1
|
Wu W, He Y, Chen Y, Fu Y, He S, Liu K, Qu JY. In vivo imaging in mouse spinal cord reveals that microglia prevent degeneration of injured axons. Nat Commun 2024; 15:8837. [PMID: 39397028 PMCID: PMC11471772 DOI: 10.1038/s41467-024-53218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Microglia, the primary immune cells in the central nervous system, play a critical role in regulating neuronal function and fate through their interaction with neurons. Despite extensive research, the specific functions and mechanisms of microglia-neuron interactions remain incompletely understood. In this study, we demonstrate that microglia establish direct contact with myelinated axons at Nodes of Ranvier in the spinal cord of mice. The contact associated with neuronal activity occurs in a random scanning pattern. In response to axonal injury, microglia rapidly transform their contact into a robust wrapping form, preventing acute axonal degeneration from extending beyond the nodes. This wrapping behavior is dependent on the function of microglial P2Y12 receptors, which may be activated by ATP released through axonal volume-activated anion channels at the nodes. Additionally, voltage-gated sodium channels (NaV) and two-pore-domain potassium (K2P) channels contribute to the interaction between nodes and glial cells following injury, and inhibition of NaV delays axonal degeneration. Through in vivo imaging, our findings reveal a neuroprotective role of microglia during the acute phase of single spinal cord axon injury, achieved through neuron-glia interaction.
Collapse
Grants
- ITCPD/17-9 Innovation and Technology Commission (ITF)
- ITCPD/17-9 Innovation and Technology Commission (ITF)
- 32101211, 32192400 National Natural Science Foundation of China (National Science Foundation of China)
- 82171384 National Natural Science Foundation of China (National Science Foundation of China)
- the Hong Kong Research Grants Council through grants (16102122, 16102123, 16102421, 16102518, 16102920, T13-607/12R, T13-605/18W, T13-602/21N, C6002-17GF, C6001-19E);the Area of Excellence Scheme of the University Grants Committee (AoE/M-604/16, AOE/M-09/12) and the Hong Kong University of Science & Technology (HKUST) through grant 30 for 30 Research Initiative Scheme.
- Guangdong Basic and Applied Basic Research Foundation 2024A1515012414 Shenzhen Medical Research Fund (B2301004)
- Guangzhou Key Projects of Brain Science and Brain-Like Intelligence Technology (20200730009), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (2019SHIBS0001);the Area of Excellence Scheme of the University Grants Committee (AoE/M-604/16); Hong Kong Research Grants Council through grants (T13-602/21N, C6034-21G)
Collapse
Affiliation(s)
- Wanjie Wu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Yingzhu He
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Yujun Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Yiming Fu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Sicong He
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Kai Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, Hong Kong, P. R. China.
- StateKey Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen, Guangdong, China.
- HKUST Shenzhen Research Institute, Guangdong, China.
- Shenzhen-Hong Kong Institute of Brain Science, Guangdong, China.
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, Hong Kong, P. R. China.
- Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
| |
Collapse
|
2
|
Chapman KB, Amireh A, van Helmond N, Yousef TA. Evaluation of Washout Periods After Dorsal Root Ganglion Stimulation Trial. Neuromodulation 2024; 27:881-886. [PMID: 38551547 DOI: 10.1016/j.neurom.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVE Dorsal root ganglion stimulation (DRG-S) is a novel therapy to treat chronic pain. It has shown efficacy when delivered intermittently, suggesting a delayed washout effect exists. To measure the washout period, and to determine whether there are differences in washout times among different types of treated pain, we measured the time for pain to return at the end of the patients' one-week DRG stimulation trials. MATERIALS AND METHODS Patients who completed a successful DRG-S trial were included. The times until 25% (t25) and 90% (t90) of baseline pain level returned were recorded. The patients were divided into neuropathic, nociceptive, and mixed pain groups for subgroup comparison. t25 and t90 were plotted in the entire cohort and subgroups using reverse Kaplan-Meier plots (failure curves) and compared using a log-rank test. RESULTS In total, 29 consecutive patients were included. Median t25 and t90 times were 7.1 and 19.5 hours, respectively. Median (interquartile range) times were longest for the nociceptive pain group (n = 17) and shortest for the neuropathic pain group (n = 6), with the mixed-pain group (n = 6) in between (t25: 7.1 [1.7-19.4], 3.40 [1.4-8.4], and 5.7 [0.8-17.6]; t90, 22.0 [10.7-71.0], 7.6 [3.6-19.8], and 20.9 [14.2-31.2], respectively). t90 times differed significantly by pain type (p = 0.040). CONCLUSIONS This study showed a prolonged washout period after cessation of DRG-S therapy. Washout times vary according to pain type. The observed effects are possibly due to long-term depression of pain signaling and could allow the implementation of alternative stimulation strategies with DRG-S. Further investigations evaluating DRG-S washout times are warranted.
Collapse
Affiliation(s)
- Kenneth B Chapman
- The Spine & Pain Institute of New York, New York City, NY, USA; Department of Anesthesiology, New York University Langone Medical Center, New York City, NY, USA; The Zucker School of Medicine at Hofstra/Northwell, New York City, NY, USA; Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Ahmad Amireh
- The Spine & Pain Institute of New York, New York City, NY, USA
| | - Noud van Helmond
- The Spine & Pain Institute of New York, New York City, NY, USA; Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Tariq A Yousef
- The Spine & Pain Institute of New York, New York City, NY, USA
| |
Collapse
|
3
|
da Silva MDV, Martelossi-Cebinelli G, Yaekashi KM, Carvalho TT, Borghi SM, Casagrande R, Verri WA. A Narrative Review of the Dorsal Root Ganglia and Spinal Cord Mechanisms of Action of Neuromodulation Therapies in Neuropathic Pain. Brain Sci 2024; 14:589. [PMID: 38928589 PMCID: PMC11202229 DOI: 10.3390/brainsci14060589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Neuropathic pain arises from injuries to the nervous system in diseases such as diabetes, infections, toxicity, and traumas. The underlying mechanism of neuropathic pain involves peripheral and central pathological modifications. Peripheral mechanisms entail nerve damage, leading to neuronal hypersensitivity and ectopic action potentials. Central sensitization involves a neuropathological process with increased responsiveness of the nociceptive neurons in the central nervous system (CNS) to their normal or subthreshold input due to persistent stimuli, leading to sustained electrical discharge, synaptic plasticity, and aberrant processing in the CNS. Current treatments, both pharmacological and non-pharmacological, aim to alleviate symptoms but often face challenges due to the complexity of neuropathic pain. Neuromodulation is emerging as an important therapeutic approach for the treatment of neuropathic pain in patients unresponsive to common therapies, by promoting the normalization of neuronal and/or glial activity and by targeting cerebral cortical regions, spinal cord, dorsal root ganglia, and nerve endings. Having a better understanding of the efficacy, adverse events and applicability of neuromodulation through pre-clinical studies is of great importance. Unveiling the mechanisms and characteristics of neuromodulation to manage neuropathic pain is essential to understand how to use it. In the present article, we review the current understanding supporting dorsal root ganglia and spinal cord neuromodulation as a therapeutic approach for neuropathic pain.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
| | - Kelly Megumi Yaekashi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
| | - Thacyana T. Carvalho
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
- Center for Research in Health Sciences, University of Northern Paraná, Londrina 86041-140, PR, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil;
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
- Biological Sciences Center, State University of Londrina, Rod. Celso Garcia Cid Pr 445, KM 380, P.O. Box 10.011, Londrina 86057-970, PR, Brazil
| |
Collapse
|
4
|
Abd-Elsayed A, Vardhan S, Aggarwal A, Vardhan M, Diwan SA. Mechanisms of Action of Dorsal Root Ganglion Stimulation. Int J Mol Sci 2024; 25:3591. [PMID: 38612402 PMCID: PMC11011701 DOI: 10.3390/ijms25073591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The dorsal root ganglion (DRG) serves as a pivotal site for managing chronic pain through dorsal root ganglion stimulation (DRG-S). In recent years, the DRG-S has emerged as an attractive modality in the armamentarium of neuromodulation therapy due to its accessibility and efficacy in alleviating chronic pain refractory to conventional treatments. Despite its therapeutic advantages, the precise mechanisms underlying DRG-S-induced analgesia remain elusive, attributed in part to the diverse sensory neuron population within the DRG and its modulation of both peripheral and central sensory processing pathways. Emerging evidence suggests that DRG-S may alleviate pain by several mechanisms, including the reduction of nociceptive signals at the T-junction of sensory neurons, modulation of pain gating pathways within the dorsal horn, and regulation of neuronal excitability within the DRG itself. However, elucidating the full extent of DRG-S mechanisms necessitates further exploration, particularly regarding its supraspinal effects and its interactions with cognitive and affective networks. Understanding these mechanisms is crucial for optimizing neurostimulation technologies and improving clinical outcomes of DRG-S for chronic pain management. This review provides a comprehensive overview of the DRG anatomy, mechanisms of action of the DRG-S, and its significance in neuromodulation therapy for chronic pain.
Collapse
Affiliation(s)
- Alaa Abd-Elsayed
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| | - Swarnima Vardhan
- Department of Internal Medicine, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT 06605, USA; (S.V.); (A.A.)
