1
|
Pandey K, Bessières B, Sheng SL, Taranda J, Osten P, Sandovici I, Constancia M, Alberini CM. Neuronal activity drives IGF2 expression from pericytes to form long-term memory. Neuron 2023; 111:3819-3836.e8. [PMID: 37788670 PMCID: PMC10843759 DOI: 10.1016/j.neuron.2023.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
Investigations of memory mechanisms have been, thus far, neuron centric, despite the brain comprising diverse cell types. Using rats and mice, we assessed the cell-type-specific contribution of hippocampal insulin-like growth factor 2 (IGF2), a polypeptide regulated by learning and required for long-term memory formation. The highest level of hippocampal IGF2 was detected in pericytes, the multi-functional mural cells of the microvessels that regulate blood flow, vessel formation, the blood-brain barrier, and immune cell entry into the central nervous system. Learning significantly increased pericytic Igf2 expression in the hippocampus, particularly in the highly vascularized stratum lacunosum moleculare and stratum moleculare layers of the dentate gyrus. Igf2 increases required neuronal activity. Regulated hippocampal Igf2 knockout in pericytes, but not in fibroblasts or neurons, impaired long-term memories and blunted the learning-dependent increase of neuronal immediate early genes (IEGs). Thus, neuronal activity-driven signaling from pericytes to neurons via IGF2 is essential for long-term memory.
Collapse
Affiliation(s)
- Kiran Pandey
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Susan L Sheng
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Julian Taranda
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ionel Sandovici
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Miguel Constancia
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
2
|
Chakraborty J, Chakraborty S, Chakraborty S, Narayan MN. Entanglement of MAPK pathways with gene expression and its omnipresence in the etiology for cancer and neurodegenerative disorders. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194988. [PMID: 37739217 DOI: 10.1016/j.bbagrm.2023.194988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Mitogen Activated Protein Kinase (MAPK) is one of the most well characterized cellular signaling pathways that controls fundamental cellular processes including proliferation, differentiation, and apoptosis. These cellular functions are consequences of transcription of regulatory genes that are influenced and regulated by the MAP-Kinase signaling cascade. MAP kinase components such as Receptor Tyrosine Kinases (RTKs) sense external cues or ligands and transmit these signals via multiple protein complexes such as RAS-RAF, MEK, and ERKs and eventually modulate the transcription factors inside the nucleus to induce transcription and other regulatory functions. Aberrant activation, dysregulation of this signaling pathway, and genetic alterations in any of these components results in the developmental disorders, cancer, and neurodegenerative disorders. Over the years, the MAPK pathway has been a prime pharmacological target, to treat complex human disorders that are genetically linked such as cancer, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The current review re-visits the mechanism of MAPK pathways in gene expression regulation. Further, a current update on the progress of the mechanistic understanding of MAPK components is discussed from a disease perspective.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Institute for Advancing Health through Agriculture, Texas A&M Agrilife, College Station, TX, USA
| | - Sayan Chakraborty
- Department of Anesthesiology, Weill Cornell School of Medicine, New York, USA
| | - Sohag Chakraborty
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, USA
| | - Mahesh N Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
3
|
Robinson TS, Osman MA. An Emerging Role for Sigma Receptor 1 in Personalized Treatment of Breast Cancer. Cancers (Basel) 2023; 15:3464. [PMID: 37444574 PMCID: PMC10340381 DOI: 10.3390/cancers15133464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the major progress in treating breast cancer, recurrence remains a problem and types such as triple-negative breast cancer still lack targeted medicine. The orphan Sigma receptor1 (SigmaR1) has emerged as a target in breast cancer, but its mechanism of action is unclear and hinders clinical utility. SigmaR1 is widely expressed in organ tissues and localized to various sub-cellular compartments, particularly the endoplasmic reticulum (ER), the mitochondrial-associated membranes (MAMs) and the nuclear envelope. As such, it involves diverse cellular functions, including protein quality control/ER stress, calcium signaling, cholesterol homeostasis, mitochondrial integrity and energy metabolism. Consequently, SigmaR1 has been implicated in a number of cancers and degenerative diseases and thus has been intensively pursued as a therapeutic target. Because SigmaR1 binds a number of structurally unrelated ligands, it presents an excellent context-dependent therapeutic target. Here, we review its role in breast cancer and the current therapies that have been considered based on its known functions. As SigmaR1 is not classified as an oncoprotein, we propose a model in which it serves as an oligomerization adaptor in key cellular pathways, which may help illuminate its association with variable diseases and pave the way for clinical utility in personalized medicine.
Collapse
Affiliation(s)
| | - Mahasin A. Osman
- Department of Medicine, Division of Oncology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
4
|
Wei JR, Hao ZZ, Xu C, Huang M, Tang L, Xu N, Liu R, Shen Y, Teichmann SA, Miao Z, Liu S. Identification of visual cortex cell types and species differences using single-cell RNA sequencing. Nat Commun 2022; 13:6902. [PMID: 36371428 PMCID: PMC9653448 DOI: 10.1038/s41467-022-34590-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
The primate neocortex exerts high cognitive ability and strong information processing capacity. Here, we establish a single-cell RNA sequencing dataset of 133,454 macaque visual cortical cells. It covers major cortical cell classes including 25 excitatory neuron types, 37 inhibitory neuron types and all glial cell types. We identified layer-specific markers including HPCAL1 and NXPH4, and also identified two cell types, an NPY-expressing excitatory neuron type that expresses the dopamine receptor D3 gene; and a primate specific activity-dependent OSTN + sensory neuron type. Comparisons of our dataset with humans and mice show that the gene expression profiles differ between species in relation to genes that are implicated in the synaptic plasticity and neuromodulation of excitatory neurons. The comparisons also revealed that glutamatergic neurons may be more diverse across species than GABAergic neurons and non-neuronal cells. These findings pave the way for understanding how the primary cortex fulfills the high-cognitive functions.
