1
|
Dunlop K, Grosenick L, Downar J, Vila-Rodriguez F, Gunning FM, Daskalakis ZJ, Blumberger DM, Liston C. Dimensional and Categorical Solutions to Parsing Depression Heterogeneity in a Large Single-Site Sample. Biol Psychiatry 2024; 96:422-434. [PMID: 38280408 DOI: 10.1016/j.biopsych.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Recent studies have reported significant advances in modeling the biological basis of heterogeneity in major depressive disorder, but investigators have also identified important technical challenges, including scanner-related artifacts, a propensity for multivariate models to overfit, and a need for larger samples with more extensive clinical phenotyping. The goals of the current study were to evaluate dimensional and categorical solutions to parsing heterogeneity in depression that are stable and generalizable in a large, single-site sample. METHODS We used regularized canonical correlation analysis to identify data-driven brain-behavior dimensions that explain individual differences in depression symptom domains in a large, single-site dataset comprising clinical assessments and resting-state functional magnetic resonance imaging data for 328 patients with major depressive disorder and 461 healthy control participants. We examined the stability of clinical loadings and model performance in held-out data. Finally, hierarchical clustering on these dimensions was used to identify categorical depression subtypes. RESULTS The optimal regularized canonical correlation analysis model yielded 3 robust and generalizable brain-behavior dimensions that explained individual differences in depressed mood and anxiety, anhedonia, and insomnia. Hierarchical clustering identified 4 depression subtypes, each with distinct clinical symptom profiles, abnormal resting-state functional connectivity patterns, and antidepressant responsiveness to repetitive transcranial magnetic stimulation. CONCLUSIONS Our results define dimensional and categorical solutions to parsing neurobiological heterogeneity in major depressive disorder that are stable, generalizable, and capable of predicting treatment outcomes, each with distinct advantages in different contexts. They also provide additional evidence that regularized canonical correlation analysis and hierarchical clustering are effective tools for investigating associations between functional connectivity and clinical symptoms.
Collapse
Affiliation(s)
- Katharine Dunlop
- Centre for Depression and Suicide Studies, St Michael's Hospital, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medicine, New York, New York
| | - Jonathan Downar
- Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Faith M Gunning
- Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, New York
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Daniel M Blumberger
- Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Weill Cornell Medicine, New York, New York; Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, New York; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
2
|
Xiao X, Hammond C, Salmeron BJ, Wang D, Gu H, Zhai T, Nguyen H, Lu H, Ross TJ, Yang Y. Brain Functional Connectome Defines a Transdiagnostic Dimension Shared by Cognitive Function and Psychopathology in Preadolescents. Biol Psychiatry 2024; 95:1081-1090. [PMID: 37769982 PMCID: PMC10963340 DOI: 10.1016/j.biopsych.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Cognitive function and general psychopathology are two important classes of human behavior dimensions that are individually related to mental disorders across diagnostic categories. However, whether these two transdiagnostic dimensions are linked to common or distinct brain networks that convey resilience or risk for the development of psychiatric disorders remains unclear. METHODS The current study is a longitudinal investigation with 11,875 youths from the Adolescent Brain Cognitive Development (ABCD) Study at ages 9 to 10 years at the onset of the study. A machine learning approach based on canonical correlation analysis was used to identify latent dimensional associations of the resting-state functional connectome with multidomain behavioral assessments including cognitive functions and psychopathological measures. For the latent resting-state functional connectivity factor showing a robust behavioral association, its ability to predict psychiatric disorders was assessed using 2-year follow-up data, and its genetic association was evaluated using twin data from the same cohort. RESULTS A latent functional connectome pattern was identified that showed a strong and generalizable association with the multidomain behavioral assessments (5-fold cross-validation: ρ = 0.68-0.73 for the training set [n = 5096]; ρ = 0.56-0.58 for the test set [n = 1476]). This functional connectome pattern was highly heritable (h2 = 74.42%, 95% CI: 56.76%-85.42%), exhibited a dose-response relationship with the cumulative number of psychiatric disorders assessed concurrently and at 2 years post-magnetic resonance imaging scan, and predicted the transition of diagnosis across disorders over the 2-year follow-up period. CONCLUSIONS These findings provide preliminary evidence for a transdiagnostic connectome-based measure that underlies individual differences in the development of psychiatric disorders during early adolescence.
Collapse
Affiliation(s)
- Xiang Xiao
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Christopher Hammond
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Betty Jo Salmeron
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Danni Wang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Hong Gu
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Tianye Zhai
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Hieu Nguyen
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Thomas J Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland.
| |
Collapse
|
3
|
McCurry KL, Toda-Thorne K, Taxali A, Angstadt M, Hardi FA, Heitzeg MM, Sripada C. Data-driven, generalizable prediction of adolescent sleep disturbances in the multisite Adolescent Brain Cognitive Development Study. Sleep 2024; 47:zsae048. [PMID: 38366843 PMCID: PMC11168765 DOI: 10.1093/sleep/zsae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/21/2024] [Indexed: 02/18/2024] Open
Abstract
STUDY OBJECTIVES Sleep disturbances are common in adolescence and associated with a host of negative outcomes. Here, we assess associations between multifaceted sleep disturbances and a broad set of psychological, cognitive, and demographic variables using a data-driven approach, canonical correlation analysis (CCA). METHODS Baseline data from 9093 participants from the Adolescent Brain Cognitive Development (ABCD) Study were examined using CCA, a multivariate statistical approach that identifies many-to-many associations between two sets of variables by finding combinations for each set of variables that maximize their correlation. We combined CCA with leave-one-site-out cross-validation across ABCD sites to examine the robustness of results and generalizability to new participants. The statistical significance of canonical correlations was determined by non-parametric permutation tests that accounted for twin, family, and site structure. To assess the stability of the associations identified at baseline, CCA was repeated using 2-year follow-up data from 4247 ABCD Study participants. RESULTS Two significant sets of associations were identified: (1) difficulty initiating and maintaining sleep and excessive daytime somnolence were strongly linked to nearly all domains of psychopathology (r2 = 0.36, p < .0001); (2) sleep breathing disorders were linked to BMI and African American/black race (r2 = 0.08, p < .0001). These associations generalized to unseen participants at all 22 ABCD sites and were replicated using 2-year follow-up data. CONCLUSIONS These findings underscore interwoven links between sleep disturbances in early adolescence and psychological, social, and demographic factors.
Collapse
Affiliation(s)
| | | | - Aman Taxali
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Felicia A Hardi
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Mary M Heitzeg
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Chandra Sripada
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Liu J, Supekar K, El-Said D, de los Angeles C, Zhang Y, Chang H, Menon V. Neuroanatomical, transcriptomic, and molecular correlates of math ability and their prognostic value for predicting learning outcomes. SCIENCE ADVANCES 2024; 10:eadk7220. [PMID: 38820151 PMCID: PMC11141625 DOI: 10.1126/sciadv.adk7220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Foundational mathematical abilities, acquired in early childhood, are essential for success in our technology-driven society. Yet, the neurobiological mechanisms underlying individual differences in children's mathematical abilities and learning outcomes remain largely unexplored. Leveraging one of the largest multicohort datasets from children at a pivotal stage of knowledge acquisition, we first establish a replicable mathematical ability-related imaging phenotype (MAIP). We then show that brain gene expression profiles enriched for candidate math ability-related genes, neuronal signaling, synaptic transmission, and voltage-gated potassium channel activity contributed to the MAIP. Furthermore, the similarity between MAIP gene expression signatures and brain structure, acquired before intervention, predicted learning outcomes in two independent math tutoring cohorts. These findings advance our knowledge of the interplay between neuroanatomical, transcriptomic, and molecular mechanisms underlying mathematical ability and reveal predictive biomarkers of learning. Our findings have implications for the development of personalized education and interventions.
Collapse
Affiliation(s)
- Jin Liu
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kaustubh Supekar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dawlat El-Said
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carlo de los Angeles
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuan Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hyesang Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Cai W, Young CB, Yuan R, Lee B, Ryman S, Kim J, Yang L, Levine TF, Henderson VW, Poston KL, Menon V. Subthalamic nucleus-language network connectivity predicts dopaminergic modulation of speech function in Parkinson's disease. Proc Natl Acad Sci U S A 2024; 121:e2316149121. [PMID: 38768342 PMCID: PMC11145286 DOI: 10.1073/pnas.2316149121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Speech impediments are a prominent yet understudied symptom of Parkinson's disease (PD). While the subthalamic nucleus (STN) is an established clinical target for treating motor symptoms, these interventions can lead to further worsening of speech. The interplay between dopaminergic medication, STN circuitry, and their downstream effects on speech in PD is not yet fully understood. Here, we investigate the effect of dopaminergic medication on STN circuitry and probe its association with speech and cognitive functions in PD patients. We found that changes in intrinsic functional connectivity of the STN were associated with alterations in speech functions in PD. Interestingly, this relationship was characterized by altered functional connectivity of the dorsolateral and ventromedial subdivisions of the STN with the language network. Crucially, medication-induced changes in functional connectivity between the STN's dorsolateral subdivision and key regions in the language network, including the left inferior frontal cortex and the left superior temporal gyrus, correlated with alterations on a standardized neuropsychological test requiring oral responses. This relation was not observed in the written version of the same test. Furthermore, changes in functional connectivity between STN and language regions predicted the medication's downstream effects on speech-related cognitive performance. These findings reveal a previously unidentified brain mechanism through which dopaminergic medication influences speech function in PD. Our study sheds light into the subcortical-cortical circuit mechanisms underlying impaired speech control in PD. The insights gained here could inform treatment strategies aimed at mitigating speech deficits in PD and enhancing the quality of life for affected individuals.