- Advanced Spine on Park Avenue, New York, NY 10461, USA;
| | - Abhinav Aggarwal
- Department of Internal Medicine, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT 06605, USA; (S.V.); (A.A.)
| | - Madhurima Vardhan
- Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL 60439, USA;
| | | |
Collapse
|
5
|
Cerri DH, Albaugh DL, Walton LR, Katz B, Wang TW, Chao THH, Zhang W, Nonneman RJ, Jiang J, Lee SH, Etkin A, Hall CN, Stuber GD, Shih YYI. Distinct neurochemical influences on fMRI response polarity in the striatum. Nat Commun 2024; 15:1916. [PMID: 38429266 PMCID: PMC10907631 DOI: 10.1038/s41467-024-46088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
The striatum, known as the input nucleus of the basal ganglia, is extensively studied for its diverse behavioral roles. However, the relationship between its neuronal and vascular activity, vital for interpreting functional magnetic resonance imaging (fMRI) signals, has not received comprehensive examination within the striatum. Here, we demonstrate that optogenetic stimulation of dorsal striatal neurons or their afferents from various cortical and subcortical regions induces negative striatal fMRI responses in rats, manifesting as vasoconstriction. These responses occur even with heightened striatal neuronal activity, confirmed by electrophysiology and fiber-photometry. In parallel, midbrain dopaminergic neuron optogenetic modulation, coupled with electrochemical measurements, establishes a link between striatal vasodilation and dopamine release. Intriguingly, in vivo intra-striatal pharmacological manipulations during optogenetic stimulation highlight a critical role of opioidergic signaling in generating striatal vasoconstriction. This observation is substantiated by detecting striatal vasoconstriction in brain slices after synthetic opioid application. In humans, manipulations aimed at increasing striatal neuronal activity likewise elicit negative striatal fMRI responses. Our results emphasize the necessity of considering vasoactive neurotransmission alongside neuronal activity when interpreting fMRI signal.
Collapse
Affiliation(s)
- Domenic H Cerri
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel L Albaugh
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lindsay R Walton
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brittany Katz
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Wen Wang
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weiting Zhang
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Randal J Nonneman
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sung-Ho Lee
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Los Altos, CA, USA
| | - Catherine N Hall
- Sussex Neuroscience, University of Sussex, Falmer, United Kingdom
- School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Garret D Stuber
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Chapman KB, Sayed D, Lamer T, Hunter C, Weisbein J, Patel KV, Dickerson D, Hagedorn JM, Lee DW, Amirdelfan K, Deer T, Chakravarthy K. Best Practices for Dorsal Root Ganglion Stimulation for Chronic Pain: Guidelines from the American Society of Pain and Neuroscience. J Pain Res 2023; 16:839-879. [PMID: 36942306 PMCID: PMC10024474 DOI: 10.2147/jpr.s364370] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/17/2023] [Indexed: 03/14/2023] Open
Abstract
With continued innovations in neuromodulation comes the need for evolving reviews of best practices. Dorsal root ganglion stimulation (DRG-S) has significantly improved the treatment of complex regional pain syndrome (CRPS), and it has broad applicability across a wide range of other conditions. Through funding and organizational leadership by the American Society for Pain and Neuroscience (ASPN), this best practices consensus document has been developed for the selection, implantation, and use of DRG stimulation for the treatment of chronic pain syndromes. This document is composed of a comprehensive narrative literature review that has been performed regarding the role of the DRG in chronic pain and the clinical evidence for DRG-S as a treatment for multiple pain etiologies. Best practice recommendations encompass safety management, implantation techniques, and mitigation of the potential complications reported in the literature. Looking to the future of neuromodulation, DRG-S holds promise as a robust intervention for otherwise intractable pain.
Collapse
Affiliation(s)
- Kenneth B Chapman
- The Spine & Pain Institute of New York, New York, NY, USA
- Department of Anesthesiology, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA
- Department of Anesthesiology, NYU Langone Medical Center, New York, NY, USA
| | - Dawood Sayed
- Department of Anesthesiology, The University of Kansas Medical Center (KUMC), Kansas City, KS, USA
| | - Tim Lamer
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Corey Hunter
- Ainsworth Institute of Pain Management, New York, NY, USA
| | | | - Kiran V Patel
- The Spine & Pain Institute of New York, New York, NY, USA
- Department of Anesthesiology, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA
- Department of Anesthesiology, NYU Langone Medical Center, New York, NY, USA
| | - David Dickerson
- Department of Anesthesiology, Critical Care and Pain Medicine, NorthShore University Health System, Evanston, IL, USA
- Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | | | - David W Lee
- Fullerton Orthopedic Surgery Medical Group, Fullerton, CA, USA
| | | | - Timothy Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | - Krishnan Chakravarthy
- Department of Anesthesiology and Pain Medicine, University of California San Diego Health Sciences, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
7
|
Pricope CV, Tamba BI, Stanciu GD, Cuciureanu M, Neagu AN, Creanga-Murariu I, Dobrovat BI, Uritu CM, Filipiuc SI, Pricope BM, Alexa-Stratulat T. The Roles of Imaging Biomarkers in the Management of Chronic Neuropathic Pain. Int J Mol Sci 2022; 23:13038. [PMID: 36361821 PMCID: PMC9657736 DOI: 10.3390/ijms232113038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 08/04/2023] Open
Abstract
Chronic neuropathic pain (CNP) affects around 10% of the general population and has a significant social, emotional, and economic impact. Current diagnosis techniques rely mainly on patient-reported outcomes and symptoms, which leads to significant diagnostic heterogeneity and subsequent challenges in management and assessment of outcomes. As such, it is necessary to review the approach to a pathology that occurs so frequently, with such burdensome and complex implications. Recent research has shown that imaging methods can detect subtle neuroplastic changes in the central and peripheral nervous system, which can be correlated with neuropathic symptoms and may serve as potential markers. The aim of this paper is to review available imaging methods used for diagnosing and assessing therapeutic efficacy in CNP for both the preclinical and clinical setting. Of course, further research is required to standardize and improve detection accuracy, but available data indicate that imaging is a valuable tool that can impact the management of CNP.
Collapse
Affiliation(s)
- Cosmin Vasilica Pricope
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Magdalena Cuciureanu
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Anca Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I bvd. No. 22, 700505 Iasi, Romania
| | - Ioana Creanga-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Bogdan-Ionut Dobrovat
- Department of Radiology, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
| | - Cristina Mariana Uritu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Silviu Iulian Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Bianca-Mariana Pricope
- Department of Preventive Medicine and Interdisciplinarity, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Teodora Alexa-Stratulat
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Medical Oncology-Radiotherapy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
8
|
Huang J, Zhang Y, Zhang Q, Wei L, Zhang X, Jin C, Yang J, Li Z, Liang S. The current status and trend of the functional magnetic resonance combined with stimulation in animals. Front Neurosci 2022; 16:963175. [PMID: 36213733 PMCID: PMC9540855 DOI: 10.3389/fnins.2022.963175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
As a non-radiative, non-invasive imaging technique, functional magnetic resonance imaging (fMRI) has excellent effects on studying the activation of blood oxygen levels and functional connectivity of the brain in human and animal models. Compared with resting-state fMRI, fMRI combined with stimulation could be used to assess the activation of specific brain regions and the connectivity of specific pathways and achieve better signal capture with a clear purpose and more significant results. Various fMRI methods and specific stimulation paradigms have been proposed to investigate brain activation in a specific state, such as electrical, mechanical, visual, olfactory, and direct brain stimulation. In this review, the studies on animal brain activation using fMRI combined with different stimulation methods were retrieved. The instruments, experimental parameters, anesthesia, and animal models in different stimulation conditions were summarized. The findings would provide a reference for studies on estimating specific brain activation using fMRI combined with stimulation.
Collapse
|
9
|
Bao J, Byraju K, Patel VJ, Hellman A, Neubauer P, Burdette C, Rafferty E, Park YL, Trowbridge R, Shin DS, Pilitsis JG. The effects of low intensity focused ultrasound on neuronal activity in pain processing regions in a rodent model of common peroneal nerve injury. Neurosci Lett 2022; 789:136882. [PMID: 36152743 DOI: 10.1016/j.neulet.2022.136882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Non-invasive, external low intensity focused ultrasound (liFUS) offers promise for treating neuropathic pain when applied to the dorsal root ganglion (DRG). OBJECTIVE We examine how external liFUS treatment applied to the L5 DRG affects neuronal changes in single-unit activity from the primary somatosensory cortex (SI) and anterior cingulate cortex (ACC) in a common peroneal nerve injury (CPNI) rodent model. METHODS Male Sprague Dawley rats were divided into two cohorts: CPNI liFUS and CPNI sham liFUS. Baseline single-unit activity (SUA) recordings were taken 20 min prior to treatment and for 4 h post treatment in 20 min intervals, then analyzed for frequency and compared to baseline. Recordings from the SI and ACC were separated into pyramidal and interneurons based on waveform and principal component analysis. RESULTS Following CPNI surgery, all rats (n = 30) displayed a significant increase in mechanical sensitivity. In CPNI liFUS rats, there was a significant increase in pyramidal neuron spike frequency in the SI region compared to the CPNI sham liFUS animals beginning at 120 min following liFUS treatment (p < 0.05). In the ACC, liFUS significantly attenuated interneuron firing beginning at 80 min after liFUS treatment (p < 0.05). CONCLUSION We demonstrate that liFUS changed neuronal spiking in the SI and ACC regions 80 and 120 min after treatment, respectively, which may in part correlate with improved sensory thresholds. This may represent a mechanism of action how liFUS attenuates neuropathic pain. Understanding the impact of liFUS on pain circuits will help advance the use of liFUS as a non-invasive neuromodulation option.
Collapse
Affiliation(s)
- Jonathan Bao
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Kanakaharini Byraju
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Vraj J Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Abigail Hellman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | | | | | - Emily Rafferty
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Yunseo Linda Park
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Rachel Trowbridge
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Damian S Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Julie G Pilitsis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Neurosurgery, Albany Medical Center, Albany, NY, United States.
| |
Collapse
|
10
|
Graham RD, Sankarasubramanian V, Lempka SF. Dorsal Root Ganglion Stimulation for Chronic Pain: Hypothesized Mechanisms of Action. THE JOURNAL OF PAIN 2022; 23:196-211. [PMID: 34425252 PMCID: PMC8943693 DOI: 10.1016/j.jpain.2021.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023]
Abstract
Dorsal root ganglion stimulation (DRGS) is a neuromodulation therapy for chronic pain that is refractory to conventional medical management. Currently, the mechanisms of action of DRGS-induced pain relief are unknown, precluding both our understanding of why DRGS fails to provide pain relief to some patients and the design of neurostimulation technologies that directly target these mechanisms to maximize pain relief in all patients. Due to the heterogeneity of sensory neurons in the dorsal root ganglion (DRG), the analgesic mechanisms could be attributed to the modulation of one or many cell types within the DRG and the numerous brain regions that process sensory information. Here, we summarize the leading hypotheses of the mechanisms of DRGS-induced analgesia, and propose areas of future study that will be vital to improving the clinical implementation of DRGS. PERSPECTIVE: This article synthesizes the evidence supporting the current hypotheses of the mechanisms of action of DRGS for chronic pain and suggests avenues for future interdisciplinary research which will be critical to fully elucidate the analgesic mechanisms of the therapy.