Collapse
Affiliation(s)
- Jia-Ru Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Mengyao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lei Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ruifeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuhui Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China.
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge, UK.
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China.
| |
Collapse
|
5
|
Hsieh MY, Tuan LH, Chang HC, Wang YC, Chen CH, Shy HT, Lee LJ, Gau SSF. Altered synaptic protein expression, aberrant spine morphology, and impaired spatial memory in Dlgap2 mutant mice, a genetic model of autism spectrum disorder. Cereb Cortex 2022; 33:4779-4793. [PMID: 36169576 DOI: 10.1093/cercor/bhac379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/14/2022] Open
Abstract
A microdeletion of approximately 2.4 Mb at the 8p23 terminal region has been identified in a Taiwanese autistic boy. Among the products transcribed/translated from genes mapped in this region, the reduction of DLGAP2, a postsynaptic scaffold protein, might be involved in the pathogenesis of autism spectrum disorder (ASD). DLGAP2 protein was detected in the hippocampus yet abolished in homozygous Dlgap2 knockout (Dlgap2 KO) mice. In this study, we characterized the hippocampal phenotypes in Dlgap2 mutant mice. Dlgap2 KO mice exhibited impaired spatial memory, indicating poor hippocampal function in the absence of DLGAP2. Aberrant expressions of postsynaptic proteins, including PSD95, SHANK3, HOMER1, GluN2A, GluR2, mGluR1, mGluR5, βCAMKII, ERK1/2, ARC, BDNF, were noticed in Dlgap2 mutant mice. Further, the spine density was increased in Dlgap2 KO mice, while the ratio of mushroom-type spines was decreased. We also observed a thinner postsynaptic density thickness in Dlgap2 KO mice at the ultrastructural level. These structural changes found in the hippocampus of Dlgap2 KO mice might be linked to impaired hippocampus-related cognitive functions such as spatial memory. Mice with Dlgap2 deficiency, showing signs of intellectual disability, a common co-occurring condition in patients with ASD, could be a promising animal model which may advance our understanding of ASD.
Collapse
Affiliation(s)
- Ming-Yen Hsieh
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Heng Tuan
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,School of Medicine, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ho-Ching Chang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chun Wang
- Department of Otolaryngology, Head and Neck Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Horng-Tzer Shy
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
László ZI, Lele Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Front Neurosci 2022; 16:972059. [PMID: 36213737 PMCID: PMC9539934 DOI: 10.3389/fnins.2022.972059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
CDH2 belongs to the classic cadherin family of Ca2+-dependent cell adhesion molecules with a meticulously described dual role in cell adhesion and β-catenin signaling. During CNS development, CDH2 is involved in a wide range of processes including maintenance of neuroepithelial integrity, neural tube closure (neurulation), confinement of radial glia progenitor cells (RGPCs) to the ventricular zone and maintaining their proliferation-differentiation balance, postmitotic neural precursor migration, axon guidance, synaptic development and maintenance. In the past few years, direct and indirect evidence linked CDH2 to various neurological diseases, and in this review, we summarize recent developments regarding CDH2 function and its involvement in pathological alterations of the CNS.
Collapse
Affiliation(s)
- Zsófia I. László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
7
|
Cruz E, Descalzi G, Steinmetz A, Scharfman HE, Katzman A, Alberini CM. CIM6P/IGF-2 Receptor Ligands Reverse Deficits in Angelman Syndrome Model Mice. Autism Res 2021; 14:29-45. [PMID: 33108069 PMCID: PMC8579913 DOI: 10.1002/aur.2418] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 11/12/2022]
Abstract
Angelman syndrome (AS), a genetic disorder that primarily affects the nervous system, is characterized by delayed development, intellectual disability, severe speech impairment, and problems with movement and balance (ataxia). Most affected children also have recurrent seizures (epilepsy). No existing therapies are capable of comprehensively treating the deficits in AS; hence, there is an urgent need to identify new treatments. Here we show that insulin-like growth factor 2 (IGF-2) and mannose-6-phosphate (M6P), ligands of two independent binding sites of the cation-independent M6P/IGF-2 receptor (CIM6P/IGF-2R), reverse most major deficits of AS modeled in mice. Subcutaneous injection of IGF-2 or M6P in mice modeling AS restored cognitive impairments as assessed by measurements of contextual and recognition memories, motor deficits assessed by rotarod and hindlimb clasping, and working memory/flexibility measured by Y-maze. IGF-2 also corrected deficits in marble burying and significantly attenuated acoustically induced seizures. An observational battery of tests confirmed that neither ligand changed basic functions including physical characteristics, general behavioral responses, and sensory reflexes, indicating that they are relatively safe. Our data provide strong preclinical evidence that targeting CIM6P/IGF-2R is a promising approach for developing novel therapeutics for AS. LAY SUMMARY: There is no effective treatment for the neurodevelopmental disorder Angelman syndrome (AS). Using a validated AS mouse model, the Ube3am-/p+ , in this study we show that systemic administration of ligands of the cation independent mannose-6-phosphate receptor, also known as insulin-like growth factor 2 receptor (CIM6P/IGF-2R) reverses cognitive impairment, motor deficits, as well as seizures associated with AS. Thus, ligands that activate the CIM6P/IGF-2R may represent novel, potential therapeutic targets for AS.
