1
|
Prompiengchai S, Dunlop K. Breakthroughs and challenges for generating brain network-based biomarkers of treatment response in depression. Neuropsychopharmacology 2024; 50:230-245. [PMID: 38951585 PMCID: PMC11525717 DOI: 10.1038/s41386-024-01907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Treatment outcomes widely vary for individuals diagnosed with major depressive disorder, implicating a need for deeper understanding of the biological mechanisms conferring a greater likelihood of response to a particular treatment. Our improved understanding of intrinsic brain networks underlying depression psychopathology via magnetic resonance imaging and other neuroimaging modalities has helped reveal novel and potentially clinically meaningful biological markers of response. And while we have made considerable progress in identifying such biomarkers over the last decade, particularly with larger, multisite trials, there are significant methodological and practical obstacles that need to be overcome to translate these markers into the clinic. The aim of this review is to review current literature on brain network structural and functional biomarkers of treatment response or selection in depression, with a specific focus on recent large, multisite trials reporting predictive accuracy of candidate biomarkers. Regarding pharmaco- and psychotherapy, we discuss candidate biomarkers, reporting that while we have identified candidate biomarkers of response to a single intervention, we need more trials that distinguish biomarkers between first-line treatments. Further, we discuss the ways prognostic neuroimaging may help to improve treatment outcomes to neuromodulation-based therapies, such as transcranial magnetic stimulation and deep brain stimulation. Lastly, we highlight obstacles and technical developments that may help to address the knowledge gaps in this area of research. Ultimately, integrating neuroimaging-derived biomarkers into clinical practice holds promise for enhancing treatment outcomes and advancing precision psychiatry strategies for depression management. By elucidating the neural predictors of treatment response and selection, we can move towards more individualized and effective depression interventions, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
| | - Katharine Dunlop
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada.
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada.
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Lee K, Ji JL, Fonteneau C, Berkovitch L, Rahmati M, Pan L, Repovš G, Krystal JH, Murray JD, Anticevic A. Human brain state dynamics are highly reproducible and associated with neural and behavioral features. PLoS Biol 2024; 22:e3002808. [PMID: 39316635 PMCID: PMC11421804 DOI: 10.1371/journal.pbio.3002808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
Neural activity and behavior vary within an individual (states) and between individuals (traits). However, the mapping of state-trait neural variation to behavior is not well understood. To address this gap, we quantify moment-to-moment changes in brain-wide co-activation patterns derived from resting-state functional magnetic resonance imaging. In healthy young adults, we identify reproducible spatiotemporal features of co-activation patterns at the single-subject level. We demonstrate that a joint analysis of state-trait neural variations and feature reduction reveal general motifs of individual differences, encompassing state-specific and general neural features that exhibit day-to-day variability. The principal neural variations co-vary with the principal variations of behavioral phenotypes, highlighting cognitive function, emotion regulation, alcohol and substance use. Person-specific probability of occupying a particular co-activation pattern is reproducible and associated with neural and behavioral features. This combined analysis of state-trait variations holds promise for developing reproducible neuroimaging markers of individual life functional outcome.
Collapse
Affiliation(s)
- Kangjoo Lee
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Clara Fonteneau
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lucie Berkovitch
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France
- Department of Psychiatry, GHU Paris Psychiatrie et Neurosciences, Service Hospitalo-Universitaire, Paris, France
- Université Paris Cité, Paris, France
| | - Masih Rahmati
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lining Pan
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Grega Repovš
- Department of Psychology, University of Ljubljana, Ljubljana, Slovenia
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - John D. Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Psychology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
3
|
Reddy NA, Clements RG, Brooks JCW, Bright MG. Simultaneous cortical, subcortical, and brainstem mapping of sensory activation. Cereb Cortex 2024; 34:bhae273. [PMID: 38940832 PMCID: PMC11212354 DOI: 10.1093/cercor/bhae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Nonpainful tactile sensory stimuli are processed in the cortex, subcortex, and brainstem. Recent functional magnetic resonance imaging studies have highlighted the value of whole-brain, systems-level investigation for examining sensory processing. However, whole-brain functional magnetic resonance imaging studies are uncommon, in part due to challenges with signal to noise when studying the brainstem. Furthermore, differentiation of small sensory brainstem structures such as the cuneate and gracile nuclei necessitates high-resolution imaging. To address this gap in systems-level sensory investigation, we employed a whole-brain, multi-echo functional magnetic resonance imaging acquisition at 3T with multi-echo independent component analysis denoising and brainstem-specific modeling to enable detection of activation across the entire sensory system. In healthy participants, we examined patterns of activity in response to nonpainful brushing of the right hand, left hand, and right foot (n = 10 per location), and found the expected lateralization, with distinct cortical and subcortical responses for upper and lower limb stimulation. At the brainstem level, we differentiated the adjacent cuneate and gracile nuclei, corresponding to hand and foot stimulation respectively. Our findings demonstrate that simultaneous cortical, subcortical, and brainstem mapping at 3T could be a key tool to understand the sensory system in both healthy individuals and clinical cohorts with sensory deficits.