Collapse
Affiliation(s)
- Robert D. Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Vishwanath Sankarasubramanian
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Scott F. Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States,Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, United States,Corresponding author: Scott F. Lempka, PhD, Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Road, NCRC 14-184, Ann Arbor, MI 48109-2800,
| |
Collapse
|
11
|
Saber M, Schwabe D, Park HJ, Tessmer J, Khan Z, Ding Y, Robinson M, Hogan QH, Pawela CP. Tonic, Burst, and Burst-Cycle Spinal Cord Stimulation Lead to Differential Brain Activation Patterns as Detected by Functional Magnetic Resonance Imaging. Neuromodulation 2022; 25:53-63. [PMID: 35041588 DOI: 10.1111/ner.13460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The objective of this preclinical study was to examine the responses of the brain to noxious stimulation in the presence and absence of different modes of spinal cord stimulation (SCS) using blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD-fMRI). MATERIALS AND METHODS Sprague-Dawley rats were randomized to groups based on the mode of SCS delivered which included tonic stimulation (n = 27), burst stimulation (n = 30), and burst-cycle stimulation (n = 29). The control (sham) group (n = 28) received no SCS. The SCS electrode was inserted between T10 and T12 spinal levels prior to fMRI session. The experimental protocol for fMRI acquisition consisted of an initial noxious stimulation phase, a treatment phase wherein the SCS was turned on concurrently with noxious stimulation, and a residual effect phase wherein the noxious stimulation alone was turned on. The responses were statistically analyzed through paired t-test and the results were presented as z-scores for the quantitative analysis of the fMRI data. RESULTS The treatment with different SCS modes attenuated the BOLD brain responses to noxious hindlimb stimulation. The tonic, burst, and burst-cycle SCS treatment attenuated BOLD responses in the caudate putamen (CPu), insula (In), and secondary somatosensory cortex (S2). There was little to no corresponding change in sham control in these three regions. The burst and burst-cycle SCS demonstrated greater attenuation of BOLD signals in CPu, In, and S2 compared to tonic stimulation. CONCLUSION The high-resolution fMRI study using a rat model demonstrated the potential of different SCS modes to act on several pain-matrix-related regions of the brain in response to noxious stimulation. The burst and burst-cycle SCS exhibited greater brain activity reduction in response to noxious hindlimb stimulation in the caudate putamen, insula, and secondary somatosensory cortex compared to tonic stimulation.
Collapse
Affiliation(s)
- Mohammad Saber
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David Schwabe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - John Tessmer
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zan Khan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yujie Ding
- University of Kentucky College of Medicine, Lexington, KY, USA
| | - Maraika Robinson
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
12
|
Stress-related dysautonomias and neurocardiology-based treatment approaches. Auton Neurosci 2022; 239:102944. [DOI: 10.1016/j.autneu.2022.102944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/13/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022]
|
13
|
Intermittent Dorsal Root Ganglion Stimulation Is as Efficacious as Standard Continuous Dosing in Treating Chronic Pain: Results From a Randomized Controlled Feasibility Trial. Neuromodulation 2022; 25:989-997. [DOI: 10.1016/j.neurom.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/29/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
|
14
|
Vuka I, Marciuš T, Kovačić D, Šarolić A, Puljak L, Sapunar D. Implantable, Programmable, and Wireless Device for Electrical Stimulation of the Dorsal Root Ganglion in Freely-Moving Rats: A Proof of Concept Study. J Pain Res 2021; 14:3759-3772. [PMID: 34916842 PMCID: PMC8668248 DOI: 10.2147/jpr.s332438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
Objective This was a proof of concept study, based on systematic reviews of the efficacy and safety of the dorsal root ganglion (DRG) stimulation. The main objective was to develop an implantable, programmable, and wireless device for electrical stimulation of DRG and a methodology that can be used in translational research, especially to understand the mechanism of neuromodulation and to test new treatment modalities in animal models of pain. Methods We developed and tested a stimulator that uses a battery-powered microelectronic circuit, to generate constant current square biphasic or monophasic pulsed waveform of variable amplitudes and duration. It is controlled by software and an external controller that allows radio frequency communication with the stimulator. The stimulator was implanted in Sprague–Dawley (SD) rats. The lead was positioned at the L5 DRG level, while the stimulator was placed in the skin pocket at the ipsilateral side. Forty-five animals were used and divided into six groups: spinal nerve ligation (SNL), chronic compression injury of the DRG (CCD), SNL + active DRG stimulation, intact control group, group with the implanted sham stimulator, and sham lead. Behavioral testing was performed on the day preceding surgery and three times postoperatively (1st, 3rd, and 7th day). Results In animals with SNL, neurostimulation reduced pain-related behavior, tested with pinprick hyperalgesia, pinprick withdrawal test, and cold test, while the leads per se did not cause DRG compression. The rats well tolerated the stimulator. It did not hinder animal movement, and it enabled the animals to be housed under regular conditions. Conclusion A proof-of-concept experiment with our stimulator verified the usability of the device. The stimulator enables a wide range of research applications from adjusting stimulation parameters for different pain conditions, studying new stimulation methods with different frequencies and waveforms to obtain knowledge about analgesic mechanisms of DRG stimulation.
Collapse
Affiliation(s)
- Ivana Vuka
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia
| | - Tihana Marciuš
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia
| | - Damir Kovačić
- Laboratory for Biophysics and Medical Neuroelectronics, University of Split Faculty of Science, Split, Croatia
| | - Antonio Šarolić
- Laboratory for Applied Electromagnetics (EMLab), FESB, University of Split, Split, Croatia
| | - Livia Puljak
- Centre for Evidence-Based Medicine and Health Care, Catholic University of Croatia, Zagreb, Croatia
| | - Damir Sapunar
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
15
|
Mecca CM, Chao D, Yu G, Feng Y, Segel I, Zhang Z, Rodriguez-Garcia DM, Pawela CP, Hillard CJ, Hogan QH, Pan B. Dynamic Change of Endocannabinoid Signaling in the Medial Prefrontal Cortex Controls the Development of Depression After Neuropathic Pain. J Neurosci 2021; 41:7492-7508. [PMID: 34244365 PMCID: PMC8412994 DOI: 10.1523/jneurosci.3135-20.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/15/2023] Open
Abstract
Many patients with chronic pain conditions suffer from depression. The mechanisms underlying pain-induced depression are still unclear. There are critical links of medial prefrontal cortex (mPFC) synaptic function to depression, with signaling through the endocannabinoid (eCB) system as an important contributor. We hypothesized that afferent noxious inputs after injury compromise activity-dependent eCB signaling in the mPFC, resulting in depression. Depression-like behaviors were tested in male and female rats with traumatic neuropathy [spared nerve injury (SNI)], and neuronal activity in the mPFC was monitored using the immediate early gene c-fos and in vivo electrophysiological recordings. mPFC eCB Concentrations were determined using mass spectrometry, and behavioral and electrophysiological experiments were used to evaluate the role of alterations in eCB signaling in depression after pain. SNI-induced pain induced the development of depression phenotypes in both male and female rats. Pyramidal neurons in mPFC showed increased excitability followed by reduced excitability in the onset and prolonged phases of pain, respectively. Concentrations of the eCBs, 2-arachidonoylglycerol (2-AG) in the mPFC, were elevated initially after SNI, and our results indicate that this resulted in a loss of CB1R function on GABAergic interneurons in the mPFC. These data suggest that excessive release of 2-AG as a result of noxious stimuli triggers use-dependent loss of function of eCB signaling leading to excessive GABA release in the mPFC, with the final result being behavioral depression.SIGNIFICANCE STATEMENT Pain has both somatosensory and affective components, so the complexity of mechanisms underlying chronic pain is best represented by a biopsychosocial model that includes widespread CNS dysfunction. Many patients with chronic pain conditions develop depression. The mechanism by which pain causes depression is unclear. Although manipulation of the eCB signaling system as an avenue for providing analgesia per se has not shown much promise in previous studies. An important limitation of past research has been inadequate consideration of the dynamic nature of the connection between pain and depression as they develop. Here, we show that activity-dependent synthesis of eCBs during the initial onset of persistent pain is the critical link leading to depression when pain is persistent.
Collapse
Affiliation(s)
- Christina M Mecca
- Departments of Anesthesiology
- Cell Biology, Neurobiology, and Anatomy
| | | | | | | | | | | | | | - Christopher P Pawela
- Departments of Anesthesiology
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Cecilia J Hillard
- Pharmacology and Toxicology
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Quinn H Hogan
- Departments of Anesthesiology
- Cell Biology, Neurobiology, and Anatomy
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Bin Pan
- Departments of Anesthesiology
- Cell Biology, Neurobiology, and Anatomy
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
16
|
Tao X, Luo X, Zhang T, Hershey B, Esteller R, Ji RR. Spinal Cord Stimulation Attenuates Mechanical Allodynia and Increases Central Resolvin D1 Levels in Rats With Spared Nerve Injury. Front Physiol 2021; 12:687046. [PMID: 34248674 PMCID: PMC8267572 DOI: 10.3389/fphys.2021.687046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
Mounting evidence from animal models of inflammatory and neuropathic pain suggests that inflammation regulates the resolution of pain by producing specialized pro-resolving mediators (SPMs), such as resolvin D1 (RvD1). However, it remains unclear how SPMs are induced in the central nervous system and whether these mechanisms can be reconciled with outcomes of neuromodulation therapies for pain, such as spinal cord stimulation. Here, we show that in a male rat model of neuropathic pain produced by spared nerve injury (SNI), 1 kHz spinal cord stimulation (1 kHz SCS) alone was sufficient to reduce mechanical allodynia and increase RvD1 in the cerebrospinal fluid (CSF). SNI resulted in robust and persistent mechanical allodynia and cold allodynia. Spinal cord electrode implantation was conducted at the T11-T13 vertebral level 1 week after SNI. The spinal locations of the implanted electrodes were validated by X-Ray radiography. 1 kHz SCS was applied for 6 h at 0.1 ms pulse-width, and this stimulation alone was sufficient to effectively reduce nerve injury-induced mechanical allodynia during stimulation without affecting SNI-induced cold allodynia. SCS alone significantly reduced interleukin-1β levels in both serum and CSF samples. Strikingly, SCS significantly increased RvD1 levels in the CSF but not serum. Finally, intrathecal injection of RvD1 (100 and 500 ng, i.t.) 4 weeks after nerve injury reduced SNI-induced mechanical allodynia in a dose-dependent manner. Our findings suggest that 1 kHz SCS may alleviate neuropathic pain via reduction of IL-1β and via production and/or release of RvD1 to control SNI-induced neuroinflammation.