Collapse
Affiliation(s)
- Emmanuel Cruz
- Center for Neural Science, New York University, New York, New York, USA
| | - Giannina Descalzi
- Center for Neural Science, New York University, New York, New York, USA
| | - Adam Steinmetz
- Center for Neural Science, New York University, New York, New York, USA
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Neuroscience and Physiology, New York University Langone Health, New York, New York, USA
- Department of Psychiatry, New York University Langone Health, New York, New York, USA
| | - Aaron Katzman
- Center for Neural Science, New York University, New York, New York, USA
| | | |
Collapse
|
8
|
Albert-Gascó H, Ros-Bernal F, Castillo-Gómez E, Olucha-Bordonau FE. MAP/ERK Signaling in Developing Cognitive and Emotional Function and Its Effect on Pathological and Neurodegenerative Processes. Int J Mol Sci 2020; 21:E4471. [PMID: 32586047 PMCID: PMC7352860 DOI: 10.3390/ijms21124471] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
The signaling pathway of the microtubule-associated protein kinase or extracellular regulated kinase (MAPK/ERK) is a common mechanism of extracellular information transduction from extracellular stimuli to the intracellular space. The transduction of information leads to changes in the ongoing metabolic pathways and the modification of gene expression patterns. In the central nervous system, ERK is expressed ubiquitously, both temporally and spatially. As for the temporal ubiquity, this signaling system participates in three key moments: (i) Embryonic development; (ii) the early postnatal period; and iii) adulthood. During embryonic development, the system is partly responsible for the patterning of segmentation in the encephalic vesicle through the FGF8-ERK pathway. In addition, during this period, ERK directs neurogenesis migration and the final fate of neural progenitors. During the early postnatal period, ERK participates in the maturation process of dendritic trees and synaptogenesis. During adulthood, ERK participates in social and emotional behavior and memory processes, including long-term potentiation. Alterations in mechanisms related to ERK are associated with different pathological outcomes. Genetic alterations in any component of the ERK pathway result in pathologies associated with neural crest derivatives and mental dysfunctions associated with autism spectrum disorders. The MAP-ERK pathway is a key element of the neuroinflammatory pathway triggered by glial cells during the development of neurodegenerative diseases, such as Parkinson's and Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis, as well as prionic diseases. The process triggered by MAPK/ERK activation depends on the stage of development (mature or senescence), the type of cellular element in which the pathway is activated, and the anatomic neural structure. However, extensive gaps exist with regards to the targets of the phosphorylated ERK in many of these processes.
Collapse
Affiliation(s)
- Héctor Albert-Gascó
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Hills Road, Cambridge CB2 0AH, UK;
| | - Francisco Ros-Bernal
- U.P Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Avda. de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain; (F.R.-B.); (E.C.-G.)
| | - Esther Castillo-Gómez
- U.P Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Avda. de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain; (F.R.-B.); (E.C.-G.)
- Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Planta 0, 28029 Madrid, Spain
| | - Francisco E. Olucha-Bordonau
- U.P Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Avda. de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain; (F.R.-B.); (E.C.-G.)
- Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Planta 0, 28029 Madrid, Spain
| |
Collapse
|
9
|
Yu XW, Pandey K, Katzman AC, Alberini CM. A role for CIM6P/IGF2 receptor in memory consolidation and enhancement. eLife 2020; 9:54781. [PMID: 32369018 PMCID: PMC7200152 DOI: 10.7554/elife.54781] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
Cation-independent mannose-6-phosphate receptor, also called insulin-like growth factor two receptor (CIM6P/IGF2R), plays important roles in growth and development, but is also extensively expressed in the mature nervous system, particularly in the hippocampus, where its functions are largely unknown. One of its major ligands, IGF2, is critical for long-term memory formation and strengthening. Using CIM6P/IGF2R inhibition in rats and neuron-specific knockdown in mice, here we show that hippocampal CIM6P/IGF2R is necessary for hippocampus-dependent memory consolidation, but dispensable for learning, memory retrieval, and reconsolidation. CIM6P/IGF2R controls the training-induced upregulation of de novo protein synthesis, including increase of Arc, Egr1, and c-Fos proteins, without affecting their mRNA induction. Hippocampal or systemic administration of mannose-6-phosphate, like IGF2, significantly enhances memory retention and persistence in a CIM6P/IGF2R-dependent manner. Thus, hippocampal CIM6P/IGF2R plays a critical role in memory consolidation by controlling the rate of training-regulated protein metabolism and is also a target mechanism for memory enhancement.