Collapse
Affiliation(s)
- Neha A Reddy
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60208, United States
| | - Rebecca G Clements
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60208, United States
| | - Jonathan C W Brooks
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Molly G Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60208, United States
| |
Collapse
|
4
|
Hermosillo RJM, Moore LA, Feczko E, Miranda-Domínguez Ó, Pines A, Dworetsky A, Conan G, Mooney MA, Randolph A, Graham A, Adeyemo B, Earl E, Perrone A, Carrasco CM, Uriarte-Lopez J, Snider K, Doyle O, Cordova M, Koirala S, Grimsrud GJ, Byington N, Nelson SM, Gratton C, Petersen S, Feldstein Ewing SW, Nagel BJ, Dosenbach NUF, Satterthwaite TD, Fair DA. A precision functional atlas of personalized network topography and probabilities. Nat Neurosci 2024; 27:1000-1013. [PMID: 38532024 PMCID: PMC11089006 DOI: 10.1038/s41593-024-01596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/08/2024] [Indexed: 03/28/2024]
Abstract
Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases-the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is an evolving resource comprising 53,273 individual-specific network maps, from more than 9,900 individuals, across ages and cohorts, including the Adolescent Brain Cognitive Development study, the Developmental Human Connectome Project and others. We also generated probabilistic network maps across multiple ages and integration zones (using a new overlapping mapping technique, Overlapping MultiNetwork Imaging). Using regions of high network invariance improved the reproducibility of executive function statistical maps in brain-wide associations compared to group average-based parcellations. Finally, we provide a potential use case for probabilistic maps for targeted neuromodulation. The atlas is expandable to alternative datasets with an online interface encouraging the scientific community to explore and contribute to understanding the human brain function more precisely.
Collapse
Affiliation(s)
- Robert J M Hermosillo
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Lucille A Moore
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Óscar Miranda-Domínguez
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Adam Pines
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ally Dworetsky
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Gregory Conan
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Michael A Mooney
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health and Science University, Portland, OR, USA
| | - Anita Randolph
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Alice Graham
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Earl
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Anders Perrone
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Cristian Morales Carrasco
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | - Kathy Snider
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Olivia Doyle
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Michaela Cordova
- Joint Doctoral Program in Clinical Psychology, San Diego State University, San Diego, CA, USA
- Joint Doctoral Program in Clinical Psychology, University of California San Diego, San Diego, CA, USA
| | - Sanju Koirala
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Gracie J Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Nora Byington
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven Petersen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Reddy NA, Clements RG, Brooks JCW, Bright MG. Simultaneous cortical, subcortical, and brainstem mapping of sensory activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589099. [PMID: 38659741 PMCID: PMC11042175 DOI: 10.1101/2024.04.11.589099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Non-painful tactile sensory stimuli are processed in the cortex, subcortex, and brainstem. Recent functional magnetic resonance imaging (fMRI) studies have highlighted the value of whole-brain, systems-level investigation for examining pain processing. However, whole-brain fMRI studies are uncommon, in part due to challenges with signal to noise when studying the brainstem. Furthermore, the differentiation of small sensory brainstem structures such as the cuneate and gracile nuclei necessitates high resolution imaging. To address this gap in systems-level sensory investigation, we employed a whole-brain, multi-echo fMRI acquisition at 3T with multi-echo independent component analysis (ME-ICA) denoising and brainstem-specific modeling to enable detection of activation across the entire sensory system. In healthy participants, we examined patterns of activity in response to non-painful brushing of the right hand, left hand, and right foot, and found the expected lateralization, with distinct cortical and subcortical responses for upper and lower limb stimulation. At the brainstem level, we were able to differentiate the small, adjacent cuneate and gracile nuclei, corresponding to hand and foot stimulation respectively. Our findings demonstrate that simultaneous cortical, subcortical, and brainstem mapping at 3T could be a key tool to understand the sensory system in both healthy individuals and clinical cohorts with sensory deficits.
