1
|
Jensen D, Chen J, Turner JA, Stephen JM, Wang YP, Wilson TW, Calhoun VD, Liu J. Co-methylation networks associated with cognition and structural brain development during adolescence. Front Genet 2025; 15:1451150. [PMID: 39840280 PMCID: PMC11746905 DOI: 10.3389/fgene.2024.1451150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/26/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Typical adolescent neurodevelopment is marked by decreases in grey matter (GM) volume, increases in myelination, measured by fractional anisotropy (FA), and improvement in cognitive performance. Methods To understand how epigenetic changes, methylation (DNAm) in particular, may be involved during this phase of development, we studied cognitive assessments, DNAm from saliva, and neuroimaging data from a longitudinal cohort of normally developing adolescents, aged nine to fourteen. We extracted networks of methylation with patterns of correlated change using a weighted gene correlation network analysis (WCGNA). Modules from these analyses, consisting of co-methylation networks, were then used in multivariate analyses with GM, FA, and cognitive measures to assess the nature of their relationships with cognitive improvement and brain development in adolescence. Results This longitudinal exploration of co-methylated networks revealed an increase in correlated epigenetic changes as subjects progressed into adolescence. Co-methylation networks enriched for pathways involved in neuronal systems, potassium channels, neurexins and neuroligins were both conserved across time as well as associated with maturation patterns in GM, FA, and cognition. Discussion Our research shows that correlated changes in the DNAm of genes in neuronal processes involved in adolescent brain development that were both conserved across time and related to typical cognitive and brain maturation, revealing possible epigenetic mechanisms driving this stage of development.
Collapse
Affiliation(s)
- Dawn Jensen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Jessica A. Turner
- Department of Psychiatry and Behavioral Health, Wexnar Medical Center, Ohio State University, Columbus, OH, United States
| | | | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
- The Mind Research Network, Albuquerque, NM, United States
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
2
|
Picci G, Petro NM, Casagrande CC, Ott LR, Okelberry HJ, Rice DL, Coutant AT, Ende GC, Steiner EL, Wang YP, Stephen JM, Calhoun VD, Wilson TW. Anterior pituitary gland volume mediates associations between adrenarche and changes in transdiagnostic symptoms in youth. Dev Cogn Neurosci 2025; 71:101507. [PMID: 39787639 PMCID: PMC11780137 DOI: 10.1016/j.dcn.2025.101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/05/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
The pituitary gland (PG) plays a central role in the production and secretion of pubertal hormones, with documented links to the increase in mental health symptoms during adolescence. Although literature has largely focused on examining whole PG volume, recent findings have demonstrated associations among pubertal hormone levels, including dehydroepiandrosterone (DHEA), PG subregions, and mental health symptoms during adolescence. Despite the anterior PG's role in DHEA production, studies have not yet examined potential links with transdiagnostic symptomology (i.e., dysregulation) pertinent to long-term functioning. Therefore, the current study sought examine whether anterior PG volume mediates associations between DHEA levels and changes in dysregulation symptoms in an adolescent sample (N = 114, 9 -17 years, Mage = 12.87, SD = 1.88). Following manual tracing, structural equation modeling revealed that greater anterior, not posterior, PG volume mediated the association between greater DHEA levels and increasing dysregulation symptoms across time, controlling for baseline dysregulation symptom levels. Results also showed that greater DHEA levels related to decreasing symptoms across time, suggesting potential attenuation effects. Altogether, these results provide support for separating the anterior and posterior PG by demonstrating specificity in the role of the anterior PG in adrenarcheal processes that may confer risk for adolescent psychopathology.
Collapse
Affiliation(s)
- Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| | - Nathan M Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Chloe C Casagrande
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Lauren R Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Danielle L Rice
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Grace C Ende
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Erica L Steiner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | | | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, GA, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
3
|
Ward TW, Schantell M, Dietz SM, Ende GC, Rice DL, Coutant AT, Arif Y, Wang YP, Calhoun VD, Stephen JM, Heinrichs-Graham E, Taylor BK, Wilson TW. Interplay between preclinical indices of obesity and neural signatures of fluid intelligence in youth. Commun Biol 2024; 7:1285. [PMID: 39379610 PMCID: PMC11461743 DOI: 10.1038/s42003-024-06924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Pediatric obesity rates have quadrupled in the United States, and deficits in higher-order cognition have been linked to obesity, though it remains poorly understood how deviations from normal body mass are related to the neural dynamics serving cognition in youth. Herein, we determine how age- and sex-adjusted measures of body mass index (zBMI) scale with neural activity in brain regions underlying fluid intelligence. Seventy-two youth aged 9-16 years underwent high-density magnetoencephalography while performing an abstract reasoning task. The resulting data were transformed into the time-frequency domain and significant oscillatory responses were imaged using a beamformer. Whole-brain correlations with zBMI were subsequently conducted to quantify relationships between zBMI and neural activity serving abstract reasoning. Our results reveal that participants with higher zBMI exhibit attenuated theta (4-8 Hz) responses in both the left dorsolateral prefrontal cortex and left temporoparietal junction, and that weaker temporoparietal responses scale with slower reaction times. These findings suggest that higher zBMI values are associated with weaker theta oscillations in key brain regions and altered performance during an abstract reasoning task. Thus, future investigations should evaluate neurobehavioral function during abstract reasoning in youth with more severe obesity to identify the potential impact.
Collapse
Affiliation(s)
- Thomas W Ward
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sarah M Dietz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Grace C Ende
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Danielle L Rice
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging & Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA.
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA.
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Belyaeva I, Gabrielson B, Wang YP, Wilson TW, Calhoun VD, Stephen JM, Adali T. Learning Spatiotemporal Brain Dynamics in Adolescents via Multimodal MEG and fMRI Data Fusion Using Joint Tensor/Matrix Decomposition. IEEE Trans Biomed Eng 2024; 71:2189-2200. [PMID: 38345949 PMCID: PMC11240882 DOI: 10.1109/tbme.2024.3364704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
OBJECTIVE Brain function is understood to be regulated by complex spatiotemporal dynamics, and can be characterized by a combination of observed brain response patterns in time and space. Magnetoencephalography (MEG), with its high temporal resolution, and functional magnetic resonance imaging (fMRI), with its high spatial resolution, are complementary imaging techniques with great potential to reveal information about spatiotemporal brain dynamics. Hence, the complementary nature of these imaging techniques holds much promise to study brain function in time and space, especially when the two data types are allowed to fully interact. METHODS We employed coupled tensor/matrix factorization (CMTF) to extract joint latent components in the form of unique spatiotemporal brain patterns that can be used to study brain development and function on a millisecond scale. RESULTS Using the CMTF model, we extracted distinct brain patterns that revealed fine-grained spatiotemporal brain dynamics and typical sensory processing pathways informative of high-level cognitive functions in healthy adolescents. The components extracted from multimodal tensor fusion possessed better discriminative ability between high- and low-performance subjects than single-modality data-driven models. CONCLUSION Multimodal tensor fusion successfully identified spatiotemporal brain dynamics of brain function and produced unique components with high discriminatory power. SIGNIFICANCE The CMTF model is a promising tool for high-order, multimodal data fusion that exploits the functional resolution of MEG and fMRI, and provides a comprehensive picture of the developing brain in time and space.
Collapse
|
5
|
Picci G, Petro NM, Casagrande CC, Ott LR, Okelberry HJ, Rice DL, Coutant AT, Ende GC, Steiner EL, Wang YP, Stephen JM, Calhoun VD, Wilson TW. Anterior pituitary gland volume mediates associations between pubertal hormones and changes in transdiagnostic symptoms in youth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594766. [PMID: 38798387 PMCID: PMC11118574 DOI: 10.1101/2024.05.17.594766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The pituitary gland (PG) plays a central role in the production and secretion of pubertal hormones, with documented links to the emergence and increase in mental health symptoms known to occur during adolescence. Although much of the literature has focused on examining whole PG volume, recent findings suggest that there are associations among pubertal hormone levels, including dehydroepiandrosterone (DHEA), subregions of the PG, and elevated mental health symptoms (e.g., internalizing symptoms) during adolescence. Surprisingly, studies have not yet examined associations among these factors and increasing transdiagnostic symptomology, despite DHEA being a primary output of the anterior PG. Therefore, the current study sought to fill this gap by examining whether anterior PG volume specifically mediates associations between DHEA levels and changes in dysregulation symptoms in an adolescent sample ( N = 114, 9 - 17 years, M age = 12.87, SD = 1.88). Following manual tracing of the anterior and posterior PG, structural equation modeling revealed that greater anterior, not posterior, PG volume mediated the association between greater DHEA levels and increasing dysregulation symptoms across time, controlling for baseline dysregulation symptom levels. These results suggest specificity in the role of the anterior PG in adrenarcheal processes that may confer risk for psychopathology during adolescence. This work not only highlights the importance of separately tracing the anterior and posterior PG, but also suggests that transdiagnostic factors like dysregulation are useful in parsing hormone-related increases in mental health symptoms in youth.