Collapse
Affiliation(s)
- Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States.,Department of Pain Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Tianhe Zhang
- Boston Scientific Neuromodulation Research and Advanced Concepts, Valencia, CA, United States
| | - Brad Hershey
- Boston Scientific Neuromodulation Research and Advanced Concepts, Valencia, CA, United States
| | - Rosana Esteller
- Boston Scientific Neuromodulation Research and Advanced Concepts, Valencia, CA, United States
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States.,Department of Cell Biology, Duke University Medical Center, Durham, NC, United States.,Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
17
|
Exploration of the Supraspinal Hypotheses about Spinal Cord Stimulation and Dorsal Root Ganglion Stimulation: A Systematic Review. J Clin Med 2021; 10:jcm10132766. [PMID: 34201877 PMCID: PMC8268298 DOI: 10.3390/jcm10132766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 12/27/2022] Open
Abstract
Despite the established efficacy and effectiveness of Spinal Cord Stimulation (SCS), there is still no consensus on the supraspinal mechanisms of action of this therapy. The purpose of this study was to systematically review previously raised hypotheses concerning supraspinal mechanisms of action of SCS based on human, animal and computational studies. Searches were conducted using four electronic databases (PubMed, EMBASE, SCOPUS and Web of Science), backward reference searching and consultation with experts. The study protocol was registered prior to initiation of the review process (PROSPERO CRD42020161531). A total of 54 publications were included, 21 of which were animal studies, and 33 were human studies. The supraspinal hypotheses (n = 69) identified from the included studies could be categorized into six groups concerning the proposed supraspinal hypothesis, namely descending pathways (n = 24); ascending medial pathway (n = 13); ascending lateral pathway (n = 10); affective/motivational influences (n = 8); spinal–cerebral (thalamic)-loop (n = 3) and miscellaneous (n = 11). Scientific support is provided for the hypotheses identified. Modulation of the descending nociceptive inhibitory pathways, medial and lateral pathways were the most frequently reported hypotheses about the supraspinal mechanisms of action of SCS. These hypotheses were mainly supported by studies with a high or moderate confidence in the body of evidence.
Collapse
|
18
|
Laakso H, Lehto LJ, Paasonen J, Salo R, Canna A, Lavrov I, Michaeli S, Gröhn O, Mangia S. Spinal cord fMRI with MB-SWIFT for assessing epidural spinal cord stimulation in rats. Magn Reson Med 2021; 86:2137-2145. [PMID: 34002880 PMCID: PMC8360072 DOI: 10.1002/mrm.28844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022]
Abstract
Purpose Electrical epidural spinal cord stimulation (SCS) is used as a treatment for chronic pain as well as to partially restore motor function after a spinal cord injury. Monitoring the spinal cord activity during SCS with fMRI could provide important and objective measures of integrative responses to treatment. Unfortunately, spinal cord fMRI is severely challenged by motion and susceptibility artifacts induced by the implanted electrode and bones. This pilot study introduces multi‐band sweep imaging with Fourier transformation (MB‐SWIFT) technique for spinal cord fMRI during SCS in rats. Given the close to zero acquisition delay and high bandwidth in 3 dimensions, MB‐SWIFT is demonstrated to be highly tolerant to motion and susceptibility‐induced artifacts and thus holds promise for fMRI during SCS. Methods MB‐SWIFT with 0.78 × 0.78 × 1.50 mm3 spatial resolution and 3‐s temporal resolution was used at 9.4 Tesla in rats undergoing epidural SCS at different frequencies. Its performance was compared with spin echo EPI. The origin of the functional contrast was also explored using suppression bands. Results MB‐SWIFT was tolerant to electrode‐induced artifacts and respiratory motion, leading to substantially higher fMRI sensitivity than spin echo fMRI. Clear stimulation frequency‐dependent responses to SCS were detected in the rat spinal cord close to the stimulation site. The origin of MB‐SWIFT fMRI signals was consistent with dominant inflow effects. Conclusion fMRI of the rat spinal cord during SCS can be consistently achieved with MB‐SWIFT, thus providing a valuable experimental framework for assessing the effects of SCS on the central nervous system.
Collapse
Affiliation(s)
- Hanne Laakso
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Center for Magnetic Resonance in Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lauri J Lehto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Center for Magnetic Resonance in Research, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Radiology, Kanta-Häme Central Hospital, Hämeenlinna, Finland
| | - Jaakko Paasonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raimo Salo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Antonietta Canna
- Center for Magnetic Resonance in Research, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Salerno, Italy
| | - Igor Lavrov
- Kazan Federal University, Kazan, Russia.,Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Shalom Michaeli
- Center for Magnetic Resonance in Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Silvia Mangia
- Center for Magnetic Resonance in Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
19
|
Parker T, Huang Y, Raghu ALB, FitzGerald J, Aziz TZ, Green AL. Supraspinal Effects of Dorsal Root Ganglion Stimulation in Chronic Pain Patients. Neuromodulation 2021; 24:646-654. [PMID: 33974317 DOI: 10.1111/ner.13408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Dorsal root ganglion stimulation (DRGS) has become a popular neuromodulatory treatment for neuropathic pain. We used magnetoencephalography (MEG) to investigate potential biomarkers of pain and pain relief, based on the differences in power spectral density (PSD) during varying degrees of pain and how these oscillations change during DRGS-mediated pain relief. MATERIALS AND METHODS Thirteen chronic pain patients with implanted dorsal root ganglion stimulators were included in the MEG analysis. MEG Recordings were performed at rest while the stimulator was turned ON or OFF. Numerical rating scale (NRS) scores were also recorded before and after DRGS was turned OFF and ON. Power spectral and source localization analyses were then performed on preprocessed MEG recordings. RESULTS With DRGS-OFF, patients in severe pain had significantly increased cortical theta (4-7 Hz) power and decreased cortical alpha (7-13 Hz) power compared to patients reporting less pain. This shift in power toward lower frequencies was contrasted by a shift toward the higher frequency power spectrum (low beta 13-20 Hz activity) during DRGS-mediated pain relief. A significant correlation was found between the increase in low beta activity and the degree of reported pain relief. CONCLUSION Our results demonstrate increased low-frequency power spectral activity in chronic pain patients in the absence of stimulation which shifts toward higher frequency power spectrum activity in response to therapeutic DRGS. These cortical changes in response to DRGS provide support for the use of neuroimaging in the search for potential biomarkers of pain.
Collapse
Affiliation(s)
- Tariq Parker
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Yongzhi Huang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ashley L B Raghu
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - James FitzGerald
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Franken G, Douven P, Debets J, Joosten EAJ. Conventional Dorsal Root Ganglion Stimulation in an Experimental Model of Painful Diabetic Peripheral Neuropathy: A Quantitative Immunocytochemical Analysis of Intracellular γ-Aminobutyric Acid in Dorsal Root Ganglion Neurons. Neuromodulation 2021; 24:639-645. [PMID: 33942947 PMCID: PMC8360133 DOI: 10.1111/ner.13398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
Background and Objective The sensory cell somata in the DRG contain all equipment necessary for extensive GABAergic signaling and are able to release GABA upon depolarization. With this study, we hypothesize that pain relief induced by conventional dorsal root ganglion stimulation (Con‐DRGS) in animals with experimental painful diabetic peripheral neuropathy is related to the release of GABA from DRG neurons. With use of quantitative immunocytochemistry, we hypothesize DRGS to result in a decreased intensity of intracellular GABA‐immunostaining in DRG somata. Materials and Methods Female Sprague‐Dawley rats (n = 31) were injected with streptozotocin (STZ) in order to induce Diabetes Mellitus. Animals that developed neuropathic pain after four weeks (Von Frey) were implanted with a unilateral DRGS device at L4 (n = 14). Animals were then stimulated for 30 min with Con‐DRGS (20 Hz, pulse width = 0.2 msec, amplitude = 67% of motor threshold, n = 8) or Sham‐DRGS (n = 6), while pain behavior (von Frey) was measured. DRGs were then collected and immunostained for GABA, and a relation to size of sensory cell soma diameter (small: 12–26 μm, assumed to be C‐fiber related sensory neurons; medium: 26–40 μm, assumed to be Aδ related sensory neurons; and large: 40–54 μm, assumed to be Aβ related sensory neurons) was made. Results DRGS treated animals showed significant reductions in STZ‐induced mechanical hypersensitivity. No significant differences in GABA immunostaining intensity per sensory neuron cell soma type (small‐, medium‐, or large‐sized) were noted in DRGs of stimulated (Con‐DRGS) animals versus Sham animals. No differences in GABA immunostaining intensity per sensory cell soma type in ipsi‐ as compared to contralateral DRGs were observed. Conclusion Con‐DRGS does not affect the average intracellular GABA immunofluorescence staining intensity in DRG sensory neurons of those animals which showed significant pain reduction. Similarly, no soma size related changes in intracellular GABA immunofluorescence were observed following Con‐DRGS.
