1
|
Garg V, André S, Heyer L, Kracht G, Ruhwedel T, Scholz P, Ischebeck T, Werner HB, Dullin C, Engelmann J, Möbius W, Göpfert MC, Dosch R, Geurten BRH. Axon demyelination and degeneration in a zebrafish spastizin model of hereditary spastic paraplegia. Open Biol 2024; 14:240100. [PMID: 39503232 PMCID: PMC11539067 DOI: 10.1098/rsob.240100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a diverse set of neurological disorders characterized by progressive spasticity and weakness in the lower limbs caused by damage to the axons of the corticospinal tract. More than 88 genetic mutations have been associated with HSP, yet the mechanisms underlying these disorders are not well understood. We replicated the pathophysiology of one form of HSP known as spastic paraplegia 15 (SPG15) in zebrafish. This disorder is caused in humans by mutations in the ZFYVE26 gene, which codes for a protein called SPASTIZIN. We show that, in zebrafish, the significant reduction of Spastizin caused degeneration of large motor neurons. Motor neuron degeneration is associated with axon demyelination in the spinal cord and impaired locomotion in the spastizin mutants. Our findings reveal that the reduction in Spastizin compromises axonal integrity and affects the myelin sheath, ultimately recapitulating the pathophysiology of HSPs.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Selina André
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Luisa Heyer
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Gudrun Kracht
- Department of Developmental Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Germany
| | - Jacob Engelmann
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Roland Dosch
- Institute for Humangenetics, University Medical Center, Göttingen, Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
- Department of Zoology, University of Otago Dunedin, Dunedin, New Zealand
| |
Collapse
|
2
|
Song Z, Han A, Hu B. Thymosin β4 promotes zebrafish Mauthner axon regeneration by facilitating actin polymerization through binding to G-actin. BMC Biol 2024; 22:244. [PMID: 39443925 PMCID: PMC11515629 DOI: 10.1186/s12915-024-02045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Thymosin beta 4 (Tβ4) is a monomeric actin-binding protein that plays many roles in biological activities. However, some studies on the role of Tβ4 in central axon regeneration have yielded contradictory results. Previous research has focused primarily on cultured cells, leading to a deficiency in in vivo experimental evidence. Therefore, we used a single axon injury model of Mauthner cells in zebrafish larvae to investigate the role of Tβ4 in central axon regeneration in vivo. RESULTS Our results demonstrated that knockout of Tβ4 impaired axon regeneration, whereas overexpression of Tβ4 promoted axon regeneration. Moreover, this promotion is mediated through the interaction between Tβ4 and G-actin. Furthermore, our results suggest that the binding of Tβ4 to G-actin promotes actin polymerization rather than depolymerization. In the rapid escape behavior test, larvae with damaged axons presented impaired tail muscle control, resulting in a lack of normal tail bending, termed the straight tail phenomenon. The proportion of straight tails was significantly negatively correlated with axon regeneration length, suggesting that it is a new indicator for assessing rapid escape behavior recovery. Finally, the results showed that the overexpression of Tβ4 effectively restored the functionality of rapid escape behaviors mediated by Mauthner cells. CONCLUSIONS Our results provide evidence that Tβ4 promotes central axon regeneration in vivo through binding to G-actin and suggest that Tβ4 could serve as a potential polypeptide drug for clinical therapy.
Collapse
Affiliation(s)
- Zheng Song
- Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Along Han
- Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Bing Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
3
|
Santistevan NJ, Ford CT, Gilsdorf CS, Grinblat Y. Behavioral and transcriptomic analyses of mecp2 function in zebrafish. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32981. [PMID: 38551133 DOI: 10.1002/ajmg.b.32981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 11/15/2024]
Abstract
Rett syndrome (RTT), a human neurodevelopmental disorder characterized by severe cognitive and motor impairments, is caused by dysfunction of the conserved transcriptional regulator Methyl-CpG-binding protein 2 (MECP2). Genetic analyses in mouse Mecp2 mutants, which exhibit key features of human RTT, have been essential for deciphering the mechanisms of MeCP2 function; nonetheless, our understanding of these complex mechanisms is incomplete. Zebrafish mecp2 mutants exhibit mild behavioral deficits but have not been analyzed in depth. Here, we combine transcriptomic and behavioral assays to assess baseline and stimulus-evoked motor responses and sensory filtering in zebrafish mecp2 mutants from 5 to 7 days post-fertilization (dpf). We show that zebrafish mecp2 function is required for normal thigmotaxis but is dispensable for gross movement, acoustic startle response, and sensory filtering (habituation and sensorimotor gating), and reveal a previously unknown role for mecp2 in behavioral responses to visual stimuli. RNA-seq analysis identified a large gene set that requires mecp2 function for correct transcription at 4 dpf, and pathway analysis revealed several pathways that require MeCP2 function in both zebrafish and mammals. These findings show that MeCP2's function as a transcriptional regulator is conserved across vertebrates and supports using zebrafish to complement mouse modeling in elucidating these conserved mechanisms.
Collapse
Affiliation(s)
- Nicholas J Santistevan
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - Colby T Ford
- School of Data Science, University of North Carolina, Charlotte, North Carolina, USA
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina, USA
- Tuple, LLC, Charlotte, North Carolina, USA
| | - Cole S Gilsdorf
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| | - Yevgenya Grinblat
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Sumathipala SH, Khan S, Kozol RA, Araki Y, Syed S, Huganir RL, Dallman JE. Context-dependent hyperactivity in syngap1a and syngap1b zebrafish models of SYNGAP1-related disorder. Front Mol Neurosci 2024; 17:1401746. [PMID: 39050824 PMCID: PMC11266194 DOI: 10.3389/fnmol.2024.1401746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Background and aims SYNGAP1-related disorder (SYNGAP1-RD) is a prevalent genetic form of Autism Spectrum Disorder and Intellectual Disability (ASD/ID) and is caused by de novo or inherited mutations in one copy of the SYNGAP1 gene. In addition to ASD/ID, SYNGAP1 disorder is associated with comorbid symptoms including treatment-resistant-epilepsy, sleep disturbances, and gastrointestinal distress. Mechanistic links between these diverse symptoms and SYNGAP1 variants remain obscure, therefore, our goal was to generate a zebrafish model in which this range of symptoms can be studied. Methods We used CRISPR/Cas9 to introduce frameshift mutations in the syngap1a and syngap1b zebrafish duplicates (syngap1ab) and validated these stable models for Syngap1 loss-of-function. Because SYNGAP1 is extensively spliced, we mapped splice variants to the two zebrafish syngap1a and b genes and identified mammalian-like isoforms. We then quantified locomotory behaviors in zebrafish syngap1ab larvae under three conditions that normally evoke different arousal states in wild-type larvae: aversive, high-arousal acoustic, medium-arousal dark, and low-arousal light stimuli. Results We show that CRISPR/Cas9 indels in zebrafish syngap1a and syngap1b produced loss-of-function alleles at RNA and protein levels. Our analyses of zebrafish Syngap1 isoforms showed that, as in mammals, zebrafish Syngap1 N- and C-termini are extensively spliced. We identified a zebrafish syngap1 α1-like variant that maps exclusively to the syngap1b gene. Quantifying locomotor behaviors showed that syngap1ab mutant larvae are hyperactive compared to wild-type but to differing degrees depending on the stimulus. Hyperactivity was most pronounced in low arousal settings, and hyperactivity was proportional to the number of mutant syngap1 alleles. Limitations Syngap1 loss-of-function mutations produce relatively subtle phenotypes in zebrafish compared to mammals. For example, while mouse Syngap1 homozygotes die at birth, zebrafish syngap1ab-/- survive to adulthood and are fertile, thus some aspects of symptoms in people with SYNGAP1-Related Disorder are not likely to be reflected in zebrafish. Conclusion Our data support mutations in zebrafish syngap1ab as causal for hyperactivity associated with elevated arousal that is especially pronounced in low-arousal environments.
Collapse
Affiliation(s)
- Sureni H. Sumathipala
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Suha Khan
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Robert A. Kozol
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Department of Biological Sciences, St. John’s University, Queens, NY, United States
| | - Yoichi Araki
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, United States
| | - Richard L. Huganir
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
5
|
Ros IG, Omoto JJ, Dickinson MH. Descending control and regulation of spontaneous flight turns in Drosophila. Curr Biol 2024; 34:531-540.e5. [PMID: 38228148 PMCID: PMC10872223 DOI: 10.1016/j.cub.2023.12.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
The clumped distribution of resources in the world has influenced the pattern of foraging behavior since the origins of locomotion, selecting for a common search motif in which straight movements through resource-poor regions alternate with zig-zag exploration in resource-rich domains. For example, during local search, flying flies spontaneously execute rapid flight turns, called body saccades, but suppress these maneuvers during long-distance dispersal or when surging upstream toward an attractive odor. Here, we describe the key cellular components of a neural network in flies that generate spontaneous turns as well as a specialized pair of neurons that inhibits the network and suppresses turning. Using 2-photon imaging, optogenetic activation, and genetic ablation, we show that only four descending neurons appear sufficient to generate the descending commands to execute flight saccades. The network is organized into two functional units-one for right turns and one for left-with each unit consisting of an excitatory (DNae014) and an inhibitory (DNb01) neuron that project to the flight motor neuropil within the ventral nerve cord. Using resources from recently published connectomes of the fly, we identified a pair of large, distinct interneurons (VES041) that form inhibitory connections to all four saccade command neurons and created specific genetic driver lines for this cell. As predicted by its connectivity, activation of VES041 strongly suppresses saccades, suggesting that it promotes straight flight to regulate the transition between local search and long-distance dispersal. These results thus identify the key elements of a network that may play a crucial role in foraging ecology.