Collapse
Affiliation(s)
- Xiao-Wen Yu
- Center for Neural Science, New York University, New York, United States
| | - Kiran Pandey
- Center for Neural Science, New York University, New York, United States
| | - Aaron C Katzman
- Center for Neural Science, New York University, New York, United States
| | | |
Collapse
|
10
|
Liu XY, Yao B, Hao JR, Jin L, Gao Y, Yang X, Liu L, Sun XY, Sun N, Gao C. IQGAP1/ERK regulates fear memory formation via histone posttranslational modifications induced by HDAC2. Neurobiol Learn Mem 2020; 171:107210. [DOI: 10.1016/j.nlm.2020.107210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
|
11
|
Miningou N, Blackwell KT. The road to ERK activation: Do neurons take alternate routes? Cell Signal 2020; 68:109541. [PMID: 31945453 PMCID: PMC7127974 DOI: 10.1016/j.cellsig.2020.109541] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 01/29/2023]
Abstract
The ERK cascade is a central signaling pathway that regulates a wide variety of cellular processes including proliferation, differentiation, learning and memory, development, and synaptic plasticity. A wide range of inputs travel from the membrane through different signaling pathway routes to reach activation of one set of output kinases, ERK1&2. The classical ERK activation pathway beings with growth factor activation of receptor tyrosine kinases. Numerous G-protein coupled receptors and ionotropic receptors also lead to ERK through increases in the second messengers calcium and cAMP. Though both types of pathways are present in diverse cell types, a key difference is that most stimuli to neurons, e.g. synaptic inputs, are transient, on the order of milliseconds to seconds, whereas many stimuli acting on non-neural tissue, e.g. growth factors, are longer duration. The ability to consolidate these inputs to regulate the activation of ERK in response to diverse signals raises the question of which factors influence the difference in ERK activation pathways. This review presents both experimental studies and computational models aimed at understanding the control of ERK activation and whether there are fundamental differences between neurons and other cells. Our main conclusion is that differences between cell types are quite subtle, often related to differences in expression pattern and quantity of some molecules such as Raf isoforms. In addition, the spatial location of ERK is critical, with regulation by scaffolding proteins producing differences due to colocalization of upstream molecules that may differ between neurons and other cells.
Collapse
Affiliation(s)
- Nadiatou Miningou
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, United States of America
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience and Bioengineering Department, George Mason University, Fairfax, VA 22030, United States of America.
| |
Collapse
|
12
|
Dong X, Jin S, Shao Z. Glia Promote Synaptogenesis through an IQGAP PES-7 in C. elegans. Cell Rep 2020; 30:2614-2626.e2. [PMID: 32101740 DOI: 10.1016/j.celrep.2020.01.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/11/2019] [Accepted: 01/29/2020] [Indexed: 11/25/2022] Open
Abstract
Synapses are fundamental to the normal function of the nervous system. Glia play a pivotal role in regulating synaptic formation. However, how presynaptic neurons assemble synaptic structure in response to the glial signals remains largely unexplored. To address this question, we use cima-1 mutant C. elegans as an in vivo model, in which the astrocyte-like VCSC glial processes ectopically reach an asynaptic neurite region and promote presynaptic formation there. Through an RNAi screen, we find that the Rho GTPase CDC-42 and IQGAP PES-7 are required in presynaptic neurons for VCSC glia-induced presynaptic formation. In addition, we find that cdc-42 and pes-7 are also required for normal synaptogenesis during postembryonic developmental stages. PES-7 activated by CDC-42 promotes presynaptic formation, most likely through regulating F-actin assembly. Given the evolutionary conservation of CDC-42 and IQGAPs, we speculate that our findings in C. elegans apply to vertebrates.
Collapse
Affiliation(s)
- Xiaohua Dong
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuhan Jin
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiyong Shao
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
13
|
McNay EC, Pearson-Leary J. GluT4: A central player in hippocampal memory and brain insulin resistance. Exp Neurol 2020; 323:113076. [PMID: 31614121 PMCID: PMC6936336 DOI: 10.1016/j.expneurol.2019.113076] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
Insulin is now well-established as playing multiple roles within the brain, and specifically as regulating hippocampal cognitive processes and metabolism. Impairments to insulin signaling, such as those seen in type 2 diabetes and Alzheimer's disease, are associated with brain hypometabolism and cognitive impairment, but the mechanisms of insulin's central effects are not determined. Several lines of research converge to suggest that the insulin-responsive glucose transporter GluT4 plays a central role in hippocampal memory processes, and that reduced activation of this transporter may underpin the cognitive impairments seen as a consequence of insulin resistance.
Collapse
Affiliation(s)
- Ewan C McNay
- Behavioral Neuroscience, University at Albany, Albany, NY, USA.