Collapse
Affiliation(s)
- Glenn Franken
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Perla Douven
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Urology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Jacques Debets
- School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Muroidean Facility, School of Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
21
|
Spinal cord stimulation in chronic neuropathic pain: mechanisms of action, new locations, new paradigms. Pain 2021; 161 Suppl 1:S104-S113. [PMID: 33090743 PMCID: PMC7434213 DOI: 10.1097/j.pain.0000000000001854] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Chen P, Pan M, Lin QS, Lin XZ, Lin Z. CSF-CN contributes to cancer-induced bone pain via the MKP-1-mediated MAPK pathway. Biochem Biophys Res Commun 2021; 547:36-43. [PMID: 33592377 DOI: 10.1016/j.bbrc.2021.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 11/20/2022]
Abstract
Pain is a major complication of cancer and significantly affects the quality of life. Cerebrospinal fluid-contacting nucleus (CSF-CN) has been reported to be involved in the development of neuropathic pain and inflammatory pain. However, whether CSF-CN contributes to cancer-induced bone pain (CIBP) remains unknown. In this study, we aimed to illustrate the role of CSF-CN in the pathogenesis of CIBP and identify its potential mechanism via the MKP-1-mediated MAPK pathway. The Walker 256 cancer cells were injected into the tibia cavity of female Sprague-Dawley rats to induce CIBP models. Intracerebroventricular injection of cholera toxin subunit B- saporin (CB-SAP) was performed to "knockout" the CSF-CN. Morphine and LV-MKP-1 were applied. Mechanical and thermal hyperalgesia behaviors, double immunofluorescence staining and Western blot were conducted after CIBP induction. The results revealed that CIBP significantly reduced the mechanical withdrawal threshold and the thermal threshold. Double immunofluorescence staining revealed that c-Fos-positive neurons in CSF-CN were significantly higher in the CIBP group than that in the sham group. Targeted ablation of CSF-CN dramatically aggravated pain sensitivity. Moreover, MKP-1 was down-regulated in the CSF-CN after CIBP induction. Pharmacological intervention with morphine significantly ameliorated the mechanical and thermal hyperalgesia through reversing the down-expression of MKP-1 in the CSF-CN on day 14 after CIBP induction. Mechanically, overexpression of MKP-1 by LV-MKP-1 injection significantly relieved CIBP via inhibiting the expression of phosphorylated p38, which subsequently decreased the protein levels of Bax, cleaved caspase-3 and Iba-1, and reduced the mRNA levels of IL-1β, TNF-α and IL-6 in CSF-CN. In conclusion, CSF-CN contributed to CIBP via regulating the MKP-1-mediated p38-MAPK pathway. Future therapy targeting the expression of MKP-1 in the CSF-CN may be a promising new choice.
Collapse
Affiliation(s)
- Ping Chen
- Department of Anesthesiology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China; The School of Basic Medical Sciences, Fujian Medical University, China
| | - Min Pan
- Department of Geriatrics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Qing-Song Lin
- Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Xian-Zhong Lin
- Department of Anesthesiology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Zhangya Lin
- Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China.
| |
Collapse
|
23
|
Canna A, Lehto LJ, Wu L, Sang S, Laakso H, Ma J, Filip P, Zhang Y, Gröhn O, Esposito F, Chen CC, Lavrov I, Michaeli S, Mangia S. Brain fMRI during orientation selective epidural spinal cord stimulation. Sci Rep 2021; 11:5504. [PMID: 33750822 PMCID: PMC7943775 DOI: 10.1038/s41598-021-84873-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/17/2021] [Indexed: 11/18/2022] Open
Abstract
Epidural spinal cord stimulation (ESCS) is widely used for chronic pain treatment, and is also a promising tool for restoring motor function after spinal cord injury. Despite significant positive impact of ESCS, currently available protocols provide limited specificity and efficiency partially due to the limited number of contacts of the leads and to the limited flexibility to vary the spatial distribution of the stimulation field in respect to the spinal cord. Recently, we introduced Orientation Selective (OS) stimulation strategies for deep brain stimulation, and demonstrated their selectivity in rats using functional MRI (fMRI). The method achieves orientation selectivity by controlling the main direction of the electric field gradients using individually driven channels. Here, we introduced a similar OS approach for ESCS, and demonstrated orientation dependent brain activations as detected by brain fMRI. The fMRI activation patterns during spinal cord stimulation demonstrated the complexity of brain networks stimulated by OS-ESCS paradigms, involving brain areas responsible for the transmission of the motor and sensory information. The OS approach may allow targeting ESCS to spinal fibers of different orientations, ultimately making stimulation less dependent on the precision of the electrode implantation.
Collapse
Affiliation(s)
- Antonietta Canna
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.,Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lauri J Lehto
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA
| | - Lin Wu
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA
| | - Sheng Sang
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA
| | - Hanne Laakso
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jun Ma
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Pavel Filip
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.,Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Yuan Zhang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Igor Lavrov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Shalom Michaeli
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA
| | - Silvia Mangia
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
24
|
Dorsal root ganglia: fibromyalgia pain factory? Clin Rheumatol 2021; 40:783-787. [PMID: 33409721 PMCID: PMC7787228 DOI: 10.1007/s10067-020-05528-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
This perspective article focuses on dorsal root ganglia (DRG) as potential fibromyalgia main pain source. Humans possess 31 pairs of DRG lying along the spine. These ganglia have unique anatomical and physiological features. During development, DRG are extruded from the central nervous system and from the blood-brain barrier but remain surrounded by meningeal layers and by cerebrospinal fluid. DRG house the pain-transmitting small nerve fiber nuclei; each individual nucleus is tightly enveloped by metabolically active glial cells. DRG possess multiple inflammatory/pro-nociceptive molecules including ion channels, neuropeptides, lymphocytes, and macrophages. DRG neurons have pseudo-unipolar structure making them able to generate pain signals; additionally, they can sequester antigen-specific antibodies thus inducing immune-mediated hyperalgesia. In rodents, diverse physical and/or environmental stressors induce DRG phenotypic changes and hyperalgesia. Unfolding clinical evidence links DRG pathology to fibromyalgia and similar syndromes. Severe fibromyalgia is associated to particular DRG ion channel genotype. Myalgic encephalomyelitis patients with comorbid fibromyalgia have exercise-induced DRG pro-nociceptive molecules gene overexpression. Skin biopsy demonstrates small nerve fiber pathology in approximately half of fibromyalgia patients. A confocal microscopy study of fibromyalgia patients disclosed strong correlation between corneal denervation and small fiber neuropathy symptom burden. DRG may be fibromyalgia neural hub where different stressors can be transformed in neuropathic pain. Novel neuroimaging technology and postmortem inquest may better define DRG involvement in fibromyalgia and similar maladies. DRG pro-nociceptive molecules are attractive fibromyalgia therapeutic targets.
Collapse
|
25
|
Chapman KB, Yousef TA, Vissers KC, van Helmond N, D Stanton-Hicks M. Very Low Frequencies Maintain Pain Relief From Dorsal Root Ganglion Stimulation: An Evaluation of Dorsal Root Ganglion Neurostimulation Frequency Tapering. Neuromodulation 2020; 24:746-752. [PMID: 33227827 DOI: 10.1111/ner.13322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dorsal root ganglion neurostimulation (DRG-S) is effective in treating various refractory chronic pain syndromes. In preclinical studies, DRG-S at very low frequencies (<5 Hz) reduces excitatory output in the superficial dorsal horn. Clinically, we have also observed the effectiveness of DRG-S at low frequencies. We conducted a case series to describe the effect of very low-frequency DRG-S stimulation on clinical outcomes. MATERIALS AND METHODS DRG-S for refractory low back pain was initiated at parameters consistent with published values. Thereafter, the stimulation frequency of DRG-S was reduced in a stepwise fashion to the lowest frequency that maintained pain relief. Pain intensity, disability, and general health status data were collected at baseline, prior to initiation of tapering, and at four weeks after each patient's lowest effective stimulation frequency was reached. RESULTS After device activation (N = 20), DRG-S frequency was tapered from 16 to 4 Hz over a 4- to 17-week period, reducing charge-per-second by nearly two-thirds. Even so, pain relief was maintained at more than 75%, with consistent findings in the other measures. CONCLUSION DRG-S may have utility in treating chronic pain at lower stimulation frequencies than previously recognized. We have previously theorized that the mechanism of action may involve preferential recruitment of low-threshold mechanoreceptor fibers via the endogenous opioid system. Of clinical relevance, lower frequency stimulation maintains DRG-S efficacy regarding improvements in pain, disability, and quality of life. It can extend battery life and may potentially lead to the development of smaller implantable pulse generators.
Collapse
Affiliation(s)
- Kenneth B Chapman
- The Spine & Pain Institute of New York, New York City, NY, USA.,Department of Anesthesiology, New York University Langone Medical Center, New York City, NY, USA.,Department of Anesthesiology, Zucker School of Medicine at Hofstra Northwell, Northwell Health, Manhasset, NY, USA
| | - Tariq A Yousef
- The Spine & Pain Institute of New York, New York City, NY, USA
| | - Kris C Vissers
- Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University, Nijmegen, The Netherlands
| | - Noud van Helmond
- The Spine & Pain Institute of New York, New York City, NY, USA.,Department of Anesthesiology, Cooper Medical School of Rowan University, Cooper University Hospital, Camden, NJ, USA
| | | |
Collapse
|
26
|
Tao X, Lee MS, Donnelly CR, Ji RR. Neuromodulation, Specialized Proresolving Mediators, and Resolution of Pain. Neurotherapeutics 2020; 17:886-899. [PMID: 32696274 PMCID: PMC7609770 DOI: 10.1007/s13311-020-00892-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The current crises in opioid abuse and chronic pain call for the development of nonopioid and nonpharmacological therapeutics for pain relief. Neuromodulation-based approaches, such as spinal cord stimulation, dorsal root ganglion simulation, and nerve stimulation including vagus nerve stimulation, have shown efficacy in achieving pain control in preclinical and clinical studies. However, the mechanisms by which neuromodulation alleviates pain are not fully understood. Accumulating evidence suggests that neuromodulation regulates inflammation and neuroinflammation-a localized inflammation in peripheral nerves, dorsal root ganglia/trigeminal ganglia, and spinal cord/brain-through neuro-immune interactions. Specialized proresolving mediators (SPMs) such as resolvins, protectins, maresins, and lipoxins are lipid molecules produced during the resolution phase of inflammation and exhibit multiple beneficial effects in resolving inflammation in various animal models. Recent studies suggest that SPMs inhibit inflammatory pain, postoperative pain, neuropathic pain, and cancer pain in rodent models via immune, glial, and neuronal modulations. It is noteworthy that sham surgery is sufficient to elevate resolvin levels and may serve as a model of resolution. Interestingly, it has been shown that the vagus nerve produces SPMs and vagus nerve stimulation (VNS) induces SPM production in vitro. In this review, we discuss how neuromodulation such as VNS controls pain via immunomodulation and neuro-immune interactions and highlight possible involvement of SPMs. In particular, we demonstrate that VNS via auricular electroacupuncture effectively attenuates chemotherapy-induced neuropathic pain. Furthermore, auricular stimulation is able to increase resolvin levels in mice. Thus, we propose that neuromodulation may control pain and inflammation/neuroinflammatioin via SPMs. Finally, we discuss key questions that remain unanswered in our understanding of how neuromodulation-based therapies provide short-term and long-term pain relief.