Collapse
|
6
|
Picci G, Casagrande CC, Ott LR, Petro NM, Christopher‐Hayes NJ, Johnson HJ, Willett MP, Okelberry HJ, Wang Y, Stephen JM, Calhoun VD, Wilson TW. Dehydroepiandrosterone mediates associations between trauma-related symptoms and anterior pituitary volume in children and adolescents. Hum Brain Mapp 2023; 44:6388-6398. [PMID: 37853842 PMCID: PMC10681633 DOI: 10.1002/hbm.26516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 10/20/2023] Open
Abstract
INTRODUCTION The anterior pituitary gland (PG) is a potential locus of hypothalamic-pituitary-adrenal (HPA) axis responsivity to early life stress, with documented associations between dehydroepiandrosterone (DHEA) levels and anterior PG volumes. In adults, elevated anxiety/depressive symptoms are related to diminished DHEA levels, and studies have shown a positive relationship between DHEA and anterior pituitary volumes. However, specific links between responses to stress, DHEA levels, and anterior pituitary volume have not been established in developmental samples. METHODS High-resolution T1-weighted MRI scans were collected from 137 healthy youth (9-17 years; Mage = 12.99 (SD = 1.87); 49% female; 85% White, 4% Indigenous, 1% Asian, 4% Black, 4% multiracial, 2% not reported). The anterior and posterior PGs were manually traced by trained raters. We examined the mediating effects of salivary DHEA on trauma-related symptoms (i.e., anxiety, depression, and posttraumatic) and PG volumes as well as an alternative model examining mediating effects of PG volume on DHEA and trauma-related symptoms. RESULTS DHEA mediated the association between anxiety symptoms and anterior PG volume. Specifically, higher anxiety symptoms related to lower DHEA levels, which in turn were related to smaller anterior PG. CONCLUSIONS These results shed light on the neurobiological sequelae of elevated anxiety in youth and are consistent with adult findings showing suppressed levels of DHEA in those with greater comorbid anxiety and depression. Specifically, adolescents with greater subclinical anxiety may exhibit diminished levels of DHEA during the pubertal window, which may be associated with disruptions in anterior PG growth.
Collapse
Affiliation(s)
- Giorgia Picci
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Chloe C. Casagrande
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Lauren R. Ott
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Nathan M. Petro
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | | | - Hallie J. Johnson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Madelyn P. Willett
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Yu‐Ping Wang
- Department of Biomedical EngineeringTulane UniversityNew OrleansLouisianaUSA
| | | | - Vince D. Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of technology, and Emory UniversityAtlantaGeorgiaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
7
|
Picci G, Ott LR, Penhale SH, Taylor BK, Johnson HJ, Willett MP, Okelberry HJ, Wang Y, Calhoun VD, Stephen JM, Wilson TW. Developmental changes in endogenous testosterone have sexually-dimorphic effects on spontaneous cortical dynamics. Hum Brain Mapp 2023; 44:6043-6054. [PMID: 37811842 PMCID: PMC10619376 DOI: 10.1002/hbm.26496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/18/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The transition from childhood to adolescence is associated with an influx of sex hormones, which not only facilitates physical and behavioral changes, but also dramatic changes in neural circuitry. While previous work has shown that pubertal hormones modulate structural and functional brain development, few of these studies have focused on the impact that such hormones have on spontaneous cortical activity, and whether these effects are modulated by sex during this critical developmental window. Herein, we examined the effect of endogenous testosterone on spontaneous cortical activity in 71 typically-developing youth (ages 10-17 years; 32 male). Participants completed a resting-state magnetoencephalographic (MEG) recording, structural MRI, and provided a saliva sample for hormone analysis. MEG data were source-reconstructed and the power within five canonical frequency bands (delta, theta, alpha, beta, and gamma) was computed. The resulting power spectral density maps were analyzed via vertex-wise ANCOVAs to identify spatially specific effects of testosterone and sex by testosterone interactions, while covarying out age. We found robust sex differences in the modulatory effects of testosterone on spontaneous delta, beta, and gamma activity. These interactions were largely confined to frontal cortices and exhibited a stark switch in the directionality of the correlation from the low (delta) to high frequencies (beta/gamma). For example, in the delta band, greater testosterone related to lower relative power in prefrontal cortices in boys, while the reverse pattern was found for girls. These data suggest testosterone levels are uniquely related to the development of spontaneous cortical dynamics during adolescence, and such levels are associated with different developmental patterns in males and females within regions implicated in executive functioning.
Collapse
Affiliation(s)
- Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Lauren R. Ott
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Samantha H. Penhale
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Brittany K. Taylor
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Hallie J. Johnson
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Madelyn P. Willett
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Yu‐Ping Wang
- Department of Biomedical EngineeringTulane UniversityNew OrleansLouisianaUSA
| | - Vince D. Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of TechnologyEmory UniversityAtlantaGeorgiaUSA
| | | | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
8
|
Picci G, Petro NM, Son JJ, Agcaoglu O, Eastman JA, Wang YP, Stephen JM, Calhoun VD, Taylor BK, Wilson TW. Transdiagnostic indicators predict developmental changes in cognitive control resting-state networks. Dev Psychopathol 2023; 36:1-11. [PMID: 37615120 PMCID: PMC11140239 DOI: 10.1017/s0954579423001013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Over the past decade, transdiagnostic indicators in relation to neurobiological processes have provided extensive insight into youth's risk for psychopathology. During development, exposure to childhood trauma and dysregulation (i.e., so-called AAA symptomology: anxiety, aggression, and attention problems) puts individuals at a disproportionate risk for developing psychopathology and altered network-level neural functioning. Evidence for the latter has emerged from resting-state fMRI studies linking mental health symptoms and aberrations in functional networks (e.g., cognitive control (CCN), default mode networks (DMN)) in youth, although few of these investigations have used longitudinal designs. Herein, we leveraged a three-year longitudinal study to identify whether traumatic exposures and concomitant dysregulation trigger changes in the developmental trajectories of resting-state functional networks involved in cognitive control (N = 190; 91 females; time 1 Mage = 11.81). Findings from latent growth curve analyses revealed that greater trauma exposure predicted increasing connectivity between the CCN and DMN across time. Greater levels of dysregulation predicted reductions in within-network connectivity in the CCN. These findings presented in typically developing youth corroborate connectivity patterns reported in clinical populations, suggesting there is predictive utility in using transdiagnostic indicators to forecast alterations in resting-state networks implicated in psychopathology.
Collapse
Affiliation(s)
- Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Nathan M Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Oktay Agcaoglu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of technology, and Emory University, Atlanta, GA, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | | | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of technology, and Emory University, Atlanta, GA, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
9
|
Jensen D, Chen J, Turner JA, Stephen JM, Wang YP, Wilson TW, Calhoun VD, Liu J. Epigenetic associations with adolescent grey matter maturation and cognitive development. Front Genet 2023; 14:1222619. [PMID: 37529779 PMCID: PMC10390095 DOI: 10.3389/fgene.2023.1222619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction: Adolescence, a critical phase of human neurodevelopment, is marked by a tremendous reorganization of the brain and accompanied by improved cognitive performance. This development is driven in part by gene expression, which in turn is partly regulated by DNA methylation (DNAm). Methods: We collected brain imaging, cognitive assessments, and DNAm in a longitudinal cohort of approximately 200 typically developing participants, aged 9-14. This data, from three time points roughly 1 year apart, was used to explore the relationships between seven cytosine-phosphate-guanine (CpG) sites in genes highly expressed in brain tissues (GRIN2D, GABRB3, KCNC1, SLC12A9, CHD5, STXBP5, and NFASC), seven networks of grey matter (GM) volume change, and scores from seven cognitive tests. Results: The demethylation of the CpGs as well as the rates of change in DNAm were significantly related to improvements in total, crystalized, and fluid cognition scores, executive function, episodic memory, and processing speed, as well as several networks of GM volume increases and decreases that highlight typical patterns of brain maturation. Discussion: Our study provides a first look at the DNAm of genes involved in myelination, excitatory and inhibitory receptors, and connectivity, how they are related to the large-scale changes occurring in the brain structure as well as cognition during adolescence.