| | - Jiah Pearson-Leary
- Department of Anesthesiology, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
14
|
Asaduzzaman M, Igarashi Y, Wahab MA, Nahiduzzaman M, Rahman MJ, Phillips MJ, Huang S, Asakawa S, Rahman MM, Wong LL. Population Genomics of an Anadromous Hilsa Shad Tenualosa ilisha Species across Its Diverse Migratory Habitats: Discrimination by Fine-Scale Local Adaptation. Genes (Basel) 2019; 11:genes11010046. [PMID: 31905942 PMCID: PMC7017241 DOI: 10.3390/genes11010046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/23/2022] Open
Abstract
The migration of anadromous fish in heterogenic environments unceasingly imposes a selective pressure that results in genetic variation for local adaptation. However, discrimination of anadromous fish populations by fine-scale local adaptation is challenging because of their high rate of gene flow, highly connected divergent population, and large population size. Recent advances in next-generation sequencing (NGS) have expanded the prospects of defining the weakly structured population of anadromous fish. Therefore, we used NGS-based restriction site-associated DNA (NextRAD) techniques on 300 individuals of an anadromous Hilsa shad (Tenualosa ilisha) species, collected from nine strategic habitats, across their diverse migratory habitats, which include sea, estuary, and different freshwater rivers. The NextRAD technique successfully identified 15,453 single nucleotide polymorphism (SNP) loci. Outlier tests using the FST OutFLANK and pcadapt approaches identified 74 and 449 SNPs (49 SNPs being common), respectively, as putative adaptive loci under a divergent selection process. Our results, based on the different cluster analyses of these putatively adaptive loci, suggested that local adaptation has divided the Hilsa shad population into two genetically structured clusters, in which marine and estuarine collection sites were dominated by individuals of one genetic cluster and different riverine collection sites were dominated by individuals of another genetic cluster. The phylogenetic analysis revealed that all the riverine populations of Hilsa shad were further subdivided into the north-western riverine (turbid freshwater) and the north-eastern riverine (clear freshwater) ecotypes. Among all of the putatively adaptive loci, only 36 loci were observed to be in the coding region, and the encoded genes might be associated with important biological functions related to the local adaptation of Hilsa shad. In summary, our study provides both neutral and adaptive contexts for the observed genetic divergence of Hilsa shad and, consequently, resolves the previous inconclusive findings on their population genetic structure across their diverse migratory habitats. Moreover, the study has clearly demonstrated that NextRAD sequencing is an innovative approach to explore how dispersal and local adaptation can shape genetic divergence of non-model anadromous fish that intersect diverse migratory habitats during their life-history stages.
Collapse
Affiliation(s)
- Md Asaduzzaman
- Department of Marine Bioresource Science, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Khulsi, Chattogram 4225, Bangladesh
- Department of Aquatic Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.I.); (S.H.); (S.A.)
- Correspondence: (M.A.); (L.L.W.); Tel.: +880-1717-412049 (M.A.); +609-668-3671 (L.L.W.)
| | - Yoji Igarashi
- Department of Aquatic Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.I.); (S.H.); (S.A.)
| | - Md Abdul Wahab
- WorldFish, Bangladesh and South Asia Office, Banani, Dhaka 1213, Bangladesh; (M.A.W.); (M.N.); (M.J.R.)
| | - Md Nahiduzzaman
- WorldFish, Bangladesh and South Asia Office, Banani, Dhaka 1213, Bangladesh; (M.A.W.); (M.N.); (M.J.R.)
| | - Md Jalilur Rahman
- WorldFish, Bangladesh and South Asia Office, Banani, Dhaka 1213, Bangladesh; (M.A.W.); (M.N.); (M.J.R.)
| | - Michael J. Phillips
- WorldFish Headquarters, Jalan Batu Maung, Batu Muang, Penang 11960, Malaysia;
| | - Songqian Huang
- Department of Aquatic Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.I.); (S.H.); (S.A.)
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.I.); (S.H.); (S.A.)
| | - Md Moshiur Rahman
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna 9208, Bangladesh;
| | - Li Lian Wong
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala-Terengganu, Terengganu 21030, Malaysia
- Correspondence: (M.A.); (L.L.W.); Tel.: +880-1717-412049 (M.A.); +609-668-3671 (L.L.W.)
| |
Collapse
|
15
|
Barbiero I, De Rosa R, Kilstrup-Nielsen C. Microtubules: A Key to Understand and Correct Neuronal Defects in CDKL5 Deficiency Disorder? Int J Mol Sci 2019; 20:E4075. [PMID: 31438497 PMCID: PMC6747382 DOI: 10.3390/ijms20174075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental encephalopathy caused by mutations in the X-linked CDKL5 gene that encodes a serine/threonine kinase. CDD is characterised by the early onset of seizures and impaired cognitive and motor skills. Loss of CDKL5 in vitro and in vivo affects neuronal morphology at early and late stages of maturation, suggesting a link between CDKL5 and the neuronal cytoskeleton. Recently, various microtubule (MT)-binding proteins have been identified as interactors of CDKL5, indicating that its roles converge on regulating MT functioning. MTs are dynamic structures that are important for neuronal morphology, migration and polarity. The delicate control of MT dynamics is fundamental for proper neuronal functions, as evidenced by the fact that aberrant MT dynamics are involved in various neurological disorders. In this review, we highlight the link between CDKL5 and MTs, discussing how CDKL5 deficiency may lead to deranged neuronal functions through aberrant MT dynamics. Finally, we discuss whether the regulation of MT dynamics through microtubule-targeting agents may represent a novel strategy for future pharmacological approaches in the CDD field.
