
|
Hashimoto T, Yokota S, Matsuzaki Y, Kawashima R. Intrinsic hippocampal functional connectivity underlying rigid memory in children and adolescents with autism spectrum disorder: A case-control study. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 25:1901-1912. [PMID: 33779333 PMCID: PMC8419294 DOI: 10.1177/13623613211004058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atypical learning and memory in early life can promote atypical behaviors in later life. Less relational learning and inflexible retrieval in childhood may enhance restricted and repeated behaviors in patients with autism spectrum disorder. The purpose of this study was to elucidate the mechanisms of atypical memory in children with autism spectrum disorder. We conducted picture–name pair learning and delayed-recognition tests with two groups: one group with high-functioning autism spectrum disorder children (aged 7–16, n = 41) and one group with typically developing children (n = 82) that matched the first group’s age, sex, and IQ. We assessed correlations between successful recognition scores and seed-to-whole-brain resting-state functional connectivity. Although both learning and retrieval performances were comparable between the two groups, we observed slightly lower category learning and significantly fewer memory gains in the autism spectrum disorder group than in the typically developing group. The right canonical anterior hippocampal network was involved in successful memory in youths with typically developing, while other memory systems may be involved in successful memory in youths with autism spectrum disorder. Context-independent and less relational memory processing may be associated with fewer memory gains in autism spectrum disorder. These atypical memory characteristics in autism spectrum disorder may accentuate their inflexible behaviors in some situations.
Collapse
|
16
|
Nordin K, Nyberg L, Andersson M, Karalija N, Riklund K, Bäckman L, Salami A. Distinct and Common Large-Scale Networks of the Hippocampal Long Axis in Older Age: Links to Episodic Memory and Dopamine D2 Receptor Availability. Cereb Cortex 2021; 31:3435-3450. [PMID: 33676372 PMCID: PMC8196260 DOI: 10.1093/cercor/bhab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/29/2023] Open
Abstract
The hippocampal longitudinal axis has been linked to dissociated functional networks relevant to episodic memory. However, the organization of axis-dependent networks and their relation to episodic memory in aging remains less explored. Moreover, age-related deterioration of the dopamine (DA) system, affecting memory and functional network properties, might constitute a source of reduced specificity of hippocampal networks in aging. Here, we characterized axis-dependent large-scale hippocampal resting-state networks, their relevance to episodic memory, and links to DA in older individuals (n = 170, 64–68 years). Partial least squares identified 2 dissociated networks differentially connected to the anterior and posterior hippocampus. These overlapped with anterior–temporal/posterior–medial networks in young adults, indicating preserved organization of axis-dependent connectivity in old age. However, axis-specific networks were overall unrelated to memory and hippocampal DA D2 receptor availability (D2DR) measured with [11C]-raclopride positron emission tomography. Further analyses identified a memory-related network modulated by hippocampal D2DR, equally connected to anterior–posterior regions. This network included medial frontal, posterior parietal, and striatal areas. The results add to the current understanding of large-scale hippocampal connectivity in aging, demonstrating axis-dependent connectivity with dissociated anterior and posterior networks, as well as a primary role in episodic memory of connectivity shared by regions along the hippocampalaxis.
Collapse
Affiliation(s)
- Kristin Nordin
- Umeå Center for Functional Brain Imaging, Umeå University, S-90187 Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, S-90187 Umeå, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Umeå University, S-90187 Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, S-90187 Umeå, Sweden.,Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging, Umeå University, S-90187 Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | - Nina Karalija
- Umeå Center for Functional Brain Imaging, Umeå University, S-90187 Umeå, Sweden.,Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging, Umeå University, S-90187 Umeå, Sweden.,Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet, S-11330 Stockholm, Sweden
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging, Umeå University, S-90187 Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, S-90187 Umeå, Sweden.,Aging Research Center, Karolinska Institutet, S-11330 Stockholm, Sweden
| |
Collapse
|
17
|
Yousefi B, Keilholz S. Propagating patterns of intrinsic activity along macroscale gradients coordinate functional connections across the whole brain. Neuroimage 2021; 231:117827. [PMID: 33549755 DOI: 10.1016/j.neuroimage.2021.117827] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 11/30/2022] Open
Abstract
The intrinsic activity of the human brain, observed with resting-state fMRI (rsfMRI) and functional connectivity, exhibits macroscale spatial organization such as functional networks and gradients. Dynamic analysis techniques have shown that functional connectivity is a mere summary of time-varying patterns with distinct spatial and temporal characteristics. A better understanding of these patterns might provide insight into aspects of the brain's intrinsic activity that cannot be inferred by functional connectivity or the spatial maps derived from it, such as functional networks and gradients. Here, we describe three spatiotemporal patterns of coordinated activity across the whole brain obtained by averaging similar ~20-second-long segments of rsfMRI timeseries. In each of these patterns, activity propagates along a particular macroscale functional gradient, simultaneously across the cerebral cortex and in most other brain regions. In some regions, like the thalamus, the propagation suggests previously-undescribed gradients. The coordinated activity across areas is consistent with known tract-based connections, and nuanced differences in the timing of peak activity between regions point to plausible driving mechanisms. The magnitude of correlation within and particularly between functional networks is remarkably diminished when these patterns are regressed from the rsfMRI timeseries, a quantitative demonstration of their significant role in functional connectivity. Taken together, our results suggest that a few recurring patterns of propagating intrinsic activity along macroscale gradients give rise to and coordinate functional connections across the whole brain.