Collapse
Affiliation(s)
- Dawn Jensen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Jessica A. Turner
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Wexnar Medical Center, Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, United States
| | | | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
- The Mind Research Network, Albuquerque, NM, United States
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
10
|
Killanin AD, Taylor BK, Embury CM, Picci G, Wang YP, Calhoun VD, Stephen JM, Heinrichs-Graham E, Wilson TW. Testosterone levels mediate the dynamics of motor oscillatory coding and behavior in developing youth. Dev Cogn Neurosci 2023; 61:101257. [PMID: 37236034 PMCID: PMC10232658 DOI: 10.1016/j.dcn.2023.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Recent investigations have studied the development of motor-related oscillatory responses to delineate maturational changes from childhood to young adulthood. While these studies included youth during the pubertal transition period, none have probed the impact of testosterone levels on motor cortical dynamics and performance. We collected salivary testosterone samples and recorded magnetoencephalography during a complex motor sequencing task in 58 youth aged 9-15 years old. The relationships between testosterone, age, task behavior, and beta (15-23 Hz) oscillatory dynamics were examined using multiple mediation modeling. We found that testosterone mediated the effect of age on movement-related beta activity. We also found that the effect of age on movement duration was mediated by testosterone and reaction time. Interestingly, the relationships between testosterone and motor performance were not mediated by beta activity in the left primary motor cortex, which may indicate the importance of higher-order motor regions. Overall, our results suggest that testosterone has unique associations with neural and behavioral indices of complex motor performance, beyond those already characterized in the literature. These findings are the first to link developmental changes in testosterone levels to maturation of beta oscillatory dynamics serving complex motor planning and execution, and specific measures of motor performance.
Collapse
Affiliation(s)
- Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | | | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
11
|
Abrol A, Fu Z, Du Y, Wilson TW, Wang Y, Stephen JM, Calhoun VD. Developmental and aging resting functional magnetic resonance imaging brain state adaptations in adolescents and adults: A large N (>47K) study. Hum Brain Mapp 2023; 44:2158-2175. [PMID: 36629328 PMCID: PMC10028673 DOI: 10.1002/hbm.26200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
The brain's functional architecture and organization undergo continual development and modification throughout adolescence. While it is well known that multiple factors govern brain maturation, the constantly evolving patterns of time-resolved functional connectivity are still unclear and understudied. We systematically evaluated over 47,000 youth and adult brains to bridge this gap, highlighting replicable time-resolved developmental and aging functional brain patterns. The largest difference between the two life stages was captured in a brain state that indicated coherent strengthening and modularization of functional coupling within the auditory, visual, and motor subdomains, supplemented by anticorrelation with other subdomains in adults. This distinctive pattern, which we replicated in independent data, was consistently less modular or absent in children and presented a negative association with age in adults, thus indicating an overall inverted U-shaped trajectory. This indicates greater synchrony, strengthening, modularization, and integration of the brain's functional connections beyond adolescence, and gradual decline of this pattern during the healthy aging process. We also found evidence that the developmental changes may also bring along a departure from the canonical static functional connectivity pattern in favor of more efficient and modularized utilization of the vast brain interconnections. State-based statistical summary measures presented robust and significant group differences that also showed significant age-related associations. The findings reported in this article support the idea of gradual developmental and aging brain state adaptation processes in different phases of life and warrant future research via lifespan studies to further authenticate the projected time-resolved brain state trajectories.
Collapse
Affiliation(s)
- Anees Abrol
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - Zening Fu
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - Yuhui Du
- School of Computer & Information TechnologyShanxi UniversityTaiyuanChina
| | - Tony W. Wilson
- Boys Town National Research HospitalInstitute for Human NeuroscienceBoys TownNebraskaUSA
| | - Yu‐Ping Wang
- Department of Biomedical EngineeringTulane UniversityNew OrleansLouisianaUSA
- Department of Global Biostatistics and Data ScienceTulane UniversityNew OrleansLouisianaUSA
| | | | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
12
|
Son JJ, Schantell M, Picci G, Wang YP, Stephen JM, Calhoun VD, Doucet GE, Taylor BK, Wilson TW. Altered longitudinal trajectory of default mode network connectivity in healthy youth with subclinical depressive and posttraumatic stress symptoms. Dev Cogn Neurosci 2023; 60:101216. [PMID: 36857850 PMCID: PMC9986502 DOI: 10.1016/j.dcn.2023.101216] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The default mode network (DMN) plays a crucial role in internal self-processing, rumination, and social functions. Disruptions to DMN connectivity have been linked with early adversity and the emergence of psychopathology in adolescence and early adulthood. Herein, we investigate how subclinical psychiatric symptoms can impact DMN functional connectivity during the pubertal transition. Resting-state fMRI data were collected annually from 190 typically-developing youth (9-15 years-old) at three timepoints and within-network DMN connectivity was computed. We used latent growth curve modeling to determine how self-reported depressive and posttraumatic stress symptoms predicted rates of change in DMN connectivity over the three-year period. In the baseline model without predictors, we found no systematic changes in DMN connectivity over time. However, significant modulation emerged after adding psychopathology predictors; greater depressive symptomatology was associated with significant decreases in connectivity over time, whereas posttraumatic stress symptoms were associated with significant increases in connectivity over time. Follow-up analyses revealed that these effects were driven by connectivity changes involving the dorsal medial prefrontal cortex subnetwork. In conclusion, these data suggest that subclinical depressive and posttraumatic symptoms alter the trajectory of DMN connectivity, which may indicate that this network is a nexus of clinical significance in mental health disorders.
Collapse
Affiliation(s)
- Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | | | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of technology, and Emory University, Atlanta, GA, USA
| | - Gaelle E Doucet
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
13
|
Multi-Subject Analysis for Brain Developmental Patterns Discovery via Tensor Decomposition of MEG Data. Neuroinformatics 2023; 21:115-141. [PMID: 36001238 DOI: 10.1007/s12021-022-09599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 01/18/2023]
Abstract
Identification of informative signatures from electrophysiological signals is important for understanding brain developmental patterns, where techniques such as magnetoencephalography (MEG) are particularly useful. However, less attention has been given to fully utilizing the multidimensional nature of MEG data for extracting components that describe these patterns. Tensor factorizations of MEG yield components that encapsulate the data's multidimensional nature, providing parsimonious models identifying latent brain patterns for meaningful summarization of neural processes. To address the need for meaningful MEG signatures for studies of pediatric cohorts, we propose a tensor-based approach for extracting developmental signatures of multi-subject MEG data. We employ the canonical polyadic (CP) decomposition for estimating latent spatiotemporal components of the data, and use these components for group level statistical inference. Using CP decomposition along with hierarchical clustering, we were able to extract typical early and late latency event-related field (ERF) components that were discriminative of high and low performance groups ([Formula: see text]) and significantly correlated with major cognitive domains such as attention, episodic memory, executive function, and language comprehension. We demonstrate that tensor-based group level statistical inference of MEG can produce signatures descriptive of the multidimensional MEG data. Furthermore, these features can be used to study group differences in brain patterns and cognitive function of healthy children. We provide an effective tool that may be useful for assessing child developmental status and brain function directly from electrophysiological measurements and facilitate the prospective assessment of cognitive processes.
Collapse
|
14
|
Fung MH, Heinrichs-Graham E, Taylor BK, Frenzel MR, Eastman JA, Wang YP, Calhoun VD, Stephen JM, Wilson TW. The development of sensorimotor cortical oscillations is mediated by pubertal testosterone. Neuroimage 2022; 264:119745. [PMID: 36368502 DOI: 10.1016/j.neuroimage.2022.119745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Puberty is a period of substantial hormonal fluctuations, and pubertal hormones can modulate structural and functional changes in the developing brain. Many previous studies have characterized the neural oscillatory responses serving movement, which include a beta event-related desynchronization (ERD) preceding movement onset, gamma and theta responses coinciding with movement execution, and a post-movement beta-rebound (PMBR) response following movement offset. While a few studies have investigated the developmental trajectories of these neural oscillations serving motor control, the impact of pubertal hormone levels on the maturation of these dynamics has not yet been examined. Since the timing and tempo of puberty varies greatly between individuals, pubertal hormones may uniquely impact the maturation of motor cortical oscillations distinct from other developmental metrics, such as age. In the current study we quantified these oscillations using magnetoencephalography (MEG) and utilized chronological age and measures of endogenous testosterone as indices of development during the transition from childhood to adolescence in 69 youths. Mediation analyses revealed complex maturation patterns for the beta ERD, in which testosterone predicted both spontaneous baseline and ERD power through direct and indirect effects. Age, but not pubertal hormones, predicted motor-related theta, and no relationships between oscillatory responses and developmental metrics were found for gamma or PMBR responses. These findings provide novel insight into how pubertal hormones affect motor-related oscillations, and highlight the continued development of motor cortical dynamics throughout the pubertal period.