Collapse
Affiliation(s)
- Ivo G Ros
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Jaison J Omoto
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Michael H Dickinson
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA.
| |
Collapse
|
6
|
Kanwal JS, Sanghera B, Dabbi R, Glasgow E. Pose analysis in free-swimming adult zebrafish, Danio rerio : "fishy" origins of movement design. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573780. [PMID: 38260397 PMCID: PMC10802288 DOI: 10.1101/2023.12.31.573780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Movement requires maneuvers that generate thrust to either make turns or move the body forward in physical space. The computational space for perpetually controlling the relative position of every point on the body surface can be vast. We hypothesize the evolution of efficient design for movement that minimizes active (neural) control by leveraging the passive (reactive) forces between the body and the surrounding medium at play. To test our hypothesis, we investigate the presence of stereotypical postures during free-swimming in adult zebrafish, Danio rerio . We perform markerless tracking using DeepLabCut, a deep learning pose estimation toolkit, to track geometric relationships between body parts. To identify putative clusters of postural configurations obtained from twelve freely behaving zebrafish, we use unsupervised multivariate time-series analysis (B-SOiD machine learning software). When applied to single individuals, this method reveals a best-fit for 36 to 50 clusters in contrast 86 clusters for data pooled from all 12 animals. The centroids of each cluster obtained over 14,000 sequential frames recorded for a single fish represent an apriori classification into relatively stable "target body postures" and inter-pose "transitional postures" that lead to and away from a target pose. We use multidimensional scaling of mean parameter values for each cluster to map cluster-centroids within two dimensions of postural space. From a post-priori visual analysis, we condense neighboring postural variants into 15 superclusters or core body configurations. We develop a nomenclature specifying the anteroposterior level/s (upper, mid and lower) and degree of bending. Our results suggest that constraining bends to mainly three levels in adult zebrafish preempts the neck, fore- and hindlimb design for maneuverability in land vertebrates.
Collapse
|
7
|
Clements KN, Ahn S, Park C, Heagy FK, Miller TH, Kassai M, Issa FA. Socially Mediated Shift in Neural Circuits Activation Regulated by Synergistic Neuromodulatory Signaling. eNeuro 2023; 10:ENEURO.0311-23.2023. [PMID: 37914408 PMCID: PMC10683552 DOI: 10.1523/eneuro.0311-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023] Open
Abstract
Animals exhibit context-dependent behavioral decisions that are mediated by specific motor circuits. In social species these decisions are often influenced by social status. Although social status-dependent neural plasticity of motor circuits has been investigated in vertebrates, little is known of how cellular plasticity translates into differences in motor activity. Here, we used zebrafish (Danio rerio) as a model organism to examine how social dominance influences the activation of swimming and the Mauthner-mediated startle escape behaviors. We show that the status-dependent shift in behavior patterns whereby dominants increase swimming and reduce sensitivity of startle escape while subordinates reduce their swimming and increase startle sensitivity is regulated by the synergistic interactions of dopaminergic, glycinergic, and GABAergic inputs to shift the balance of activation of the underlying motor circuits. This shift is driven by socially induced differences in expression of dopaminergic receptor type 1b (Drd1b) on glycinergic neurons and dopamine (DA) reuptake transporter (DAT). Second, we show that GABAergic input onto glycinergic neurons is strengthened in subordinates compared with dominants. Complementary neurocomputational modeling of the empirical results show that drd1b functions as molecular regulator to facilitate the shift between excitatory and inhibitory pathways. The results illustrate how reconfiguration in network dynamics serves as an adaptive strategy to cope with changes in social environment and are likely conserved and applicable to other social species.
Collapse
Affiliation(s)
- Katie N Clements
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, NC 27858
| | - Choongseok Park
- Department of Mathematics, North Carolina A&T State University, Greensboro, NC 27411
| | - Faith K Heagy
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Thomas H Miller
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC 27858
| | - Fadi A Issa
- Department of Biology, East Carolina University, Greenville, NC 27858
| |
Collapse
|
8
|
Ros IG, Omoto JJ, Dickinson MH. Descending control and regulation of spontaneous flight turns in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.555791. [PMID: 37732262 PMCID: PMC10508747 DOI: 10.1101/2023.09.06.555791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The clumped distribution of resources in the world has influenced the pattern of foraging behavior since the origins of life, selecting for a common locomotor search motif in which straight movements through resource-poor regions alternate with zig -zag exploration in resource-rich domains. For example, flies execute rapid changes in flight heading called body saccades during local search, but suppress these turns during long-distance dispersal or when surging upwind after encountering an attractive odor plume. Here, we describe the key cellular components of a neural network in flies that generates spontaneous turns as well as a specialized neuron that inhibits the network to promote straight flight. Using 2-photon imaging, optogenetic activation, and genetic ablation, we show that only four descending neurons appear sufficient to generate the descending commands to execute flight saccades. The network is organized into two functional couplets-one for right turns and one for left-with each couplet consisting of an excitatory (DNae014) and inhibitory (DNb01) neuron that project to the flight motor neuropil within the ventral nerve cord. Using resources from recently published connectomes of the fly brain, we identified a large, unique interneuron (VES041) that forms inhibitory connections to all four saccade command neurons and created specific genetic driver lines for this cell. As suggested by its connectivity, activation of VES041 strongly suppresses saccades, suggesting that it regulates the transition between local search and long-distance dispersal. These results thus identify the critical elements of a network that not only structures the locomotor behavior of flies, but may also play a crucial role in their natural foraging ecology.
Collapse
|
9
|
Sumathipala SH, Khan S, Kozol RA, Araki Y, Syed S, Huganir RL, Dallman JE. Context-dependent hyperactivity in syngap1a and syngap1b zebrafish autism models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.557316. [PMID: 37786701 PMCID: PMC10541574 DOI: 10.1101/2023.09.20.557316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background and Aims SYNGAP1 disorder is a prevalent genetic form of Autism Spectrum Disorder and Intellectual Disability (ASD/ID) and is caused by de novo or inherited mutations in one copy of the SYNGAP1 gene. In addition to ASD/ID, SYNGAP1 disorder is associated with comorbid symptoms including treatment-resistant-epilepsy, sleep disturbances, and gastrointestinal distress. Mechanistic links between these diverse symptoms and SYNGAP1 variants remain obscure, therefore, our goal was to generate a zebrafish model in which this range of symptoms can be studied. Methods We used CRISPR/Cas9 to introduce frameshift mutations in the syngap1a and syngap1b zebrafish duplicates (syngap1ab) and validated these stable models for Syngap1 loss-of-function. Because SYNGAP1 is extensively spliced, we mapped splice variants to the two zebrafish syngap1a and b genes and identified mammalian-like isoforms. We then quantified locomotory behaviors in zebrafish syngap1ab larvae under three conditions that normally evoke different arousal states in wild type larvae: aversive, high-arousal acoustic, medium-arousal dark, and low-arousal light stimuli. Results We show that CRISPR/Cas9 indels in zebrafish syngap1a and syngap1b produced loss-of-function alleles at RNA and protein levels. Our analyses of zebrafish Syngap1 isoforms showed that, as in mammals, zebrafish Syngap1 N- and C-termini are extensively spliced. We identified a zebrafish syngap1 α1-like variant that maps exclusively to the syngap1b gene. Quantifying locomotor behaviors showed that syngap1ab larvae are hyperactive compared to wild type but to differing degrees depending on the stimulus. Hyperactivity was most pronounced in low arousal settings, with overall movement increasing with the number of mutant syngap1 alleles. Conclusions Our data support mutations in zebrafish syngap1ab as causal for hyperactivity associated with elevated arousal that is especially pronounced in low-arousal environments.
Collapse
Affiliation(s)
- Sureni H. Sumathipala
- Department of Biology, University of Miami, Coral Gables, FL USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Suha Khan
- Department of Biology, University of Miami, Coral Gables, FL USA
| | - Robert A. Kozol
- Department of Biology, University of Miami, Coral Gables, FL USA
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter FL, USA
| | - Yoichi Araki
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL USA
| | - Richard L. Huganir
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL USA
| |
Collapse
|
10
|
Schuster S. The archerfish predictive C-start. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:827-837. [PMID: 37481772 PMCID: PMC10465633 DOI: 10.1007/s00359-023-01658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
A very quick decision enables hunting archerfish to secure downed prey even when they are heavily outnumbered by competing other surface-feeding fish. Based exclusively on information that is taken briefly after the onset of prey motion, the fish select a rapid C-start that turns them right towards the later point of catch. Moreover, the C-start, and not later fin strokes, already lends the fish the speed needed to arrive at just the right time. The archerfish predictive C-starts are kinematically not distinguishable from escape C-starts made by the same individual and are among the fastest C-starts known in teleost fish. The start decisions allow the fish-for ballistically falling prey-to respond accurately to any combination of the initial variables of prey movement and for any position and orientation of the responding fish. The start decisions do not show a speed-accuracy tradeoff and their accuracy is buffered against substantial changes of environmental parameters. Here, I introduce key aspects of this high-speed decision that combines speed, complexity, and precision in an unusual way.
Collapse
Affiliation(s)
- Stefan Schuster
- Lehrstuhl für Tierphysiologie , University of Bayreuth , 95440, Bayreuth, Germany.
| |
Collapse
|
11
|
Wu Q, Zhang Y. Neural Circuit Mechanisms Involved in Animals' Detection of and Response to Visual Threats. Neurosci Bull 2023; 39:994-1008. [PMID: 36694085 PMCID: PMC10264346 DOI: 10.1007/s12264-023-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/30/2022] [Indexed: 01/26/2023] Open
Abstract
Evading or escaping from predators is one of the most crucial issues for survival across the animal kingdom. The timely detection of predators and the initiation of appropriate fight-or-flight responses are innate capabilities of the nervous system. Here we review recent progress in our understanding of innate visually-triggered defensive behaviors and the underlying neural circuit mechanisms, and a comparison among vinegar flies, zebrafish, and mice is included. This overview covers the anatomical and functional aspects of the neural circuits involved in this process, including visual threat processing and identification, the selection of appropriate behavioral responses, and the initiation of these innate defensive behaviors. The emphasis of this review is on the early stages of this pathway, namely, threat identification from complex visual inputs and how behavioral choices are influenced by differences in visual threats. We also briefly cover how the innate defensive response is processed centrally. Based on these summaries, we discuss coding strategies for visual threats and propose a common prototypical pathway for rapid innate defensive responses.
Collapse
Affiliation(s)
- Qiwen Wu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifeng Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
12
|
Coombs S. A multisensory perspective on near-field detection and localization of hydroacoustic sourcesa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2545. [PMID: 37130204 DOI: 10.1121/10.0017926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/07/2023] [Indexed: 05/04/2023]
Abstract
This paper gives a brief synopsis of the research career of S.C. in fish bioacoustics with an emphasis on dipole near fields. The hydroacoustic nature of the dipole near field and the effective stimuli to lateral line and auditory systems combine to produce a multisensory, range-fractionated region that is critically important to many fish behaviors. The mottled sculpin and goldfish lateral lines encode the spatial complexities of the near field as spatial excitation patterns along the body surface to provide instantaneous snapshots of various source features such as distance, orientation, and direction of movement. In contrast, the pressure-sensitive channel of the goldfish auditory system [the anterior swim bladder (SB)-saccule complex] encodes the spatial complexities in a temporal fashion whenever the position or orientation of the source changes with respect to the anterior SB. A full appreciation for how these somatotopic and egocentric representations guide fish behavior requires an understanding of how multisensory information, including vision, is combined in sensorimotor regions of the brain to effect behavior. A brief overview of vertebrate brain organization indicates that behaviors directed to or away from hydroacoustic sources likely involve a variety of mechanisms, behavioral strategies, and brain regions.