Collapse
Affiliation(s)
- Behnaz Yousefi
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta 30322, GA, United States
| | - Shella Keilholz
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta 30322, GA, United States.
| |
Collapse
|
18
|
Han P, Stiller-Stut FP, Fjaeldstad A, Hummel T. Greater hippocampal gray matter volume in subjective hyperosmia: a voxel-based morphometry study. Sci Rep 2020; 10:18869. [PMID: 33139777 PMCID: PMC7608672 DOI: 10.1038/s41598-020-75898-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/16/2020] [Indexed: 11/24/2022] Open
Abstract
Subjective hyperosmia refers to a self-reported olfactory ability that is superior to a normal, intact sense of smell (normosmia), and is associated with olfactory emotional experience. The current study used voxel-based morphometry to investigate the gray matter volume (GMV) in people with self-rated hyperosmia (subjective hyperosmia, SH, N = 18) in comparison to people with self-rated normal olfaction (subjective normosmia, SN, N = 14). Participants’ olfactory function were assessed by the extensive olfactory test battery, the “Sniffin’ Sticks” test. Within the predicted brain regions (regions-of-interest analyses), the SH participants showed larger GMV of the left hippocampus as compared to SN participants (FWE corrected p < 0.05). Further, the whole-brain search indicated that SH had larger GMV of the bilateral hippocampus, the right hypothalamus, the left precuneus, and the left superior frontal gyrus as compared to the SN group. ROI analyses showed positive correlations between the left hippocampal GMV and odor threshold or discrimination scores across all participants. In addition, the whole-brain analysis suggested that the self-rated olfactory ability was positively associated with GMV in the cerebellum, superior frontal gyrus and the precentral gyrus among SH participants. In conclusion, the current results suggest that SH was associated with increased GMV in several brain regions that were previously shown to be involved in the processing of cognitive aspects of odors.
Collapse
Affiliation(s)
- Pengfei Han
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany. .,The Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China. .,Faculty of Psychology, Southwest University, Chongqing, China.
| | - Franz Paul Stiller-Stut
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Alexander Fjaeldstad
- Flavour Institute, Aarhus University, Aarhus, Denmark.,Flavour Clinic, Department of Otorhinolaryngology, Holstebro, Denmark
| | - Thomas Hummel
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| |
Collapse
|
19
|
Abivardi A, Khemka S, Bach DR. Hippocampal Representation of Threat Features and Behavior in a Human Approach-Avoidance Conflict Anxiety Task. J Neurosci 2020; 40:6748-6758. [PMID: 32719163 PMCID: PMC7455211 DOI: 10.1523/jneurosci.2732-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022] Open
Abstract
Decisions under threat are crucial to survival and require integration of distinct situational features, such as threat probability and magnitude. Recent evidence from human lesion and neuroimaging studies implicated anterior hippocampus (aHC) and amygdala in approach-avoidance decisions under threat, and linked their integrity to cautious behavior. Here we sought to elucidate how threat dimensions and behavior are represented in these structures. Twenty human participants (11 female) completed an approach-avoidance conflict task during high-resolution fMRI. Participants could gather tokens under threat of capture by a virtual predator, which would lead to token loss. Threat probability (predator wake-up rate) and magnitude (amount of token loss) varied on each trial. To disentangle effects of threat features, and ensuing behavior, we performed a multifold parametric analysis. We found that high threat probability and magnitude related to BOLD signal in left aHC/entorhinal cortex. However, BOLD signal in this region was better explained by avoidance behavior than by these threat features. A priori ROI analysis confirmed the relation of aHC BOLD response with avoidance. Exploratory subfield analysis revealed that this relation was specific to anterior CA2/3 but not CA1. Left lateral amygdala responded to low and high, but not intermediate, threat probability. Our results suggest that aHC BOLD signal is better explained by avoidance behavior than by threat features in approach-avoidance conflict. Rather than representing threat features in a monotonic manner, it appears that aHC may compute approach-avoidance decisions based on integration of situational threat features represented in other neural structures.SIGNIFICANCE STATEMENT An effective threat anticipation system is crucial to survival across species. Natural threats, however, are diverse and have distinct features. To be able to adapt to different modes of danger, the brain needs to recognize these features, integrate them, and use them to modify behavior. Our results disclose the human anterior hippocampus as a likely arbiter of approach-avoidance decisions harnessing compound environmental information while partially replicating previous findings and blending into recent efforts to illuminate the neural basis of approach-avoidance conflict in humans.
Collapse
Affiliation(s)
- Aslan Abivardi
- Computational Psychiatry Research, Department of Psychiatry Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, 8032, Switzerland
- Zurich, Neuroscience Center Zurich, University of Zurich, Zurich, 8057, Switzerland
| | - Saurabh Khemka
- Computational Psychiatry Research, Department of Psychiatry Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, 8032, Switzerland
- Zurich, Neuroscience Center Zurich, University of Zurich, Zurich, 8057, Switzerland
| | - Dominik R Bach
- Computational Psychiatry Research, Department of Psychiatry Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, 8032, Switzerland
- Zurich, Neuroscience Center Zurich, University of Zurich, Zurich, 8057, Switzerland
- Wellcome Centre for Human Neuroimaging and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, WC1N 3BG, United Kingdom
| |
Collapse
|
20
|
Guo P, Li Q, Wang X, Li X, Wang S, Xie Y, Xie Y, Fu Z, Zhang X, Li S. Structural Covariance Changes of Anterior and Posterior Hippocampus During Musical Training in Young Adults. Front Neuroanat 2020; 14:20. [PMID: 32508600 PMCID: PMC7248297 DOI: 10.3389/fnana.2020.00020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/26/2020] [Indexed: 01/30/2023] Open
Abstract
Musical training can induce the functional and structural changes of the hippocampus. The hippocampus is not a homogeneous structure which can be divided into anterior and posterior parts along its longitudinal axis, and the whole-brain structural covariances of anterior (aHC) and posterior hippocampus (pHC) show distinct patterns in young adults. However, little is known about whether the anterior and posterior hippocampal structural covariances change after long-term musical training. Here, we investigated the musical training-induced changes of the whole-brain structural covariances of bilateral aHC and pHC in a longitudinal designed experiment with two groups (training group and control group) across three time points [the beginning (TP1) and the end (TP2) of 24 weeks of training, and 12 weeks after training (TP3)]. Using seed partial least square, we identified two significant patterns of structural covariance of the aHC and pHC. The first showed common structural covariance of the aHC and pHC. The second pattern revealed distinct structural covariance of the two regions and reflected the changes of structural covariance of the left pHC in the training group across three time points: the left pHC showed significant structural covariance with bilateral hippocampus and parahippocampal gyrus, left calcarine sulcus only at TP1 and TP3. Furthermore, the integrity of distinct structural networks of aHC and pHC in the second pattern significantly increased in the training group. Our findings suggest that musical training could change the organization of structural whole-brain covariance for left pHC and enhance the degree of the structural covariance network differentiation of the aHC and pHC in young adults.