Collapse
Affiliation(s)
- Madison H Fung
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Mind Research Network, Albuquerque, NM, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
15
|
Badura Brack AS, Marklin M, Embury CM, Picci G, Frenzel M, Klanecky Earl A, Stephen J, Wang YP, Calhoun V, Wilson TW. Neurostructural brain imaging study of trait dissociation in healthy children. BJPsych Open 2022; 8:e172. [PMID: 36148845 PMCID: PMC9534905 DOI: 10.1192/bjo.2022.576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Trait dissociation has not been examined from a structural human brain mapping perspective in healthy adults or children. Non-pathological dissociation shares some features with daydreaming and mind-wandering, but also involves subtle disruptions in affect and autobiographical memory. AIMS To identify neurostructural biomarkers of trait dissociation in healthy children. METHOD Typically developing 9- to 15-year-olds (n = 180) without psychological or behavioural disorders were enrolled in the Developmental Chronnecto-Genomics (DevCoG) study of healthy brain development and completed psychological assessments of trauma exposure and dissociation, along with a structural T1-weighted magnetic resonance imaging. We conducted univariate ANCOVA generalised linear models for each region of the default mode network examining the effects of trait dissociation, including scanner site, age, gender and trauma as covariates and correcting for multiple comparison. RESULTS We found that the precuneus was significantly larger in children with higher levels of trait dissociation but this was not related to trauma exposure. The inferior parietal volume was smaller in children with higher levels of trauma but was not related to dissociation. No other regions of interest, including frontal and limbic structures, were significantly related to trait dissociation even before multiple comparison correction. CONCLUSIONS Trait dissociation reflects subtle cognitive disruptions worthy of study in healthy people and warrants study as a potential risk factor for psychopathology. This neurostructural study of trait dissociation in healthy children identified the precuneus as an essential brain region to consider in future dissociation research.
Collapse
Affiliation(s)
- Amy S. Badura Brack
- Department of Psychological Science, Creighton University, Omaha, Nebraska, USA
| | - Marika Marklin
- Department of Psychological Science, Creighton University, Omaha, Nebraska, USA
| | - Christine M. Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA; and Department of Psychology, University of Nebraska – Omaha, Nebraska, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA
| | - Michaela Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA; and Department of Psychology, University of Nebraska – Omaha, Nebraska, USA
| | | | - Julia Stephen
- The Mind Research Network, Albuquerque, New Mexico, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA; and Department of Psychology, University of Nebraska – Omaha, Nebraska, USA
| |
Collapse
|
16
|
Taylor BK, Fung MH, Frenzel MR, Johnson HJ, Willett MP, Badura-Brack AS, White SF, Wilson TW. Increases in Circulating Cortisol during the COVID-19 Pandemic are Associated with Changes in Perceived Positive and Negative Affect among Adolescents. Res Child Adolesc Psychopathol 2022; 50:1543-1555. [PMID: 36048374 PMCID: PMC9435427 DOI: 10.1007/s10802-022-00967-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/03/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has spread across the world and resulted in over 5 million deaths to date, as well as countless lockdowns, disruptions to daily life, and extended period of social distancing and isolation. The impacts on youth in particular are astounding, with shifts in learning platforms, limited social outlets, and prolonged uncertainty about the future. Surveys have shown that mental health among youth has severely suffered during the pandemic. However, limited research to date has reported on physiological indices of stress surrounding the pandemic, such as cortisol. Cortisol is a stress hormone that typically increases during stressful situations and can have deleterious effects on mental and physical health when chronically heightened. The present study leveraged hair cortisol concentration measurements, which allowed the retrospectiveinvestigation of circulating cortisol prior to- versus after pandemic-related local lockdowns during the first wave of the pandemic. A final sample of 44 youth ages 10- to 18-years-old provided hair samples and reported on their perceived affective well-being and level of concern regarding pandemic-related stressors between May and June of 2020. We found significant levels of concern and decreases in affective well-being following local lockdowns. Moreover, we saw that cortisol robustly increased following local lockdowns, and those increases were predictive of changes in affect. These findings provide critical insights into the underlying neuroendocrinology of stress during the pandemic and support the need for resources to support youths’ mental health and well-being during this globally significant event.
Collapse
|
17
|
Boonyakitanont P, Gabrielson B, Belyaeva I, Olikkal P, Songsiri J, Wang YP, Wilson TW, Calhoun VD, Stephen JM, Adali T. An ICA-based framework for joint analysis of cognitive scores and MEG event-related fields. 2022 44TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC) 2022; 2022:3594-3598. [PMID: 36086046 DOI: 10.1109/embc48229.2022.9871122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This paper proposes an independent component analysis (ICA)-based framework for exploring associations between neural signals measured with magnetoencephalography (MEG) and non-neuroimaging data of healthy subjects. Our proposed framework contains methods for subject group identification, latent source estimation of MEG, and discriminatory source visualization. Hierarchical clustering on principal components (HCPC) is used to cluster subject groups based on cognitive scores, and ICA is performed on MEG evoked responses such that not only higher-order statistics but also sample dependence within sources is taken into account. The clustered subject labels and estimated sources are jointly analyzed to determine discriminatory sources. Finally, discriminatory sources are used to calculate global difference maps (GDMs) for the summary. Results using a new data set reveal that estimated sources are significantly correlated with cognitive measures and subject demographics. Discriminatory sources have significant correlations with variables that have not been previously used for group identification, and GDMs can effectively identify group differences.
Collapse
Affiliation(s)
| | - B. Gabrielson
- University of Maryland,Baltimore County, Baltimore,MD,USA
| | - I. Belyaeva
- University of Maryland,Baltimore County, Baltimore,MD,USA
| | - P. Olikkal
- University of Maryland,Baltimore County, Baltimore,MD,USA
| | | | | | - T. W. Wilson
- Boys Town National Research Hospital,Omaha,NE,USA
| | - V. D. Calhoun
- Lovelace Biomedical Research Institute,The Mind Research Network a division,Albuquerque,NM,USA
| | - J. M. Stephen
- Lovelace Biomedical Research Institute,The Mind Research Network a division,Albuquerque,NM,USA
| | - T. Adali
- University of Maryland,Baltimore County, Baltimore,MD,USA
| |
Collapse
|
18
|
Fung MH, Rahman RL, Taylor BK, Frenzel MR, Eastman JA, Wang Y, Calhoun VD, Stephen JM, Wilson TW. The impact of pubertal DHEA on the development of visuospatial oscillatory dynamics. Hum Brain Mapp 2022; 43:5154-5166. [PMID: 35778797 PMCID: PMC9812248 DOI: 10.1002/hbm.25991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 01/15/2023] Open
Abstract
The adolescent brain undergoes tremendous structural and functional changes throughout puberty. Previous research has demonstrated that pubertal hormones can modulate sexually dimorphic changes in cortical development, as well as age-related maturation of the neural activity underlying cognitive processes. However, the precise impact of pubertal hormones on these functional changes in the developing human brain remains poorly understood. In the current study, we quantified the neural oscillatory activity serving visuospatial processing using magnetoencephalography, and utilized measures of dehydroepiandrosterone (DHEA) as an index of development during the transition from childhood to adolescence (i.e., puberty). Within a sample of typically developing youth (ages 9-15), a novel association between pubertal DHEA and theta oscillatory activity indicated that less mature children exhibited stronger neural responses in higher-order prefrontal cortices during the visuospatial task. Theta coherence between bilateral prefrontal regions also increased with increasing DHEA, such that network-level theta activity became more distributed with more maturity. Additionally, significant DHEA-by-sex interactions in the gamma range were centered on cortical regions relevant for attention processing. These findings suggest that pubertal DHEA may modulate the development of neural oscillatory activity serving visuospatial processing and attention functions during the pubertal period.