Collapse
Affiliation(s)
- Weidong Cai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Christina B. Young
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Rui Yuan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Byeongwook Lee
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Sephira Ryman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Jeehyun Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Laurice Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Taylor F. Levine
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Victor W. Henderson
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA94305
| | - Kathleen L. Poston
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA94305
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
6
|
Cristi-Montero C, Johansen-Berg H, Salvan P. Multimodal neuroimaging correlates of physical-cognitive covariation in Chilean adolescents. The Cogni-Action Project. Dev Cogn Neurosci 2024; 66:101345. [PMID: 38277711 PMCID: PMC10832367 DOI: 10.1016/j.dcn.2024.101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/19/2023] [Accepted: 01/13/2024] [Indexed: 01/28/2024] Open
Abstract
Health-related behaviours have been related to brain structural features. In developing settings, such as Latin America, high social inequality has been inversely associated with several health-related behaviours affecting brain development. Understanding the relationship between health behaviours and brain structure in such settings is particularly important during adolescence when critical habits are acquired and ingrained. In this cross-sectional study, we carry out a multimodal analysis identifying a brain region associated with health-related behaviours (i.e., adiposity, fitness, sleep problems and others) and cognitive/academic performance, independent of socioeconomic status in a large sample of Chilean adolescents. Our findings suggest that the relationship between health behaviours and cognitive/academic performance involves a particular brain phenotype that could play a mediator role. These findings fill a significant gap in the literature, which has largely focused on developed countries and raise the possibility of promoting healthy behaviours in adolescence as a means to influence brain structure and thereby cognitive/academic achievement, independently of socioeconomic factors. By highlighting the potential impact on brain structure and cognitive/academic achievement, policymakers could design interventions that are more effective in reducing health disparities in developing countries.
Collapse
Affiliation(s)
- Carlos Cristi-Montero
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom; IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile.
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Piergiorgio Salvan
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
7
|
Brieant A, Sisk LM, Keding TJ, Cohodes EM, Gee DG. Leveraging multivariate approaches to advance the science of early-life adversity. CHILD ABUSE & NEGLECT 2024:106754. [PMID: 38521731 DOI: 10.1016/j.chiabu.2024.106754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Since the landmark Adverse Childhood Experiences (ACEs) study, adversity research has expanded to more precisely account for the multifaceted nature of adverse experiences. The complex data structures and interrelated nature of adversity data require robust multivariate statistical methods, and recent methodological and statistical innovations have facilitated advancements in research on childhood adversity. Here, we provide an overview of a subset of multivariate methods that we believe hold particular promise for advancing the field's understanding of early-life adversity, and discuss how these approaches can be practically applied to explore different research questions. This review covers data-driven or unsupervised approaches (including dimensionality reduction and person-centered clustering/subtype identification) as well as supervised/prediction-based approaches (including linear and tree-based models and neural networks). For each, we highlight studies that have effectively applied the method to provide novel insight into early-life adversity. Taken together, we hope this review serves as a resource to adversity researchers looking to expand upon the cumulative approach described in the original ACEs study, thereby advancing the field's understanding of the complexity of adversity and related developmental consequences.
Collapse
Affiliation(s)
- Alexis Brieant
- University of Vermont, Department of Psychological Science, 2 Colchester Avenue, Burlington, VT 05402, USA; Yale University, Department of Psychology, 100 College Street, New Haven, CT 06510, USA.
| | - Lucinda M Sisk
- Yale University, Department of Psychology, 100 College Street, New Haven, CT 06510, USA
| | - Taylor J Keding
- Yale University, Department of Psychology, 100 College Street, New Haven, CT 06510, USA
| | - Emily M Cohodes
- Yale University, Department of Psychology, 100 College Street, New Haven, CT 06510, USA
| | - Dylan G Gee
- Yale University, Department of Psychology, 100 College Street, New Haven, CT 06510, USA
| |
Collapse
|
8
|
Chang YJ, Chen YI, Yeh HC, Santacruz SR. Neurobiologically realistic neural network enables cross-scale modeling of neural dynamics. Sci Rep 2024; 14:5145. [PMID: 38429297 PMCID: PMC10907713 DOI: 10.1038/s41598-024-54593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
Fundamental principles underlying computation in multi-scale brain networks illustrate how multiple brain areas and their coordinated activity give rise to complex cognitive functions. Whereas brain activity has been studied at the micro- to meso-scale to reveal the connections between the dynamical patterns and the behaviors, investigations of neural population dynamics are mainly limited to single-scale analysis. Our goal is to develop a cross-scale dynamical model for the collective activity of neuronal populations. Here we introduce a bio-inspired deep learning approach, termed NeuroBondGraph Network (NBGNet), to capture cross-scale dynamics that can infer and map the neural data from multiple scales. Our model not only exhibits more than an 11-fold improvement in reconstruction accuracy, but also predicts synchronous neural activity and preserves correlated low-dimensional latent dynamics. We also show that the NBGNet robustly predicts held-out data across a long time scale (2 weeks) without retraining. We further validate the effective connectivity defined from our model by demonstrating that neural connectivity during motor behaviour agrees with the established neuroanatomical hierarchy of motor control in the literature. The NBGNet approach opens the door to revealing a comprehensive understanding of brain computation, where network mechanisms of multi-scale activity are critical.
Collapse
Affiliation(s)
- Yin-Jui Chang
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yuan-I Chen
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hsin-Chih Yeh
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA
| | - Samantha R Santacruz
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
- Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
9
|
Karatas YE, Cinaroglu S. Multivariate Relationships Between Health Outcomes and Health System Performance Indicators: An Integrated Factor Analysis With Canonical Correlations. Value Health Reg Issues 2024; 40:100-107. [PMID: 38169269 DOI: 10.1016/j.vhri.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/24/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVES This study aimed to investigate the relationships between sets of variables related to health system performance indicators and health outcomes. METHODS The relationships between a set of health outcomes and a set of health system performance indicators of a developing country were examined using multivariate statistical analysis techniques. A combinative strategy of explanatory factor analysis and the canonical correlation coefficient was used to define linear structural relationships between study variables. Province-based data were gathered from2 official statistical records of the Turkish Statistical Institute for the year 2019. Life expectancy at birth, infant mortality rate, and crude death rate were accepted as health outcome indicators. RESULTS The explanatory factor analysis indicated 2 independent variable groups, namely (1) health-related human resources and capacity and (2) health service utilization characteristics. The results of the canonical correlation analysis illustrated good performance to define sparse linear combinations of the 2 groups of variables. There existed strong positive correlations between health outcomes and health-related human resources and capacity indicators (rc = 0.83; P < .001) and health service utilization indicators (rc = 0.59; P < .001). CONCLUSIONS The results of this study support the view that there is a linear and strong positive relationship between health outcomes and health-related human resources and capacity indicators. Further studies will combine big data analytics with multivariate statistical analysis techniques by studying large health system performance data sets.
Collapse
Affiliation(s)
- Yunus Emre Karatas
- Health Care Management Department, Hacettepe University, Turkey, Ankara.
| | - Songul Cinaroglu
- Health Care Management Department, Hacettepe University, Turkey, Ankara
| |
Collapse
|
10
|
Marín Navas C, Delgado Bermejo JV, McLean AK, León Jurado JM, Camacho Vallejo ME, Navas González FJ. Modeling Climate Change Effects on Genetic Diversity of an Endangered Horse Breed Using Canonical Correlations. Animals (Basel) 2024; 14:659. [PMID: 38473046 DOI: 10.3390/ani14050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The historical increase in the occurrence of extreme weather events in Spain during the last thirty years makes it a perfect location for the evaluation of climate change. Modeling the effects of climate change on domestic animals' genetic diversity may help to anticipate challenging situations. However, animal populations' short life cycle and patent lack of historical information during extended periods of time drastically compromise the evaluation of climate change effects. Locally adapted breeds' gene pool is the base for their improved resilience and plasticity in response to climate change's extreme climatic conditions. The preservation of these domestic resources offers selection alternatives to breeders who seek such improved adaptability. The Spanish endangered autochthonous Hispano-Arabian horse breed is perfectly adapted to the conditions of the territory where it was created, developed, and widespread worldwide. The possibility to trace genetic diversity in the Hispano-Arabian breed back around seven decades and its global ubiquity make this breed an idoneous reference subject to act as a model for other international populations. Climate change's shaping effects on the genetic diversity of the Hispano-Arabian horse breed's historical population were monitored from 1950 to 2019 and evaluated. Wind speed, gust speed, or barometric pressure have greater repercussions than extreme temperatures on genetic diversity. Extreme climate conditions, rather than average modifications of climate, may push breeders/owners to implement effective strategies in the short to medium term, but the effect will be plausible in the long term due to breed sustainability and enhanced capacity of response to extreme climate events. When extreme climatic conditions occur, breeders opt for mating highly diverse unrelated individuals, avoiding the production of a large number of offspring. People in charge of domestic population conservation act as catalyzers of the regulatory changes occurring during breeds' climate change adaptive process and may identify genes conferring their animals with greater adaptability but still maintaining enhanced performance. This model assists in determining how owners of endangered domestic populations should plan their breeding strategies, seeking the obtention of animals more resilient and adapted to climate-extreme conditions. This efficient alternative is focused on the obtention of increased profitability from this population and in turn ensuring their sustainability.
Collapse
Affiliation(s)
- Carmen Marín Navas
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain
| | | | - Amy Katherine McLean
- Department of Animal Science, University of California Davis, Davis, CA 95617, USA
| | - José Manuel León Jurado
- Centro Agropecuario Provincial de Córdoba, Diputación Provincial de Córdoba, 14071 Córdoba, Spain
| | | | | |
Collapse
|
11
|
Puente JMA, Barro ÁLP, Ariza AG, Navas CM, Bermejo JVD, González FJN. The Crucial Role of Breeder and Dog Owners Associations in Safeguarding Genetic Heritage of Endangered Balearic Dog Breeds: Gender Preference and Registry Adscription. Animals (Basel) 2024; 14:639. [PMID: 38396607 PMCID: PMC10885888 DOI: 10.3390/ani14040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
This study delves into the complex relationships between indigenous dog breeds in the Balearic Isles and their human counterparts, specifically breeders and owners. Using Canonical Correlation Analysis, the research examines variables such as breed registries and the number of breeders/owners, uncovering significant correlations within registries. For example, an increase in female auxiliary registrations corresponds to a decline in foundational registrations, indicating shifts in breed documentation dynamics. Similarly, a rise in definitive female registrations coincides with a decrease in foundational female registrations, suggesting increased pedigree awareness across generations. Beyond registries, the study explores the correlation between breeders/owners and various initial records, highlighting that a notable increase in breeders positively influences initial registrations, definitive totals, and overall counts, underscoring their crucial role in early breed stages. Gender preferences in registrations are noted, with a historical bias towards female entries during foundational stages gradually shifting in favor of males in definitive registrations. In conclusion, the research underscores the interconnected roles of breeders, owners, and comprehensive registries in preserving genetic diversity among Balearic dog breeds, emphasizing the need for ongoing efforts to address gaps in genealogical data for a more accurate understanding of breed dynamics.