Collapse
Affiliation(s)
- Panfei Guo
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Qiongling Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xuetong Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xinwei Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Shaoyi Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yongqi Xie
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yachao Xie
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Zhenrong Fu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xiaohui Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Shuyu Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
21
|
Zhang XD, Zhao LR, Zhou JM, Su YY, Ke J, Cheng Y, Li JL, Shen W. Altered hippocampal functional connectivity in primary Sjögren syndrome: a resting-state fMRI study. Lupus 2020; 29:446-454. [PMID: 32075510 DOI: 10.1177/0961203320908936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Structural and metabolic abnormalities in the hippocampus have been associated with the pathophysiological mechanism of central nervous system involvement in primary Sjögren syndrome (pSS). Nevertheless, how hippocampal function is altered in pSS remains unknown. The purpose of our study is to investigate the alterations in hippocampal functional connectivity (FC) in pSS by using resting-state functional magnetic resonance imaging (rs-fMRI). Thirty-eight patients with pSS and 38 age- and education level-matched healthy controls (HCs) underwent magnetic resonance imaging examination. Prior to each MRI examination, neuropsychological tests were performed. Left and right hippocampal FCs were analyzed by using seed-based whole-brain correlation and compared between pSS and HCs. Spearman correlation analysis was performed between the z-value of hippocampal FC in brain regions with significant difference between the two groups and neuropsychological tests/clinical data in pSS. Compared with the controls, the patients with pSS showed decreased hippocampal FC between the left hippocampus and the right inferior occipital gray (IOG)/inferior temporal gray (ITG), as well as between the right hippocampus and right IOG/middle occipital gray (MOG), left MOG, and left middle temporal gray. In addition, increased hippocampal FCs were detected between the left hippocampus and left putamen, as well as between the right hippocampus and right cerebellum posterior lobe. Moreover, the visual reproduction score positively correlated with the FC between right hippocampus and right IOG/MOG. The white matter hyperintensity score negatively correlated with the FC between left hippocampus and right IOG/ITG. In conclusion, patients with pSS suffered decreased hippocampal FC mainly sited in the occipital and temporal cortex with right hippocampal laterality. Altered hippocampal FC might be a potential biomarker in detecting brain function changes and guiding neuroprotection in pSS.
Collapse
Affiliation(s)
- X-D Zhang
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - L-R Zhao
- Department of Rheumatology, Tianjin First Central Hospital, Tianjin, China
| | - J-M Zhou
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
- Department of Radiology, Tianjin First Central Clinical Hospital, Tianjin Medical University, Tianjin, China
| | - Y-Y Su
- Department of Radiology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - J Ke
- Department of Radiology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Y Cheng
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - J-L Li
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
- Department of Radiology, Tianjin First Central Clinical Hospital, Tianjin Medical University, Tianjin, China
| | - W Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
22
|
Investigating microstructural variation in the human hippocampus using non-negative matrix factorization. Neuroimage 2020; 207:116348. [DOI: 10.1016/j.neuroimage.2019.116348] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 11/23/2022] Open
|
23
|
Jung WH, Kim NH. Hippocampal Functional Connectivity Mediates the Impact of Acceptance on Posttraumatic Stress Symptom Severity. Front Psychiatry 2020; 11:753. [PMID: 32848930 PMCID: PMC7406826 DOI: 10.3389/fpsyt.2020.00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Investigation in posttraumatic stress disorder (PTSD) shows a negative association between patients' degrees of acceptance (the willingness to face unwanted private experiences while pursuing one's values and goals) and those of clinical symptom severity, suggesting that experiential acceptance is a protective factor of symptoms or an early indicator of resilience after trauma. However, neural mechanisms involved in the relationship between these two variables have yet to be elucidated. Thus, we here investigate whether there are neural mechanisms mediating such relationship using whole-brain voxel-level mediation analysis with seed-based resting-state functional connectivity (RSFC) maps generated by hippocampal subregion seeds in accident survivors (n = 33). We found that the correlation between patients' acceptance and symptom severity was mediated by the RSFC strength between left hippocampal body and left lateral occipital cortex adjacent to superior parietal cortex, the areas related to flashbacks. Our result provides novel evidence that hippocampal RSFC mediates the effect of experiential acceptance on posttraumatic stress symptom severity. If further refined and validated, the finding may aid to the identification of biomarkers to intervention and prevention programs for patients with PTSD.