Collapse
Affiliation(s)
- Madison H. Fung
- Institute for Human NeuroscienceBoys Town National Research HospitalOmahaNebraskaUSA,Institute of Child DevelopmentUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Raeef L. Rahman
- Institute for Human NeuroscienceBoys Town National Research HospitalOmahaNebraskaUSA
| | - Brittany K. Taylor
- Institute for Human NeuroscienceBoys Town National Research HospitalOmahaNebraskaUSA
| | - Michaela R. Frenzel
- Institute for Human NeuroscienceBoys Town National Research HospitalOmahaNebraskaUSA
| | - Jacob A. Eastman
- Institute for Human NeuroscienceBoys Town National Research HospitalOmahaNebraskaUSA
| | - Yu‐Ping Wang
- Department of Biomedical EngineeringTulane UniversityNew OrleansLouisianaUSA
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| | | | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalOmahaNebraskaUSA
| |
Collapse
|
19
|
Abrol A, Calhoun V. Discovery and Replication of Time-Resolved Functional Network Connectivity Differences in Adolescence and Adulthood in over 50K fMRI Datasets. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1855-1858. [PMID: 36085722 DOI: 10.1109/embc48229.2022.9870916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There remains an open question about whether and in what context brain function varies in adolescence and adulthood. In this work, we systematically study the functional brain networks of adolescents and adults, outlining the significant differences in the developing brain detected via time-resolved functional network connectivity (trFNC) derived from a fully automated independent component analysis pipeline applied to resting-state fMRI data in over 50K individuals. We then statistically analyze the transient, recurrent, and robust brain state profiles in both groups. We confirmed the results in independent replication datasets for both groups. Our findings indicate a strengthening of a state reflecting functional coupling within the visual, motor, and auditory domains and anticorrelation with all other domains in a unique adult state profile, a pattern consistently less modular in adolescents. This new insight into possible integration, strengthening, and modularization of resting-state brain connections beyond childhood convergently indicates that the highlighted temporal dynamics likely reflect robust differences in brain function in adolescents versus adults.
Collapse
|
20
|
Picci G, Taylor BK, Killanin AD, Eastman JA, Frenzel MR, Wang YP, Stephen JM, Calhoun VD, Wilson TW. Left amygdala structure mediates longitudinal associations between exposure to threat and long-term psychiatric symptomatology in youth. Hum Brain Mapp 2022; 43:4091-4102. [PMID: 35583310 PMCID: PMC9374891 DOI: 10.1002/hbm.25904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/04/2022] Open
Abstract
Traumatic experiences during childhood can have profound effects on stress sensitive brain structures (e.g., amygdala and hippocampus) and the emergence of psychiatric symptoms. Recent theoretical and empirical work has delineated dimensions of trauma (i.e., threat and deprivation) as having distinct neural and behavioral effects, although there are few longitudinal examinations. A sample of 243 children and adolescents were followed for three time points, with each assessment approximately 1 year apart (ages 9–15 years at Time 1; 120 males). Participants or their caregiver reported on youths' threat exposure, perceived stress (Time 1), underwent a T1‐weighted structural high‐resolution MRI scan (Time 2), and documented their subsequent psychiatric symptoms later in development (Time 3). The primary findings indicate that left amygdala volume, in particular, mediated the longitudinal association between threat exposure and subsequent internalizing and externalizing symptomatology. Greater threat exposure related to reduced left amygdala volume, which in turn differentially predicted internalizing and externalizing symptoms. Decreased bilateral hippocampal volume was related to subsequently elevated internalizing symptoms. These findings suggest that the left amygdala is highly threat‐sensitive and that stress‐related alterations may partially explain elevated psychopathology in stress‐exposed adolescents. Uncovering potential subclinical and/or preclinical predictive biomarkers is essential to understanding the emergence, progression, and eventual targeted treatment of psychopathology following trauma exposure.
Collapse
Affiliation(s)
- Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA.,Department of Pharmacology & Neuroscience, Creighton University, Omaha, Nebraska, USA
| | - Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | | | - Vince D Calhoun
- Mind Research Network, Albuquerque, New Mexico, USA.,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA.,Department of Pharmacology & Neuroscience, Creighton University, Omaha, Nebraska, USA
| |
Collapse
|
21
|
Picci G, Christopher-Hayes NJ, Petro NM, Taylor BK, Eastman JA, Frenzel MR, Wang YP, Stephen JM, Calhoun VD, Wilson TW. Amygdala and hippocampal subregions mediate outcomes following trauma during typical development: Evidence from high-resolution structural MRI. Neurobiol Stress 2022; 18:100456. [PMID: 35542044 PMCID: PMC9079354 DOI: 10.1016/j.ynstr.2022.100456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/30/2022] Open
Abstract
The vast majority of individuals experience trauma within their lifetime. Yet, most people do not go on to develop clinical levels of psychopathology. Recently, studies have highlighted the potential protective effects of having larger amygdala and hippocampal volumes, such that larger volumes may promote adaptive functioning following trauma. However, research has not yet elucidated whether certain subregions of these stress-sensitive structures have specific protective effects. Herein, we examined the mediating effects of amygdala and hippocampal subregions on the relationship between traumatic exposure and concurrent or longitudinal changes in psychiatric symptom levels in typically developing youth (9-15 years of age). Using high-resolution T1-and T2-weighted structural MRI scans, we found that the volume of the right basolateral complex of the amygdala mediated associations between trauma exposure and internalizing symptoms. Specifically, greater levels of childhood trauma related to larger volumes, and larger volumes were associated with fewer internalizing symptoms. The volume of the right CA4/dentate gyrus (DG) of the hippocampus yielded similar mediation results, such that greater trauma was related to larger volumes, which in turn were associated with decreases in internalizing symptoms across time. These findings provide initial support for potentially protective effects of larger right amygdala and hippocampal subregion volumes against internalizing symptomology concurrently and longitudinally during adolescence.
Collapse
Affiliation(s)
- Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Nicholas J. Christopher-Hayes
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
| | - Nathan M. Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Brittany K. Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Jacob A. Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Michaela R. Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | | | - Vince D. Calhoun
- Mind Research Network, Albuquerque, NM, USA
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
22
|
Agcaoglu O, Wilson TW, Wang YP, Stephen JM, Fu Z, Calhoun VD. Altered resting fMRI spectral power in data-driven brain networks during development: A longitudinal study. J Neurosci Methods 2022; 372:109537. [PMID: 35217109 PMCID: PMC9016786 DOI: 10.1016/j.jneumeth.2022.109537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/01/2022] [Accepted: 02/20/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Longitudinal studies provide a more precise measure of brain development over time, as they focus on within subject variability, as opposed to cross-sectional studies. This is especially important in children, where rapid brain development occurs, and inter-subject variability can be large. Tracking healthy brain development and identifying markers of typical development are also critically important to diagnose mental disorders at early ages. NEW METHOD We track longitudinal changes in spectral power of time-courses using a unique non-binning approach assessed with group independent component analysis, in a large multi time-point resting state functional magnetic resonance imaging dataset (N = 124) containing healthy children from 8.2 to 17.6 years old (m=12.6) called the Developmental Chronnecto-Genomics study. We examined how eyes open (EO) and eyes closed (EC) resting states play a role in age-related spectral differences, as several studies have reported differences in these conditions. RESULTS Typical brain development shows increased spectral power in low frequencies and decreased spectral power in high frequencies in as children grow and develop, for both the EO and EC conditions. In addition, we observed significant differences in power spectra between EO and EC and between sexes, mainly suggesting higher spectral power in females at middle and high frequencies. A replication analysis using the Adolescent Brain Cognitive Development data (N = 3371, mean age 9.9 years old) further supported this result, also showing general increases in low frequencies and decreases in higher frequencies, though some network level differences are present comparing to the main dataset. COMPARISON WITH EXISTING METHOD Our results indicate that spectral power changes significantly with typical development and our non-binning approach shows these changes with more detailed frequency resolution comparing to binning approaches. This is important as many studies reported an association of higher frequency power with brain disorders. CONCLUSION Our findings of decreased spectral power in the high frequencies with development may be a general marker of typical development., though this needs further investigation.
Collapse
Affiliation(s)
- Oktay Agcaoglu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Place, NE, 18th floor, Atlanta, GA 30303, USA.
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher, Boys Town, NE 68010, USA.
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, USA; Department of Global Biostatistics and Data Science, Tulane University, 1440 Canal Street, New Orleans, LA 70112, USA.
| | - Julia M Stephen
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106, USA.
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Place, NE, 18th floor, Atlanta, GA 30303, USA.