Collapse
Affiliation(s)
- Isabella Barbiero
- Department of Biotechnology and Life Sciences, (DBSV), University of Insubria, Via Manara 7, 21052 Busto Arsizio (VA), Italy
| | - Roberta De Rosa
- Department of Biotechnology and Life Sciences, (DBSV), University of Insubria, Via Manara 7, 21052 Busto Arsizio (VA), Italy
| | - Charlotte Kilstrup-Nielsen
- Department of Biotechnology and Life Sciences, (DBSV), University of Insubria, Via Manara 7, 21052 Busto Arsizio (VA), Italy.
| |
Collapse
|
16
|
Hor CHH, Goh ELK. Rab23 Regulates Radial Migration of Projection Neurons via N-cadherin. Cereb Cortex 2019; 28:1516-1531. [PMID: 29420702 PMCID: PMC6093454 DOI: 10.1093/cercor/bhy018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 01/12/2023] Open
Abstract
Radial migration of cortical projection neurons is a prerequisite for shaping a distinct multilayered cerebral cortex during mammalian corticogenesis. Members of Rab GTPases family were reported to regulate radial migration. Here, in vivo conditional knockout or in utero knockdown (KD) of Rab23 in mice neocortex causes aberrant polarity and halted migration of cortical projection neurons. Further investigation of the underlying mechanism reveals down-regulation of N-cadherin in the Rab23-deficient neurons, which is a cell adhesion protein previously known to modulate radial migration. (Shikanai M, Nakajima K, Kawauchi T. 2011. N-cadherin regulates radial glial fiber-dependent migration of cortical locomoting neurons. Commun Integr Biol. 4:326–330.) Interestingly, pharmacological inhibition of extracellular signal-regulated kinases (ERK1/2) also decreases the expression of N-cadherin, implicating an upstream effect of ERK1/2 on N-cadherin and also suggesting a link between Rab23 and ERK1/2. Further biochemical studies show that silencing of Rab23 impedes activation of ERK1/2 via perturbed platelet-derived growth factor-alpha (PDGFRα) signaling. Restoration of the expression of Rab23 or N-cadherin in Rab23-KD neurons could reverse neuron migration defects, indicating that Rab23 modulates migration through N-cadherin. These studies suggest that cortical neuron migration is mediated by a molecular hierarchy downstream of Rab23 via N-cadherin.
Collapse
Affiliation(s)
- Catherine H H Hor
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Eyleen L K Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Research, National Neuroscience Institute, Singapore 308433, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.,KK Research Center, KK Women's and Children's Hospital, Singapore 229899, Singapore
| |
Collapse
|
17
|
Larssen E, Brede C, Hjelle A, Tjensvoll AB, Norheim KB, Bårdsen K, Jonsdottir K, Ruoff P, Omdal R, Nilsen MM. Fatigue in primary Sjögren's syndrome: A proteomic pilot study of cerebrospinal fluid. SAGE Open Med 2019; 7:2050312119850390. [PMID: 31205695 PMCID: PMC6537061 DOI: 10.1177/2050312119850390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
Objectives: Fatigue is a frequent and often disabling phenomenon that occurs in patients
with chronic inflammatory and immunological diseases, and the underlying
biological mechanisms are largely unknown. Because fatigue is generated in
the brain, we aimed to investigate cerebrospinal fluid and search for
molecules that participate in the pathophysiology of fatigue processes. Methods: A label-free shotgun proteomics approach was applied to analyze the
cerebrospinal fluid proteome of 20 patients with primary Sjögren’s syndrome.
Fatigue was measured with the fatigue visual analog scale. Results: A total of 828 proteins were identified and the 15 top discriminatory
proteins between patients with high and low fatigue were selected. Among
these were apolipoprotein A4, hemopexin, pigment epithelium-derived factor,
secretogranin-1, secretogranin-3, selenium-binding protein 1, and complement
factor B. Conclusion: Most of the discriminatory proteins have important roles in regulation of
innate immunity, cellular stress defense, and/or functions in the central
nervous system. These proteins and their interacting protein networks may
therefore have central roles in the generation and regulation of fatigue,
and the findings contribute with evidence to the concept of fatigue as a
biological phenomenon signaled through specific molecular pathways.
Collapse
Affiliation(s)
- Eivind Larssen
- Research Department, Stavanger University Hospital, Stavanger, Norway.,Norwegian Research Centre AS (NORCE), Stavanger, Norway
| | - Cato Brede
- Department of Medical Biochemistry, Stavanger University Hospital, Stavanger, Norway
| | - Anne Hjelle
- Research Department, Stavanger University Hospital, Stavanger, Norway
| | | | - Katrine Brække Norheim
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Kjetil Bårdsen
- Research Department, Stavanger University Hospital, Stavanger, Norway
| | - Kristin Jonsdottir
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Peter Ruoff
- Centre for Organelle Research (CORE), University of Stavanger, Stavanger, Norway
| | - Roald Omdal
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Mari Mæland Nilsen
- Research Department, Stavanger University Hospital, Stavanger, Norway.,Norwegian Research Centre AS (NORCE), Stavanger, Norway
| |
Collapse
|
18
|
Ryu T, Park HJ, Kim H, Cho YC, Kim BC, Jo J, Seo YW, Choi WS, Kim K. Improved memory and reduced anxiety in δ-catenin transgenic mice. Exp Neurol 2019; 318:22-31. [PMID: 30981806 DOI: 10.1016/j.expneurol.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
δ-Catenin is abundant in the brain and affects its synaptic plasticity. Furthermore, loss of δ-catenin is related to the deficits of learning and memory, mental retardation (cri-du-chat syndrome), and autism. A few studies about δ-catenin deficiency mice were performed. However, the effect of δ-catenin overexpression in the brain has not been investigated as yet. Therefore we generated a δ-catenin overexpressing mouse model. To generate a transgenic mouse model overexpressing δ-catenin in the brain, δ-catenin plasmid having a Thy-1 promotor was microinjected in C57BL/6 mice. Our results showed δ-catenin transgenic mice expressed higher levels of N-cadherin, β-catenin, and p120-catenin than did wild type mice. Furthermore, δ-catenin transgenic mice exhibited better object recognition, better sociability, and lower anxiety than wild type mice. However, both mice groups showed a similar pattern in locomotion tests. Although δ-catenin transgenic mice show similar locomotion, they show improved sociability and reduced anxiety. These characteristics are opposite to the symptoms of autism or mental retardation, which are caused when δ-catenin is deficient. These results suggest that δ-catenin may alleviate symptoms of autism, Alzheimer's disease and mental retardation.