Collapse
Affiliation(s)
- Wi Hoon Jung
- Department of Psychology, Daegu University, Gyeongsan, South Korea
| | - Nam Hee Kim
- Maumtodac Psychiatric Clinic, Ansan, South Korea.,Suwon Smile Center for Criminal Victims, Suwon, South Korea
| |
Collapse
|
24
|
Novellino F, López ME, Vaccaro MG, Miguel Y, Delgado ML, Maestu F. Association Between Hippocampus, Thalamus, and Caudate in Mild Cognitive Impairment APOEε4 Carriers: A Structural Covariance MRI Study. Front Neurol 2019; 10:1303. [PMID: 31920926 PMCID: PMC6933953 DOI: 10.3389/fneur.2019.01303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
Objective: Although, the apolipoprotein E (APOE) genotype is widely recognized as one of the most important risk factors for Alzheimer's disease (AD) development, the neural mechanisms by which the ε4 allele promotes the AD occurring remain under debate. The aim of this study was to evaluate neurobiological effects of the APOE-genotype on the pattern of the structural covariance in mild cognitive impairment (MCI) subjects. Methods: We enrolled 95 MCI subjects and 49 healthy controls. According to APOE-genotype, MCI subjects were divided into three groups: APOEε4 non-carriers (MCIε4-/-, n = 55), APOEε4 heterozygous carriers (MCIε4+/-, n = 31), and APOEε4 homozygous carriers (MCIε4+/+, n = 9) while all controls were APOEε4 non-carriers. In order to explore their brain structural pattern, T1-weighted anatomical brain 1.5-T MRI scans were collected. A whole-brain voxel-based morphometry analysis was performed, and all significant regions (p < 0.05 family-wise error, whole brain) were selected as a region of interest for the structural covariance analysis. Moreover, in order to evaluate the progression of the disease, a clinical follow-up was performed for 2 years. Results: The F-test showed in voxel-based morphometry analysis a strong overall difference among the groups in the middle frontal and temporal gyri and in the bilateral hippocampi, thalami, and parahippocampal gyri, with a grading in the atrophy in these latter three structures according to the following order: MCIε4+/+ > MCIε4+/- > MCIε4-/- > controls. Structural covariance analysis revealed a strong structural association between the left thalamus and the left caudate and between the right hippocampus and the left caudate (p < 0.05 family-wise error, whole brain) in the MCIε4 carrier groups (MCIε4+/+ > MCIε4+/-), whereas no significant associations were observed in MCIε4-/- subjects. Of note, the 38% of MCIs enrolled in this study developed AD within 2 years of follow-up. Conclusion: This study improves the knowledge on neurobiological effect of APOE ε4 in early pathophysiological phenomena underlying the MCI-to-AD evolution, as our results demonstrate changes in the structural association between hippocampal formation and thalamo-striatal connections occurring in MCI ε4 carriers. Our results strongly support the role of subcortical structures in MCI ε4 carriers and open a clinical window on the role of these structures as early disease markers.
Collapse
Affiliation(s)
- Fabiana Novellino
- Neuroimaging Research Unit, Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | - María Eugenia López
- Department of Experimental Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | | | - Yus Miguel
- Radiology Department, San Carlos Clinical Hospital, Madrid, Spain
| | - María Luisa Delgado
- Department of Experimental Psychology, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Maestu
- Department of Experimental Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
25
|
Plachti A, Eickhoff SB, Hoffstaedter F, Patil KR, Laird AR, Fox PT, Amunts K, Genon S. Multimodal Parcellations and Extensive Behavioral Profiling Tackling the Hippocampus Gradient. Cereb Cortex 2019; 29:4595-4612. [PMID: 30721944 PMCID: PMC6917521 DOI: 10.1093/cercor/bhy336] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/12/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
The hippocampus displays a complex organization and function that is perturbed in many neuropathologies. Histological work revealed a complex arrangement of subfields along the medial-lateral and the ventral-dorsal dimension, which contrasts with the anterior-posterior functional differentiation. The variety of maps has raised the need for an integrative multimodal view. We applied connectivity-based parcellation to 1) intrinsic connectivity 2) task-based connectivity, and 3) structural covariance, as complementary windows into structural and functional differentiation of the hippocampus. Strikingly, while functional properties (i.e., intrinsic and task-based) revealed similar partitions dominated by an anterior-posterior organization, structural covariance exhibited a hybrid pattern reflecting both functional and cytoarchitectonic subdivision. Capitalizing on the consistency of functional parcellations, we defined robust functional maps at different levels of partitions, which are openly available for the scientific community. Our functional maps demonstrated a head-body and tail partition, subdivided along the anterior-posterior and medial-lateral axis. Behavioral profiling of these fine partitions based on activation data indicated an emotion-cognition gradient along the anterior-posterior axis and additionally suggested a self-world-centric gradient supporting the role of the hippocampus in the construction of abstract representations for spatial navigation and episodic memory.
Collapse
Affiliation(s)
- Anna Plachti
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
| | - Kaustubh R Patil
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, TX, USA
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
- C. & O. Vogt Institute for Brain Research, Heinrich Heine University, Düsseldorf. Germany
| | - Sarah Genon
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
- GIGA-CRC In vivo Imaging, University of Liege, Liege, Belgium
| |
Collapse
|
26
|
Frank LE, Bowman CR, Zeithamova D. Differential Functional Connectivity along the Long Axis of the Hippocampus Aligns with Differential Role in Memory Specificity and Generalization. J Cogn Neurosci 2019; 31:1958-1975. [PMID: 31397613 PMCID: PMC8080992 DOI: 10.1162/jocn_a_01457] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The hippocampus contributes to both remembering specific events and generalization across events. Recent work suggests that information may be represented along the longitudinal axis of the hippocampus at varied levels of specificity: detailed representations in the posterior hippocampus and generalized representations in the anterior hippocampus. Similar distinctions are thought to exist within neocortex, with lateral prefrontal and lateral parietal regions supporting memory specificity and ventromedial prefrontal and lateral temporal cortices supporting generalized memory. Here, we tested whether functional connectivity of anterior and posterior hippocampus with cortical memory regions is consistent with these proposed dissociations. We predicted greater connectivity of anterior hippocampus with putative generalization regions and posterior hippocampus with putative memory specificity regions. Furthermore, we tested whether differences in connectivity are stable under varying levels of task engagement. Participants learned to categorize a set of stimuli outside the scanner, followed by an fMRI session that included a rest scan, passive viewing runs, and category generalization task runs. Analyses revealed stronger connectivity of ventromedial pFC to anterior hippocampus and of angular gyrus and inferior frontal gyrus to posterior hippocampus. These differences remained relatively stable across the three phases (rest, passive viewing, category generalization). Whole-brain analyses further revealed widespread cortical connectivity with both anterior and posterior hippocampus, with relatively little overlap. These results contribute to our understanding of functional organization along the long axis of the hippocampus and suggest that distinct hippocampal-cortical connections are one mechanism by which the hippocampus represents both individual experiences and generalized knowledge.