Collapse
Affiliation(s)
- Sheryl Coombs
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio 43402, USA
| |
Collapse
|
13
|
Gibbs BJ, Strother JA, Liao JC. Recording central nervous system responses of freely-swimming marine and freshwater fishes with a customizable, implantable AC differential amplifier. J Neurosci Methods 2023; 391:109850. [PMID: 37028520 DOI: 10.1016/j.jneumeth.2023.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Fish have adapted to a diversity of environments but the neural mechanisms underlying natural aquatic behaviors are not well known. NEW METHOD We have developed a small, customizable AC differential amplifier and surgical procedures for recording multi-unit extracellular signals in the CNS of marine and freshwater fishes. RESULTS Our minimally invasive amplifier allowed fish to orient to flow and respond to hydrodynamic and visual stimuli. We recorded activity in the cerebellum during these behaviors. COMPARISON WITH EXISTING METHODS Our system is very low-cost, hydrodynamically streamlined, and capable of high-gain in order to allow for recordings from freely behaving, fast fishes in complex fluid environments. CONCLUSIONS Our tethered approach allows access to record neural activity in a diversity of adult fishes in the lab, but can also be modified for data logging in the field.
Collapse
Affiliation(s)
- Brendan J Gibbs
- Department of Biology/ The Whitney Laboratory for Marine Bioscience, University of Florida
| | - James A Strother
- Department of Biology/ The Whitney Laboratory for Marine Bioscience, University of Florida
| | - James C Liao
- Department of Biology/ The Whitney Laboratory for Marine Bioscience, University of Florida.
| |
Collapse
|
14
|
Machnik P, Biazar N, Schuster S. Recordings in an integrating central neuron reveal the mode of action of isoeugenol. Commun Biol 2023; 6:309. [PMID: 36959338 PMCID: PMC10036640 DOI: 10.1038/s42003-023-04695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/10/2023] [Indexed: 03/25/2023] Open
Abstract
Although isoeugenol is one of the most widely used anesthetics in fish, its actual mode of action and thus its applicability for particular interventions is poorly understood. Here we determined effects of isoeugenol on various aspects of sensory and neural function, taking advantage of intracellular in vivo recordings in a uniquely suited identified neuron, the Mauthner neuron in the brain of goldfish. We show that isoeugenol strongly affects hearing and vision, but sensitivity and time course of action differed largely in these two senses. The action potential, chemical and electric synaptic transmission at the central neuron were not affected at low but efficient anesthesia. Effects seen at high concentration thereby do not support current views of how isoeugenol might act on central neurons. We show that isoeugenol is highly useful to anesthetize fish for handling, but that in more severe treatment its application needs to be carefully adapted to task.
Collapse
Affiliation(s)
- Peter Machnik
- Department of Animal Physiology, University of Bayreuth, (Universitätsstraße 30, D-95440 Bayreuth), Bayreuth, Germany.
| | - Nastaran Biazar
- Department of Animal Physiology, University of Bayreuth, (Universitätsstraße 30, D-95440 Bayreuth), Bayreuth, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, (Universitätsstraße 30, D-95440 Bayreuth), Bayreuth, Germany
| |
Collapse
|
15
|
Wang HY, Yu K, Yang Z, Zhang G, Guo SQ, Wang T, Liu DD, Jia RN, Zheng YT, Su YN, Lou Y, Weiss KR, Zhou HB, Liu F, Cropper EC, Yu Q, Jing J. A Single Central Pattern Generator for the Control of a Locomotor Rolling Wave in Mollusc Aplysia. RESEARCH (WASHINGTON, D.C.) 2023; 6:0060. [PMID: 36930762 PMCID: PMC10013812 DOI: 10.34133/research.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
Locomotion in mollusc Aplysia is implemented by a pedal rolling wave, a type of axial locomotion. Well-studied examples of axial locomotion (pedal waves in Drosophila larvae and body waves in leech, lamprey, and fish) are generated in a segmented nervous system via activation of multiple coupled central pattern generators (CPGs). Pedal waves in molluscs, however, are generated by a single pedal ganglion, and it is unknown whether there are single or multiple CPGs that generate rhythmic activity and phase shifts between different body parts. During locomotion in intact Aplysia, bursting activity in the parapedal commissural nerve (PPCN) was found to occur during tail contraction. A cluster of 20 to 30 P1 root neurons (P1Ns) on the ventral surface of the pedal ganglion, active during the pedal wave, were identified. Computational cluster analysis revealed that there are 2 phases to the motor program: phase I (centered around 168°) and phase II (centered around 357°). PPCN activity occurs during phase II. The majority of P1Ns are motoneurons. Coactive P1Ns tend to be electrically coupled. Two classes of pedal interneurons (PIs) were characterized. Class 1 (PI1 and PI2) is active during phase I. Their axons make a loop within the pedal ganglion and contribute to locomotor pattern generation. They are electrically coupled to P1Ns that fire during phase I. Class 2 (PI3) is active during phase II and innervates the contralateral pedal ganglion. PI3 may contribute to bilateral coordination. Overall, our findings support the idea that Aplysia pedal waves are generated by a single CPG.
Collapse
Affiliation(s)
- Hui-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ke Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhe Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Guo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shi-Qi Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tao Wang
- National Laboratory of Solid State Microstructures, Department of Physics, Institute for Brain Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dan-Dan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ruo-Nan Jia
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yu-Tong Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan-Nan Su
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yi Lou
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Klaudiusz R. Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hai-Bo Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Peng Cheng Laboratory, Shenzhen 518000, China
| | - Feng Liu
- National Laboratory of Solid State Microstructures, Department of Physics, Institute for Brain Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Elizabeth C. Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Quan Yu
- Peng Cheng Laboratory, Shenzhen 518000, China
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Peng Cheng Laboratory, Shenzhen 518000, China
| |
Collapse
|
16
|
Wang Z, Wang X, Shi L, Cai Y, Hu B. Wolfram syndrome 1b mutation suppresses Mauthner-cell axon regeneration via ER stress signal pathway. Acta Neuropathol Commun 2022; 10:184. [PMID: 36527091 PMCID: PMC9758940 DOI: 10.1186/s40478-022-01484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Wolfram Syndrome (WS) is a fatal human inherited disease with symptoms of diabetes, vision decreasing, and neurodegeneration caused by mutations in the endoplasmic reticulum (ER)-resident protein WFS1. WFS1 has been reported to play an important role in glucose metabolism. However, the role of WFS1 in axonal regeneration in the central nervous system has so far remained elusive. Herein, we established a model of the wfs1b globally deficient zebrafish line. wfs1b deficiency severely impeded the Mauthner-cell (M-cell) axon regeneration, which was partly dependent on the ER stress response. The administration of ER stress inhibitor 4-Phenylbutyric acid (4-PBA) promoted M-cell axon regeneration in wfs1b-/- zebrafish larvae, while the ER stress activator Tunicamycin (TM) inhibited M-cell axon regeneration in wfs1b+/+ zebrafish larvae. Moreover, complementation of wfs1b at the single-cell level stimulated M-cell axon regeneration in the wfs1b-/- zebrafish larvae. Altogether, our results revealed that wfs1b promotes M-cell axon regeneration through the ER stress signal pathway and provide new evidence for a therapeutic target for WS and axon degeneration.
Collapse
Affiliation(s)
- Zongyi Wang
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026 China
| | - Xinliang Wang
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026 China
| | - Lingyu Shi
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026 China
| | - Yuan Cai
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026 China ,grid.59053.3a0000000121679639First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026 China
| | - Bing Hu
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026 China ,grid.59053.3a0000000121679639Research Institute of Frontier Cross Science and Biomedical Sciences, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
17
|
Zwaka H, McGinnis OJ, Pflitsch P, Prabha S, Mansinghka V, Engert F, Bolton AD. Visual object detection biases escape trajectories following acoustic startle in larval zebrafish. Curr Biol 2022; 32:5116-5125.e3. [PMID: 36402136 PMCID: PMC10028558 DOI: 10.1016/j.cub.2022.10.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/19/2022]
Abstract
In this study, we investigated whether the larval zebrafish is sensitive to the presence of obstacles in its environment. Zebrafish execute fast escape swims when in danger of predation. We posited that collisions with solid objects during escape would be maladaptive to the fish, and therefore, the direction of escape swims should be informed by the locations of barriers. To test this idea, we developed a closed-loop imaging rig outfitted with barriers of various qualities. We show that when larval zebrafish escape in response to a non-directional vibrational stimulus, they use visual scene information to avoid collisions with obstacles. Our study demonstrates that barrier avoidance rate corresponds to the absolute distance of obstacles, as distant barriers outside of collision range elicit less bias than nearby collidable barriers that occupy the same amount of visual field. The computation of barrier avoidance is covert: the fact that fish will avoid barriers during escape cannot be predicted by its routine swimming behavior in the barrier arena. Finally, two-photon laser ablation experiments suggest that excitatory bias is provided to the Mauthner cell ipsilateral to approached barriers, either via direct excitation or a multi-step modulation process. We ultimately propose that zebrafish detect collidable objects via an integrative visual computation that is more complex than retinal occupancy alone, laying a groundwork for understanding how cognitive physical models observed in humans are implemented in an archetypal vertebrate brain. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Hanna Zwaka
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Olivia J McGinnis
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paula Pflitsch
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Srishti Prabha
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Vikash Mansinghka
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02142, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew D Bolton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
18
|
Kumari A, Zeng XA, Rahaman A, Farooq MA, Huang Y, Alee M, Yao R, Ali M, Khalifa I, Badr O. Phenotype-based drug screening: An in vivo strategy to classify and identify the chemical compounds modulating zebrafish M-cell regeneration. Front Mol Biosci 2022; 9:984461. [PMID: 36353729 PMCID: PMC9637979 DOI: 10.3389/fmolb.2022.984461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/20/2022] [Indexed: 02/03/2023] Open
Abstract
Several disease-modulatory FDA-approved drugs are being used in patients with neurodegenerative diseases. However, information on their toxicity-related profiles is very limited. Therefore, measurement of drug toxicity is essential to increase the knowledge of their side effects. This study aimed to identify compounds that can modulate M-cell regeneration by causing neuro-protection and -toxicity. Here, we developed a simple and efficient in vivo assay using Tg (hsp: Gal4FF62A; UAS: nfsB-mCherry) transgenic zebrafish larvae. Interestingly, via the phenotype-based drug screening approach, we rapidly investigated 1,260 compounds from the United States drug collection and validated these in large numbers, including 14 compounds, that were obstructing this regeneration process. Next, 4 FDA-approved drugs out of 14 compounds were selected as the lead hits for in silico analysis to clarify their binding patterns with PTEN and SOCS3 signaling due to their significant potential in the inhibition of axon regeneration. Molecular docking studies indicated good binding affinity of all 4 drugs with the respective signaling molecules. This may point to PTEN and SOCS3 as the signaling molecules responsible for reducing axon regeneration. Moreover, the acute effect of compounds in reducing M-cell regeneration delineated their toxic effect. In conclusion, our in vivo along with in silico screening strategy will promote the rapid translation of new therapeutics to improve knowledge of the toxicity profile of approved/non-approved drugs efficiently.