Collapse
Affiliation(s)
- Taeyong Ryu
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyung Joon Park
- School of Biological Sciences and Technology, College of Natural Sciences, College of Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Gwnagju 61469, Republic of Korea
| | - Jihoon Jo
- Department of Neurology, Chonnam National University Medical School, Gwnagju 61469, Republic of Korea
| | - Young-Woo Seo
- Korea Basic Science Institute, Gwangju Center, Gwangju 61186, Republic of Korea
| | - Won-Seok Choi
- School of Biological Sciences and Technology, College of Natural Sciences, College of Medicine, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Kwonseop Kim
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
19
|
Hollenbeck CM, Portnoy DS, Gold JR. Evolution of population structure in an estuarine-dependent marine fish. Ecol Evol 2019; 9:3141-3152. [PMID: 30962887 PMCID: PMC6434539 DOI: 10.1002/ece3.4936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 01/06/2023] Open
Abstract
Restriction site-associated DNA (RAD) sequencing was used to characterize neutral and adaptive genetic variation among geographic samples of red drum, Sciaenops ocellatus, an estuarine-dependent fish found in coastal waters along the southeastern coast of the United States (Atlantic) and the northern Gulf of Mexico (Gulf). Analyses of neutral and outlier loci revealed three genetically distinct regional clusters: one in the Atlantic and two in the northern Gulf. Divergence in neutral loci indicated gradual genetic change and followed a linear pattern of isolation by distance. Divergence in outlier loci was at least an order of magnitude greater than divergence in neutral loci, and divergence between the regions in the Gulf was twice that of divergence between other regions. Discordance in patterns of genetic divergence between outlier and neutral loci is consistent with the hypothesis that the former reflects adaptive responses to environmental factors that vary on regional scales, while the latter largely reflects drift processes. Differences in basic habitat, initiated by glacial retreat and perpetuated by contemporary oceanic and atmospheric forces interacting with the geomorphology of the northern Gulf, followed by selection, appear to have led to reduced gene flow among red drum across the northern Gulf, reinforcing differences accrued during isolation and resulting in continued divergence across the genome. This same dynamic also may pertain to other coastal or nearshore fishes (18 species in 14 families) where genetically or morphologically defined sister taxa occur in the three regions.
Collapse
Affiliation(s)
- Christopher M. Hollenbeck
- Marine Genomics Laboratory, Department of Life SciencesTexas A&M University ‐ Corpus ChristiCorpus ChristiTexas
- Present address:
Scottish Oceans InstituteUniversity of St. AndrewsSt. Andrews, FifeUK
| | - David S. Portnoy
- Marine Genomics Laboratory, Department of Life SciencesTexas A&M University ‐ Corpus ChristiCorpus ChristiTexas
| | - John R. Gold
- Marine Genomics Laboratory, Department of Life SciencesTexas A&M University ‐ Corpus ChristiCorpus ChristiTexas
| |
Collapse
|
20
|
Cen C, Luo LD, Li WQ, Li G, Tian NX, Zheng G, Yin DM, Zou Y, Wang Y. PKD1 Promotes Functional Synapse Formation Coordinated with N-Cadherin in Hippocampus. J Neurosci 2018; 38:183-199. [PMID: 29133434 PMCID: PMC6705812 DOI: 10.1523/jneurosci.1640-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/11/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022] Open
Abstract
Functional synapse formation is critical for the wiring of neural circuits in the developing brain. The cell adhesion molecule N-cadherin plays important roles in target recognition and synaptogenesis. However, the molecular mechanisms that regulate the localization of N-cadherin and the subsequent effects remain poorly understood. Here, we show that protein kinase D1 (PKD1) directly binds to N-cadherin at amino acid residues 836-871 and phosphorylates it at Ser 869, 871, and 872, thereby increasing the surface localization of N-cadherin and promoting functional synapse formation in primary cultured hippocampal neurons obtained from embryonic day 18 rat embryos of either sex. Intriguingly, neuronal activity enhances the interactions between N-cadherin and PKD1, which are critical for the activity-dependent growth of dendritic spines. Accordingly, either disruption the binding between N-cadherin and PKD1 or preventing the phosphorylation of N-cadherin by PKD1 in the hippocampal CA1 region of male rat leads to the reduction in synapse number and impairment of LTP. Together, this study demonstrates a novel mechanism of PKD1 regulating the surface localization of N-cadherin and suggests that the PKD1-N-cadherin interaction is critical for synapse formation and function.SIGNIFICANCE STATEMENT Defects in synapse formation and function lead to various neurological diseases, although the mechanisms underlying the regulation of synapse development are far from clear. Our results suggest that protein kinase D1 (PKD1) functions upstream of N-cadherin, a classical synaptic adhesion molecule, to promote functional synapse formation. Notably, we identified a crucial binding fragment to PKD1 at C terminus of N-cadherin, and this fragment also contains PKD1 phosphorylation sites. Through this interaction, PKD1 enhances the stability of N-cadherin on cell membrane and promotes synapse morphogenesis and synaptic plasticity in an activity-dependent manner. Our study reveals the role of PKD1 and the potential downstream mechanism in synapse development, and contributes to the research for neurodevelopment and the therapy for neurological diseases.