Collapse
|
27
|
Grady CL. Meta-analytic and functional connectivity evidence from functional magnetic resonance imaging for an anterior to posterior gradient of function along the hippocampal axis. Hippocampus 2019; 30:456-471. [PMID: 31589003 DOI: 10.1002/hipo.23164] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022]
Abstract
There is considerable evidence from non-human animal studies that the anterior and posterior regions of the hippocampus have different anatomical connections and support different behavioural functions. Although there are some recent human studies using functional magnetic resonance imaging (fMRI) that have addressed this idea directly in the memory and spatial processing domains and provided support for it, there has been no broader meta-analysis of the fMRI literature to determine if there is consistent evidence for functional dissociations in anterior and posterior hippocampus across all of the different cognitive domains in which the hippocampus participates. The purpose of this review is to address this gap in our knowledge using three approaches. One approach involved PubMed searches to identify relevant fMRI papers reporting hippocampal activation during episodic encoding and retrieval, semantic retrieval, working memory, spatial navigation, simulation/scene construction, transitive inference, and social cognition tasks. The second was to use a large meta-analytic database (neurosynth) to find text terms and coactivation maps associated with the anterior and posterior hippocampal regions identified in the literature search. The third approach was to contrast the resting-state functional connectivity of the anterior and posterior hippocampal regions using a publicly available database that includes a large sample of adults. These three approaches provided converging evidence that not only are cognitive processes differently distributed along the hippocampal axis, but there also are distinct areas coactivated and functionally connected with the anterior and posterior segments. This anterior/posterior distinction involving multiple cognitive domains is consistent with the animal literature and provides strong support from fMRI for the idea of functional dissociations across the long axis of the hippocampus.
Collapse
Affiliation(s)
- Cheryl L Grady
- Rotman Research Institute at Baycrest, Department of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Barnett AJ, Man V, McAndrews MP. Parcellation of the Hippocampus Using Resting Functional Connectivity in Temporal Lobe Epilepsy. Front Neurol 2019; 10:920. [PMID: 31507522 PMCID: PMC6714062 DOI: 10.3389/fneur.2019.00920] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022] Open
Abstract
We have previously shown that the connectivity of the hippocampus to other regions of the default mode network (DMN) is a strong indicator of memory ability in people with temporal lobe epilepsy (TLE). Recent work in the cognitive neuroscience literature has suggested that the anterior and posterior aspects of the hippocampus have distinct connections to the rest of the DMN and may support different memory operations. Further, structural analysis of epileptogenic hippocampi has found greater atrophy, characterized by mesial temporal sclerosis, in the anterior region of the hippocampus. Here, we used resting state FMRI data to parcellate the hippocampus according to its functional connectivity to the rest of the brain in people with left lateralized TLE (LTLE) and right lateralized TLE (RTLE), and in a group of neurologically healthy controls. We found similar anterior and posterior compartments in all groups. However, there was weaker connectivity of the epileptogenic hippocampus to multiple regions of the DMN. Both TLE groups showed reduced connectivity of the posterior hippocampus to key hubs of the DMN, the posterior cingulate cortex (PCC) and the medial pre-frontal cortex (mPFC). In the LTLE group, the anterior hippocampus also showed reduced connectivity to the DMN, and this effect was influenced by the presence of mesial temporal sclerosis. When we explored brain-behavior relationships, we found that reduced connectivity of the left anterior hippocampus to the DMN hubs related to poorer verbal memory ability in people with LTLE, and reduced connectivity of the right posterior hippocampus to the PCC related to poorer visual memory ability in those with RTLE. These findings may inform models regarding functional distinctions of the hippocampal anteroposterior axis.
Collapse
Affiliation(s)
- Alexander J Barnett
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Vincent Man
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Mary Pat McAndrews
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Functional disconnectivity of the hippocampal network and neural correlates of memory impairment in treatment-resistant depression. J Affect Disord 2019; 253:248-256. [PMID: 31060011 DOI: 10.1016/j.jad.2019.04.096] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/29/2019] [Accepted: 04/27/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a disabling neuropsychiatric condition associated with cognitive impairment. Neuroimaging studies have consistently linked memory deficits with hippocampal atrophy in MDD patients. However, there has been a paucity of research examining how the hippocampus functionally contributes to memory impairments in MDD. The present study examined whether hippocampal networks distinguish treatment-resistant depression (TRD) patients from healthy controls (HCs), and whether these networks underlie declarative memory deficits in TRD. We hypothesized that functional connectivity (FC) of the posterior hippocampus would correlate preferentially with memory in patients, whereas FC pattern of the anterior and intermediate hippocampus would correlate with emotion-mediated regions and show a significant correlation with memory. METHODS Resting-state functional magnetic resonance imaging (fMRI) scans were acquired in 56 patients and 42 age- and sex-matched HCs. We parcellated the hippocampus into three subregions based on a sparse representation-based method recently developed by our group. FC networks of hippocampal subregions were compared between patients and HCs and correlated with clinical measures and cognitive performance. RESULTS Decreased connectivity of the right intermediate hippocampus (RIH) with the limbic regions was a distinguishing feature between TRD and HCs. These functional abnormalities were present in the absence of structural volumetric differences. Furthermore, lower right amygdalar connectivity to the RIH related to a longer current depressive episode. Declarative memory deficits in TRD were significantly associated with left posterior and right intermediate hippocampal FC patterns. LIMITATIONS Our patient samples were treatment-resistant, the conclusions from this study cannot be generalized to all MDD patients directly. Task-based imaging studies are needed to demonstrate hippocampal engagement in the memory deficits of patients. Finally, our findings are strongly in need of replication in independent validation samples. CONCLUSIONS These findings demonstrate a transitional property of the intermediate hippocampal subregion between its anterior and posterior counterparts in TRD patients, and provide new insights into the neural network-level dysfunction of the hippocampus in TRD.