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Place, NE, 18th floor, Atlanta, GA 30303, USA; The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106, USA.
| |
Collapse
|
23
|
Taylor BK, Heinrichs-Graham E, Eastman JA, Frenzel MR, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Longitudinal changes in the neural oscillatory dynamics underlying abstract reasoning in children and adolescents. Neuroimage 2022; 253:119094. [PMID: 35306160 PMCID: PMC9152958 DOI: 10.1016/j.neuroimage.2022.119094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
Fluid reasoning is the ability to problem solve in the absence of prior knowledge and is commonly conceptualized as “non-verbal” intelligence. Importantly, fluid reasoning abilities rapidly develop throughout childhood and adolescence. Although numerous studies have characterized the neural underpinnings of fluid reasoning in adults, there is a paucity of research detailing the developmental trajectory of this neural processing. Herein, we examine longitudinal changes in the neural oscillatory dynamics underlying fluid intelligence in a sample of typically developing youths. A total of 34 participants age 10 to 16 years-old completed an abstract reasoning task during magnetoencephalography (MEG) on two occasions set one year apart. We found robust longitudinal optimization in theta, beta, and gamma oscillatory activity across years of the study across a distributed network commonly implicated in fluid reasoning abilities. More specifically, activity tended to decrease longitudinally in additional, compensatory areas such as the right lateral prefrontal cortex and increase in areas commonly utilized in mature adult samples (e.g., left frontal and parietal cortices). Importantly, shifts in neural activity were associated with improvements in task performance from one year to the next. Overall, the data suggest a longitudinal shift in performance that is accompanied by a reconfiguration of the functional oscillatory dynamics serving fluid reasoning during this important period of development.
Collapse
Affiliation(s)
- Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA.
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Mind Research Network, Albuquerque, NM, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
24
|
Candelaria-Cook FT, Solis I, Schendel ME, Wang YP, Wilson TW, Calhoun VD, Stephen JM. Developmental trajectory of MEG resting-state oscillatory activity in children and adolescents: a longitudinal reliability study. Cereb Cortex 2022; 32:5404-5419. [PMID: 35225334 PMCID: PMC9712698 DOI: 10.1093/cercor/bhac023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/27/2022] Open
Abstract
Neural oscillations may be sensitive to aspects of brain maturation such as myelination and synaptic density changes. Better characterization of developmental trajectories and reliability is necessary for understanding typical and atypical neurodevelopment. Here, we examined reliability in 110 typically developing children and adolescents (aged 9-17 years) across 2.25 years. From 10 min of magnetoencephalography resting-state data, normalized source spectral power and intraclass correlation coefficients were calculated. We found sex-specific differences in global normalized power, with males showing age-related decreases in delta and theta, along with age-related increases in beta and gamma. Females had fewer significant age-related changes. Structural magnetic resonance imaging revealed that males had more total gray, subcortical gray, and cortical white matter volume. There were significant age-related changes in total gray matter volume with sex-specific and frequency-specific correlations to normalized power. In males, increased total gray matter volume correlated with increased theta and alpha, along with decreased gamma. Split-half reliability was excellent in all frequency bands and source regions. Test-retest reliability ranged from good (alpha) to fair (theta) to poor (remaining bands). While resting-state neural oscillations can have fingerprint-like quality in adults, we show here that neural oscillations continue to evolve in children and adolescents due to brain maturation and neurodevelopmental change.
Collapse
Affiliation(s)
- Felicha T Candelaria-Cook
- The Mind Research Network, a Division of Lovelace Biomedical Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States
| | - Isabel Solis
- The Mind Research Network, a Division of Lovelace Biomedical Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States,Department of Psychology, University of New Mexico, 1 University of New Mexico, Albuquerque, NM 87131, United States
| | - Megan E Schendel
- The Mind Research Network, a Division of Lovelace Biomedical Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, United States
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE 68010, United States
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, 55 Park Pl NE, Atlanta, GA 30303, United States
| | - Julia M Stephen
- Corresponding author: The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States.
| |
Collapse
|
25
|
Taylor BK, Frenzel MR, Eastman JA, Embury CM, Agcaoglu O, Wang YP, Stephen JM, Calhoun VD, Wilson TW. Individual differences in amygdala volumes predict changes in functional connectivity between subcortical and cognitive control networks throughout adolescence. Neuroimage 2022; 247:118852. [PMID: 34954025 PMCID: PMC8822500 DOI: 10.1016/j.neuroimage.2021.118852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Adolescence is a critical period of structural and functional neural maturation among regions serving the cognitive control of emotion. Evidence suggests that this process is guided by developmental changes in amygdala and striatum structure and shifts in functional connectivity between subcortical (SC) and cognitive control (CC) networks. Herein, we investigate the extent to which such developmental shifts in structure and function reciprocally predict one another over time. 179 youth (9-15 years-old) completed annual MRI scans for three years. Amygdala and striatum volumes and connectivity within and between SC and CC resting state networks were measured for each year. We tested for reciprocal predictability of within-person and between-person changes in structure and function using random-intercept cross-lagged panel models. Within-person shifts in amygdala volumes in a given year significantly and specifically predicted deviations in SC-CC connectivity in the following year, such that an increase in volume was associated with decreased SC-CC connectivity the following year. Deviations in connectivity did not predict changes in amygdala volumes over time. Conversely, broader group-level shifts in SC-CC connectivity were predictive of subsequent deviations in striatal volumes. We did not see any cross-predictability among amygdala or striatum volumes and within-network connectivity measures. Within-person shifts in amygdala structure year-to-year robustly predicted weaker SC-CC connectivity in subsequent years, whereas broader increases in SC-CC connectivity predicted smaller striatal volumes over time. These specific structure function relationships may contribute to the development of emotional control across adolescence.
Collapse
Affiliation(s)
- Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA.
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Oktay Agcaoglu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | | | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA; Mind Research Network, Albuquerque, NM, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
26
|
Killanin AD, Embury CM, Picci G, Heinrichs-Graham E, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Trauma moderates the development of the oscillatory dynamics serving working memory in a sex-specific manner. Cereb Cortex 2022; 32:5206-5215. [PMID: 35106552 PMCID: PMC9667155 DOI: 10.1093/cercor/bhac008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/03/2023] Open
Abstract
Working memory, the ability to hold items in memory stores for further manipulation, is a higher order cognitive process that supports many aspects of daily life. Childhood trauma has been associated with altered cognitive development including particular deficits in verbal working memory (VWM), but the neural underpinnings remain poorly understood. Magnetoencephalography (MEG) studies of VWM have reliably shown decreased alpha activity in left-lateralized language regions during encoding, and increased alpha activity in parieto-occipital cortices during the maintenance phase. In this study, we examined whether childhood trauma affects behavioral performance and the oscillatory dynamics serving VWM using MEG in a cohort of 9- to 15-year-old youth. All participants completed a modified version of the UCLA Trauma History Profile and then performed a VWM task during MEG. Our findings indicated a sex-by-age-by-trauma three-way interaction, whereby younger females experiencing higher levels of trauma had the lowest d' accuracy scores and the strongest positive correlations with age (i.e. older performed better). Likewise, females with higher levels of childhood trauma exhibited altered age-related alpha changes during the maintenance phase within the right temporal and parietal cortices. These findings suggest that trauma exposure may alter the developmental trajectory of neural oscillations serving VWM processing in a sex-specific way.
Collapse
Affiliation(s)
- Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA,College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA,Department of Psychology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | | | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30303, USA
| | | | - Tony W Wilson
- Corresponding author: Tony W. Wilson, Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA.
| |
Collapse
|
27
|
Ulloa JL. The Control of Movements via Motor Gamma Oscillations. Front Hum Neurosci 2022; 15:787157. [PMID: 35111006 PMCID: PMC8802912 DOI: 10.3389/fnhum.2021.787157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023] Open
Abstract
The ability to perform movements is vital for our daily life. Our actions are embedded in a complex environment where we need to deal efficiently in the face of unforeseen events. Neural oscillations play an important role in basic sensorimotor processes related to the execution and preparation of movements. In this review, I will describe the state of the art regarding the role of motor gamma oscillations in the control of movements. Experimental evidence from electrophysiological studies has shown that motor gamma oscillations accomplish a range of functions in motor control beyond merely signaling the execution of movements. However, these additional aspects associated with motor gamma oscillation remain to be fully clarified. Future work on different spatial, temporal and spectral scales is required to further understand the implications of gamma oscillations in motor control.