Collapse
Affiliation(s)
- Ankita Kumari
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China,Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China,Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China,*Correspondence: Xin-An Zeng, ; Abdul Rahaman, ; Ibrahim Khalifa,
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China,Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China,*Correspondence: Xin-An Zeng, ; Abdul Rahaman, ; Ibrahim Khalifa,
| | - Muhammad Adil Farooq
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Punjab, Pakistan
| | - Yanyan Huang
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Mahafooj Alee
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Runyu Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Murtaza Ali
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China,Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Ibrahim Khalifa
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Punjab, Pakistan,Food Technology Department, Faculty of Agriculture, Benha University, Qalyubia, Egypt,*Correspondence: Xin-An Zeng, ; Abdul Rahaman, ; Ibrahim Khalifa,
| | - Omnia Badr
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Punjab, Pakistan,Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalyubia, Egypt
| |
Collapse
|
19
|
Athira A, Dondorp D, Rudolf J, Peytral O, Chatzigeorgiou M. Comprehensive analysis of locomotion dynamics in the protochordate Ciona intestinalis reveals how neuromodulators flexibly shape its behavioral repertoire. PLoS Biol 2022; 20:e3001744. [PMID: 35925898 PMCID: PMC9352054 DOI: 10.1371/journal.pbio.3001744] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Vertebrate nervous systems can generate a remarkable diversity of behaviors. However, our understanding of how behaviors may have evolved in the chordate lineage is limited by the lack of neuroethological studies leveraging our closest invertebrate relatives. Here, we combine high-throughput video acquisition with pharmacological perturbations of bioamine signaling to systematically reveal the global structure of the motor behavioral repertoire in the Ciona intestinalis larvae. Most of Ciona’s postural variance can be captured by 6 basic shapes, which we term “eigencionas.” Motif analysis of postural time series revealed numerous stereotyped behavioral maneuvers including “startle-like” and “beat-and-glide.” Employing computational modeling of swimming dynamics and spatiotemporal embedding of postural features revealed that behavioral differences are generated at the levels of motor modules and the transitions between, which may in part be modulated by bioamines. Finally, we show that flexible motor module usage gives rise to diverse behaviors in response to different light stimuli. Vertebrate nervous systems can generate a remarkable diversity of behaviors, but how did these evolve in the chordate lineage? A study of the protochordate Ciona intestinalis reveals novel insights into how a simple chordate brain uses neuromodulators to control its behavioral repertoire.
Collapse
Affiliation(s)
- Athira Athira
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Daniel Dondorp
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Jerneja Rudolf
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Olivia Peytral
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Marios Chatzigeorgiou
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
20
|
Santistevan NJ, Nelson JC, Ortiz EA, Miller AH, Kenj Halabi D, Sippl ZA, Granato M, Grinblat Y. cacna2d3, a voltage-gated calcium channel subunit, functions in vertebrate habituation learning and the startle sensitivity threshold. PLoS One 2022; 17:e0270903. [PMID: 35834485 PMCID: PMC9282658 DOI: 10.1371/journal.pone.0270903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The ability to filter sensory information into relevant versus irrelevant stimuli is a fundamental, conserved property of the central nervous system and is accomplished in part through habituation learning. Synaptic plasticity that underlies habituation learning has been described at the cellular level, yet the genetic regulators of this plasticity remain poorly understood, as do circuits that mediate sensory filtering. METHODS To identify genes critical for plasticity, a forward genetic screen for zebrafish genes that mediate habituation learning was performed, which identified a mutant allele, doryp177, that caused reduced habituation of the acoustic startle response. In this study, we combine whole-genome sequencing with behavioral analyses to characterize and identify the gene affected in doryp177 mutants. RESULTS Whole-genome sequencing identified the calcium voltage-gated channel auxiliary subunit alpha-2/delta-3 (cacna2d3) as a candidate gene affected in doryp177 mutants. Behavioral characterization of larvae homozygous for two additional, independently derived mutant alleles of cacna2d3, together with failure of these alleles to complement doryp177, confirmed a critical role for cacna2d3 in habituation learning. Notably, detailed analyses of the acoustic response in mutant larvae also revealed increased startle sensitivity to acoustic stimuli, suggesting a broader role for cacna2d3 in controlling innate response thresholds to acoustic stimuli. CONCLUSIONS Taken together, our data demonstrate a critical role for cacna2d3 in sensory filtering, a process that is disrupted in human CNS disorders, e.g. ADHD, schizophrenia, and autism.
Collapse
Affiliation(s)
- Nicholas J. Santistevan
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Elelbin A. Ortiz
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andrew H. Miller
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- Neuroscience Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Dima Kenj Halabi
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Zoë A. Sippl
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail: (MG); (YG)
| | - Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (MG); (YG)
| |
Collapse
|
21
|
Powie Y, Strydom M, Aucamp M, Schellack N, Steenkamp V, Smith C. Zebrafish behavioral response to ivermectin: insights into potential neurological risk. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
22
|
Small CM, Healey HM, Currey MC, Beck EA, Catchen J, Lin ASP, Cresko WA, Bassham S. Leafy and weedy seadragon genomes connect genic and repetitive DNA features to the extravagant biology of syngnathid fishes. Proc Natl Acad Sci U S A 2022; 119:e2119602119. [PMID: 35733255 PMCID: PMC9245644 DOI: 10.1073/pnas.2119602119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
Seadragons are a remarkable lineage of teleost fishes in the family Syngnathidae, renowned for having evolved male pregnancy. Comprising three known species, seadragons are widely recognized and admired for their fantastical body forms and coloration, and their specific habitat requirements have made them flagship representatives for marine conservation and natural history interests. Until recently, a gap has been the lack of significant genomic resources for seadragons. We have produced gene-annotated, chromosome-scale genome models for the leafy and weedy seadragon to advance investigations of evolutionary innovation and elaboration of morphological traits in seadragons as well as their pipefish and seahorse relatives. We identified several interesting features specific to seadragon genomes, including divergent noncoding regions near a developmental gene important for integumentary outgrowth, a high genome-wide density of repetitive DNA, and recent expansions of transposable elements and a vesicular trafficking gene family. Surprisingly, comparative analyses leveraging the seadragon genomes and additional syngnathid and outgroup genomes revealed striking, syngnathid-specific losses in the family of fibroblast growth factors (FGFs), which likely involve reorganization of highly conserved gene regulatory networks in ways that have not previously been documented in natural populations. The resources presented here serve as important tools for future evolutionary studies of developmental processes in syngnathids and hold value for conservation of the extravagant seadragons and their relatives.
Collapse
Affiliation(s)
- Clayton M. Small
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Hope M. Healey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| | - Mark C. Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| | - Emily A. Beck
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Julian Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Angela S. P. Lin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403
| | - William A. Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| |
Collapse
|
23
|
Ludwig RJ, Welch MG. Wired to Connect: The Autonomic Socioemotional Reflex Arc. Front Psychol 2022; 13:841207. [PMID: 35814106 PMCID: PMC9268160 DOI: 10.3389/fpsyg.2022.841207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/04/2022] [Indexed: 01/10/2023] Open
Abstract
We have previously proposed that mothers and infants co-regulate one another’s autonomic state through an autonomic conditioning mechanism, which starts during gestation and results in the formation of autonomic socioemotional reflexes (ASRs) following birth. Theoretically, autonomic physiology associated with the ASR should correlate concomitantly with behaviors of mother and infant, although the neuronal pathway by which this phenomenon occurs has not been elucidated. In this paper, we consider the neuronal pathway by which sensory stimuli between a mother and her baby/child affect the physiology and emotional behavior of each. We divide our paper into two parts. In the first part, to gain perspective on current theories on the subject, we conduct a 500-year narrative history of scientific investigations into the human nervous system and theories that describe the neuronal pathway between sensory stimulus and emotional behavior. We then review inconsistencies between several currently accepted theories and recent data. In the second part, we lay out a new theory of emotions that describes how sensory stimuli between mother and baby unconsciously control the behavior and physiology of both. We present a theory of mother/infant emotion based on a set of assumptions fundamentally different from current theories. Briefly, we propose that mother/infant sensory stimuli trigger conditional autonomic socioemotional reflexes (ASRs), which drive cardiac function and behavior without the benefit of the thalamus, amygdala or cortex. We hold that the ASR is shaped by an evolutionarily conserved autonomic learning mechanism (i.e., functional Pavlovian conditioning) that forms between mother and fetus during gestation and continues following birth. We highlight our own and others research findings over the past 15 years that support our contention that mother/infant socioemotional behavior is driven by mutual autonomic state plasticity, as opposed to cortical trait plasticity. We review a novel assessment tool designed to measure the behaviors associated with the ASR phenomenon. Finally, we discuss the significance of our theory for the treatment of mothers and infants with socioemotional disorders.