Collapse
Affiliation(s)
- Neha A. Reddy
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Rebecca G. Clements
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | | | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
6
|
Pilmeyer J, Lamerichs R, Ramsaransing F, Jansen JFA, Breeuwer M, Zinger S. Improved clinical outcome prediction in depression using neurodynamics in an emotional face-matching functional MRI task. Front Psychiatry 2024; 15:1255370. [PMID: 38585483 PMCID: PMC10996064 DOI: 10.3389/fpsyt.2024.1255370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Approximately one in six people will experience an episode of major depressive disorder (MDD) in their lifetime. Effective treatment is hindered by subjective clinical decision-making and a lack of objective prognostic biomarkers. Functional MRI (fMRI) could provide such an objective measure but the majority of MDD studies has focused on static approaches, disregarding the rapidly changing nature of the brain. In this study, we aim to predict depression severity changes at 3 and 6 months using dynamic fMRI features. Methods For our research, we acquired a longitudinal dataset of 32 MDD patients with fMRI scans acquired at baseline and clinical follow-ups 3 and 6 months later. Several measures were derived from an emotion face-matching fMRI dataset: activity in brain regions, static and dynamic functional connectivity between functional brain networks (FBNs) and two measures from a wavelet coherence analysis approach. All fMRI features were evaluated independently, with and without demographic and clinical parameters. Patients were divided into two classes based on changes in depression severity at both follow-ups. Results The number of coherence clusters (nCC) between FBNs, reflecting the total number of interactions (either synchronous, anti-synchronous or causal), resulted in the highest predictive performance. The nCC-based classifier achieved 87.5% and 77.4% accuracy for the 3- and 6-months change in severity, respectively. Furthermore, regression analyses supported the potential of nCC for predicting depression severity on a continuous scale. The posterior default mode network (DMN), dorsal attention network (DAN) and two visual networks were the most important networks in the optimal nCC models. Reduced nCC was associated with a poorer depression course, suggesting deficits in sustained attention to and coping with emotion-related faces. An ensemble of classifiers with demographic, clinical and lead coherence features, a measure of dynamic causality, resulted in a 3-months clinical outcome prediction accuracy of 81.2%. Discussion The dynamic wavelet features demonstrated high accuracy in predicting individual depression severity change. Features describing brain dynamics could enhance understanding of depression and support clinical decision-making. Further studies are required to evaluate their robustness and replicability in larger cohorts.