Collapse
Affiliation(s)
- José Luis Ulloa
- Programa de Investigación Asociativa (PIA) en Ciencias Cognitivas, Centro de Investigación en Ciencias Cognitivas (CICC), Facultad de Psicología, Universidad de Talca, Talca, Chile
| |
Collapse
|
28
|
Scan Once, Analyse Many: Using Large Open-Access Neuroimaging Datasets to Understand the Brain. Neuroinformatics 2022; 20:109-137. [PMID: 33974213 PMCID: PMC8111663 DOI: 10.1007/s12021-021-09519-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2021] [Indexed: 02/06/2023]
Abstract
We are now in a time of readily available brain imaging data. Not only are researchers now sharing data more than ever before, but additionally large-scale data collecting initiatives are underway with the vision that many future researchers will use the data for secondary analyses. Here I provide an overview of available datasets and some example use cases. Example use cases include examining individual differences, more robust findings, reproducibility-both in public input data and availability as a replication sample, and methods development. I further discuss a variety of considerations associated with using existing data and the opportunities associated with large datasets. Suggestions for further readings on general neuroimaging and topic-specific discussions are also provided.
Collapse
|
29
|
Fung MH, Taylor BK, Embury CM, Spooner RK, Johnson HJ, Willett MP, Frenzel MR, Badura-Brack AS, White SF, Wilson TW. Cortisol changes in healthy children and adolescents during the COVID-19 pandemic. Stress 2022; 25:323-330. [PMID: 36168664 PMCID: PMC9744629 DOI: 10.1080/10253890.2022.2125798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has caused massive disruptions to daily life in the United States, closing schools and businesses and increasing physical and social isolation, leading to deteriorations in mental health and well-being in people of all ages. Many studies have linked chronic stress with long-term changes in cortisol secretion, which has been implicated in many stress-related physical and mental health problems that commonly emerge in adolescence. However, the physiological consequences of the pandemic in youth remain understudied. Using hair cortisol concentrations (HCC), we quantified average longitudinal changes in cortisol secretion across a four-month period capturing before, during, and after the transition to pandemic-lockdown conditions in a sample of healthy youth (n = 49). Longitudinal changes in HCC were analyzed using linear mixed-effects models. Perceived levels of pandemic-related stress were measured and compared to the physiological changes in HCC. In children and adolescents, cortisol levels significantly increased across the course of the pandemic. These youth reported a multitude of stressors during this time, although changes in HCC were not associated with self-reported levels of COVID-19-related distress. We provide evidence that youth are experiencing significant physiological changes in cortisol activity across the COVID-19 pandemic, yet these biological responses are not associated with perceived stress levels. Youth may be especially vulnerable to the deleterious impacts of chronic cortisol exposure due to their current status in the sensitive periods for development, and the incongruency between biological and psychological stress responses may further complicate these developmental problems.
Collapse
Affiliation(s)
- Madison H. Fung
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Brittany K. Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Christine M. Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Rachel K. Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Hallie J. Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Madelyn P. Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Michaela R. Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Stuart F. White
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
30
|
Chen LZ, Holmes AJ, Zuo XN, Dong Q. Neuroimaging brain growth charts: A road to mental health. PSYCHORADIOLOGY 2021; 1:272-286. [PMID: 35028568 PMCID: PMC8739332 DOI: 10.1093/psyrad/kkab022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
Mental disorders are common health concerns and contribute to a heavy global burden on our modern society. It is challenging to identify and treat them timely. Neuroimaging evidence suggests the incidence of various psychiatric and behavioral disorders is closely related to the atypical development of brain structure and function. The identification and understanding of atypical brain development provide chances for clinicians to detect mental disorders earlier, perhaps even prior to onset, and treat them more precisely. An invaluable and necessary method in identifying and monitoring atypical brain development are growth charts of typically developing individuals in the population. The brain growth charts can offer a series of standard references on typical neurodevelopment, representing an important resource for the scientific and medical communities. In the present paper, we review the relationship between mental disorders and atypical brain development from a perspective of normative brain development by surveying the recent progress in the development of brain growth charts, including four aspects on growth chart utility: 1) cohorts, 2) measures, 3) mechanisms, and 4) clinical translations. In doing so, we seek to clarify the challenges and opportunities in charting brain growth, and to promote the application of brain growth charts in clinical practice.
Collapse
Affiliation(s)
- Li-Zhen Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT 06511, USA
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- National Basic Science Data Center, Beijing 100190, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Research Center for Lifespan Development of Mind and Brain, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
31
|
Ott LR, Penhale SH, Taylor BK, Lew BJ, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Spontaneous cortical MEG activity undergoes unique age- and sex-related changes during the transition to adolescence. Neuroimage 2021; 244:118552. [PMID: 34517128 PMCID: PMC8685767 DOI: 10.1016/j.neuroimage.2021.118552] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND While numerous studies have examined the developmental trajectory of task-based neural oscillations during childhood and adolescence, far less is known about the evolution of spontaneous cortical activity during this time period. Likewise, many studies have shown robust sex differences in task-based oscillations during this developmental period, but whether such sex differences extend to spontaneous activity is not understood. METHODS Herein, we examined spontaneous cortical activity in 111 typically-developing youth (ages 9-15 years; 55 male). Participants completed a resting state magnetoencephalographic (MEG) recording and a structural MRI. MEG data were source imaged and the power within five canonical frequency bands (delta, theta, alpha, beta, gamma) was computed. The resulting power spectral density maps were analyzed via vertex-wise ANCOVAs to identify spatially-specific effects of age, sex, and their interaction. RESULTS We found robust increases in power with age in all frequencies except delta, which decreased over time, with findings largely confined to frontal cortices. Sex effects were distributed across frontal and temporal regions; females tended to have greater delta and beta power, whereas males had greater alpha. Importantly, there was a significant age-by-sex interaction in theta power, such that males exhibited decreasing power with age while females showed increasing power with age in the bilateral superior temporal cortices. DISCUSSION These data suggest that the strength of spontaneous activity undergoes robust change during the transition from childhood to adolescence (i.e., puberty onset), with intriguing sex differences in some cortical areas. Future developmental studies should probe task-related oscillations and spontaneous activity in parallel.
Collapse
Affiliation(s)
- Lauren R Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samantha H Penhale
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
32
|
Solis I, Janowich J, Candelaria-Cook F, Collishaw W, Wang YP, Wilson TW, Calhoun VD, Ciesielski KRT, Stephen JM. Frontoparietal network and neuropsychological measures in typically developing children. Neuropsychologia 2021; 159:107914. [PMID: 34119500 PMCID: PMC11512481 DOI: 10.1016/j.neuropsychologia.2021.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Resting-state activity has been used to gain a broader understanding of typical and aberrant developmental changes. However, the developmental trajectory of resting-state activity in relation to cognitive performance has not been studied in detail. The present study assessed spectral characteristics of theta (5-8 Hz) and alpha (9-13 Hz) frequency bands during resting-state in a priori selected regions of the frontoparietal network (FPN). We also examined the relationship between resting-state activity and cognitive performance in typically developing children. We hypothesized that older children and children with high attentional scores would have higher parietal alpha activity and frontal theta activity while at rest compared to young children and those with lower attentional scores. MEG data were collected in 65 typically developing children, ages 9-14 years, as part of the Developmental Chronnecto-Genomics study. Resting-state data were collected during eyes open and eyes closed for 5 min. Participants completed the NIH Toolbox Flanker Inhibitory Control (FICA) and Attention Test and Dimensional Change Card Sort Test (DCCS) to assess top-down attentional control. Spectral power density was used to characterize the FPN. We found during eyes open and eyes closed, all participants had higher theta and alpha power in parietal regions relative to frontal regions. The group with high attentional scores had higher alpha power during resting-state eyes closed compared to those with low attentional scores. However, there were no significant differences between age groups, suggesting changes in the maturation of neural oscillations in theta and alpha are not evident among children in the 9-14-year age range.
Collapse
Affiliation(s)
- Isabel Solis
- Department of Psychology, University of New Mexico, 2001 Redondo S Dr, Albuquerque, NM, 87106, USA; Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd N.E., Albuquerque, NM, 87106, USA.
| | - Jacki Janowich
- Department of Psychology, University of New Mexico, 2001 Redondo S Dr, Albuquerque, NM, 87106, USA; Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd N.E., Albuquerque, NM, 87106, USA.
| | - Felicha Candelaria-Cook
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd N.E., Albuquerque, NM, 87106, USA.
| | - William Collishaw
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd N.E., Albuquerque, NM, 87106, USA.
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA, 70118, USA.