Collapse
Affiliation(s)
- Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Michael S Lee
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
27
|
Heijmans L, Joosten EA. Mechanisms and mode of action of spinal cord stimulation in chronic neuropathic pain. Postgrad Med 2020; 132:17-21. [PMID: 32403963 DOI: 10.1080/00325481.2020.1769393] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Tonic spinal cord stimulation (SCS) has been used as a treatment for chronic neuropathic pain ever since its discovery in late 1960s. Despite its clinical successes in a subset of chronic neuropathic pain syndromes, several limitations such as insufficient pain relief and uncomfortable paresthesias have led to the development of new targets, the dorsal root ganglion, and new stimulation waveforms, such as burst and high frequency. The aim of this review is to provide a brief overview of the main mechanisms behind the mode of action of the different SCS paradigms. Tonic SCS mainly acts via a segmental spinal mechanism where it induces GABA-release from inhibitory interneurons in the spinal dorsal horn. Tonic SCS concurrently initiates neuropathic pain modulation through a supraspinal-spinal feedback loop and serotonergic descending fibers. Mechanisms of stimulation of the DRG as well as those related to new SCS paradigms are now under investigation, where it seems that burst SCS not only stimulates sensory, discriminative aspects of pain (like Tonic SCS) but also emotional, affective, and motivational aspects of pain. Initial long-term study results on closed-loop SCS systems hold promise for improvement of future SCS treatment.
Collapse
Affiliation(s)
- Lonne Heijmans
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre , Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University , Maastricht, the Netherlands
| | - Elbert A Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre , Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University , Maastricht, the Netherlands
| |
Collapse
|
28
|
Chapman KB, Groenen PS, Vissers KC, van Helmond N, Stanton-Hicks MD. The Pathways and Processes Underlying Spinal Transmission of Low Back Pain: Observations From Dorsal Root Ganglion Stimulation Treatment. Neuromodulation 2020; 24:610-621. [PMID: 32329155 DOI: 10.1111/ner.13150] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dorsal root ganglion stimulation (DRG-S) is a novel approach to treat chronic pain. Lead placement at L2 has been reported to be an effective treatment for axial low back pain (LBP) primarily of discogenic etiology. We have recently shown, in a diverse cohort including cases of multilevel instrumentation following extensive prior back surgeries, that DRG-S lead placement at T12 is another promising target. Local effects at the T12 DRG, alone, are insufficient to explain these results. MATERIALS AND METHODS We performed a literature review to explore the mechanisms of LBP relief with T12 DRG-S. FINDINGS Branches of individual spinal nerve roots innervate facet joints and posterior spinal structures, while the discs and anterior vertebrae are carried via L2, and converge in the dorsal horn (DH) of the spinal cord at T8-T9. The T12 nerve root contains cutaneous afferents from the low back and enters the DH of the spinal cord at T10. Low back Aδ and C-fibers then ascend via Lissauer's tract (LT) to T8-T9, converging with other low back afferents. DRG-S at T12, then, results in inhibition of the converged low back fibers via endorphin-mediated and GABAergic frequency-dependent mechanisms. Therefore, T12 lead placement may be the optimal location for DRG-S to treat LBP.
Collapse
Affiliation(s)
- Kenneth B Chapman
- The Spine & Pain Institute of New York, New York City, NY, USA.,Department of Anesthesiology, New York University Langone Medical Center, New York City, NY, USA.,Northwell Health Systems, New York City, NY, USA
| | - Pauline S Groenen
- The Spine & Pain Institute of New York, New York City, NY, USA.,College of Medicine, Radboud University, Nijmegen, the Netherlands
| | - Kris C Vissers
- Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University, Nijmegen, the Netherlands
| | - Noud van Helmond
- The Spine & Pain Institute of New York, New York City, NY, USA.,Department of Anesthesiology, Cooper Medical School of Rowan University, Cooper University Hospital, Camden, NJ, USA
| | | |
Collapse
|
29
|
Esposito MF, Malayil R, Hanes M, Deer T. Unique Characteristics of the Dorsal Root Ganglion as a Target for Neuromodulation. PAIN MEDICINE 2020; 20:S23-S30. [PMID: 31152179 PMCID: PMC6544557 DOI: 10.1093/pm/pnz012] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective The dorsal root ganglion (DRG) is a novel target for neuromodulation, and DRG stimulation is proving to be a viable option in the treatment of chronic intractable neuropathic pain. Although the overall principle of conventional spinal cord stimulation (SCS) and DRG stimulation—in which an electric field is applied to a neural target with the intent of affecting neural pathways to decrease pain perception—is similar, there are significant differences in the anatomy and physiology of the DRG that make it an ideal target for neuromodulation and may account for the superior outcomes observed in the treatment of certain chronic neuropathic pain states. This review highlights the anatomy of the DRG, its function in maintaining homeostasis and its role in neuropathic pain, and the unique value of DRG as a target in neuromodulation for pain. Methods A narrative literature review was performed. Results Overall, the DRG is a critical structure in sensory transduction and modulation, including pain transmission and the maintenance of persistent neuropathic pain states. Unique characteristics including selective somatic organization, specialized membrane characteristics, and accessible and consistent location make the DRG an ideal target for neuromodulation. Because DRG stimulation directly recruits the somata of primary sensory neurons and harnesses the filtering capacity of the pseudounipolar neural architecture, it is differentiated from SCS, peripheral nerve stimulation, and other neuromodulation options. Conclusions There are several advantages to targeting the DRG, including lower energy usage, more focused and posture-independent stimulation, reduced paresthesia, and improved clinical outcomes.
Collapse
Affiliation(s)
| | - Rudy Malayil
- St. Mary's Pain Relief Specialists, Huntington, West Virginia
| | | | - Timothy Deer
- The Spine and Nerve Center of the Virginias, Charleston, West Virginia, USA
| |
Collapse
|
30
|
Levy RM, Mekhail N, Kramer J, Poree L, Amirdelfan K, Grigsby E, Staats P, Burton AW, Burgher AH, Scowcroft J, Golovac S, Kapural L, Paicius R, Pope J, Samuel S, McRoberts WP, Schaufele M, Kent AR, Raza A, Deer TR. Therapy Habituation at 12 Months: Spinal Cord Stimulation Versus Dorsal Root Ganglion Stimulation for Complex Regional Pain Syndrome Type I and II. THE JOURNAL OF PAIN 2020; 21:399-408. [DOI: 10.1016/j.jpain.2019.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/03/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022]
|
31
|
Parker T, Huang Y, Raghu AL, FitzGerald JJ, Green AL, Aziz TZ. Dorsal Root Ganglion Stimulation Modulates Cortical Gamma Activity in the Cognitive Dimension of Chronic Pain. Brain Sci 2020; 10:brainsci10020095. [PMID: 32053879 PMCID: PMC7071617 DOI: 10.3390/brainsci10020095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023] Open
Abstract
A cognitive task, the n-back task, was used to interrogate the cognitive dimension of pain in patients with implanted dorsal root ganglion stimulators (DRGS). Magnetoencephalography (MEG) signals from thirteen patients with implanted DRGS were recorded at rest and while performing the n-back task at three increasing working memory loads with DRGS-OFF and the task repeated with DRGS-ON. MEG recordings were pre-processed, then power spectral analysis and source localization were conducted. DRGS resulted in a significant reduction in reported pain scores (mean 23%, p = 0.001) and gamma oscillatory activity (p = 0.036) during task performance. DRGS-induced pain relief also resulted in a significantly reduced reaction time during high working memory load (p = 0.011). A significant increase in average gamma power was observed during task performance compared to the resting state. However, patients who reported exacerbations of pain demonstrated a significantly elevated gamma power (F(3,80) = 65.011612, p < 0.001, adjusted p-value = 0.01), compared to those who reported pain relief during the task. Our findings demonstrate that gamma oscillatory activity is differentially modulated by cognitive load in the presence of pain, and this activity is predominantly localized to the prefrontal and anterior cingulate cortices in a chronic pain cohort.
Collapse
|
32
|
Cui SS, Feng XB, Zhang BH, Xia ZY, Zhan LY. Exendin-4 attenuates pain-induced cognitive impairment by alleviating hippocampal neuroinflammation in a rat model of spinal nerve ligation. Neural Regen Res 2020; 15:1333-1339. [PMID: 31960821 PMCID: PMC7047783 DOI: 10.4103/1673-5374.272620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide-1 receptor has anti-apoptotic, anti-inflammatory, and neuroprotective effects. It is now recognized that the occurrence and development of chronic pain are strongly associated with anti-inflammatory responses; however, it is not clear whether glucagon-like peptide-1 receptor regulates chronic pain via anti-inflammatory mechanisms. We explored the effects of glucagon-like peptide-1 receptor on nociception, cognition, and neuroinflammation in chronic pain. A rat model of chronic pain was established using left L5 spinal nerve ligation. The glucagon-like peptide-1 receptor agonist exendin-4 was intrathecally injected into rats from 10 to 21 days after spinal nerve ligation. Electrophysiological examinations showed that, after treatment with exendin-4, paw withdrawal frequency of the left limb was significantly reduced, and pain was relieved. In addition, in the Morris water maze test, escape latency increased and the time to reach the platform decreased following exendin-4 treatment. Immunohistochemical staining and western blot assays revealed an increase in the numbers of activated microglia and astrocytes in the dentate gyrus of rat hippocampus, as well as an increase in the expression of tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6. All of these effects could be reversed by exendin-4 treatment. These findings suggest that exendin-4 can alleviate pain-induced neuroinflammatory responses and promote the recovery of cognitive function via the glucagon-like peptide-1 receptor pathway. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Renmin Hospital of Wuhan University of China (approval No. WDRM 20171214) on September 22, 2017.