Collapse
Affiliation(s)
- José Manuel Alanzor Puente
- Institut de Reserca i Formaciò Agroalimentaria de les Illes Balears, Conselleria d’Agricultura, Pesca i Alimentació, Majorca, Govern Illes Balears, 07009 Palma, Spain; (J.M.A.P.); (Á.L.P.B.)
| | - Águeda Laura Pons Barro
- Institut de Reserca i Formaciò Agroalimentaria de les Illes Balears, Conselleria d’Agricultura, Pesca i Alimentació, Majorca, Govern Illes Balears, 07009 Palma, Spain; (J.M.A.P.); (Á.L.P.B.)
| | - Antonio González Ariza
- Centro Agropecuario Provincial de Córdoba, Diputación Provincial de Córdoba, 14014 Córdoba, Spain;
| | - Carmen Marín Navas
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (C.M.N.); (J.V.D.B.)
| | - Juan Vicente Delgado Bermejo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (C.M.N.); (J.V.D.B.)
| | | |
Collapse
|
12
|
Chen YC, Tiego J, Segal A, Chopra S, Holmes A, Suo C, Pang JC, Fornito A, Aquino KM. A multiscale characterization of cortical shape asymmetries in early psychosis. Brain Commun 2024; 6:fcae015. [PMID: 38347944 PMCID: PMC10859637 DOI: 10.1093/braincomms/fcae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024] Open
Abstract
Psychosis has often been linked to abnormal cortical asymmetry, but prior results have been inconsistent. Here, we applied a novel spectral shape analysis to characterize cortical shape asymmetries in patients with early psychosis across different spatial scales. We used the Human Connectome Project for Early Psychosis dataset (aged 16-35), comprising 56 healthy controls (37 males, 19 females) and 112 patients with early psychosis (68 males, 44 females). We quantified shape variations of each hemisphere over different spatial frequencies and applied a general linear model to compare differences between healthy controls and patients with early psychosis. We further used canonical correlation analysis to examine associations between shape asymmetries and clinical symptoms. Cortical shape asymmetries, spanning wavelengths from about 22 to 75 mm, were significantly different between healthy controls and patients with early psychosis (Cohen's d = 0.28-0.51), with patients showing greater asymmetry in cortical shape than controls. A single canonical mode linked the asymmetry measures to symptoms (canonical correlation analysis r = 0.45), such that higher cortical asymmetry was correlated with more severe excitement symptoms and less severe emotional distress. Significant group differences in the asymmetries of traditional morphological measures of cortical thickness, surface area, and gyrification, at either global or regional levels, were not identified. Cortical shape asymmetries are more sensitive than other morphological asymmetries in capturing abnormalities in patients with early psychosis. These abnormalities are expressed at coarse spatial scales and are correlated with specific symptom domains.
Collapse
Affiliation(s)
- Yu-Chi Chen
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne 3800, Australia
- Brain and Mind Centre, University of Sydney, Sydney 2050, Australia
- Brain Dynamic Centre, Westmead Institute for Medical Research, University of Sydney, Sydney 2145, Australia
| | - Jeggan Tiego
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| | - Ashlea Segal
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | - Alexander Holmes
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| | - Chao Suo
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- BrainPark, School of Psychological Sciences, Monash University, Melbourne 3800, Australia
| | - James C Pang
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| | - Alex Fornito
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| | - Kevin M Aquino
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- School of Physics, University of Sydney, Sydney 2050, Australia
- Center of Excellence for Integrative Brain Function, University of Sydney, Sydney 2050, Australia
- BrainKey Inc, San Francisco, CA 94103, USA
| |
Collapse
|
13
|
Matkovič A, Anticevic A, Murray JD, Repovš G. Static and dynamic fMRI-derived functional connectomes represent largely similar information. Netw Neurosci 2023; 7:1266-1301. [PMID: 38144686 PMCID: PMC10631791 DOI: 10.1162/netn_a_00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/06/2023] [Indexed: 12/26/2023] Open
Abstract
Functional connectivity (FC) of blood oxygen level-dependent (BOLD) fMRI time series can be estimated using methods that differ in sensitivity to the temporal order of time points (static vs. dynamic) and the number of regions considered in estimating a single edge (bivariate vs. multivariate). Previous research suggests that dynamic FC explains variability in FC fluctuations and behavior beyond static FC. Our aim was to systematically compare methods on both dimensions. We compared five FC methods: Pearson's/full correlation (static, bivariate), lagged correlation (dynamic, bivariate), partial correlation (static, multivariate), and multivariate AR model with and without self-connections (dynamic, multivariate). We compared these methods by (i) assessing similarities between FC matrices, (ii) by comparing node centrality measures, and (iii) by comparing the patterns of brain-behavior associations. Although FC estimates did not differ as a function of sensitivity to temporal order, we observed differences between the multivariate and bivariate FC methods. The dynamic FC estimates were highly correlated with the static FC estimates, especially when comparing group-level FC matrices. Similarly, there were high correlations between the patterns of brain-behavior associations obtained using the dynamic and static FC methods. We conclude that the dynamic FC estimates represent information largely similar to that of the static FC.
Collapse
Affiliation(s)
- Andraž Matkovič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - John D. Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Grega Repovš
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Roger E, Labache L, Hamlin N, Kruse J, Baciu M, Doucet GE. When Age Tips the Balance: a Dual Mechanism Affecting Hemispheric Specialization for Language. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569978. [PMID: 38106059 PMCID: PMC10723284 DOI: 10.1101/2023.12.04.569978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Aging engenders neuroadaptations, generally reducing specificity and selectivity in functional brain responses. Our investigation delves into the functional specialization of brain hemispheres within language-related networks across adulthood. In a cohort of 728 healthy adults spanning ages 18 to 88, we modeled the trajectories of inter-hemispheric asymmetry concerning the principal functional gradient across 37 homotopic regions of interest (hROIs) of an extensive language network, known as the Language-and-Memory Network. Our findings reveal that over two-thirds of Language-and-Memory Network hROIs undergo asymmetry changes with age, falling into two main clusters. The first cluster evolves from left-sided specialization to right-sided tendencies, while the second cluster transitions from right-sided asymmetry to left-hemisphere dominance. These reversed asymmetry shifts manifest around midlife, occurring after age 50, and are associated with poorer language production performance. Our results provide valuable insights into the influence of functional brain asymmetries on language proficiency and present a dynamic perspective on brain plasticity during the typical aging process.
Collapse
Affiliation(s)
- Elise Roger
- Institut Universitaire de Gériatrie de Montréal, Communication and Aging Lab, Montreal, Quebec, Canada
- Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | - Loïc Labache
- Department of Psychology, Yale University, New Haven, CT, 06520, US
| | - Noah Hamlin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, US
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, US
| | - Jordanna Kruse
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, US
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, US
| | - Monica Baciu
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | - Gaelle E. Doucet
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, US
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, US
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Omaha, NE, 68178, US
| |
Collapse
|
15
|
Holmes A, Levi PT, Chen YC, Chopra S, Aquino KM, Pang JC, Fornito A. Disruptions of Hierarchical Cortical Organization in Early Psychosis and Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1240-1250. [PMID: 37683727 DOI: 10.1016/j.bpsc.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND The cerebral cortex is organized hierarchically along an axis that spans unimodal sensorimotor to transmodal association areas. This hierarchy is often characterized using low-dimensional embeddings, termed gradients, of interregional functional coupling estimates measured with resting-state functional magnetic resonance imaging. Such analyses may offer insights into the pathophysiology of schizophrenia, which has been frequently linked to dysfunctional interactions between association and sensorimotor areas. METHODS To examine disruptions of hierarchical cortical function across distinct stages of psychosis, we applied diffusion map embedding to 2 independent functional magnetic resonance imaging datasets: one comprising 114 patients with early psychosis and 48 control participants, and the other comprising 50 patients with established schizophrenia and 121 control participants. Then, we analyzed the primary sensorimotor-to-association and secondary visual-to-sensorimotor gradients of each participant in both datasets. RESULTS There were no significant differences in regional gradient scores between patients with early psychosis and control participants. Patients with established schizophrenia showed significant differences in the secondary, but not primary, gradient compared with control participants. Gradient differences in schizophrenia were characterized by lower within-network dispersion in the dorsal attention (false discovery rate [FDR]-corrected p [pFDR] < .001), visual (pFDR = .003), frontoparietal (pFDR = .018), and limbic (pFDR = .020) networks and lower between-network dispersion between the visual network and other networks (pFDR < .001). CONCLUSIONS These findings indicate that differences in cortical hierarchical function occur along the secondary visual-to-sensorimotor axis rather than the primary sensorimotor-to-association axis as previously thought. The absence of differences in early psychosis suggests that visual-sensorimotor abnormalities may emerge as the illness progresses.