Collapse
|
30
|
Ge R, Kot P, Liu X, Lang DJ, Wang JZ, Honer WG, Vila-Rodriguez F. Parcellation of the human hippocampus based on gray matter volume covariance: Replicable results on healthy young adults. Hum Brain Mapp 2019; 40:3738-3752. [PMID: 31115118 DOI: 10.1002/hbm.24628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/25/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
The hippocampus is a key brain region that participates in a range of cognitive and affective functions, and is involved in the etiopathogenesis of numerous neuropsychiatric disorders. The structural complexity and functional diversity of the hippocampus suggest the existence of structural and functional subdivisions within this structure. For the first time, we parcellated the human hippocampus with two independent data sets, each of which consisted of 198 T1-weighted structural magnetic resonance imaging (sMRI) images of healthy young subjects. The method was based on gray matter volume (GMV) covariance, which was quantified by a bivariate voxel-to-voxel linear correlation approach, as well as a multivariate masked independent component analysis approach. We subsequently interrogated the relationship between the GMV covariance patterns and the functional connectivity patterns of the hippocampal subregions using sMRI and resting-state functional MRI (fMRI) data from the same participants. Seven distinct GMV covariance-based subregions were identified for bilateral hippocampi, with robust reproducibility across the two data sets. We further demonstrated that the structural covariance patterns of the hippocampal subregions had a correspondence with the intrinsic functional connectivity patterns of these subregions. Together, our results provide a topographical configuration of the hippocampus with converging structural and functional support. The resulting subregions may improve our understanding of the hippocampal connectivity and functions at a subregional level, which provides useful parcellations and masks for future neuroscience and clinical research on the structural and/or functional connectivity of the hippocampus.
Collapse
Affiliation(s)
- Ruiyang Ge
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Kot
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiang Liu
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donna J Lang
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jane Z Wang
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Xu J, Guan X, Li H, Xu X, Zhang M. Integration and segregation of functional segmented anterior and posterior hippocampal networks in memory performance. Behav Brain Res 2019; 364:256-263. [PMID: 30768997 DOI: 10.1016/j.bbr.2019.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/23/2019] [Accepted: 02/12/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE To determine the association between functional connectivity (FC) of functional-segmented anterior and posterior portions of the hippocampus and performance on verbal and visual memory tests in a young, healthy population. METHODS We recruited 100 healthy participants in the age of 19-29. Resting state fMRI data were acquired and voxel-wise correlation analysis was performed to functionally divide the hippocampus. We investigated the inter-hemispheric hippocampal-cortical functional connectivity after the participants took the assessment of episodic memory using verbal (California Verbal Learning Test II, CVLT-II) and visual subtests (Rey-Osterrieth Complex Figure, ROCF). The partial correlations were used to identify the association between the intra-hemispheric hippocampal-cortical mean resting correlation and memory performance. RESULTS The results showed that the anterior and posterior hippocampal networks involved differently in verbal and visual memory. Intra-hemispheric FC between left posterior hippocampus and posterior parahippocampal gyrus (PPHG) was positively correlated with CVLT-II Trail 2 Immediate Free Recall (r = 0.223, p = 0.029). Intra-hemispheric FC between left posterior hippocampus and posterior cingulate (PCC) was negatively correlated with ROCF Immediate Recall (r = -0.217 p = 0.034). Intra-hemispheric FC between left anterior hippocampus and temporal pole (TP) negatively correlated with ROCF Delayed Recall (r = -0.228, p = 0.025). Split half resampling procedure results showed some repeatability in our subjects. CONCLUSION The present results demonstrated that, the anterior hippocampus was specifically involved in the visual memory processing, whereas the posterior hippocampus contributed to both the verbal and visual memories, which may have implications for a functionally synergetic and dissociable role of the hippocampus in different kinds of memory.
Collapse
|
32
|
Langnes E, Vidal-Piñeiro D, Sneve MH, Amlien IK, Walhovd KB, Fjell AM. Development and Decline of the Hippocampal Long-Axis Specialization and Differentiation During Encoding and Retrieval of Episodic Memories. Cereb Cortex 2018; 29:3398-3414. [DOI: 10.1093/cercor/bhy209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 01/28/2023] Open
Abstract
Abstract
Change in hippocampal function is a major factor in life span development and decline of episodic memory. Evidence indicates a long-axis specialization where anterior hippocampus is more engaged during encoding than during retrieval, and posterior more engaged during retrieval than during encoding. We tested the life span trajectory of hippocampal long-axis episodic memory-related activity and functional connectivity (FC) in 496 participants (6.8–80.8 years) encoding and retrieving associative memories. We found evidence for a long-axis encoding–retrieval specialization that declined linearly during development and aging, eventually vanishing in the older adults. This was mainly driven by age effects on retrieval, which was associated with gradually lower activity from childhood to adulthood, followed by positive age relationships until 70 years. This pattern of age effects characterized task engagement regardless of memory success or failure. Especially for retrieval, children engaged posterior hippocampus more than anterior, while anterior was relatively more activated already in teenagers. Significant intrahippocampal connectivity was found during task, which declined with age. The results suggest that hippocampal long-axis differentiation and communication during episodic memory tasks develop rapidly during childhood, are different in older compared with younger adults, and that the age effects are related to task engagement, not the successful retrieval of episodic memories specifically.