Collapse
Affiliation(s)
- Shan-Shan Cui
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiao-Bo Feng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bing-Hong Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Li-Ying Zhan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
33
|
Franken G, Debets J, Joosten EAJ. Nonlinear Relation Between Burst Dorsal Root Ganglion Stimulation Amplitude and Behavioral Outcome in an Experimental Model of Painful Diabetic Peripheral Neuropathy. Neuromodulation 2019; 23:158-166. [PMID: 31738474 PMCID: PMC7065114 DOI: 10.1111/ner.13070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/25/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Background and objective Dorsal root ganglion stimulation (DRGS) has recently emerged as a neuromodulation modality in the treatment of chronic neuropathic pain. The objective of this study was to compare the efficacy of different Burst‐DRGS amplitudes in an experimental model of painful diabetic peripheral neuropathy (PDPN). Methods Diabetes mellitus was induced in female Sprague–Dawley rats by intraperitoneal injection of streptozotocin (STZ, n = 28). Animals were tested for mechanical hypersensitivity (von Frey paw withdrawal test) before, and four weeks after STZ injection. PDPN rats (n = 13) were implanted with a unilateral bipolar electrode at the L5 DRG. Animals received Burst‐DRGS at 0%, 10%, 33%, 50%, 66%, and 80% of motor threshold (MT) in a randomized crossover design on post‐implantation days 2–7 (n = 9). Mechanical hypersensitivity was assessed before stimulation onset, 15 and 30 min during stimulation, and 15 and 30 min after stimulation. Results Burst‐DRGS at amplitudes of 33%, 50%, 66%, and 80% MT resulted in significant attenuation of STZ‐induced mechanical hypersensitivity at 15 and 30 min during stimulation, as well as 15 min after cessation of stimulation. No effect on mechanical hypersensitivity was observed for Burst‐DRGS at 0% MT and 10% MT. Optimal pain relief and highest responder rates were achieved with Burst‐DRGS at 50–66% MT, with an estimated optimum at 52% MT. Conclusion Our findings indicate a nonlinear relationship between Burst‐DRGS amplitude and behavioral outcome, with an estimated optimal amplitude of 52% MT. Further optimization and analysis of DRGS driven by insights into the underlying mechanisms related to the various stimulation paradigms is warranted.
Collapse
Affiliation(s)
- Glenn Franken
- Pain Management and Research Centre, Department of Anesthesiology and Pain Management, MUMC, Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Jacques Debets
- Muroidean Facility, School of Cardiovascular Diseases, CARIM, Maastricht, The Netherlands
| | - Elbert A J Joosten
- Pain Management and Research Centre, Department of Anesthesiology and Pain Management, MUMC, Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
34
|
Koetsier E, Franken G, Debets J, van Kuijk SMJ, Linderoth B, Joosten EA, Maino P. Dorsal Root Ganglion Stimulation in Experimental Painful Diabetic Polyneuropathy: Delayed Wash-Out of Pain Relief After Low-Frequency (1Hz) Stimulation. Neuromodulation 2019; 23:177-184. [PMID: 31524325 DOI: 10.1111/ner.13048] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Up until now there is little data about the pain relieving effect of different frequency settings in DRGS. The aim of this study was to compare the pain relieving effect of DRGS at low-, mid-, and high-frequencies and Sham-DRGS in an animal model of painful diabetic neuropathy (PDPN). MATERIAL AND METHODS Diabetes mellitus was induced by an intraperitoneal injection of streptozotocin in 8-week-old female Sprague-Dawley rats (n = 24; glucose ≥15 mmol/L: n = 20; mechanical hypersensitivity: n = 15). Five weeks later, a DRGS device was implanted at the L5 DRG. Ten animals were included for stimulation, alternating 30 minutes of low (1 Hz)-, mid (20 Hz)-, and high (1000 Hz)-frequencies and Sham-DRGS during four days, with a pulse width of 0.2 msec (average amplitude: 0.19 ± 0.01 mA), using a randomized cross-over design. The effect on mechanical hypersensitivity of the hind paw to von Frey filaments was evaluated. RESULTS All DRGS frequencies resulted in a complete reversal of mechanical hypersensitivity and "a clinically relevant reduction" was achieved in 70-80% of animals. No significant differences in maximal pain relieving effect were found between the different frequency treatments (p = 0.24). Animals stimulated at 1000 and 20 Hz returned to baseline mechanical hypersensitivity values 15 and 30 min after stimulation cessation, respectively, while animals stimulated at 1 Hz did not. CONCLUSIONS These results show that DRGS is equally effective when applied at low-, mid-, and high-frequency in an animal model of PDPN. However, low-frequency-(1 Hz)-DRGS resulted in a delayed wash-out effect, which suggests that this is the most optimal frequency for pain therapy in PDPN as compared to mid- and high-frequency.
Collapse
Affiliation(s)
- Eva Koetsier
- Pain Management Center, Neurocenter of Southern Switzerland, Regional Hospital of Lugano, Lugano, Switzerland.,Division of Anaesthesiology, Department of Acute Medicine, Regional Hospital of Lugano, Lugano, Switzerland
| | - Glenn Franken
- Department of Anesthesiology and Pain Management, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNS), University of Maastricht, Maastricht, The Netherlands
| | - Jacques Debets
- Muroidean Facility, School of Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elbert A Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNS), University of Maastricht, Maastricht, The Netherlands
| | - Paolo Maino
- Pain Management Center, Neurocenter of Southern Switzerland, Regional Hospital of Lugano, Lugano, Switzerland.,Division of Anaesthesiology, Department of Acute Medicine, Regional Hospital of Lugano, Lugano, Switzerland
| |
Collapse
|
35
|
Neuroimaging of pain in animal models: a review of recent literature. Pain Rep 2019; 4:e732. [PMID: 31579844 PMCID: PMC6728006 DOI: 10.1097/pr9.0000000000000732] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 01/19/2023] Open
Abstract
Neuroimaging of pain in animals allows us to better understand mechanisms of pain processing and modulation. In this review, we discuss recently published brain imaging studies in rats, mice, and monkeys, including functional magnetic resonance imaging (MRI), manganese-enhanced MRI, positron emission tomography, and electroencephalography. We provide an overview of innovations and limitations in neuroimaging techniques, as well as results of functional brain imaging studies of pain from January 1, 2016, to October 10, 2018. We then discuss how future investigations can address some bias and gaps in the field. Despite the limitations of neuroimaging techniques, the 28 studies reinforced that transition from acute to chronic pain entails considerable changes in brain function. Brain activations in acute pain were in areas more related to the sensory aspect of noxious stimulation, including primary somatosensory cortex, insula, cingulate cortex, thalamus, retrosplenial cortex, and periaqueductal gray. Pharmacological and nonpharmacological treatments modulated these brain regions in several pain models. On the other hand, in chronic pain models, brain activity was observed in regions commonly associated with emotion and motivation, including prefrontal cortex, anterior cingulate cortex, hippocampus, amygdala, basal ganglia, and nucleus accumbens. Neuroimaging of pain in animals holds great promise for advancing our knowledge of brain function and allowing us to expand human subject research. Additional research is needed to address effects of anesthesia, analysis approaches, sex bias and omission, and potential effects of development and aging.
Collapse
|
36
|
Caylor J, Reddy R, Yin S, Cui C, Huang M, Huang C, Rao R, Baker DG, Simmons A, Souza D, Narouze S, Vallejo R, Lerman I. Spinal cord stimulation in chronic pain: evidence and theory for mechanisms of action. Bioelectron Med 2019; 5:12. [PMID: 31435499 PMCID: PMC6703564 DOI: 10.1186/s42234-019-0023-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/30/2019] [Indexed: 12/30/2022] Open
Abstract
Well-established in the field of bioelectronic medicine, Spinal Cord Stimulation (SCS) offers an implantable, non-pharmacologic treatment for patients with intractable chronic pain conditions. Chronic pain is a widely heterogenous syndrome with regard to both pathophysiology and the resultant phenotype. Despite advances in our understanding of SCS-mediated antinociception, there still exists limited evidence clarifying the pathways recruited when patterned electric pulses are applied to the epidural space. The rapid clinical implementation of novel SCS methods including burst, high frequency and dorsal root ganglion SCS has provided the clinician with multiple options to treat refractory chronic pain. While compelling evidence for safety and efficacy exists in support of these novel paradigms, our understanding of their mechanisms of action (MOA) dramatically lags behind clinical data. In this review, we reconstruct the available basic science and clinical literature that offers support for mechanisms of both paresthesia spinal cord stimulation (P-SCS) and paresthesia-free spinal cord stimulation (PF-SCS). While P-SCS has been heavily examined since its inception, PF-SCS paradigms have recently been clinically approved with the support of limited preclinical research. Thus, wide knowledge gaps exist between their clinical efficacy and MOA. To close this gap, many rich investigative avenues for both P-SCS and PF-SCS are underway, which will further open the door for paradigm optimization, adjunctive therapies and new indications for SCS. As our understanding of these mechanisms evolves, clinicians will be empowered with the possibility of improving patient care using SCS to selectively target specific pathophysiological processes in chronic pain.