Collapse
Affiliation(s)
- Robert J. Ludwig
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Robert J. Ludwig,
| | - Martha G. Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Anatomy and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
24
|
Yamao H, Shidara H, Ogawa H. Central projections of cercal giant interneurons in the adult field cricket,
Gryllus bimaculatus. J Comp Neurol 2022; 530:2372-2384. [DOI: 10.1002/cne.25336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Hiroki Yamao
- Department of Biological Sciences School of Science Hokkaido University Sapporo Japan
- Graduate School of Life Sciences Tohoku University Sendai Japan
| | - Hisashi Shidara
- Department of Biological Sciences Faculty of Science, Hokkaido University Sapporo Japan
- Department of Biochemistry Graduate School of Medicine, Mie University Tsu Japan
| | - Hiroto Ogawa
- Department of Biological Sciences Faculty of Science, Hokkaido University Sapporo Japan
| |
Collapse
|
25
|
MALDI mass spectrometry imaging workflow for the aquatic model organisms Danio rerio and Daphnia magna. Sci Rep 2022; 12:7288. [PMID: 35508492 PMCID: PMC9068711 DOI: 10.1038/s41598-022-09659-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/16/2022] [Indexed: 11/09/2022] Open
Abstract
Lipids play various essential roles in the physiology of animals. They are also highly dependent on cellular metabolism or status. It is therefore crucial to understand to which extent animals can stabilize their lipid composition in the presence of external stressors, such as chemicals that are released into the environment. We developed a MALDI MS imaging workflow for two important aquatic model organisms, the zebrafish (Danio rerio) and water flea (Daphnia magna). Owing to the heterogeneous structure of these organisms, developing a suitable sample preparation workflow is a highly non-trivial but crucial part of this work and needs to be established first. Relevant parameters and practical considerations in order to preserve tissue structure and composition in tissue sections are discussed for each application. All measurements were based on high mass accuracy enabling reliable identification of imaged compounds. In zebrafish we demonstrate that a detailed mapping between histology and simultaneously determined lipid composition is possible at various scales, from extended structures such as the brain or gills down to subcellular structures such as a single axon in the central nervous system. For D. magna we present for the first time a MALDI MSI workflow, that demonstrably maintains tissue integrity during cryosectioning of non-preserved samples, and allows the mapping of lipids in the entire body and the brood chamber inside the carapace. In conclusion, the lipid signatures that we were able to detect with our method provide an ideal basis to analyze changes caused by pollutants in two key aquatic model organisms.
Collapse
|
26
|
Kimura H, Pfalzgraff T, Levet M, Kawabata Y, Steffensen JF, Johansen JL, Domenici P. Escaping from multiple visual threats: Modulation of escape responses in Pacific staghorn sculpin ( Leptocottus armatus). J Exp Biol 2022; 225:275328. [DOI: 10.1242/jeb.243328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/05/2022] [Indexed: 11/20/2022]
Abstract
Fish perform rapid escape responses to avoid sudden predatory attacks. During escape responses, fish bend their bodies into a C-shape and quickly turn away from the predator and accelerate. The escape trajectory is determined by the initial turn (Stage 1) and a contralateral bend (Stage 2). Previous studies have used a single threat or model predator as a stimulus. In nature, however, multiple predators may attack from different directions simultaneously or in close succession. It is unknown whether fish are able to change the course of their escape response when startled by multiple stimuli at various time intervals. Pacific staghorn sculpin (Leptocottus armatus) were startled with a left and right visual stimulus in close succession. By varying the timing of the second stimulus, we were able to determine when and how a second stimulus could affect the escape response direction. Four treatments were used: a single visual stimulus (control); or two stimuli coming from opposite sides separated by a 0 ms (simultaneous treatment); a 33 ms; or a 83 ms time interval. The 33 ms and 83 ms time intervals were chosen to occur shortly before and after a predicted 60 ms visual escape latency (i.e. during Stage 1). The 0 ms and 33 ms treatments influenced both the escape trajectory and the Stage 1 turning angle, compared to a single stimulation, whereas the 83 ms treatment had no effect on the escape trajectory. We conclude that Pacific staghorn sculpin can modulate their escape trajectory only between stimulation and the onset of the response, but that escape trajectory cannot be modulated after the body motion has started.
Collapse
Affiliation(s)
- Hibiki Kimura
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Japan
| | - Tilo Pfalzgraff
- Technical University of Denmark, DTU AQUA, Section for Aquaculture, The North Sea Research Centre, 9850 Hirtshals, Denmark
| | - Marie Levet
- Département de Sciences Biologiques, Université de Montréal, Campus MIL, 1375 Avenue Thérèse-Lavoie-Roux, Montréal QC H2V 0B3, Canada
| | - Yuuki Kawabata
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Japan
| | - John F. Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Jacob L. Johansen
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, 46-007 Lilipuna Rd, Kaneohe, HI 96744, USA
| | | |
Collapse
|
27
|
Lara RA, Breitzler L, Lau IH, Gordillo-Martinez F, Chen F, Fonseca PJ, Bass AH, Vasconcelos RO. Noise-induced hearing loss correlates with inner ear hair cell decrease in larval zebrafish. J Exp Biol 2022; 225:274643. [PMID: 35258623 DOI: 10.1242/jeb.243743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/27/2022] [Indexed: 11/20/2022]
Abstract
Anthropogenic noise can be hazardous for the auditory system and wellbeing of animals, including humans. However, very limited information is known on how this global environmental pollutant affects auditory function and inner ear sensory receptors in early ontogeny. The zebrafish (Danio rerio) is a valuable model in hearing research, including to investigate developmental processes of the vertebrate inner ear. We tested the effects of chronic exposure to white noise in larval zebrafish on inner ear saccular sensitivity and morphology at 3 and 5 days post fertilization (dpf), as well as on auditory-evoked swimming responses using the prepulse inhibition paradigm (PPI) at 5 dpf. Noise-exposed larvae showed significant increase in microphonic potential thresholds at low frequencies, 100 and 200 Hz, while PPI revealed a hypersensitisation effect and similar threshold shift at 200 Hz. Auditory sensitivity changes were accompanied by a decrease in saccular hair cell number and epithelium area. In aggregate, the results reveal noise-induced effects on inner ear structure-function in a larval fish paralleled by a decrease in auditory-evoked sensorimotor responses. More broadly, this study highlights the importance of investigating the impact of environmental noise on early development of sensory and behavioural responsiveness to acoustic stimuli.
Collapse
Affiliation(s)
- Rafael A Lara
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China.,Departamento de Biología, Universidad de Sevilla, Spain
| | - Lukas Breitzler
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| | - Ieng Hou Lau
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| | | | - Fangyi Chen
- Department of Biomedical Engineering, South University of Science and Technology of China, Guangdong, China
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, NY, USA
| | - Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| |
Collapse
|
28
|
Barnaby W, Dorman Barclay HE, Nagarkar A, Perkins M, Teicher G, Trapani JG, Downes GB. GABAA α subunit control of hyperactive behavior in developing zebrafish. Genetics 2022; 220:6519832. [PMID: 35106556 PMCID: PMC8982038 DOI: 10.1093/genetics/iyac011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
GABAA receptors mediate rapid responses to the neurotransmitter gamma-aminobutyric acid and are robust regulators of the brain and spinal cord neural networks that control locomotor behaviors, such as walking and swimming. In developing zebrafish, gross pharmacological blockade of these receptors causes hyperactive swimming, which is also a feature of many zebrafish epilepsy models. Although GABAA receptors are important to control locomotor behavior, the large number of subunits and homeostatic compensatory mechanisms have challenged efforts to determine subunit-selective roles. To address this issue, we mutated each of the 8 zebrafish GABAA α subunit genes individually and in pairs using a CRISPR-Cas9 somatic inactivation approach and, then, we examined the swimming behavior of the mutants at 2 developmental stages, 48 and 96 h postfertilization. We found that disrupting the expression of specific pairs of subunits resulted in different abnormalities in swimming behavior at 48 h postfertilization. Mutation of α4 and α5 selectively resulted in longer duration swimming episodes, mutations in α3 and α4 selectively caused excess, large-amplitude body flexions (C-bends), and mutation of α3 and α5 resulted in increases in both of these measures of hyperactivity. At 96 h postfertilization, hyperactive phenotypes were nearly absent, suggesting that homeostatic compensation was able to overcome the disruption of even multiple subunits. Taken together, our results identify subunit-selective roles for GABAA α3, α4, and α5 in regulating locomotion. Given that these subunits exhibit spatially restricted expression patterns, these results provide a foundation to identify neurons and GABAergic networks that control discrete aspects of locomotor behavior.
Collapse
Affiliation(s)
- Wayne Barnaby
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA,Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | - Akanksha Nagarkar
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Matthew Perkins
- Biology Department and Neuroscience Program, Amherst College, Amherst, MA 01002, USA
| | - Gregory Teicher
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA,Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Josef G Trapani
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA,Biology Department and Neuroscience Program, Amherst College, Amherst, MA 01002, USA
| | - Gerald B Downes
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA,Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA,Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA,Corresponding author: Biology Department, Neuroscience and Behavior Graduate Program, and Molecular and Cellular Biology Graduate Program, 611 North Pleasant St., Morrill Science Center, Building 4 North, Amherst, MA 01003, USA.
| |
Collapse
|
29
|
Audiovisual integration in the Mauthner cell enhances escape probability and reduces response latency. Sci Rep 2022; 12:1097. [PMID: 35058502 PMCID: PMC8776867 DOI: 10.1038/s41598-022-04998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractFast and accurate threat detection is critical for animal survival. Reducing perceptual ambiguity by integrating multiple sources of sensory information can enhance perception and reduce response latency. However, studies addressing the link between behavioral correlates of multisensory integration and its underlying neural basis are rare. Fish that detect an urgent threat escape with an explosive behavior known as C-start. The C-start is driven by an identified neural circuit centered on the Mauthner cell, an identified neuron capable of triggering escapes in response to visual and auditory stimuli. Here we demonstrate that goldfish can integrate visual looms and brief auditory stimuli to increase C-start probability. This multisensory enhancement is inversely correlated to the salience of the stimuli, with weaker auditory cues producing a proportionally stronger multisensory effect. We also show that multisensory stimuli reduced C-start response latency, with most escapes locked to the presentation of the auditory cue. We make a direct link between behavioral data and its underlying neural mechanism by reproducing the behavioral data with an integrate-and-fire computational model of the Mauthner cell. This model of the Mauthner cell circuit suggests that excitatory inputs integrated at the soma are key elements in multisensory decision making during fast C-start escapes. This provides a simple but powerful mechanism to enhance threat detection and survival.
Collapse
|
30
|
Huang R, Xu Y, Chen M, Yang L, Wang X, Shen Y, Huang Y, Hu B. Visualizing the Intracellular Trafficking in Zebrafish Mauthner Cells. Methods Mol Biol 2022; 2431:351-364. [PMID: 35412286 DOI: 10.1007/978-1-0716-1990-2_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Axonal transport is crucial for the development and survival of neurons and maintenance of neuronal function. Disruption in this active process causes diverse neurological diseases. Thus, study of the intracellular trafficking as one way to gain the knowledge of the kinetics of axonal transport is essential to understand the mechanisms underlying the neuropathology. A lot of studies have been completed in vitro with neuron cultures and tissues, which may not accurately replicate the in vivo situation. Therefore, intravital manipulations are essential to achieve this goal. Here we introduce a technique that has been widely used in our lab to study the cargo trafficking in zebrafish at single-cell resolution. We use mitochondria as a representative neuronal cargo and provide step-by-step instructions on how to label specific cargoes within zebrafish Mauthner cells. This method can also be expanded to study the kinetics of other cargoes as well as the role of molecular regulators in axonal transport.