Collapse
Affiliation(s)
- Jesper Pilmeyer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, Netherlands
| | - Rolf Lamerichs
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, Netherlands
- Department of Medical Image Acquisitions, Philips Research, Eindhoven, Netherlands
| | - Faroeq Ramsaransing
- Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, Netherlands
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Jacobus F. A. Jansen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University, Maastricht, Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Marcel Breeuwer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Magnetic Resonance Research & Development - Clinical Science, Philips Healthcare, Best, Netherlands
| | - Svitlana Zinger
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, Netherlands
| |
Collapse
|
7
|
Rai S, Graff K, Tansey R, Bray S. How do tasks impact the reliability of fMRI functional connectivity? Hum Brain Mapp 2024; 45:e26535. [PMID: 38348730 PMCID: PMC10884875 DOI: 10.1002/hbm.26535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 02/24/2024] Open
Abstract
While there is growing interest in the use of functional magnetic resonance imaging-functional connectivity (fMRI-FC) for biomarker research, low measurement reliability of conventional acquisitions may limit applications. Factors known to impact FC reliability include scan length, head motion, signal properties, such as temporal signal-to-noise ratio (tSNR), and the acquisition state or task. As tasks impact signal in a region-wise fashion, they likely impact FC reliability differently across the brain, making task an important decision in study design. Here, we use the densely sampled Midnight Scan Club (MSC) dataset, comprising 5 h of rest and 6 h of task fMRI data in 10 healthy adults, to investigate regional effects of tasks on FC reliability. We further considered how BOLD signal properties contributing to tSNR, that is, temporal mean signal (tMean) and temporal standard deviation (tSD), vary across the brain, associate with FC reliability, and are modulated by tasks. We found that, relative to rest, tasks enhanced FC reliability and increased tSD for specific task-engaged regions. However, FC signal variability and reliability is broadly dampened during tasks outside task-engaged regions. From our analyses, we observed signal variability was the strongest driver of FC reliability. Overall, our findings suggest that the choice of task can have an important impact on reliability and should be considered in relation to maximizing reliability in networks of interest as part of study design.
Collapse
Affiliation(s)
- Shefali Rai
- Child and Adolescent Imaging Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of NeuroscienceUniversity of CalgaryCalgaryAlbertaCanada
| | - Kirk Graff
- Child and Adolescent Imaging Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of NeuroscienceUniversity of CalgaryCalgaryAlbertaCanada
| | - Ryann Tansey
- Child and Adolescent Imaging Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of NeuroscienceUniversity of CalgaryCalgaryAlbertaCanada
| | - Signe Bray
- Child and Adolescent Imaging Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of RadiologyUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
8
|
Golestani AM, Chen JJ. Comparing data-driven physiological denoising approaches for resting-state fMRI: implications for the study of aging. Front Neurosci 2024; 18:1223230. [PMID: 38379761 PMCID: PMC10876882 DOI: 10.3389/fnins.2024.1223230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction Physiological nuisance contributions by cardiac and respiratory signals have a significant impact on resting-state fMRI data quality. As these physiological signals are often not recorded, data-driven denoising methods are commonly used to estimate and remove physiological noise from fMRI data. To investigate the efficacy of these denoising methods, one of the first steps is to accurately capture the cardiac and respiratory signals, which requires acquiring fMRI data with high temporal resolution. Methods In this study, we used such high-temporal resolution fMRI data to evaluate the effectiveness of several data-driven denoising methods, including global-signal regression (GSR), white matter and cerebrospinal fluid regression (WM-CSF), anatomical (aCompCor) and temporal CompCor (tCompCor), ICA-AROMA. Our analysis focused on the consequence of changes in low-frequency, cardiac and respiratory signal power, as well as age-related differences in terms of functional connectivity (fcMRI). Results Our results confirm that the ICA-AROMA and GSR removed the most physiological noise but also more low-frequency signals. These methods are also associated with substantially lower age-related fcMRI differences. On the other hand, aCompCor and tCompCor appear to be better at removing high-frequency physiological signals but not low-frequency signal power. These methods are also associated with relatively higher age-related fcMRI differences, whether driven by neuronal signal or residual artifact. These results were reproduced in data downsampled to represent conventional fMRI sampling frequency. Lastly, methods differ in performance depending on the age group. Discussion While this study cautions direct comparisons of fcMRI results based on different denoising methods in the study of aging, it also enhances the understanding of different denoising methods in broader fcMRI applications.