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, 988440 Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Vince D Calhoun
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd N.E., Albuquerque, NM, 87106, USA; Department of Electrical and Computer Engineering, University of New Mexico, 498 Terrace St NE, Albuquerque, NM, 87106, USA; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 33 Glimer St SE, Atlanta, GA, 30303, USA.
| | - Kristina R T Ciesielski
- Department of Psychology, University of New Mexico, 2001 Redondo S Dr, Albuquerque, NM, 87106, USA; MGH/MIT A. A. Martinos Center for Biomed. Imaging, Dept of Radiology, Harvard Medical School, 149 Thirteenth St, Suite 2301, Charleston, MA, 02129, USA.
| | - Julia M Stephen
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd N.E., Albuquerque, NM, 87106, USA.
| |
Collapse
|
33
|
Taylor BK, Frenzel MR, Johnson HJ, Willett MP, White SF, Badura-Brack AS, Wilson TW. Increases in Stressors Prior to-Versus During the COVID-19 Pandemic in the United States Are Associated With Depression Among Middle-Aged Mothers. Front Psychol 2021; 12:706120. [PMID: 34305763 PMCID: PMC8292718 DOI: 10.3389/fpsyg.2021.706120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Working parents in are struggling to balance the demands of their occupation with those of childcare and homeschooling during the COVID-19 pandemic. Moreover, studies show that women are shouldering more of the burden and reporting greater levels of psychological distress, anxiety, and depression relative to men. However, research has yet to show that increases in psychological symptoms are linked to changes in stress during the pandemic. Herein, we conduct a small-N study to explore the associations between stress and psychological symptoms during the pandemic among mothers using structural equation modeling, namely latent change score models. Thirty-three mothers completed questionnaires reporting current anxious and depressive symptoms (Beck Anxiety and Depression Index, respectively), as well as stressful life experiences prior to-versus during the pandemic (Social Readjustment Rating Scale). Women endorsed significantly more stressful events during the pandemic, relative to the pre-pandemic period. Additionally, 58% of mothers scored as moderate-to-high risk for developing a stress-related physical illness in the near future because of their pandemic-level stress. Depressive symptoms were associated with the degree of change in life stress, whereas anxiety symptoms were more related to pre-pandemic levels of stress. The present study preliminarily sheds light on the nuanced antecedents to mothers’ experiences of anxious and depressive symptoms during the COVID-19 pandemic. Although further work is needed in larger, more diverse samples of mothers, this study highlights the potential need for appropriate policies, and prevention and intervention programs to ameliorate the effects of pandemics on mothers’ mental health.
Collapse
Affiliation(s)
- Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Stuart F White
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Amy S Badura-Brack
- Department of Psychological Science, Creighton University, Omaha, NE, United States
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| |
Collapse
|
34
|
Fung MH, Taylor BK, Lew BJ, Frenzel MR, Eastman JA, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Sexually dimorphic development in the cortical oscillatory dynamics serving early visual processing. Dev Cogn Neurosci 2021; 50:100968. [PMID: 34102602 PMCID: PMC8187257 DOI: 10.1016/j.dcn.2021.100968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/02/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
Visual processing dynamics continue to develop throughout childhood and adolescence. Visual alpha response power differed between males and females. Sex and age interacted to modulate visual gamma responses. Peak frequency predicted response power above and beyond the effects of age and sex.
Successful interaction with one’s visual environment is paramount to developing and performing many basic and complex mental functions. Although major aspects of visual development are completed at an early age, other structural and functional components of visual processing appear to be dynamically changing across a much more protracted period extending into late childhood and adolescence. However, the underlying neurophysiological changes and cortical oscillatory dynamics that support maturation of the visual system during this developmental period remain poorly understood. The present study utilized magnetoencephalography (MEG) to investigate maturational changes in the neural dynamics serving basic visual processing during childhood and adolescence (ages 9–15, n = 69). Our key results included robust sex differences in alpha oscillatory activity within the left posterior parietal cortex, and sex-by-age interactions in gamma activity in the right lingual gyrus and superior parietal lobule. Hierarchical regression revealed that the peak frequency of both the alpha and gamma responses predicted response power in parietal regions above and beyond the noted effects of age and sex. These findings affirm the view that neural oscillations supporting visual processing develop over a much more protracted period, and illustrate that these maturational trajectories are influenced by numerous elements, including age, sex, and individual variation.
Collapse
Affiliation(s)
- Madison H Fung
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, Emory University], Atlanta, GA, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA.
| |
Collapse
|
35
|
Warren DE, Rangel AJ, Christopher-Hayes NJ, Eastman JA, Frenzel MR, Stephen JM, Calhoun VD, Wang YP, Wilson TW. Resting-state functional connectivity of the human hippocampus in periadolescent children: Associations with age and memory performance. Hum Brain Mapp 2021; 42:3620-3642. [PMID: 33978276 PMCID: PMC8249892 DOI: 10.1002/hbm.25458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
The hippocampus is necessary for declarative (relational) memory, and the ability to form hippocampal‐dependent memories develops through late adolescence. This developmental trajectory of hippocampal‐dependent memory could reflect maturation of intrinsic functional brain networks, but resting‐state functional connectivity (rs‐FC) of the human hippocampus is not well‐characterized for periadolescent children. Measuring hippocampal rs‐FC in periadolescence would thus fill a gap, and testing covariance of hippocampal rs‐FC with age and memory could inform theories of cognitive development. Here, we studied hippocampal rs‐FC in a cross‐sectional sample of healthy children (N = 96; 59 F; age 9–15 years) using a seed‐based approach, and linked these data with NIH Toolbox measures, the Picture‐Sequence Memory Test (PSMT) and the List Sorting Working Memory Test (LSWMT). The PSMT was expected to rely more on hippocampal‐dependent memory than the LSWMT. We observed hippocampal rs‐FC with an extensive brain network including temporal, parietal, and frontal regions. This pattern was consistent with prior work measuring hippocampal rs‐FC in younger and older samples. We also observed novel, regionally specific variation in hippocampal rs‐FC with age and hippocampal‐dependent memory but not working memory. Evidence consistent with these findings was observed in a second, validation dataset of similar‐age healthy children drawn from the Philadelphia Neurodevelopment Cohort. Further, a cross‐dataset analysis suggested generalizable properties of hippocampal rs‐FC and covariance with age and memory. Our findings connect prior work by describing hippocampal rs‐FC and covariance with age and memory in typically developing periadolescent children, and our observations suggest a developmental trajectory for brain networks that support hippocampal‐dependent memory.
Collapse
Affiliation(s)
- David E Warren
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anthony J Rangel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | - Jacob A Eastman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Michaela R Frenzel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico, USA.,Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | | | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Boys Town National Research Hospital, Boys Town, Nebraska, USA
| |
Collapse
|
36
|
Taylor BK, Eastman JA, Frenzel MR, Embury CM, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Neural oscillations underlying selective attention follow sexually divergent developmental trajectories during adolescence. Dev Cogn Neurosci 2021; 49:100961. [PMID: 33984667 PMCID: PMC8131898 DOI: 10.1016/j.dcn.2021.100961] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/02/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023] Open
Abstract
A cohort of 9- to 16-year-olds completed a classic flanker task during MEG. There were developmentally-sensitive interference effects in key attention regions. Youth showed sexually-divergent patterns of age-related interference activity. Maturational differences among males supported improved task behavior.
Selective attention processes are critical to everyday functioning and are known to develop through at least young adulthood. Although numerous investigations have studied the maturation of attention systems in the brain, these studies have largely focused on the spatial configuration of these systems; there is a paucity of research on the neural oscillatory dynamics serving selective attention, particularly among youth. Herein, we examined the developmental trajectory of neural oscillatory activity serving selective attention in 53 typically developing youth age 9-to-16 years-old. Participants completed the classic arrow-based flanker task during magnetoencephalography, and the resulting data were imaged in the time-frequency domain. Flanker interference significantly modulated theta and alpha/beta oscillations within prefrontal, mid-cingulate, cuneus, and occipital regions. Interference-related neural activity also increased with age in the temporoparietal junction and the rostral anterior cingulate. Sex-specific effects indicated that females had greater theta interference activity in the anterior insula, whereas males showed differential effects in theta and alpha/beta oscillations across frontoparietal regions. Finally, males showed age-related changes in alpha/beta interference in the cuneus and middle frontal gyrus, which predicted improved behavioral performance. Taken together, these data suggest sexually-divergent developmental trajectories underlying selective attention in youth.
Collapse
Affiliation(s)
- Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Mind Research Network, Albuquerque, NM, USA; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA.
| |
Collapse
|