Collapse
Affiliation(s)
- Espen Langnes
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
33
|
Huhn S, Beyer F, Zhang R, Lampe L, Grothe J, Kratzsch J, Willenberg A, Breitfeld J, Kovacs P, Stumvoll M, Trampel R, Bazin PL, Villringer A, Witte AV. Effects of resveratrol on memory performance, hippocampus connectivity and microstructure in older adults - A randomized controlled trial. Neuroimage 2018; 174:177-190. [PMID: 29548848 DOI: 10.1016/j.neuroimage.2018.03.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/03/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The polyphenol resveratrol has been suggested to exert beneficial effects on memory and the aging hippocampus due to calorie-restriction mimicking effects. However, the evidence based on human interventional studies is scarce. We therefore aimed to determine the effects of resveratrol on memory performance, and to identify potential underlying mechanisms using a broad array of blood-based biomarkers as well as hippocampus connectivity and microstructure assessed with ultra-high field magnetic resonance imaging (UHF-MRI). METHODS In this double-blind, randomized controlled trial, 60 elderly participants (60-79 years) with a wide body-mass index (BMI) range of 21-37 kg/m2 were randomized to receive either resveratrol (200 mg/day) or placebo for 26 weeks (registered at ClinicalTrials.gov: NCT02621554). Baseline and follow-up assessments included the California Verbal Learning Task (CVLT, main outcome), the ModBent task, anthropometry, markers of glucose and lipid metabolism, inflammation and neurotrophins derived from fasting blood, multimodal neuroimaging at 3 and 7 T, and questionnaires to assess confounding factors. RESULTS Multivariate repeated-measures ANOVA did not detect significant time by group effects for CVLT performance. There was a trend for preserved pattern recognition memory after resveratrol, while performance decreased in the placebo group (n.s., p = 0.07). Further exploratory analyses showed increases in both groups over time in body fat, cholesterol, fasting glucose, interleukin 6, high sensitive C-reactive protein, tumor necrosis factor alpha and in mean diffusivity of the subiculum and presubiculum, as well as decreases in physical activity, brain-derived neurotrophic factor and insulin-like growth factor 1 at follow-up, which were partly more pronounced after resveratrol. DISCUSSION This interventional study failed to show significant improvements in verbal memory after 6 months of resveratrol in healthy elderly with a wide BMI range. A non-significant trend emerged for positive effects on pattern recognition memory, while possible confounding effects of unfavorable changes in lifestyle behavior, neurotrophins and inflammatory markers occurred. Our findings also indicate the feasibility to detect (un)healthy aging-related changes in measures of hippocampus microstructure after 6 months using 7T diffusion MRI. More studies incorporating a longer duration and larger sample size are needed to determine if resveratrol enhances memory performance in healthy older adults.
Collapse
Affiliation(s)
- Sebastian Huhn
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Stephanstr. 1A, 04103 Leipzig, Germany; Collaborative Research Centre 1052 'Obesity Mechanisms', Subproject A1, Faculty of Medicine, University of Leipzig, Leipzig, Germany.
| | - Frauke Beyer
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Stephanstr. 1A, 04103 Leipzig, Germany; Collaborative Research Centre 1052 'Obesity Mechanisms', Subproject A1, Faculty of Medicine, University of Leipzig, Leipzig, Germany.
| | - Rui Zhang
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Stephanstr. 1A, 04103 Leipzig, Germany; Collaborative Research Centre 1052 'Obesity Mechanisms', Subproject A1, Faculty of Medicine, University of Leipzig, Leipzig, Germany.
| | - Leonie Lampe
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Stephanstr. 1A, 04103 Leipzig, Germany.
| | - Jana Grothe
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Stephanstr. 1A, 04103 Leipzig, Germany.
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany.
| | - Anja Willenberg
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany.
| | - Jana Breitfeld
- Leipzig University Medical Center, IFB AdiposityDiseases, Leipzig, Germany.
| | - Peter Kovacs
- Leipzig University Medical Center, IFB AdiposityDiseases, Leipzig, Germany.
| | - Michael Stumvoll
- Collaborative Research Centre 1052 'Obesity Mechanisms', Subproject A1, Faculty of Medicine, University of Leipzig, Leipzig, Germany; IFB Adiposity Diseases, Medical Research Centre, University of Leipzig, Leipzig, Germany.
| | - Robert Trampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Stephanstr. 1A, 04103 Leipzig, Germany.
| | - Pierre-Louis Bazin
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Stephanstr. 1A, 04103 Leipzig, Germany; Spinoza Centre for Neuroimaging, Amsterdam, Netherlands; Netherlands Institute for Neuroscience, Amsterdam, Netherlands.
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Stephanstr. 1A, 04103 Leipzig, Germany; Collaborative Research Centre 1052 'Obesity Mechanisms', Subproject A1, Faculty of Medicine, University of Leipzig, Leipzig, Germany.
| | - A Veronica Witte
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Stephanstr. 1A, 04103 Leipzig, Germany; Collaborative Research Centre 1052 'Obesity Mechanisms', Subproject A1, Faculty of Medicine, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
34
|
Berger SE, Vachon-Presseau É, Abdullah TB, Baria AT, Schnitzer TJ, Apkarian AV. Hippocampal morphology mediates biased memories of chronic pain. Neuroimage 2018; 166:86-98. [PMID: 29080714 PMCID: PMC5813825 DOI: 10.1016/j.neuroimage.2017.10.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/06/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022] Open
Abstract
Experiences and memories are often mismatched. While multiple studies have investigated psychological underpinnings of recall error with respect to emotional events, the neurobiological mechanisms underlying the divergence between experiences and memories remain relatively unexplored in the domain of chronic pain. Here we examined the discrepancy between experienced chronic low back pain (CBP) intensity (twice daily ratings) and remembered pain intensity (n = 48 subjects) relative to psychometric properties, hippocampus morphology, memory capabilities, and personality traits related to reward. 77% of CBP patients exaggerated remembered pain, which depended on their strongest experienced pain and their most recent mood rating. This bias persisted over nearly 1 year and was related to reward memory bias and loss aversion. Shape displacement of a specific region in the left posterior hippocampus mediated personality effects on pain memory bias, predicted pain memory bias in a validation CBP group (n = 21), and accounted for 55% of the variance of pain memory bias. In two independent groups (n = 20/group), morphology of this region was stable over time and unperturbed by the development of chronic pain. These results imply that a localized hippocampal circuit, and personality traits associated with reward processing, largely determine exaggeration of daily pain experiences in chronic pain patients.