Collapse
Affiliation(s)
- Rongchen Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Yang Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Min Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Leiqing Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Xinliang Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Yueru Shen
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Yubin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Bing Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China.
| |
Collapse
|
31
|
Machnik P, Schuster S. Recording from an Identified Neuron Efficiently Reveals Hazard for Brain Function in Risk Assessment. Molecules 2021; 26:molecules26226935. [PMID: 34834026 PMCID: PMC8622100 DOI: 10.3390/molecules26226935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Modern societies use a continuously growing number of chemicals. Because these are released into the environment and are taken up by humans, rigorous (but practicable) risk assessment must precede the approval of new substances for commerce. A number of tests is applicable, but it has been very difficult to efficiently assay the effect of chemicals on communication and information processing in vivo in the adult vertebrate brain. Here, we suggest a straightforward way to rapidly and accurately detect effects of chemical exposure on action potential generation, synaptic transmission, central information processing, and even processing in sensory systems in vivo by recording from a single neuron. The approach is possible in an identified neuron in the hindbrain of fish that integrates various sources of information and whose properties are ideal for rapid analysis of the various effects chemicals can have on the nervous system. The analysis uses fish but, as we discuss here, key neuronal functions are conserved and differences can only be due to differences in metabolism or passage into the brain, factors that can easily be determined. Speed and efficiency of the method, therefore, make it suitable to provide information in risk assessment, as we illustrate here with the effects of bisphenols on adult brain function.
Collapse
|
32
|
Light-stimulus intensity modulates startle reflex habituation in larval zebrafish. Sci Rep 2021; 11:22410. [PMID: 34789729 PMCID: PMC8599482 DOI: 10.1038/s41598-021-00535-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
The startle reflex in larval zebrafish describes a C-bend of the body occurring in response to sudden, unexpected, stimuli of different sensory modalities. Alterations in the startle reflex habituation (SRH) have been reported in various human and animal models of neurological and psychiatric conditions and are hence considered an important behavioural marker of neurophysiological function. The amplitude, offset and decay constant of the auditory SRH in larval zebrafish have recently been characterised, revealing that the measures are affected by variation in vibratory frequency, intensity, and interstimulus-interval. Currently, no study provides a model-based analysis of the effect of physical properties of light stimuli on the visual SRH. This study assessed the effect of incremental light-stimulus intensity on the SRH of larval zebrafish through a repeated-measures design. Their total locomotor responses were normalised for the time factor, based on the behaviour of a (non-stimulated) control group. A linear regression indicated that light intensity positively predicts locomotor responses due to larger SRH decay constants and offsets. The conclusions of this study provide important insights as to the effect of light properties on the SRH in larval zebrafish. Our methodology and findings constitute a relevant reference framework for further investigation in translational neurophysiological research.
Collapse
|
33
|
A specialized spinal circuit for command amplification and directionality during escape behavior. Proc Natl Acad Sci U S A 2021; 118:2106785118. [PMID: 34663699 PMCID: PMC8545473 DOI: 10.1073/pnas.2106785118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
We are constantly faced with a choice moving to the left or right; understanding how the brain solves the selection of action direction is of tremendous interest both from biological and clinical perspectives. In vertebrates, action selection is often considered to be the realm of higher cognitive processing. However, by combining electrophysiology, serial block-face electron microscopy, and behavioral analyses in zebrafish, we have revealed a pivotal role, as well as the full functional connectome of a specialized spinal circuit relying on strong axo-axonic synaptic connections. This includes identifying a class of cholinergic V2a interneurons and establishing that they act as a segmentally repeating hub that receives and amplifies escape commands from the brain to ensure the appropriate escape directionality. In vertebrates, action selection often involves higher cognition entailing an evaluative process. However, urgent tasks, such as defensive escape, require an immediate implementation of the directionality of escape trajectory, necessitating local circuits. Here we reveal a specialized spinal circuit for the execution of escape direction in adult zebrafish. A central component of this circuit is a unique class of segmentally repeating cholinergic V2a interneurons expressing the transcription factor Chx10. These interneurons amplify brainstem-initiated escape commands and rapidly deliver the excitation via a feedforward circuit to all fast motor neurons and commissural interneurons to direct the escape maneuver. The information transfer within this circuit relies on fast and reliable axo-axonic synaptic connections, bypassing soma and dendrites. Unilateral ablation of cholinergic V2a interneurons eliminated escape command propagation. Thus, in vertebrates, local spinal circuits can implement directionality of urgent motor actions vital for survival.
Collapse
|
34
|
Mackowetzky K, Yoon KH, Mackowetzky EJ, Waskiewicz AJ. Development and evolution of the vestibular apparatuses of the inner ear. J Anat 2021; 239:801-828. [PMID: 34047378 PMCID: PMC8450482 DOI: 10.1111/joa.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The vertebrate inner ear is a labyrinthine sensory organ responsible for perceiving sound and body motion. While a great deal of research has been invested in understanding the auditory system, a growing body of work has begun to delineate the complex developmental program behind the apparatuses of the inner ear involved with vestibular function. These animal studies have helped identify genes involved in inner ear development and model syndromes known to include vestibular dysfunction, paving the way for generating treatments for people suffering from these disorders. This review will provide an overview of known inner ear anatomy and function and summarize the exciting discoveries behind inner ear development and the evolution of its vestibular apparatuses.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin H. Yoon
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Andrew J. Waskiewicz
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children’s Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
35
|
Sakurai A, Littleton JT, Kojima H, Yoshihara M. Alteration in information flow through a pair of feeding command neurons underlies a form of Pavlovian conditioning in the Drosophila brain. Curr Biol 2021; 31:4163-4171.e3. [PMID: 34352215 PMCID: PMC9022044 DOI: 10.1016/j.cub.2021.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/06/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022]
Abstract
Pavlovian conditioning1 is a broadly used learning paradigm where defined stimuli are associated to induce behavioral switching. To define a causal relationship between activity change in a single neuron and behavioral switching, we took advantage of a "command neuron" that connects cellular function to behavior.2 To examine the cellular and molecular basis of Pavlovian conditioning, we previously identified a pair of feeding command neurons termed "feeding neurons" in the adult Drosophila brain3 using genetic screening4 and opto- and thermo-genetic techniques.5-7 The feeding neuron is activated by sweet signals like sucrose and induces the full complement of feeding behaviors, such as proboscis extension and food pumping. Ablation or inactivation of the pair of feeding neurons abolishes feeding behavior, suggesting that this single pair of neurons is indispensable for natural feeding behaviors.2,3 Here, we describe a novel conditioning protocol to associate a signal-mediating rod removal from legs (conditioned stimulus [CS]) to feeding behavior induced by sucrose stimulation (unconditioned stimulus [US]). Calcium imaging of the feeding neuron demonstrated it acquires responsiveness to CS during conditioning, with inactivation of the feeding neuron during conditioning suppressing plasticity. These results suggest conditioning alters signals flowing from the CS into the feeding circuit, with the feeding neuron functioning as a key integrative hub for Hebbian plasticity.
Collapse
Affiliation(s)
- Akira Sakurai
- Memory Neurobiology Project, National Institute of Information and Communications Technology, Kobe, Japan; The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hiroaki Kojima
- Protein Biophysics Project, National Institute of Information and Communications Technology, Kobe, Japan
| | - Motojiro Yoshihara
- Memory Neurobiology Project, National Institute of Information and Communications Technology, Kobe, Japan; The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
36
|
High Behavioral Variability Mediated by Altered Neuronal Excitability in auts2 Mutant Zebrafish. eNeuro 2021; 8:ENEURO.0493-20.2021. [PMID: 34544758 PMCID: PMC8503961 DOI: 10.1523/eneuro.0493-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 01/28/2023] Open
Abstract
Autism spectrum disorders (ASDs) are characterized by abnormal behavioral traits arising from neural circuit dysfunction. While a number of genes have been implicated in ASDs, in most cases, a clear understanding of how mutations in these genes lead to circuit dysfunction and behavioral abnormality is absent. The autism susceptibility candidate 2 (AUTS2) gene is one such gene, associated with ASDs, intellectual disability and a range of other neurodevelopmental conditions. However, the role of AUTS2 in neural development and circuit function is not at all known. Here, we undertook functional analysis of Auts2a, the main homolog of AUTS2 in zebrafish, in the context of the escape behavior. Escape behavior in wild-type zebrafish is critical for survival and is therefore, reliable, rapid, and has well-defined kinematic properties. auts2a mutant zebrafish are viable, have normal gross morphology and can generate escape behavior with normal kinematics. However, the behavior is unreliable and delayed, with high trial-to-trial variability in the latency. Using calcium imaging we probed the activity of Mauthner neurons during otic vesicle (OV) stimulation and observed lower probability of activation and reduced calcium transients in the mutants. With direct activation of Mauthner by antidromic stimulation, the threshold for activation in mutants was higher than that in wild-type, even when inhibition was blocked. Taken together, these results point to reduced excitability of Mauthner neurons in auts2a mutant larvae leading to unreliable escape responses. Our results show a novel role for Auts2a in regulating neural excitability and reliability of behavior.
Collapse
|
37
|
Panlilio JM, Jones IT, Salanga MC, Aluru N, Hahn ME. Developmental Exposure to Domoic Acid Disrupts Startle Response Behavior and Circuitry in Zebrafish. Toxicol Sci 2021; 182:310-326. [PMID: 34097058 DOI: 10.1093/toxsci/kfab066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Harmful algal blooms produce potent neurotoxins that accumulate in seafood and are hazardous to human health. Developmental exposure to the harmful algal bloom toxin, domoic acid (DomA), has behavioral consequences well into adulthood, but the cellular and molecular mechanisms of DomA developmental neurotoxicity are largely unknown. To assess these, we exposed zebrafish embryos to DomA during the previously identified window of susceptibility and used the well-known startle response circuit as a tool to identify specific neuronal components that are targeted by exposure to DomA. Exposure to DomA reduced startle responsiveness to both auditory/vibrational and electrical stimuli, and even at the highest stimulus intensities tested, led to a dramatic reduction of one type of startle (short-latency c-starts). Furthermore, DomA-exposed larvae had altered kinematics for both types of startle responses tested, exhibiting shallower bend angles and slower maximal angular velocities. Using vital dye staining, immunolabeling, and live imaging of transgenic lines, we determined that although the sensory inputs were intact, the reticulospinal neurons required for short-latency c-starts were absent in most DomA-exposed larvae. Furthermore, axon tracing revealed that DomA-treated larvae also showed significantly reduced primary motor neuron axon collaterals. Overall, these results show that developmental exposure to DomA targets large reticulospinal neurons and motor neuron axon collaterals, resulting in measurable deficits in startle behavior. They further provide a framework for using the startle response circuit to identify specific neural populations disrupted by toxins or toxicants and to link these disruptions to functional consequences for neural circuit function and behavior.