Collapse
Affiliation(s)
- Alexander Holmes
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia.
| | - Priscila T Levi
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| | - Yu-Chi Chen
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia; Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Kevin M Aquino
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - James C Pang
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Gao Y, Tian S, Tang Y, Yang X, Dou W, Wang T, Shen Y, Tang Y, Zhang L, Ding H, Zhu Q, Li J, Qi M, Zhu Y. Investigating the spontaneous brain activities of patients with subjective cognitive decline and mild cognitive impairment: an amplitude of low-frequency fluctuation functional magnetic resonance imaging study. Quant Imaging Med Surg 2023; 13:8557-8570. [PMID: 38106284 PMCID: PMC10722053 DOI: 10.21037/qims-23-808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/26/2023] [Indexed: 12/19/2023]
Abstract
Background Subjective cognitive decline (SCD) and mild cognitive impairment (MCI) are neurodegenerative processing stages of Alzheimer's disease (AD). Cognitive decline is thought to manifest in intrinsic brain activity changes, but research results yielded conflicting and few studies have explored the roles of brain regions in cognitive decline, and sensitivity of the cognitive field to changes in the altered intrinsic brain activity. Methods In this cross-sectional study, 158 elderly participants were recruited from the memory clinic of the First Affiliated Hospital of Nanjing Medical University from July 2019 to May 2021, and grouped into SCD (n=73), MCI (n=46), and normal controls (NC) (n=39). The amplitude of low-frequency fluctuation (ALFF) was calculated and evaluated among the groups. Then canonical correlation analysis (CCA) was conducted to investigate the associations between imaging outcomes and cognitive behaviors. Results Neuropsychological tests in different cognitive dimensions and ALFF values of the prefrontal, parietal, and temporal gyrus, were significantly different (P<0.05) among the three groups, with no appreciable decline in daily activity. The changes in intrinsic activities were closely related to the decline in cognitive function (R=0.73, P=0.002). ALFF values in the left middle occipital gyrus, right middle frontal gyrus, left superior frontal gyrus, left angular gyrus, and superior temporal gyrus played significant roles in the analysis, while the Montreal Cognitive Assessment (MoCA) and Auditory-Verbal Learning Test scores were found to be more sensitive to changes in ALFF values. Conclusions Spontaneous brain activity is a stable imaging biomarker of cognitive impairment. ALFF changes of the prefrontal, occipital, left angular, and temporal gyrus were sensitive to identifying cognitive decline, and the scores of the Auditory-Verbal Learning Test and MoCA could predict the abnormal intrinsic activities.
Collapse
Affiliation(s)
- Yaxin Gao
- Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Rehabilitation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Shui Tian
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Tang
- Rehabilitation Medicine Department, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Xi Yang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Weiqiang Dou
- GE Healthcare, MR Research China, Beijing, China
| | - Tong Wang
- Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Shen
- Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yin Tang
- Department of Medical imaging, Jingjiang People’s Hospital, Jingjiang, China
| | - Ling Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyuan Ding
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinqin Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiahuan Li
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Ming Qi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Sisk LM, Keding TJ, Cohodes EM, McCauley S, Pierre JC, Odriozola P, Kribakaran S, Haberman JT, Zacharek SJ, Hodges HR, Caballero C, Gold G, Huang AY, Talton A, Gee DG. Multivariate links between the developmental timing of adversity exposure and white matter tract integrity in adulthood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566271. [PMID: 38014148 PMCID: PMC10680630 DOI: 10.1101/2023.11.12.566271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Early-life adversity is pervasive worldwide and represents a potent risk factor for increased mental health burden across the lifespan. However, there is substantial individual heterogeneity in associations between adversity exposure, neurobiological changes, and mental health problems. Accounting for key features of adversity such as the developmental timing of exposure may clarify associations between adversity, neurodevelopment, and mental health. The present study leverages sparse canonical correlation analysis to characterize modes of covariation between age of adversity exposure and the integrity of white matter tracts throughout the brain in a sample of 107 adults. We find that adversity exposure during middle childhood (ages 5-6 and 8-9 in particular) is consistently linked with alterations in white matter tract integrity, such that tracts supporting sensorimotor functions display higher integrity in relation to adversity exposure while tracts supporting cortico-cortical communication display lower integrity. Further, latent patterns of tract integrity linked with adversity experienced across preschool age and middle childhood (ages 4-9) were associated with trauma-related symptoms in adulthood. Our findings underscore that adversity exposure may differentially affect white matter in a function- and developmental-timing specific manner and suggest that adversity experienced between ages 4-9 may shape the development of global white matter tracts in ways that are relevant for adult mental health.
Collapse
|
18
|
Mei T, Forde NJ, Floris DL, Dell'Acqua F, Stones R, Ilioska I, Durston S, Moessnang C, Banaschewski T, Holt RJ, Baron-Cohen S, Rausch A, Loth E, Oakley B, Charman T, Ecker C, Murphy DGM, Beckmann CF, Llera A, Buitelaar JK. Autism Is Associated With Interindividual Variations of Gray and White Matter Morphology. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1084-1093. [PMID: 36075529 DOI: 10.1016/j.bpsc.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Although many studies have explored atypicalities in gray matter (GM) and white matter (WM) morphology of autism, most of them relied on unimodal analyses that did not benefit from the likelihood that different imaging modalities may reflect common neurobiology. We aimed to establish brain patterns of modalities that differentiate between individuals with and without autism and explore associations between these brain patterns and clinical measures in the autism group. METHODS We studied 183 individuals with autism and 157 nonautistic individuals (age range, 6-30 years) in a large, deeply phenotyped autism dataset (EU-AIMS LEAP [European Autism Interventions-A Multicentre Study for Developing New Medications Longitudinal European Autism Project]). Linked independent component analysis was used to link all participants' GM volume and WM diffusion tensor images, and group comparisons of modality shared variances were examined. Subsequently, we performed univariate and multivariate brain-behavior correlation analyses to separately explore the relationships between brain patterns and clinical profiles. RESULTS One multimodal pattern was significantly related to autism. This pattern was primarily associated with GM volume in bilateral insula and frontal, precentral and postcentral, cingulate, and caudate areas and co-occurred with altered WM features in the superior longitudinal fasciculus. The brain-behavior correlation analyses showed a significant multivariate association primarily between brain patterns that involved variation of WM and symptoms of restricted and repetitive behavior in the autism group. CONCLUSIONS Our findings demonstrate the assets of integrated analyses of GM and WM alterations to study the brain mechanisms that underpin autism and show that the complex clinical autism phenotype can be interpreted by brain covariation patterns that are spread across the brain involving both cortical and subcortical areas.
Collapse
Affiliation(s)
- Ting Mei
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands.
| | - Natalie J Forde
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Dorothea L Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Flavio Dell'Acqua
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Richard Stones
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Iva Ilioska
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Sarah Durston
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rosemary J Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Annika Rausch
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Bethany Oakley
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Christian F Beckmann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Alberto Llera
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands.
| |
Collapse
|
19
|
Gostilovich S, Kotliar Shapirov A, Znobishchev A, Phan AH, Cichocki A. Biomarkers of professional cybersportsmen: Event related potentials and cognitive tests study. PLoS One 2023; 18:e0289293. [PMID: 37527271 PMCID: PMC10393144 DOI: 10.1371/journal.pone.0289293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/16/2023] [Indexed: 08/03/2023] Open
Abstract
"Faster, higher, stronger" is the motto of any professional athlete. Does that apply to brain dynamics as well? In our paper, we performed a series of EEG experiments on Visually Evoked Potentials and a series of cognitive tests-reaction time and visual search, with professional eSport players in Counter-Strike: Global Offensive (CS:GO) and novices (control group) in order to find important differences between them. EEG data were studied in a temporal domain by Event-Related Potentials (ERPs) and in a frequency domain by Variational Mode Decomposition. The EEG analysis showed that the brain reaction of eSport players is faster (P300 latency is earlier on average by 20-70 ms, p < 0.005) and stronger (P300 peak amplitude is higher on average by 7-9 mkV, p < 0.01). Professional eSport players also exhibit stronger stimulus-locked alpha-band power. Besides, the Spearman correlation analysis showed a significant correlation between hours spend in CS:GO and mean amplitude of P200 and N200 for the professional players. The comparison of cognitive test results showed the superiority of the professional players to the novices in reaction time (faster) and choice reaction time-faster reaction, but similar correctness, while a significant difference in visual search skills was not detected. Thus, significant differences in EEG signals (in spectrograms and ERPs) and cognitive test results (reaction time) were detected between the professional players and the control group. Cognitive tests could be used to separate skilled players from novices, while EEG testing can help to understand the skilled player's level. The results can contribute to understanding the impact of eSport on a player's cognitive state and associating eSport with a real sport. Moreover, the presented results can be useful for evaluating eSport team members and making training plans.
Collapse
Affiliation(s)
- Sergei Gostilovich
- Center for Artificial Intelligent Technology, Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| | - Airat Kotliar Shapirov
- Center for Artificial Intelligent Technology, Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| | - Andrei Znobishchev
- Center for Artificial Intelligent Technology, Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| | - Anh-Huy Phan
- Center for Artificial Intelligent Technology, Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| | - Andrzej Cichocki
- Center for Artificial Intelligent Technology, Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| |
Collapse
|
20
|
Zhang XH, Anderson KM, Dong HM, Chopra S, Dhamala E, Emani PS, Margulies D, Holmes AJ. The Cellular Underpinnings of the Human Cortical Connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547828. [PMID: 37461642 PMCID: PMC10349999 DOI: 10.1101/2023.07.05.547828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The functional properties of the human brain arise, in part, from the vast assortment of cell types that pattern the cortex. The cortical sheet can be broadly divided into distinct networks, which are further embedded into processing streams, or gradients, that extend from unimodal systems through higher-order association territories. Here, using transcriptional data from the Allen Human Brain Atlas, we demonstrate that imputed cell type distributions are spatially coupled to the functional organization of cortex, as estimated through fMRI. Cortical cellular profiles follow the macro-scale organization of the functional gradients as well as the associated large-scale networks. Distinct cellular fingerprints were evident across networks, and a classifier trained on post-mortem cell-type distributions was able to predict the functional network allegiance of cortical tissue samples. These data indicate that the in vivo organization of the cortical sheet is reflected in the spatial variability of its cellular composition.