Collapse
Affiliation(s)
- Sara E Berger
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL 60611, USA; Department of Healthcare and Life Sciences, IBM Thomas J. Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA
| | - Étienne Vachon-Presseau
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Taha B Abdullah
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Alex T Baria
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, 710 N Lake Shore Drive, Room 1020, Chicago, IL 60611, USA; Department of Internal Medicine/Rheumatology, Northwestern University Feinberg School of Medicine, 710 N Lake Shore Drive, Room 1020, Chicago, IL 60611, USA
| | - A Vania Apkarian
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL 60611, USA; Department of Anesthesia, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL 60611, USA; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, 710 N Lake Shore Drive, Room 1020, Chicago, IL 60611, USA.
| |
Collapse
|
35
|
Zidda F, Andoh J, Pohlack S, Winkelmann T, Dinu-Biringer R, Cavalli J, Ruttorf M, Nees F, Flor H. Default mode network connectivity of fear- and anxiety-related cue and context conditioning. Neuroimage 2017; 165:190-199. [PMID: 29050910 DOI: 10.1016/j.neuroimage.2017.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/28/2017] [Accepted: 10/12/2017] [Indexed: 01/15/2023] Open
Abstract
Classical fear conditioning is an important mechanism to adequately respond and adapt to environmental threats and has been related to the development of fear and anxiety. Both cue and context conditioning have been studied but little is known about their relation to relevant resting state networks. The default mode network (DMN) has been reported to be involved in affective learning and described as facilitating a state of readiness in responding to environmental changes. We examined resting state brain connectivity patterns of the default mode network (DMN) in 119 healthy volunteers. Specifically, we carried out correlation analyses between the DMN and skin conductance responses (SCRs) as well as arousal, valence and contingency ratings during learning. In addition, we examined the role of trait anxiety. Two different DMN patterns were identified in which stronger connectivity was linked to lower differential SCRs during fear and anxiety learning. One was related to cue conditioning and involved the amygdala and the medial prefrontal cortex, and one was associated with context conditioning and included the hippocampal formation and sensorimotor areas. These results were replicated in an independent sample. Functional connectivity of the DMN with these key regions at rest was also predictive of trait anxiety but this association could not be replicated in the second sample. We showed that DMN connectivity is differently associated with cued versus contextual learning mechanisms. Uncovering individual differences in baseline network connectivity of the DMN with these key regions might lead to a better understanding of fear and anxiety. Such findings could indeed help to identify vulnerability factors linked to network alterations at rest with dysregulation of learning processes involved in the pathophysiology of stress and anxiety disorders.
Collapse
Affiliation(s)
- Francesca Zidda
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Jamila Andoh
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Sebastian Pohlack
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Tobias Winkelmann
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Ramona Dinu-Biringer
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Juliana Cavalli
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Michaela Ruttorf
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany; Department of Psychology, Faculty for Social Sciences, University of Mannheim, Germany.
| |
Collapse
|
36
|
Sormaz M, Jefferies E, Bernhardt BC, Karapanagiotidis T, Mollo G, Bernasconi N, Bernasconi A, Hartley T, Smallwood J. Knowing what from where: Hippocampal connectivity with temporoparietal cortex at rest is linked to individual differences in semantic and topographic memory. Neuroimage 2017; 152:400-410. [DOI: 10.1016/j.neuroimage.2017.02.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/10/2017] [Accepted: 02/24/2017] [Indexed: 01/20/2023] Open
|
37
|
Ushakov V, Sharaev MG, Kartashov SI, Zavyalova VV, Verkhlyutov VM, Velichkovsky BM. Dynamic Causal Modeling of Hippocampal Links within the Human Default Mode Network: Lateralization and Computational Stability of Effective Connections. Front Hum Neurosci 2016; 10:528. [PMID: 27826234 PMCID: PMC5078141 DOI: 10.3389/fnhum.2016.00528] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/04/2016] [Indexed: 01/10/2023] Open
Abstract
The purpose of this paper was to study causal relationships between left and right hippocampal regions (LHIP and RHIP, respectively) within the default mode network (DMN) as represented by its key structures: the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and the inferior parietal cortex of left (LIPC) and right (RIPC) hemispheres. Furthermore, we were interested in testing the stability of the connectivity patterns when adding or deleting regions of interest. The functional magnetic resonance imaging (fMRI) data from a group of 30 healthy right-handed subjects in the resting state were collected and a connectivity analysis was performed. To model the effective connectivity, we used the spectral Dynamic Causal Modeling (DCM). Three DCM analyses were completed. Two of them modeled interaction between five nodes that included four DMN key structures in addition to either LHIP or RHIP. The last DCM analysis modeled interactions between four nodes whereby one of the main DMN structures, PCC, was excluded from the analysis. The results of all DCM analyses indicated a high level of stability in the computational method: those parts of the winning models that included the key DMN structures demonstrated causal relations known from recent research. However, we discovered new results as well. First of all, we found a pronounced asymmetry in LHIP and RHIP connections. LHIP demonstrated a high involvement of DMN activity with preponderant information outflow to all other DMN regions. Causal interactions of LHIP were bidirectional only in the case of LIPC. On the contrary, RHIP was primarily affected by inputs from LIPC, RIPC, and LHIP without influencing these or other DMN key structures. For the first time, an inhibitory link was found from MPFC to LIPC, which may indicate the subjects’ effort to maintain a resting state. Functional connectivity data echoed these results, though they also showed links not reflected in the patterns of effective connectivity. We suggest that such lateralized architecture of hippocampal connections may be related to lateralization phenomena in verbal and spatial domains documented in human neurophysiology, neuropsychology, and neurolinguistics.
Collapse
Affiliation(s)
- Vadim Ushakov
- National Research Centre "Kurchatov Institute"Moscow, Russia; Department of Cybernetics, National Research Nuclear University "MEPhI"Moscow, Russia
| | | | - Sergey I Kartashov
- National Research Centre "Kurchatov Institute"Moscow, Russia; Department of Cybernetics, National Research Nuclear University "MEPhI"Moscow, Russia
| | - Viktoria V Zavyalova
- National Research Centre "Kurchatov Institute"Moscow, Russia; Higher School of Economics, National Research UniversityMoscow, Russia
| | - Vitaliy M Verkhlyutov
- Institute for Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences Moscow, Russia
| | - Boris M Velichkovsky
- National Research Centre "Kurchatov Institute"Moscow, Russia; NBICS-Faculty, Moscow Institute of Physics and TechnologyMoscow, Russia; Faculty of Psychology, M.V. Lomonosov Moscow State UniversityMoscow, Russia; Center for Cognitive Programs and Technologies, Russian State University for the HumanitiesMoscow, Russia; Applied Cognitive Research, Department of Psychology, Technische Universitaet DresdenDresden, Germany
| |
Collapse
|