Collapse
Affiliation(s)
- Jennifer M Panlilio
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.,Massachusetts Institute of Technology (MIT) - Woods Hole Oceanographic Institution (WHOI) Joint Graduate Program in Oceanography and Oceanographic Engineering, Massachusetts 02543, USA.,Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543, USA
| | - Ian T Jones
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.,Massachusetts Institute of Technology (MIT) - Woods Hole Oceanographic Institution (WHOI) Joint Graduate Program in Oceanography and Oceanographic Engineering, Massachusetts 02543, USA
| | - Matthew C Salanga
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.,Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543, USA
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.,Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
38
|
Nadler LE, McCormick MI, Johansen JL, Domenici P. Social familiarity improves fast-start escape performance in schooling fish. Commun Biol 2021; 4:897. [PMID: 34285330 PMCID: PMC8292327 DOI: 10.1038/s42003-021-02407-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
Using social groups (i.e. schools) of the tropical damselfish Chromis viridis, we test how familiarity through repeated social interactions influences fast-start responses, the primary defensive behaviour in a range of taxa, including fish, sharks, and larval amphibians. We focus on reactivity through response latency and kinematic performance (i.e. agility and propulsion) following a simulated predator attack, while distinguishing between first and subsequent responders (direct response to stimulation versus response triggered by integrated direct and social stimulation, respectively). In familiar schools, first and subsequent responders exhibit shorter latency than unfamiliar individuals, demonstrating that familiarity increases reactivity to direct and, potentially, social stimulation. Further, familiarity modulates kinematic performance in subsequent responders, demonstrated by increased agility and propulsion. These findings demonstrate that the benefits of social recognition and memory may enhance individual fitness through greater survival of predator attacks.
Collapse
Affiliation(s)
- Lauren E Nadler
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia. .,College of Science and Engineering, James Cook University, Townsville, QLD, Australia. .,Department of Marine and Environmental Sciences, Nova Southeastern University, Dania Beach, FL, USA.
| | - Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Jacob L Johansen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Kaneohe, HI, USA
| | | |
Collapse
|
39
|
Corradi L, Filosa A. Neuromodulation and Behavioral Flexibility in Larval Zebrafish: From Neurotransmitters to Circuits. Front Mol Neurosci 2021; 14:718951. [PMID: 34335183 PMCID: PMC8319623 DOI: 10.3389/fnmol.2021.718951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Animals adapt their behaviors to their ever-changing needs. Internal states, such as hunger, fear, stress, and arousal are important behavioral modulators controlling the way an organism perceives sensory stimuli and reacts to them. The translucent zebrafish larva is an ideal model organism for studying neuronal circuits regulating brain states, owning to the possibility of easy imaging and manipulating activity of genetically identified neurons while the animal performs stereotyped and well-characterized behaviors. The main neuromodulatory circuits present in mammals can also be found in the larval zebrafish brain, with the advantage that they contain small numbers of neurons. Importantly, imaging and behavioral techniques can be combined with methods for generating targeted genetic modifications to reveal the molecular underpinnings mediating the functions of such circuits. In this review we discuss how studying the larval zebrafish brain has contributed to advance our understanding of circuits and molecular mechanisms regulating neuromodulation and behavioral flexibility.
Collapse
Affiliation(s)
- Laura Corradi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alessandro Filosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
40
|
Haspel G, Severi KE, Fauci LJ, Cohen N, Tytell ED, Morgan JR. Resilience of neural networks for locomotion. J Physiol 2021; 599:3825-3840. [PMID: 34187088 DOI: 10.1113/jp279214] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 01/15/2023] Open
Abstract
Locomotion is an essential behaviour for the survival of all animals. The neural circuitry underlying locomotion is therefore highly robust to a wide variety of perturbations, including injury and abrupt changes in the environment. In the short term, fault tolerance in neural networks allows locomotion to persist immediately after mild to moderate injury. In the longer term, in many invertebrates and vertebrates, neural reorganization including anatomical regeneration can restore locomotion after severe perturbations that initially caused paralysis. Despite decades of research, very little is known about the mechanisms underlying locomotor resilience at the level of the underlying neural circuits and coordination of central pattern generators (CPGs). Undulatory locomotion is an ideal behaviour for exploring principles of circuit organization, neural control and resilience of locomotion, offering a number of unique advantages including experimental accessibility and modelling tractability. In comparing three well-characterized undulatory swimmers, lampreys, larval zebrafish and Caenorhabditis elegans, we find similarities in the manifestation of locomotor resilience. To advance our understanding, we propose a comparative approach, integrating experimental and modelling studies, that will allow the field to begin identifying shared and distinct solutions for overcoming perturbations to persist in orchestrating this essential behaviour.
Collapse
Affiliation(s)
- Gal Haspel
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kristen E Severi
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Lisa J Fauci
- Department of Mathematics, Tulane University, New Orleans, LA, 70118, USA
| | - Netta Cohen
- School of Computing, University of Leeds, Leeds, LS2 9JT, UK
| | - Eric D Tytell
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Jennifer R Morgan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| |
Collapse
|
41
|
The Formin Fmn2b Is Required for the Development of an Excitatory Interneuron Module in the Zebrafish Acoustic Startle Circuit. eNeuro 2021; 8:ENEURO.0329-20.2021. [PMID: 34193512 PMCID: PMC8272403 DOI: 10.1523/eneuro.0329-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/22/2023] Open
Abstract
The formin family member Fmn2 is a neuronally enriched cytoskeletal remodeling protein conserved across vertebrates. Recent studies have implicated Fmn2 in neurodevelopmental disorders, including sensory processing dysfunction and intellectual disability in humans. Cellular characterization of Fmn2 in primary neuronal cultures has identified its function in the regulation of cell-substrate adhesion and consequently growth cone translocation. However, the role of Fmn2 in the development of neural circuits in vivo, and its impact on associated behaviors have not been tested. Using automated analysis of behavior and systematic investigation of the associated circuitry, we uncover the role of Fmn2b in zebrafish neural circuit development. As reported in other vertebrates, the zebrafish ortholog of Fmn2 is also enriched in the developing zebrafish nervous system. We find that Fmn2b is required for the development of an excitatory interneuron pathway, the spiral fiber neuron, which is an essential circuit component in the regulation of the Mauthner cell (M-cell)-mediated acoustic startle response. Consistent with the loss of the spiral fiber neurons tracts, high-speed video recording revealed a reduction in the short latency escape events while responsiveness to the stimuli was unaffected. Taken together, this study provides evidence for a circuit-specific requirement of Fmn2b in eliciting an essential behavior in zebrafish. Our findings underscore the importance of Fmn2 in neural development across vertebrate lineages and highlight zebrafish models in understanding neurodevelopmental disorders.
Collapse
|
42
|
Wu MY, Carbo-Tano M, Mirat O, Lejeune FX, Roussel J, Quan FB, Fidelin K, Wyart C. Spinal sensory neurons project onto the hindbrain to stabilize posture and enhance locomotor speed. Curr Biol 2021; 31:3315-3329.e5. [PMID: 34146485 DOI: 10.1016/j.cub.2021.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 03/12/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
In the spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic interoceptive sensory neurons that detect spinal curvature via a functional coupling with the Reissner fiber. This mechanosensory system has recently been found to be involved in spine morphogenesis and postural control but the underlying mechanisms are not fully understood. In zebrafish, CSF-cNs project an ascending and ipsilateral axon reaching two to six segments away. Rostralmost CSF-cNs send their axons ipsilaterally into the hindbrain, a brain region containing motor nuclei and reticulospinal neurons (RSNs), which send descending motor commands to spinal circuits. Until now, the synaptic connectivity of CSF-cNs has only been investigated in the spinal cord, where they synapse onto motor neurons and premotor excitatory interneurons. The identity of CSF-cN targets in the hindbrain and the behavioral relevance of these sensory projections from the spinal cord to the hindbrain are unknown. Here, we provide anatomical and molecular evidence that rostralmost CSF-cNs synapse onto the axons of large RSNs including Mauthner cells and V2a neurons. Functional anatomy and optogenetically assisted mapping reveal that rostral CSF-cNs also synapse onto the soma and dendrites of cranial motor neurons innervating hypobranchial muscles. During acousto-vestibular evoked escape responses, ablation of rostralmost CSF-cNs results in a weaker escape response with a decreased C-bend amplitude, lower speed, and deficient postural control. Our study demonstrates that spinal sensory feedback enhances speed and stabilizes posture, and reveals a novel spinal gating mechanism acting on the output of descending commands sent from the hindbrain to the spinal cord.
Collapse
Affiliation(s)
- Ming-Yue Wu
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Martin Carbo-Tano
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
| | - Olivier Mirat
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Francois-Xavier Lejeune
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Julian Roussel
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Feng B Quan
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Kevin Fidelin
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Claire Wyart
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
| |
Collapse
|
43
|
Peterson AN, Soto AP, McHenry MJ. Pursuit and evasion strategies in the predator-prey interactions of fishes. Integr Comp Biol 2021; 61:668-680. [PMID: 34061183 DOI: 10.1093/icb/icab116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Predator-prey interactions are critical to the biology of a diversity of animals. Although prey capture is determined by the direction, velocity, and timing of motion by both animals, it is generally unclear what strategies are employed by predators and prey to guide locomotion. Here we review our research on fishes that tests the pursuit strategy of predators and the evasion strategy of prey through kinematic measurements and agent-based models. This work demonstrates that fish predators track prey with variations on a deviated-pursuit strategy that is guided by visual cues. Fish prey employ a mixed strategy that varies with factors such as the direction of a predator's approach. Our models consider the stochastic nature of interactions by incorporating measured probability distributions to accurately predict measurements of survivorship. A sensitivity analysis of these models shows the importance of the response distance of prey to their survival. Collectively, this work demonstrates how strategy affects the outcome of predator-prey interactions and articulates the roles of sensing, control, and propulsion. The research program that we have developed has the potential to offer a framework for the study of strategy in the predator-prey interactions of a variety of animals.