Collapse
Affiliation(s)
- Xi-Han Zhang
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | - Hao-Ming Dong
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Elvisha Dhamala
- Department of Psychology, Yale University, New Haven, CT, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Prashant S. Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Daniel Margulies
- CNRS, Integrative Neuroscience and Cognition Center (UMR 8002), Université de Paris, Paris, France
| | - Avram J. Holmes
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
21
|
Matkovič A, Anticevic A, Murray JD, Repovš G. Static and dynamic functional connectomes represent largely similar information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525348. [PMID: 36747845 PMCID: PMC9900764 DOI: 10.1101/2023.01.24.525348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Functional connectivity (FC) of blood-oxygen-level-dependent (BOLD) fMRI time series can be estimated using methods that differ in sensitivity to the temporal order of time points (static vs. dynamic) and the number of regions considered in estimating a single edge (bivariate vs. multivariate). Previous research suggests that dynamic FC explains variability in FC fluctuations and behavior beyond static FC. Our aim was to systematically compare methods on both dimensions. We compared five FC methods: Pearson's/full correlation (static, bivariate), lagged correlation (dynamic, bivariate), partial correlation (static, multivariate) and multivariate AR model with and without self-connections (dynamic, multivariate). We compared these methods by (i) assessing similarities between FC matrices, (ii) by comparing node centrality measures, and (iii) by comparing the patterns of brain-behavior associations. Although FC estimates did not differ as a function of sensitivity to temporal order, we observed differences between the multivariate and bivariate FC methods. The dynamic FC estimates were highly correlated with the static FC estimates, especially when comparing group-level FC matrices. Similarly, there were high correlations between the patterns of brain-behavior associations obtained using the dynamic and static FC methods. We conclude that the dynamic FC estimates represent information largely similar to that of the static FC.
Collapse
Affiliation(s)
- Andraž Matkovič
- Department of Psychology, Faculty of Arts, University of Ljubljana
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| | - John D. Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Psychiatry, Yale University, New Haven, United States
| | - Grega Repovš
- Department of Psychology, Faculty of Arts, University of Ljubljana
| |
Collapse
|
22
|
Zarghami TS, Zeidman P, Razi A, Bahrami F, Hossein‐Zadeh G. Dysconnection and cognition in schizophrenia: A spectral dynamic causal modeling study. Hum Brain Mapp 2023; 44:2873-2896. [PMID: 36852654 PMCID: PMC10089110 DOI: 10.1002/hbm.26251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/28/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Schizophrenia (SZ) is a severe mental disorder characterized by failure of functional integration (aka dysconnection) across the brain. Recent functional connectivity (FC) studies have adopted functional parcellations to define subnetworks of large-scale networks, and to characterize the (dys)connection between them, in normal and clinical populations. While FC examines statistical dependencies between observations, model-based effective connectivity (EC) can disclose the causal influences that underwrite the observed dependencies. In this study, we investigated resting state EC within seven large-scale networks, in 66 SZ and 74 healthy subjects from a public dataset. The results showed that a remarkable 33% of the effective connections (among subnetworks) of the cognitive control network had been pathologically modulated in SZ. Further dysconnection was identified within the visual, default mode and sensorimotor networks of SZ subjects, with 24%, 20%, and 11% aberrant couplings. Overall, the proportion of discriminative connections was remarkably larger in EC (24%) than FC (1%) analysis. Subsequently, to study the neural correlates of impaired cognition in SZ, we conducted a canonical correlation analysis between the EC parameters and the cognitive scores of the patients. As such, the self-inhibitions of supplementary motor area and paracentral lobule (in the sensorimotor network) and the excitatory connection from parahippocampal gyrus to inferior temporal gyrus (in the cognitive control network) were significantly correlated with the social cognition, reasoning/problem solving and working memory capabilities of the patients. Future research can investigate the potential of whole-brain EC as a biomarker for diagnosis of brain disorders and for neuroimaging-based cognitive assessment.
Collapse
Affiliation(s)
- Tahereh S. Zarghami
- Bio‐Electric Department, School of Electrical and Computer Engineering, College of EngineeringUniversity of TeranTehranIran
- Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering, College of EngineeringUniversity of TehranTehranIran
| | - Peter Zeidman
- The Wellcome Centre for Human NeuroimagingUniversity College LondonLondonUK
| | - Adeel Razi
- The Wellcome Centre for Human NeuroimagingUniversity College LondonLondonUK
- Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Monash Biomedical ImagingMonash UniversityClaytonVictoriaAustralia
- CIFAR Azrieli Global Scholars Program, CIFARTorontoCanada
| | - Fariba Bahrami
- Bio‐Electric Department, School of Electrical and Computer Engineering, College of EngineeringUniversity of TeranTehranIran
- Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering, College of EngineeringUniversity of TehranTehranIran
| | - Gholam‐Ali Hossein‐Zadeh
- Bio‐Electric Department, School of Electrical and Computer Engineering, College of EngineeringUniversity of TeranTehranIran
| |
Collapse
|
23
|
Petrican R, Paine AL, Escott-Price V, Shelton KH. Overlapping brain correlates of superior cognition among children at genetic risk for Alzheimer's disease and/or major depressive disorder. Sci Rep 2023; 13:984. [PMID: 36653486 PMCID: PMC9849214 DOI: 10.1038/s41598-023-28057-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Early life adversity (ELA) tends to accelerate neurobiological ageing, which, in turn, is thought to heighten vulnerability to both major depressive disorder (MDD) and Alzheimer's disease (AD). The two conditions are putatively related, with MDD representing either a risk factor or early symptom of AD. Given the substantial environmental susceptibility of both disorders, timely identification of their neurocognitive markers could facilitate interventions to prevent clinical onset. To this end, we analysed multimodal data from the Adolescent Brain and Cognitive Development study (ages 9-10 years). To disentangle genetic from correlated genetic-environmental influences, while also probing gene-adversity interactions, we compared adoptees, a group generally exposed to substantial ELA, with children raised by their biological families via genetic risk scores (GRS) from genome-wide association studies. AD and MDD GRSs predicted overlapping and widespread neurodevelopmental alterations associated with superior fluid cognition. Specifically, among adoptees only, greater AD GRS were related to accelerated structural maturation (i.e., cortical thinning) and higher MDD GRS were linked to delayed functional neurodevelopment, as reflected in compensatory brain activation on an inhibitory control task. Our study identifies compensatory mechanisms linked to MDD risk and highlights the potential cognitive benefits of accelerated maturation linked to AD vulnerability in late childhood.
Collapse
Affiliation(s)
- Raluca Petrican
- Institute of Population Health, Department of Psychology, University of Liverpool, Bedford Street South, Liverpool, L69 7ZA, UK.
| | - Amy L Paine
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Valentina Escott-Price
- Division of Neuroscience and Mental Health, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Katherine H Shelton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
24
|
Salvan P, Fonseca M, Winkler AM, Beauchamp A, Lerch JP, Johansen-Berg H. Serotonin regulation of behavior via large-scale neuromodulation of serotonin receptor networks. Nat Neurosci 2023; 26:53-63. [PMID: 36522497 PMCID: PMC9829536 DOI: 10.1038/s41593-022-01213-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/24/2022] [Indexed: 12/23/2022]
Abstract
Although we understand how serotonin receptors function at the single-cell level, what role different serotonin receptors play in regulating brain-wide activity and, in turn, human behavior, remains unknown. Here, we developed transcriptomic-neuroimaging mapping to characterize brain-wide functional signatures associated with specific serotonin receptors: serotonin receptor networks (SRNs). Probing SRNs with optogenetics-functional magnetic resonance imaging (MRI) and pharmacology in mice, we show that activation of dorsal raphe serotonin neurons differentially modulates the amplitude and functional connectivity of different SRNs, showing that receptors' spatial distributions can confer specificity not only at the local, but also at the brain-wide, network level. In humans, using resting-state functional MRI, SRNs replicate established divisions of serotonin effects on impulsivity and negative biases. These results provide compelling evidence that heterogeneous brain-wide distributions of different serotonin receptor types may underpin behaviorally distinct modes of serotonin regulation. This suggests that serotonin neurons may regulate multiple aspects of human behavior via modulation of large-scale receptor networks.
Collapse
Affiliation(s)
- Piergiorgio Salvan
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Madalena Fonseca
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anderson M Winkler
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Antoine Beauchamp
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Heidi Johansen-Berg
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Jimenez-Marin A, De Bruyn N, Gooijers J, Llera A, Meyer S, Alaerts K, Verheyden G, Swinnen SP, Cortes JM. Multimodal and multidomain lesion network mapping enhances prediction of sensorimotor behavior in stroke patients. Sci Rep 2022; 12:22400. [PMID: 36575263 PMCID: PMC9794717 DOI: 10.1038/s41598-022-26945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Beyond the characteristics of a brain lesion, such as its etiology, size or location, lesion network mapping (LNM) has shown that similar symptoms after a lesion reflects similar dis-connectivity patterns, thereby linking symptoms to brain networks. Here, we extend LNM by using a multimodal strategy, combining functional and structural networks from 1000 healthy participants in the Human Connectome Project. We apply multimodal LNM to a cohort of 54 stroke patients with the aim of predicting sensorimotor behavior, as assessed through a combination of motor and sensory tests. Results are two-fold. First, multimodal LNM reveals that the functional modality contributes more than the structural one in the prediction of sensorimotor behavior. Second, when looking at each modality individually, the performance of the structural networks strongly depended on whether sensorimotor performance was corrected for lesion size, thereby eliminating the effect that larger lesions generally produce more severe sensorimotor impairment. In contrast, functional networks provided similar performance regardless of whether or not the effect of lesion size was removed. Overall, these results support the extension of LNM to its multimodal form, highlighting the synergistic and additive nature of different types of network modalities, and their corresponding influence on behavioral performance after brain injury.
Collapse
Affiliation(s)
- Antonio Jimenez-Marin
- Computational Neuroimaging Group, Biocruces-Bizkaia Health Research Institute, Biocruces Bizkaia, Plaza de Cruces S/N, 48903, Barakaldo, Spain
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Nele De Bruyn
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- LBI-KU Leuven Brain Institute, Leuven, Belgium
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
- LIS Data Solutions, Machine Learning Group, Santander, Spain
| | - Sarah Meyer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Kaat Alaerts
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Geert Verheyden
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- LBI-KU Leuven Brain Institute, Leuven, Belgium
| | - Jesus M Cortes
- Computational Neuroimaging Group, Biocruces-Bizkaia Health Research Institute, Biocruces Bizkaia, Plaza de Cruces S/N, 48903, Barakaldo, Spain.
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Leioa, Spain.
- IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
26
|
Mihalik A, Chapman J, Adams RA, Winter NR, Ferreira FS, Shawe-Taylor J, Mourão-Miranda J. Canonical Correlation Analysis and Partial Least Squares for Identifying Brain-Behavior Associations: A Tutorial and a Comparative Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1055-1067. [PMID: 35952973 DOI: 10.1016/j.bpsc.2022.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Canonical correlation analysis (CCA) and partial least squares (PLS) are powerful multivariate methods for capturing associations across 2 modalities of data (e.g., brain and behavior). However, when the sample size is similar to or smaller than the number of variables in the data, standard CCA and PLS models may overfit, i.e., find spurious associations that generalize poorly to new data. Dimensionality reduction and regularized extensions of CCA and PLS have been proposed to address this problem, yet most studies using these approaches have some limitations. This work gives a theoretical and practical introduction into the most common CCA/PLS models and their regularized variants. We examine the limitations of standard CCA and PLS when the sample size is similar to or smaller than the number of variables. We discuss how dimensionality reduction and regularization techniques address this problem and explain their main advantages and disadvantages. We highlight crucial aspects of the CCA/PLS analysis framework, including optimizing the hyperparameters of the model and testing the identified associations for statistical significance. We apply the described CCA/PLS models to simulated data and real data from the Human Connectome Project and Alzheimer's Disease Neuroimaging Initiative (both of n > 500). We use both low- and high-dimensionality versions of these data (i.e., ratios between sample size and variables in the range of ∼1-10 and ∼0.1-0.01, respectively) to demonstrate the impact of data dimensionality on the models. Finally, we summarize the key lessons of the tutorial.
Collapse
Affiliation(s)
- Agoston Mihalik
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - James Chapman
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Rick A Adams
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Nils R Winter
- Institute of Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabio S Ferreira
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - John Shawe-Taylor
- Department of Computer Science, University College London, London, United Kingdom
| | - Janaina Mourão-Miranda
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| |
Collapse
|
27
|
Zhang W, Paul SE, Winkler A, Bogdan R, Bijsterbosch JD. Shared brain and genetic architectures between mental health and physical activity. Transl Psychiatry 2022; 12:428. [PMID: 36192376 PMCID: PMC9530213 DOI: 10.1038/s41398-022-02172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022] Open
Abstract
Physical activity is correlated with, and effectively treats various forms of psychopathology. However, whether biological correlates of physical activity and psychopathology are shared remains unclear. Here, we examined the extent to which the neural and genetic architecture of physical activity and mental health are shared. Using data from the UK Biobank (N = 6389), we applied canonical correlation analysis to estimate associations between the amplitude and connectivity strength of subnetworks of three major neurocognitive networks (default mode, DMN; salience, SN; central executive networks, CEN) with accelerometer-derived measures of physical activity and self-reported mental health measures (primarily of depression, anxiety disorders, neuroticism, subjective well-being, and risk-taking behaviors). We estimated the genetic correlation between mental health and physical activity measures, as well as putative causal relationships by applying linkage disequilibrium score regression, genomic structural equational modeling, and latent causal variable analysis to genome-wide association summary statistics (GWAS N = 91,105-500,199). Physical activity and mental health were associated with connectivity strength and amplitude of the DMN, SN, and CEN (r's ≥ 0.12, p's < 0.048). These neural correlates exhibited highly similar loading patterns across mental health and physical activity models even when accounting for their shared variance. This suggests a largely shared brain network architecture between mental health and physical activity. Mental health and physical activity (including sleep) were also genetically correlated (|rg| = 0.085-0.121), but we found no evidence for causal relationships between them. Collectively, our findings provide empirical evidence that mental health and physical activity have shared brain and genetic architectures and suggest potential candidate subnetworks for future studies on brain mechanisms underlying beneficial effects of physical activity on mental health.
Collapse
Affiliation(s)
- Wei Zhang
- Radiology Department, Washington University School of Medicine, St. Louis, MO, USA.
| | - Sarah E Paul
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Anderson Winkler
- National Institute of Mental Health/National Institutes of Health, Rockville, MD, USA
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
28
|
L'Her A, Drémeau A, Le Courtois F, Real G, Cristol X, Stéphan Y. Canonical correlation analysis as a statistical method to relate underwater acoustic propagation and ocean fluctuations. JASA EXPRESS LETTERS 2022; 2:100801. [PMID: 36319215 DOI: 10.1121/10.0014360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Numerical models are currently used to understand how environmental fluctuations impact acoustic propagation. Such a process can be tedious in complex fluctuating environments. This letter proposes a complementary approach based upon canonical correlation analysis (CCA) to determine statistical relationships between two sets of observed acoustic and oceanographic variables. It is shown, as an example, how CCA puts forward the impact of external and internal tide on shallow water propagation. Results are consistent with the physical understanding of tide impact on acoustic propagation. They encourage the use of CCA for complex studies, in particular, for environments fluctuating under several environmental phenomena.
Collapse
Affiliation(s)
| | - Angélique Drémeau
- Lab-STICC, ENSTA Bretagne, 2 Rue François Verny, 29200 Brest, France
| | - Florent Le Courtois
- Service Hydrographique et Océanographique de la Marine (SHOM), 13 Rue Chatelier CS 92803, 29228 Brest Cedex 2, France
| | - Gaultier Real
- DGA Naval Systems, Avenue de la Tour Royale, BP 40915, 83050 Toulon Cedex, France , , , , ,
| | - Xavier Cristol
- Thales DMS, 525 Route des Dolines, 06560 Valbonne, France
| | - Yann Stéphan
- Service Hydrographique et Océanographique de la Marine (SHOM), 13 Rue Chatelier CS 92803, 29228 Brest Cedex 2, France
| |
Collapse
|
29
|
Network hub centrality and working memory performance in schizophrenia. SCHIZOPHRENIA 2022; 8:76. [PMID: 36151201 PMCID: PMC9508261 DOI: 10.1038/s41537-022-00288-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/12/2022] [Indexed: 11/08/2022]
Abstract
Cognitive impairment, and working memory deficits in particular, are debilitating, treatment-resistant aspects of schizophrenia. Dysfunction of brain network hubs, putatively related to altered neurodevelopment, is thought to underlie the cognitive symptoms associated with this illness. Here, we used weighted degree, a robust graph theory metric representing the number of weighted connections to a node, to quantify centrality in cortical hubs in 29 patients with schizophrenia and 29 age- and gender-matched healthy controls and identify the critical nodes that underlie working memory performance. In both patients and controls, elevated weighted degree in the default mode network (DMN) was generally associated with poorer performance (accuracy and reaction time). Higher degree in the ventral attention network (VAN) nodes in the right superior temporal cortex was associated with better performance (accuracy) in patients. Degree in several prefrontal and parietal areas was associated with cognitive performance only in patients. In regions that are critical for sustained attention, these correlations were primarily driven by between-network connectivity in patients. Moreover, a cross-validated prediction analysis showed that a linear model using a summary degree score can be used to predict an individual’s working memory accuracy (r = 0.35). Our results suggest that schizophrenia is associated with dysfunctional hubs in the cortical systems supporting internal and external cognition and highlight the importance of topological network analysis in the search of biomarkers for cognitive deficits in schizophrenia.
Collapse
|
30
|
Jiang L, Li F, Chen B, Yi C, Peng Y, Zhang T, Yao D, Xu P. The task-dependent modular covariance networks unveiled by multiple-way fusion-based analysis. Int J Neural Syst 2022; 32:2250035. [PMID: 35719086 DOI: 10.1142/s0129065722500356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
| | - Baodan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Chanlin Yi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Yueheng Peng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Tao Zhang
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, P. R. China
| |
Collapse
|
31
|
Petrican R, Fornito A, Jones N. Psychological Resilience and Neurodegenerative Risk: A Connectomics-Transcriptomics Investigation in Healthy Adolescent and Middle-Aged Females. Neuroimage 2022; 255:119209. [PMID: 35429627 DOI: 10.1016/j.neuroimage.2022.119209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Adverse life events can inflict substantial long-term damage, which, paradoxically, has been posited to stem from initially adaptative responses to the challenges encountered in one's environment. Thus, identification of the mechanisms linking resilience against recent stressors to longer-term psychological vulnerability is key to understanding optimal functioning across multiple timescales. To address this issue, our study tested the relevance of neuro-reproductive maturation and senescence, respectively, to both resilience and longer-term risk for pathologies characterised by accelerated brain aging, specifically, Alzheimer's Disease (AD). Graph theoretical and partial least squares analyses were conducted on multimodal imaging, reported biological aging and recent adverse experience data from the Lifespan Human Connectome Project (HCP). Availability of reproductive maturation/senescence measures restricted our investigation to adolescent (N =178) and middle-aged (N=146) females. Psychological resilience was linked to age-specific brain senescence patterns suggestive of precocious functional development of somatomotor and control-relevant networks (adolescence) and earlier aging of default mode and salience/ventral attention systems (middle adulthood). Biological aging showed complementary associations with the neural patterns relevant to resilience in adolescence (positive relationship) versus middle-age (negative relationship). Transcriptomic and expression quantitative trait locus data analyses linked the neural aging patterns correlated with psychological resilience in middle adulthood to gene expression patterns suggestive of increased AD risk. Our results imply a partially antagonistic relationship between resilience against proximal stressors and longer-term psychological adjustment in later life. They thus underscore the importance of fine-tuning extant views on successful coping by considering the multiple timescales across which age-specific processes may unfold.
Collapse
Affiliation(s)
- Raluca Petrican
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom.