Collapse
Affiliation(s)
- Jacob Caylor
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Rajiv Reddy
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Sopyda Yin
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Christina Cui
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Mingxiong Huang
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA USA
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA USA
| | - Charles Huang
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Bioengineering, Stanford University, Palo Alto, CA USA
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA USA
| | - Dewleen G. Baker
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Alan Simmons
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Dmitri Souza
- Center for Pain Medicine, Western Reserve Hospital. Department of Surgery, Northeast Ohio Medical School (NEOMED), Athens, OH USA
| | - Samer Narouze
- Center for Pain Medicine, Western Reserve Hospital. Department of Surgery, Northeast Ohio Medical School (NEOMED), Athens, OH USA
| | - Ricardo Vallejo
- Basic Science Research, Millennium Pain Center, Bloomington, IL USA
- School of Biological Sciences, Illinois State University, Normal, IL USA
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL USA
| | - Imanuel Lerman
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA USA
- Present Address: VA San Diego, 3350 La Jolla Village Dr, (MC116A), San Diego, CA 92161 USA
| |
Collapse
|
37
|
Franken G, Debets J, Joosten EAJ. Dorsal Root Ganglion Stimulation in Experimental Painful Diabetic Peripheral Neuropathy: Burst vs. Conventional Stimulation Paradigm. Neuromodulation 2018; 22:943-950. [PMID: 30570187 PMCID: PMC7027839 DOI: 10.1111/ner.12908] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022]
Abstract
Objectives Painful diabetic peripheral neuropathy (PDPN) is a long‐term complication of diabetes mellitus (DM). Dorsal Root Ganglion Stimulation (DRGS) has recently emerged as a neuromodulation modality in the treatment of chronic neuropathic pain. The objective of this study was to compare the effect of burst DRGS (Burst‐DRGS) and conventional DRGS (Con‐DRGS) in an experimental model of PDPN. Materials and Methods DM was induced in female Sprague–Dawley rats by intraperitoneal injection of streptozotocin (STZ, n = 48). Animals were tested for mechanical hypersensitivity (50% hind paw withdrawal threshold on Von Frey test) before, and 4 weeks after STZ injection. PDPN rats were then implanted with a unilateral bipolar lead at the L5 DRG (n = 22) and were stimulated for 30 min at days 2 and 3 postimplantation. Animals received Con‐DRGS and Burst‐DRGS in a randomized crossover design (n = 10), or received Sham‐DRGS (n = 7) for 30 min, and were tested for mechanical hypersensitivity at baseline, 15 and 30 min during DRGS, and 15 and 30 min following DRGS. Five animals were withdrawn from the study due to electrode‐related technical problems. Results Con‐DRGS and Burst‐DRGS normalized STZ‐induced mechanical hypersensitivity at 15 and 30 min during stimulation. A significant difference in terms of mechanical hypersensitivity was observed between both of the stimulated groups and the Sham‐DRGS group at 15 and 30 min during stimulation. Interestingly, Burst‐DRGS showed signs of a residual effect at 15 min after cessation of stimulation, while this was not the case for Con‐DRGS. Conclusions Under the conditions tested, Con‐DRGS and Burst‐DRGS are equally effective in attenuating STZ‐induced mechanical hypersensitivity in an animal model of PDPN. Burst‐DRGS showed signs of a residual effect at 15 min after cessation of stimulation, which requires further investigation.
Collapse
Affiliation(s)
- Glenn Franken
- Department of Anesthesiology and Pain Management, Pain Management and Research Centre, MUMC, Maastricht, The Netherlands.,Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Jacques Debets
- Muroidean Facility, School of Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Pain Management and Research Centre, MUMC, Maastricht, The Netherlands.,Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
38
|
Morgalla MH, de Barros Filho MF, Chander BS, Soekadar SR, Tatagiba M, Lepski G. Neurophysiological Effects of Dorsal Root Ganglion Stimulation (DRGS) in Pain Processing at the Cortical Level. Neuromodulation 2018; 22:36-43. [PMID: 30561852 DOI: 10.1111/ner.12900] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Dorsal root ganglion stimulation (DRGS) has been used successfully against localized neuropathic pain. Nevertheless, the effects of DRGS on pain processing, particularly at the cortical level, remain largely unknown. In this study, we investigated whether positive responses to DRGS treatment would alter patients' laser-evoked potentials (LEP). METHODS We prospectively enrolled 12 adult patients with unilateral localized neuropathic pain in the lower limbs or inguinal region and followed them up for six months. LEPs were assessed at baseline, after one month of DRGS, and after six months of DRGS. Clinical assessment included the Numerical Rating Scale (NRS), Brief Pain Inventory (BPI), SF-36, and Beck Depression Inventory (BDI). For each patient, LEP amplitudes and latencies of the N2 and P2 components on the deafferented side were measured and compared to those of the healthy side and correlated with pain intensity, as measured with the NRS. RESULTS At the one- and six-month follow-ups, N2-P2 amplitudes were significantly greater and NRS scores were significantly lower compared with baseline (all p's < 0.01). There was a negative correlation between LEP amplitudes and NRS scores (rs = -0.31, p < 0.10). CONCLUSIONS DRGS is able to restore LEPs to normal values in patients with localized neuropathic pain, and LEP alterations are correlated with clinical response in terms of pain intensity.
Collapse
Affiliation(s)
| | - Marcos Fortunato de Barros Filho
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany.,Applied Neurotechnology Laboratory, Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany.,Division of Functional Neurosurgery, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Bankim Subhash Chander
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany.,Applied Neurotechnology Laboratory, Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Surjo Raphael Soekadar
- Applied Neurotechnology Laboratory, Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany.,Clinical Neurotechnology Laboratory, Neuroscience Research Center (NWFZ) & Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany
| | - Guilherme Lepski
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany.,Division of Functional Neurosurgery, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Ji RR, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018; 129:343-366. [PMID: 29462012 PMCID: PMC6051899 DOI: 10.1097/aln.0000000000002130] [Citation(s) in RCA: 799] [Impact Index Per Article: 114.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pain is maintained in part by central sensitization, a phenomenon of synaptic plasticity, and increased neuronal responsiveness in central pain pathways after painful insults. Accumulating evidence suggests that central sensitization is also driven by neuroinflammation in the peripheral and central nervous system. A characteristic feature of neuroinflammation is the activation of glial cells, such as microglia and astrocytes, in the spinal cord and brain, leading to the release of proinflammatory cytokines and chemokines. Recent studies suggest that central cytokines and chemokines are powerful neuromodulators and play a sufficient role in inducing hyperalgesia and allodynia after central nervous system administration. Sustained increase of cytokines and chemokines in the central nervous system also promotes chronic widespread pain that affects multiple body sites. Thus, neuroinflammation drives widespread chronic pain via central sensitization. We also discuss sex-dependent glial/immune signaling in chronic pain and new therapeutic approaches that control neuroinflammation for the resolution of chronic pain.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Andrea Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - Niccolò Terrando
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - William Maixner
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
40
|
Sdrulla AD, Guan Y, Raja SN. Spinal Cord Stimulation: Clinical Efficacy and Potential Mechanisms. Pain Pract 2018. [PMID: 29526043 DOI: 10.1111/papr.12692] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spinal cord stimulation (SCS) is a minimally invasive therapy used for the treatment of chronic neuropathic pain. SCS is a safe and effective alternative to medications such as opioids, and multiple randomized controlled studies have demonstrated efficacy for difficult-to-treat neuropathic conditions such as failed back surgery syndrome. Conventional SCS is believed mediate pain relief via activation of dorsal column Aβ fibers, resulting in variable effects on sensory and pain thresholds, and measurable alterations in higher order cortical processing. Although potentiation of inhibition, as suggested by Wall and Melzack's gate control theory, continues to be the leading explanatory model, other segmental and supraspinal mechanisms have been described. Novel, non-standard, stimulation waveforms such as high-frequency and burst have been shown in some studies to be clinically superior to conventional SCS, however their mechanisms of action remain to be determined. Additional studies are needed, both mechanistic and clinical, to better understand optimal stimulation strategies for different neuropathic conditions, improve patient selection and optimize efficacy.
Collapse
Affiliation(s)
- Andrei D Sdrulla
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, U.S.A
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, U.S.A.,Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, U.S.A
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, U.S.A
| |
Collapse
|
41
|
Fundamentals and Mechanisms of Dorsal Root Ganglion Stimulation. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
42
|
|
43
|
Vuka I, Vučić K, Repić T, Ferhatović Hamzić L, Sapunar D, Puljak L. Electrical Stimulation of Dorsal Root Ganglion in the Context of Pain: A Systematic Review of In Vitro and In Vivo Animal Model Studies. Neuromodulation 2017; 21:213-224. [PMID: 29152818 DOI: 10.1111/ner.12722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Dorsal root ganglion (DRG) has recently emerged as an attractive target for neuromodulation therapy since primary sensory neurons and their soma in DRGs are important sites for pathophysiologic changes that lead to neuropathic pain. Our aim was to create evidence synthesis about the effects of electrical stimulation of DRG in the context of pain from in vitro and in vivo animal models, analyze methodology and quality of studies in the field. METHODS For conducting systematic review we searched three data bases: MEDLINE, Embase and Web of Science. The quality of included studies was assessed with the Systematic Review Centre for Laboratory Animal Experimentation risk of bias tool for animal studies. The study was registered in the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies data base. RESULTS We included six in vitro and eight in vivo animal studies. All included in vitro studies combined neurostimulation with substances or drugs and reported an improvement in pain-related parameters due to neurostimulation. Among in vivo studies, six used pulsed radiofrequency, while two used electrical field stimulation. All in vivo studies reported improvement in pain-related behavior following stimulation. Meta-analysis was not possible because of heterogeneity and missing data. The quality of included studies was suboptimal since all had an unclear risk of bias in multiple domains. CONCLUSIONS Limited data from in vitro and in vivo animal studies indicate that electrical stimulation of DRG has a positive therapeutic effect in the context of pain-related outcomes. Further studies with a standardized methodological approach and outcomes will provide useful information about electrical stimulation of DRG in animal models.
Collapse
Affiliation(s)
- Ivana Vuka
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia
| | - Katarina Vučić
- Department for Quality, Safety and Efficacy Assessment of Medicinal Products, Agency for Medicinal Products and Medical Devices, Zagreb, Croatia
| | - Tihana Repić
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia
| | | | - Damir Sapunar
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia
| | - Livia Puljak
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia.,Department for Development, Research and Health Technology Assessment, Agency for Quality and Accreditation in Health Care and Social Welfare, Zagreb, Croatia
| |
Collapse
|