Collapse
Affiliation(s)
- Ashley N Peterson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, 92697, CA, U.S.A
| | - Alberto P Soto
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, 92697, CA, U.S.A
| | - Matthew J McHenry
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, 92697, CA, U.S.A
| |
Collapse
|
44
|
Orr SA, Ahn S, Park C, Miller TH, Kassai M, Issa FA. Social Experience Regulates Endocannabinoids Modulation of Zebrafish Motor Behaviors. Front Behav Neurosci 2021; 15:668589. [PMID: 34045945 PMCID: PMC8144649 DOI: 10.3389/fnbeh.2021.668589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Social status-dependent modulation of neural circuits has been investigated extensively in vertebrate and invertebrate systems. However, the effects of social status on neuromodulatory systems that drive motor activity are poorly understood. Zebrafish form a stable social relationship that consists of socially dominant and subordinate animals. The locomotor behavior patterns differ according to their social ranks. The sensitivity of the Mauthner startle escape response in subordinates increases compared to dominants while dominants increase their swimming frequency compared to subordinates. Here, we investigated the role of the endocannabinoid system (ECS) in mediating these differences in motor activities. We show that brain gene expression of key ECS protein pathways are socially regulated. Diacylglycerol lipase (DAGL) expression significantly increased in dominants and significantly decreased in subordinates relative to controls. Moreover, brain gene expression of the cannabinoid 1 receptor (CB1R) was significantly increased in subordinates relative to controls. Secondly, increasing ECS activity with JZL184 reversed swimming activity patterns in dominant and subordinate animals. JZL184 did not affect the sensitivity of the startle escape response in dominants while it was significantly reduced in subordinates. Thirdly, blockage of CB1R function with AM-251 had no effect on dominants startle escape response sensitivity, but startle sensitivity was significantly reduced in subordinates. Additionally, AM-251 did not affect swimming activities in either social phenotypes. Fourthly, we demonstrate that the effects of ECS modulation of the startle escape circuit is mediated via the dopaminergic system specifically via the dopamine D1 receptor. Finally, our empirical results complemented with neurocomputational modeling suggest that social status influences the ECS to regulate the balance in synaptic strength between excitatory and inhibitory inputs to control the excitability of motor behaviors. Collectively, this study provides new insights of how social factors impact nervous system function to reconfigure the synergistic interactions of neuromodulatory pathways to optimize motor output.
Collapse
Affiliation(s)
- Stephen A Orr
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, NC, United States
| | - Choongseok Park
- Department of Mathematics, North Carolina A&T State University, Greensboro, NC, United States
| | - Thomas H Miller
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Fadi A Issa
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
45
|
Lasseigne AM, Echeverry FA, Ijaz S, Michel JC, Martin EA, Marsh AJ, Trujillo E, Marsden KC, Pereda AE, Miller AC. Electrical synaptic transmission requires a postsynaptic scaffolding protein. eLife 2021; 10:e66898. [PMID: 33908867 PMCID: PMC8081524 DOI: 10.7554/elife.66898] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Electrical synaptic transmission relies on neuronal gap junctions containing channels constructed by Connexins. While at chemical synapses neurotransmitter-gated ion channels are critically supported by scaffolding proteins, it is unknown if channels at electrical synapses require similar scaffold support. Here, we investigated the functional relationship between neuronal Connexins and Zonula Occludens 1 (ZO1), an intracellular scaffolding protein localized to electrical synapses. Using model electrical synapses in zebrafish Mauthner cells, we demonstrated that ZO1 is required for robust synaptic Connexin localization, but Connexins are dispensable for ZO1 localization. Disrupting this hierarchical ZO1/Connexin relationship abolishes electrical transmission and disrupts Mauthner cell-initiated escape responses. We found that ZO1 is asymmetrically localized exclusively postsynaptically at neuronal contacts where it functions to assemble intercellular channels. Thus, forming functional neuronal gap junctions requires a postsynaptic scaffolding protein. The critical function of a scaffolding molecule reveals an unanticipated complexity of molecular and functional organization at electrical synapses.
Collapse
Affiliation(s)
| | - Fabio A Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Sundas Ijaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | | | - E Anne Martin
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Audrey J Marsh
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Elisa Trujillo
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Kurt C Marsden
- Department of Biological Sciences, NC State UniversityRaleighUnited States
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Adam C Miller
- Institute of Neuroscience, University of OregonEugeneUnited States
| |
Collapse
|
46
|
Bisphenols exert detrimental effects on neuronal signaling in mature vertebrate brains. Commun Biol 2021; 4:465. [PMID: 33846518 PMCID: PMC8041872 DOI: 10.1038/s42003-021-01966-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Bisphenols are important plasticizers currently in use and are released at rates of hundreds of tons each year into the biosphere1–3. However, for any bisphenol it is completely unknown if and how it affects the intact adult brain4–6, whose powerful homeostatic mechanisms could potentially compensate any effects bisphenols might have on isolated neurons. Here we analyzed the effects of one month of exposition to BPA or BPS on an identified neuron in the vertebrate brain, using intracellular in vivo recordings in the uniquely suited Mauthner neuron in goldfish. Our findings demonstrate an alarming and uncompensated in vivo impact of both BPA and BPS—at environmentally relevant concentrations—on essential communication functions of neurons in mature vertebrate brains and call for the rapid development of alternative plasticizers. The speed and resolution of the assay we present here could thereby be instrumental to accelerate the early testing phase of next-generation plasticizers. Elisabeth Schirmer, Stefan Schuster and Peter Machnik investigated the effects of bisphenols A and S on neuronal functioning. Using in vivo recordings in goldfish they demonstrate that basic neuronal properties such as action potentials and synaptic transmission are perturbed after chronic exposure to bisphenols.
Collapse
|
47
|
Fitzgerald JA, Könemann S, Krümpelmann L, Županič A, Vom Berg C. Approaches to Test the Neurotoxicity of Environmental Contaminants in the Zebrafish Model: From Behavior to Molecular Mechanisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:989-1006. [PMID: 33270929 DOI: 10.1002/etc.4951] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/15/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The occurrence of neuroactive chemicals in the aquatic environment is on the rise and poses a potential threat to aquatic biota of currently unpredictable outcome. In particular, subtle changes caused by these chemicals to an organism's sensation or behavior are difficult to tackle with current test systems that focus on rodents or with in vitro test systems that omit whole-animal responses. In recent years, the zebrafish (Danio rerio) has become a popular model organism for toxicological studies and testing strategies, such as the standardized use of zebrafish early life stages in the Organisation for Economic Co-operation and Development's guideline 236. In terms of neurotoxicity, the zebrafish provides a powerful model to investigate changes to the nervous system from several different angles, offering the ability to tackle the mechanisms of action of chemicals in detail. The mechanistic understanding gained through the analysis of this model species provides a good basic knowledge of how neuroactive chemicals might interact with a teleost nervous system. Such information can help infer potential effects occurring to other species exposed to neuroactive chemicals in their aquatic environment and predicting potential risks of a chemical for the aquatic ecosystem. In the present article, we highlight approaches ranging from behavioral to structural, functional, and molecular analysis of the larval zebrafish nervous system, providing a holistic view of potential neurotoxic outcomes. Environ Toxicol Chem 2021;40:989-1006. © 2020 SETAC.
Collapse
Affiliation(s)
- Jennifer A Fitzgerald
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Sarah Könemann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- EPF Lausanne, School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland
| | - Laura Krümpelmann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Anže Županič
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- National Institute of Biology, Ljubljana, Slovenia
| | - Colette Vom Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
48
|
Chagnaud BP, Perelmuter JT, Forlano PM, Bass AH. Gap junction-mediated glycinergic inhibition ensures precise temporal patterning in vocal behavior. eLife 2021; 10:e59390. [PMID: 33721553 PMCID: PMC7963477 DOI: 10.7554/elife.59390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/28/2021] [Indexed: 01/30/2023] Open
Abstract
Precise neuronal firing is especially important for behaviors highly dependent on the correct sequencing and timing of muscle activity patterns, such as acoustic signaling. Acoustic signaling is an important communication modality for vertebrates, including many teleost fishes. Toadfishes are well known to exhibit high temporal fidelity in synchronous motoneuron firing within a hindbrain network directly determining the temporal structure of natural calls. Here, we investigated how these motoneurons maintain synchronous activation. We show that pronounced temporal precision in population-level motoneuronal firing depends on gap junction-mediated, glycinergic inhibition that generates a period of reduced probability of motoneuron activation. Super-resolution microscopy confirms glycinergic release sites formed by a subset of adjacent premotoneurons contacting motoneuron somata and dendrites. In aggregate, the evidence supports the hypothesis that gap junction-mediated, glycinergic inhibition provides a timing mechanism for achieving synchrony and temporal precision in the millisecond range for rapid modulation of acoustic waveforms.
Collapse
Affiliation(s)
| | | | - Paul M Forlano
- Department of Biology, Brooklyn College, City University of New YorkBrooklyn, NYUnited States
- Subprograms in Behavioral and Cognitive Neuroscience, Neuroscience, and Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New YorkNew York, NYUnited States
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell UniversityIthaca, NYUnited States
| |
Collapse
|
49
|
Sacco LH, Goater CP, Smith TD, Chivers DP, Ferrari MC. Escape responses to simulated host versus nonhost predators in minnows exposed to a brain-encysting parasite. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Bhattacharyya K, McLean DL, MacIver MA. Intersection of motor volumes predicts the outcome of ambush predation of larval zebrafish. J Exp Biol 2021; 224:jeb235481. [PMID: 33649181 PMCID: PMC7938803 DOI: 10.1242/jeb.235481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022]
Abstract
Escape maneuvers are key determinants of animal survival and are under intense selection pressure. A number of escape maneuver parameters contribute to survival, including response latency, escape speed and direction. However, the relative importance of these parameters is context dependent, suggesting that interactions between parameters and predatory context determine the likelihood of escape success. To better understand how escape maneuver parameters interact and contribute to survival, we analyzed the responses of larval zebrafish (Danio rerio) to the attacks of dragonfly nymphs (Sympetrum vicinum). We found that no single parameter explains the outcome. Instead, the relative intersection of the swept volume of the nymph's grasping organs with the volume containing all possible escape trajectories of the fish is the strongest predictor of escape success. In cases where the prey's motor volume exceeds that of the predator, the prey survives. By analyzing the intersection of these volumes, we compute the survival benefit of recruiting the Mauthner cell, a neuron in anamniotes devoted to producing escapes. We discuss how the intersection of motor volume approach provides a framework that unifies the influence of many escape maneuver parameters on the likelihood of survival.
Collapse
Affiliation(s)
- Kiran Bhattacharyya
- Department of Biomedical Engineering, Northwestern University, Evaxnston, IL 60201, USA
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, IL 60201, USA
| | - Malcolm A MacIver
- Department of Biomedical Engineering, Northwestern University, Evaxnston, IL 60201, USA
- Department of Neurobiology, Northwestern University, Evanston, IL 60201, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|