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Natalie Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| |
Collapse
|
32
|
Chen YC, Arnatkevičiūtė A, McTavish E, Pang JC, Chopra S, Suo C, Fornito A, Aquino KM. The individuality of shape asymmetries of the human cerebral cortex. eLife 2022; 11:75056. [PMID: 36197720 PMCID: PMC9668337 DOI: 10.7554/elife.75056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/04/2022] [Indexed: 01/05/2023] Open
Abstract
Asymmetries of the cerebral cortex are found across diverse phyla and are particularly pronounced in humans, with important implications for brain function and disease. However, many prior studies have confounded asymmetries due to size with those due to shape. Here, we introduce a novel approach to characterize asymmetries of the whole cortical shape, independent of size, across different spatial frequencies using magnetic resonance imaging data in three independent datasets. We find that cortical shape asymmetry is highly individualized and robust, akin to a cortical fingerprint, and identifies individuals more accurately than size-based descriptors, such as cortical thickness and surface area, or measures of inter-regional functional coupling of brain activity. Individual identifiability is optimal at coarse spatial scales (~37 mm wavelength), and shape asymmetries show scale-specific associations with sex and cognition, but not handedness. While unihemispheric cortical shape shows significant heritability at coarse scales (~65 mm wavelength), shape asymmetries are determined primarily by subject-specific environmental effects. Thus, coarse-scale shape asymmetries are highly personalized, sexually dimorphic, linked to individual differences in cognition, and are primarily driven by stochastic environmental influences.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Monash Data Futures Institute, Monash UniversityMelbourneAustralia
| | - Aurina Arnatkevičiūtė
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Eugene McTavish
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Healthy Brain and Mind Research Centre, Faculty of Health Sciences, Australian Catholic UniversityFitzroyAustralia
| | - James C Pang
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia
| | - Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Department of Psychology, Yale UniversityNew HavenUnited States
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia
| | - Kevin M Aquino
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,School of Physics, University of SydneySydneyAustralia,Center of Excellence for Integrative Brain Function, University of SydneySydneyAustralia,BrainKey IncSan FranciscoUnited States
| | | |
Collapse
|
33
|
Ferreira FS, Mihalik A, Adams RA, Ashburner J, Mourao-Miranda J. A hierarchical Bayesian model to find brain-behaviour associations in incomplete data sets. Neuroimage 2021; 249:118854. [PMID: 34971767 PMCID: PMC8861855 DOI: 10.1016/j.neuroimage.2021.118854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Canonical Correlation Analysis (CCA) and its regularised versions have been widely used in the neuroimaging community to uncover multivariate associations between two data modalities (e.g., brain imaging and behaviour). However, these methods have inherent limitations: (1) statistical inferences about the associations are often not robust; (2) the associations within each data modality are not modelled; (3) missing values need to be imputed or removed. Group Factor Analysis (GFA) is a hierarchical model that addresses the first two limitations by providing Bayesian inference and modelling modality-specific associations. Here, we propose an extension of GFA that handles missing data, and highlight that GFA can be used as a predictive model. We applied GFA to synthetic and real data consisting of brain connectivity and non-imaging measures from the Human Connectome Project (HCP). In synthetic data, GFA uncovered the underlying shared and specific factors and predicted correctly the non-observed data modalities in complete and incomplete data sets. In the HCP data, we identified four relevant shared factors, capturing associations between mood, alcohol and drug use, cognition, demographics and psychopathological measures and the default mode, frontoparietal control, dorsal and ventral networks and insula, as well as two factors describing associations within brain connectivity. In addition, GFA predicted a set of non-imaging measures from brain connectivity. These findings were consistent in complete and incomplete data sets, and replicated previous findings in the literature. GFA is a promising tool that can be used to uncover associations between and within multiple data modalities in benchmark datasets (such as, HCP), and easily extended to more complex models to solve more challenging tasks.
Collapse
Affiliation(s)
- Fabio S Ferreira
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, UK.
| | - Agoston Mihalik
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, UK
| | - Rick A Adams
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, UK; Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Janaina Mourao-Miranda
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, UK
| |
Collapse
|
34
|
ter Braak CJF. Predictor versus response permutation for significance testing in weighted regression and redundancy analysis. J STAT COMPUT SIM 2021. [DOI: 10.1080/00949655.2021.2019256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Chopra S, Francey SM, O’Donoghue B, Sabaroedin K, Arnatkeviciute A, Cropley V, Nelson B, Graham J, Baldwin L, Tahtalian S, Yuen HP, Allott K, Alvarez-Jimenez M, Harrigan S, Pantelis C, Wood SJ, McGorry P, Fornito A. Functional Connectivity in Antipsychotic-Treated and Antipsychotic-Naive Patients With First-Episode Psychosis and Low Risk of Self-harm or Aggression: A Secondary Analysis of a Randomized Clinical Trial. JAMA Psychiatry 2021; 78:994-1004. [PMID: 34160595 PMCID: PMC8223142 DOI: 10.1001/jamapsychiatry.2021.1422] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Altered functional connectivity (FC) is a common finding in resting-state functional magnetic resonance imaging (rs-fMRI) studies of people with psychosis, yet how FC disturbances evolve in the early stages of illness, and how antipsychotic treatment influences these disturbances, remains unknown. OBJECTIVE To investigate longitudinal FC changes in antipsychotic-naive and antipsychotic-treated patients with first-episode psychosis (FEP). DESIGN, SETTING, AND PARTICIPANTS This secondary analysis of a triple-blind, randomized clinical trial was conducted over a 5-year recruitment period between April 2008 and December 2016 with 59 antipsychotic-naive patients with FEP receiving either a second-generation antipsychotic or a placebo pill over a treatment period of 6 months. Participants were required to have low suicidality and aggression, to have a duration of untreated psychosis of less than 6 months, and to be living in stable accommodations with social support. Both FEP groups received intensive psychosocial therapy. A healthy control group was also recruited. Participants completed rs-fMRI scans at baseline, 3 months, and 12 months. Data were analyzed from May 2019 to August 2020. INTERVENTIONS Resting-state functional MRI was used to probe brain FC. Patients received either a second-generation antipsychotic or a matched placebo tablet. Both patient groups received a manualized psychosocial intervention. MAIN OUTCOMES AND MEASURES The primary outcomes of this analysis were to investigate (1) FC differences between patients and controls at baseline; (2) FC changes in medicated and unmedicated patients between baseline and 3 months; and (3) associations between longitudinal FC changes and clinical outcomes. An additional aim was to investigate long-term FC changes at 12 months after baseline. These outcomes were not preregistered. RESULTS Data were analyzed for 59 patients (antipsychotic medication plus psychosocial treatment: 28 [47.5%]; mean [SD] age, 19.5 [3.0] years; 15 men [53.6%]; placebo plus psychosocial treatment: 31 [52.5%]; mean [SD] age, 18.8 [2.7]; 16 men [51.6%]) and 27 control individuals (mean [SD] age, 21.9 [1.9] years). At baseline, patients showed widespread functional dysconnectivity compared with controls, with reductions predominantly affecting interactions between the default mode network, limbic systems, and the rest of the brain. From baseline to 3 months, patients receiving placebo showed increased FC principally within the same systems; some of these changes correlated with improved clinical outcomes (canonical correlation analysis R = 0.901; familywise error-corrected P = .005). Antipsychotic exposure was associated with increased FC primarily between the thalamus and the rest of the brain. CONCLUSIONS AND RELEVANCE In this secondary analysis of a clinical trial, antipsychotic-naive patients with FEP showed widespread functional dysconnectivity at baseline, followed by an early normalization of default mode network and cortical limbic dysfunction in patients receiving placebo and psychosocial intervention. Antipsychotic exposure was associated with FC changes concentrated on thalamocortical networks. TRIAL REGISTRATION ACTRN12607000608460.
Collapse
Affiliation(s)
- Sidhant Chopra
- Turner Institute for Brain and Mental Health, Monash University School of Psychological Sciences, Clayton, Victoria, Australia,Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Shona M. Francey
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brian O’Donoghue
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kristina Sabaroedin
- Turner Institute for Brain and Mental Health, Monash University School of Psychological Sciences, Clayton, Victoria, Australia,Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Aurina Arnatkeviciute
- Turner Institute for Brain and Mental Health, Monash University School of Psychological Sciences, Clayton, Victoria, Australia
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
| | - Barnaby Nelson
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica Graham
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lara Baldwin
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Steven Tahtalian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
| | - Hok Pan Yuen
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kelly Allott
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mario Alvarez-Jimenez
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susy Harrigan
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia,Department of Social Work, Monash University, Caulfield, Victoria, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
| | - Stephen J. Wood
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia,University of Birmingham School of Psychology, Edgbaston, United Kingdom
| | - Patrick McGorry
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash University School of Psychological Sciences, Clayton, Victoria, Australia,Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
36
|
Zhang S, Spoletini LJ, Gold BP, Morgan VL, Rogers BP, Chang C. Interindividual Signatures of fMRI Temporal Fluctuations. Cereb Cortex 2021; 31:4450-4463. [PMID: 33903915 PMCID: PMC8408464 DOI: 10.1093/cercor/bhab099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/28/2021] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
The complexity and variability of human brain activity, such as quantified from Functional Magnetic Resonance Imaging (fMRI) time series, have been widely studied as potential markers of healthy and pathological states. However, the extent to which fMRI temporal features exhibit stable markers of inter-individual differences in brain function across healthy young adults is currently an open question. In this study, we draw upon two widely used time-series measures-a nonlinear complexity measure (sample entropy; SampEn) and a spectral measure of low-frequency content (fALFF)-to capture dynamic properties of resting-state fMRI in a large sample of young adults from the Human Connectome Project. We observe that these two measures are closely related, and that both generate reproducible patterns across brain regions over four different fMRI runs, with intra-class correlations of up to 0.8. Moreover, we find that both metrics can uniquely differentiate subjects with high identification rates (ca. 89%). Canonical correlation analysis revealed a significant relationship between multivariate brain temporal features and behavioral measures. Overall, these findings suggest that regional profiles of fMRI temporal characteristics may provide stable markers of individual differences, and motivate future studies to further probe relationships between fMRI time series metrics and behavior.