Collapse
Affiliation(s)
- Ali M. Golestani
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - J. Jean Chen
- Rotman Research Institute at Baycrest, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Reddy NA, Zvolanek KM, Moia S, Caballero-Gaudes C, Bright MG. Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00057. [PMID: 39328846 PMCID: PMC11426116 DOI: 10.1162/imag_a_00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Motor-task functional magnetic resonance imaging (fMRI) is crucial in the study of several clinical conditions, including stroke and Parkinson's disease. However, motor-task fMRI is complicated by task-correlated head motion, which can be magnified in clinical populations and confounds motor activation results. One method that may mitigate this issue is multi-echo independent component analysis (ME-ICA), which has been shown to separate the effects of head motion from the desired blood oxygenation level dependent (BOLD) signal but has not been tested in motor-task datasets with high amounts of motion. In this study, we collected an fMRI dataset from a healthy population who performed a hand grasp task with and without task-correlated amplified head motion to simulate a motor-impaired population. We analyzed these data using three models: single-echo (SE), multi-echo optimally combined (ME-OC), and ME-ICA. We compared the models' performance in mitigating the effects of head motion on the subject level and group level. On the subject level, ME-ICA better dissociated the effects of head motion from the BOLD signal and reduced noise. Both ME models led to increased t-statistics in brain motor regions. In scans with high levels of motion, ME-ICA additionally mitigated artifacts and increased stability of beta coefficient estimates, compared to SE. On the group level, all three models produced activation clusters in expected motor areas in scans with both low and high motion, indicating that group-level averaging may also sufficiently resolve motion artifacts that vary by subject. These findings demonstrate that ME-ICA is a useful tool for subject-level analysis of motor-task data with high levels of task-correlated head motion. The improvements afforded by ME-ICA are critical to improve reliability of subject-level activation maps for clinical populations in which group-level analysis may not be feasible or appropriate, for example, in a chronic stroke cohort with varying stroke location and degree of tissue damage.
Collapse
Affiliation(s)
- Neha A. Reddy
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Kristina M. Zvolanek
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain
- Neuro-X Institute, École polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics (DRIM), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
10
|
Zheng K, Li B, Lu H, Wang H, Liu J, Yan B, Friston KJ, Wu Y, Liu J, Zhang X, Liu M, Li L, Qin J, Chen B, Hu D, Li L. Aberrant temporal-spatial complexity of intrinsic fluctuations in major depression. Eur Arch Psychiatry Clin Neurosci 2023; 273:169-181. [PMID: 35419632 DOI: 10.1007/s00406-022-01403-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
Accumulating evidence suggests that the brain is highly dynamic; thus, investigation of brain dynamics especially in brain connectivity would provide crucial information that stationary functional connectivity could miss. This study investigated temporal expressions of spatial modes within the default mode network (DMN), salience network (SN) and cognitive control network (CCN) using a reliable data-driven co-activation pattern (CAP) analysis in two independent data sets. We found enhanced CAP-to-CAP transitions of the SN in patients with MDD. Results suggested enhanced flexibility of this network in the patients. By contrast, we also found reduced spatial consistency and persistence of the DMN in the patients, indicating reduced variability and stability in individuals with MDD. In addition, the patients were characterized by prominent activation of mPFC. Moreover, further correlation analysis revealed that persistence and transitions of RCCN were associated with the severity of depression. Our findings suggest that functional connectivity in the patients may not be simply attenuated or potentiated, but just alternating faster or slower among more complex patterns. The aberrant temporal-spatial complexity of intrinsic fluctuations reflects functional diaschisis of resting-state networks as characteristic of patients with MDD.
Collapse
Affiliation(s)
- Kaizhong Zheng
- Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Baojuan Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hongbing Lu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Huaning Wang
- Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jin Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Baoyu Yan
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Karl J Friston
- The Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, UK
| | - Yuxia Wu
- Department of Information and Communication Engineering, Xi'an Jiaotong University, Xi'an, 710032, China
| | - Jian Liu
- Network Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xi Zhang
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Mengwan Liu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Liang Li
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Tai-Ping Road, Beijing, 100850, China
| | - Jian Qin
- Department of Intelligence Science and Technology, College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China
| | - Badong Chen
- Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Dewen Hu
- Department of Intelligence Science and Technology, College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China.