Collapse
Affiliation(s)
- Shengchao Zhang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
| | - Liam J Spoletini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Benjamin P Gold
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Baxter P Rogers
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
37
|
van der Wijk G, Harris JK, Hassel S, Davis AD, Zamyadi M, Arnott SR, Milev R, Lam RW, Frey BN, Hall GB, Müller DJ, Rotzinger S, Kennedy SH, Strother SC, MacQueen GM, Protzner AB. Baseline Functional Connectivity in Resting State Networks Associated with Depression and Remission Status after 16 Weeks of Pharmacotherapy: A CAN-BIND Report. Cereb Cortex 2021; 32:1223-1243. [PMID: 34416758 DOI: 10.1093/cercor/bhab286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the neural underpinnings of major depressive disorder (MDD) and its treatment could improve treatment outcomes. So far, findings are variable and large sample replications scarce. We aimed to replicate and extend altered functional connectivity associated with MDD and pharmacotherapy outcomes in a large, multisite sample. Resting-state fMRI data were collected from 129 patients and 99 controls through the Canadian Biomarker Integration Network in Depression. Symptoms were assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS). Connectivity was measured as correlations between four seeds (anterior and posterior cingulate cortex, insula and dorsolateral prefrontal cortex) and all other brain voxels. Partial least squares was used to compare connectivity prior to treatment between patients and controls, and between patients reaching remission (MADRS ≤ 10) early (within 8 weeks), late (within 16 weeks), or not at all. We replicated previous findings of altered connectivity in patients. In addition, baseline connectivity of the anterior/posterior cingulate and insula seeds differentiated patients with different treatment outcomes. The stability of these differences was established in the largest single-site subsample. Our replication and extension of altered connectivity highlighted previously reported and new differences between patients and controls, and revealed features that might predict remission prior to pharmacotherapy. Trial registration: ClinicalTrials.gov: NCT01655706.
Collapse
Affiliation(s)
- Gwen van der Wijk
- Department of Psychology, University of Calgary, Calgary AB T2N 1N4, Canada
| | - Jacqueline K Harris
- Department of Computing Science, University of Alberta, Edmonton AB T6G 2S4, Canada.,Alberta Machine Intelligence Institute, Edmonton AB T5J 3B1, Canada
| | - Stefanie Hassel
- Cumming School of Medicine, Department of Psychiatry, University of Calgary, Calgary AB T2N 4N1, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary AB T2N 4Z6, Canada
| | - Andrew D Davis
- Rotman Research Institute, Baycrest Health Sciences, Toronto ON M6A 2E1, Canada.,Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton ON L8S 4L6, Canada
| | - Mojdeh Zamyadi
- Rotman Research Institute, Baycrest Health Sciences, Toronto ON M6A 2E1, Canada
| | - Stephen R Arnott
- Rotman Research Institute, Baycrest Health Sciences, Toronto ON M6A 2E1, Canada
| | - Roumen Milev
- Queen's University, Departments of Psychiatry and Psychology, and Providence Care Hospital, Kingston ON K7L 3N6, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver BC V6T 2A1, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton ON L8S 4L8, Canada.,Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton ON L8N 4N6, Canada
| | - Geoffrey B Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton ON L8S 4L6, Canada.,Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton ON L8N 4N6, Canada
| | - Daniel J Müller
- Department of Psychiatry, University of Toronto, Toronto ON M5T 1R8, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto ON M5T 1R8, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto ON M5S 1A8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Susan Rotzinger
- Centre for Mental Health, University Health Network, Toronto ON M5G 1L7, Canada.,Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto ON M5B 1T8, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University of Toronto, Toronto ON M5T 1R8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto ON M5S 1A8, Canada.,Centre for Mental Health, University Health Network, Toronto ON M5G 1L7, Canada.,Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto ON M5B 1W8, Canada.,Krembil Research Institute, Toronto Western Hospital, Toronto ON M5T 0S8, Canada
| | - Stephen C Strother
- Rotman Research Institute, Baycrest Health Sciences, Toronto ON M6A 2E1, Canada.,Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
| | - Glenda M MacQueen
- Cumming School of Medicine, Department of Psychiatry, University of Calgary, Calgary AB T2N 4N1, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary AB T2N 4Z6, Canada
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, Calgary AB T2N 1N4, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary AB T2N 4Z6, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| |
Collapse
|
38
|
Han Y, Yuan H, Li J, Du J, Hu Y, Huang X. Study on Influencing Factors of Consistency in Manufacturing Process of Vehicle Lithium‐Ion Battery Based on Correlation Coefficient and Multivariate Linear Regression Model. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Youjun Han
- School of Automation Science and Engineering South China University of Technology Guangzhou 510640 P. R. China
- Institute of Industrial Technology Guangzhou and Chinese Academy of Sciences Guangzhou 511458 P. R. China
| | - Hongyuan Yuan
- School of Automation Science and Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Jin Li
- Institute of Industrial Technology Guangzhou and Chinese Academy of Sciences Guangzhou 511458 P. R. China
| | - Juan Du
- School of Automation Science and Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Yueming Hu
- School of Automation Science and Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Xuejie Huang
- Institute of Industrial Technology Guangzhou and Chinese Academy of Sciences Guangzhou 511458 P. R. China
- Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
39
|
Linke JO, Abend R, Kircanski K, Clayton M, Stavish C, Benson BE, Brotman MA, Renaud O, Smith SM, Nichols TE, Leibenluft E, Winkler AM, Pine DS. Shared and Anxiety-Specific Pediatric Psychopathology Dimensions Manifest Distributed Neural Correlates. Biol Psychiatry 2021; 89:579-587. [PMID: 33386133 PMCID: PMC7889729 DOI: 10.1016/j.biopsych.2020.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Imaging research has not yet delivered reliable psychiatric biomarkers. One challenge, particularly among youth, is high comorbidity. This challenge might be met through canonical correlation analysis designed to model mutual dependencies between symptom dimensions and neural measures. We mapped the multivariate associations that intrinsic functional connectivity manifests with pediatric symptoms of anxiety, irritability, and attention-deficit/hyperactivity disorder (ADHD) as common, impactful, co-occurring problems. We evaluate the replicability of such latent dimensions in an independent sample. METHODS We obtained ratings of anxiety, irritability, and ADHD, and 10 minutes of resting-state functional magnetic resonance imaging data, from two independent cohorts. Both cohorts (discovery: n = 182; replication: n = 326) included treatment-seeking youth with anxiety disorders, with disruptive mood dysregulation disorder, with ADHD, or without psychopathology. Functional connectivity was modeled as partial correlations among 216 brain areas. Using canonical correlation analysis and independent component analysis jointly we sought maximally correlated, maximally interpretable latent dimensions of brain connectivity and clinical symptoms. RESULTS We identified seven canonical variates in the discovery and five in the replication cohort. Of these canonical variates, three exhibited similarities across datasets: two variates consistently captured shared aspects of irritability, ADHD, and anxiety, while the third was specific to anxiety. Across cohorts, canonical variates did not relate to specific resting-state networks but comprised edges interconnecting established networks within and across both hemispheres. CONCLUSIONS Findings revealed two replicable types of clinical variates, one related to multiple symptom dimensions and a second relatively specific to anxiety. Both types involved a multitude of broadly distributed, weak brain connections as opposed to strong connections encompassing known resting-state networks.
Collapse
Affiliation(s)
- Julia O Linke
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.
| | - Rany Abend
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Katharina Kircanski
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Michal Clayton
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Caitlin Stavish
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Brenda E Benson
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Melissa A Brotman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Olivier Renaud
- Methodology and Data Analysis, Department of Psychology, University of Geneva, Switzerland
| | - Stephen M Smith
- Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Thomas E Nichols
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Ellen Leibenluft
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Anderson M Winkler
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
40
|
Salvan P, Wassenaar T, Wheatley C, Beale N, Cottaar M, Papp D, Bastiani M, Fitzgibbon S, Duff E, Andersson J, Winkler AM, Douaud G, Nichols TE, Smith S, Dawes H, Johansen-Berg H. Multimodal Imaging Brain Markers in Early Adolescence Are Linked with a Physically Active Lifestyle. J Neurosci 2021; 41:1092-1104. [PMID: 33436528 PMCID: PMC7880281 DOI: 10.1523/jneurosci.1260-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/10/2020] [Accepted: 10/10/2020] [Indexed: 11/21/2022] Open
Abstract
The World Health Organization promotes physical exercise and a healthy lifestyle as means to improve youth development. However, relationships between physical lifestyle and human brain development are not fully understood. Here, we asked whether a human brain-physical latent mode of covariation underpins the relationship between physical activity, fitness, and physical health measures with multimodal neuroimaging markers. In 50 12-year old school pupils (26 females), we acquired multimodal whole-brain MRI, characterizing brain structure, microstructure, function, myelin content, and blood perfusion. We also acquired physical variables measuring objective fitness levels, 7 d physical activity, body mass index, heart rate, and blood pressure. Using canonical correlation analysis, we unravel a latent mode of brain-physical covariation, independent of demographics, school, or socioeconomic status. We show that MRI metrics with greater involvement in this mode also showed spatially extended patterns across the brain. Specifically, global patterns of greater gray matter perfusion, volume, cortical surface area, greater white matter extra-neurite density, and resting state networks activity covaried positively with measures reflecting a physically active phenotype (high fit, low sedentary individuals). Showing that a physically active lifestyle is linked with systems-level brain MRI metrics, these results suggest widespread associations relating to several biological processes. These results support the notion of close brain-body relationships and underline the importance of investigating modifiable lifestyle factors not only for physical health but also for brain health early in adolescence.SIGNIFICANCE STATEMENT An active lifestyle is key for healthy development. In this work, we answer the following question: How do brain neuroimaging markers relate with young adolescents' level of physical activity, fitness, and physical health? Combining advanced whole-brain multimodal MRI metrics with computational approaches, we show a robust relationship between physically active lifestyles and spatially extended, multimodal brain imaging-derived phenotypes. Suggesting a wider effect on brain neuroimaging metrics than previously thought, this work underlies the importance of studying physical lifestyle, as well as other brain-body relationships in an effort to foster brain health at this crucial stage in development.
Collapse
Affiliation(s)
- Piergiorgio Salvan
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Thomas Wassenaar
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Catherine Wheatley
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Nicholas Beale
- Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom
| | - Michiel Cottaar
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Daniel Papp
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Matteo Bastiani
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- National Institute for Health Research Biomedical Research Centre, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Sean Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Euguene Duff
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Jesper Andersson
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Anderson M Winkler
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-9663, Maryland
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, Connecticut
| | - Gwenaëlle Douaud
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Thomas E Nichols
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, United Kingdom
- Department of Statistics, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Stephen Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Helen Dawes
- Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|