| | - Lingjiang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
Steel A, Garcia BD, Silson EH, Robertson CE. Evaluating the efficacy of multi-echo ICA denoising on model-based fMRI. Neuroimage 2022; 264:119723. [PMID: 36328274 DOI: 10.1016/j.neuroimage.2022.119723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/30/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022] Open
Abstract
fMRI is an indispensable tool for neuroscience investigation, but this technique is limited by multiple sources of physiological and measurement noise. These noise sources are particularly problematic for analysis techniques that require high signal-to-noise ratio for stable model fitting, such as voxel-wise modeling. Multi-echo data acquisition in combination with echo-time dependent ICA denoising (ME-ICA) represents one promising strategy to mitigate physiological and hardware-related noise sources as well as motion-related artifacts. However, most studies employing ME-ICA to date are resting-state fMRI studies, and therefore we have a limited understanding of the impact of ME-ICA on complex task or model-based fMRI paradigms. Here, we addressed this knowledge gap by comparing data quality and model fitting performance of data acquired during a visual population receptive field (pRF) mapping (N = 13 participants) experiment after applying one of three preprocessing procedures: ME-ICA, optimally combined multi-echo data without ICA-denoising, and typical single echo processing. As expected, multi-echo fMRI improved temporal signal-to-noise compared to single echo fMRI, with ME-ICA amplifying the improvement compared to optimal combination alone. However, unexpectedly, this boost in temporal signal-to-noise did not directly translate to improved model fitting performance: compared to single echo acquisition, model fitting was only improved after ICA-denoising. Specifically, compared to single echo acquisition, ME-ICA resulted in improved variance explained by our pRF model throughout the visual system, including anterior regions of the temporal and parietal lobes where SNR is typically low, while optimal combination without ICA did not. ME-ICA also improved reliability of parameter estimates compared to single echo and optimally combined multi-echo data without ICA-denoising. Collectively, these results suggest that ME-ICA is effective for denoising task-based fMRI data for modeling analyzes and maintains the integrity of the original data. Therefore, ME-ICA may be beneficial for complex fMRI experiments, including voxel-wise modeling and naturalistic paradigms.
Collapse
Affiliation(s)
- Adam Steel
- Department of Psychology and Brain Sciences, Dartmouth College, 3 Maynard Street, Hanover, NH 03755, US.
| | - Brenda D Garcia
- Department of Psychology and Brain Sciences, Dartmouth College, 3 Maynard Street, Hanover, NH 03755, US
| | - Edward H Silson
- Psychology, School of Philosophy, Psychology, and Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Caroline E Robertson
- Department of Psychology and Brain Sciences, Dartmouth College, 3 Maynard Street, Hanover, NH 03755, US
| |
Collapse
|
12
|
Cognitive decline is associated with frequency-specific resting state functional changes in normal aging. Brain Imaging Behav 2022; 16:2120-2132. [PMID: 35864341 DOI: 10.1007/s11682-022-00682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
Resting state low-frequency brain activity may aid in our understanding of the mechanisms of aging-related cognitive decline. Our purpose was to explore the characteristics of the amplitude of low-frequency fluctuations (ALFF) in different frequency bands of fMRI to better understand cognitive aging. Thirty-seven cognitively normal older individuals underwent a battery of neuropsychological tests and MRI scans at baseline and four years later. ALFF from five different frequency bands (typical band, slow-5, slow-4, slow-3, and slow-2) were calculated and analyzed. A two-way ANOVA was used to explore the interaction effects in voxel-wise whole brain ALFF of the time and frequency bands. Paired-sample t-test was used to explore within-group changes over four years. Partial correlation analysis was performed to assess associations between the altered ALFF and cognitive function. Significant interaction effects of time × frequency were distributed over inferior frontal gyrus, superior frontal gyrus, right rolandic operculum, left thalamus, and right putamen. Significant ALFF reductions in all five frequency bands were mainly found in the right hemisphere and the posterior cerebellum; whereas localization of the significantly increased ALFF were mainly found in the cerebellum at typical band, slow-5 and slow-4 bands, and left hemisphere and the cerebellum at slow-3, slow-2 bands. In addition, ALFF changes showed frequency-specific correlations with changes in cognition. These results suggest that changes of local brain activity in cognitively normal aging should be investigated in multiple frequency bands. The association between ALFF changes and cognitive function can potentially aid better understanding of the mechanisms underlying normal cognitive aging.
Collapse
|