Collapse
Affiliation(s)
- Cheng Cen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Li-Da Luo
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Wen-Qi Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Gang Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Na-Xi Tian
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Ge Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Dong-Min Yin
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China, and
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, California 92093
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China,
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory. J Neurosci 2017; 36:11851-11864. [PMID: 27881773 DOI: 10.1523/jneurosci.1700-16.2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 11/21/2022] Open
Abstract
The insulin-regulated glucose transporter-4 (GluT4) is critical for insulin- and contractile-mediated glucose uptake in skeletal muscle. GluT4 is also expressed in some hippocampal neurons, but its functional role in the brain is unclear. Several established molecular modulators of memory processing regulate hippocampal GluT4 trafficking and hippocampal memory formation is limited by both glucose metabolism and insulin signaling. Therefore, we hypothesized that hippocampal GluT4 might be involved in memory processes. Here, we show that, in male rats, hippocampal GluT4 translocates to the plasma membrane after memory training and that acute, selective intrahippocampal inhibition of GluT4-mediated glucose transport impaired memory acquisition, but not memory retrieval. Other studies have shown that prolonged systemic GluT4 blockade causes insulin resistance. Unexpectedly, we found that prolonged hippocampal blockade of glucose transport through GluT4-upregulated markers of hippocampal insulin signaling prevented task-associated depletion of hippocampal glucose and enhanced both working and short-term memory while also impairing long-term memory. These effects were accompanied by increased expression of hippocampal AMPA GluR1 subunits and the neuronal GluT3, but decreased expression of hippocampal brain-derived neurotrophic factor, consistent with impaired ability to form long-term memories. Our findings are the first to show the cognitive impact of brain GluT4 modulation. They identify GluT4 as a key regulator of hippocampal memory processing and also suggest differential regulation of GluT4 in the hippocampus from that in peripheral tissues. SIGNIFICANCE STATEMENT The role of insulin-regulated glucose transporter-4 (GluT4) in the brain is unclear. In the current study, we demonstrate that GluT4 is a critical component of hippocampal memory processes. Memory training increased hippocampal GluT4 translocation and memory acquisition was impaired by GluT4 blockade. Unexpectedly, whereas long-term inhibition of GluT4 impaired long-term memory, short-term memory was enhanced. These data further our understanding of the molecular mechanisms of memory and have particular significance for type 2 diabetes (in which GluT4 activity in the periphery is impaired) and Alzheimer's disease (which is linked to impaired brain insulin signaling and for which type 2 diabetes is a key risk factor). Both diseases cause marked impairment of hippocampal memory linked to hippocampal hypometabolism, suggesting the possibility that brain GluT4 dysregulation may be one cause of cognitive impairment in these disease states.
Collapse
|
22
|
Mills F, Globa AK, Liu S, Cowan CM, Mobasser M, Phillips AG, Borgland SL, Bamji SX. Cadherins mediate cocaine-induced synaptic plasticity and behavioral conditioning. Nat Neurosci 2017; 20:540-549. [PMID: 28192395 PMCID: PMC5373847 DOI: 10.1038/nn.4503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/13/2017] [Indexed: 02/06/2023]
Abstract
Drugs of abuse alter synaptic connections in the ‘reward circuit’ of the brain, which leads to long-lasting behavioral changes that underlie addiction. Here we show that cadherin adhesion molecules play a critical role in mediating synaptic plasticity and behavioral changes driven by cocaine. We demonstrate that cadherin is essential for long-term potentiation (LTP) in the ventral tegmental area (VTA), and is recruited to the synaptic membrane of excitatory inputs onto dopaminergic neurons following cocaine-mediated behavioral conditioning. Furthermore, we show that stabilization of cadherin at the membrane of these synapses blocks cocaine-induced synaptic plasticity, leading to a significant reduction in conditioned place preference induced by cocaine. Our findings identify cadherins and associated molecules as targets of interest for understanding pathological plasticity associated with addiction.
Collapse
Affiliation(s)
- Fergil Mills
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea K Globa
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shuai Liu
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Catherine M Cowan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mahsan Mobasser
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony G Phillips
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
N-Cadherin is Involved in Neuronal Activity-Dependent Regulation of Myelinating Capacity of Zebrafish Individual Oligodendrocytes In Vivo. Mol Neurobiol 2016; 54:6917-6930. [PMID: 27771903 DOI: 10.1007/s12035-016-0233-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023]
Abstract
Stimulating neuronal activity increases myelin sheath formation by individual oligodendrocytes, but how myelination is regulated by neuronal activity in vivo is still not fully understood. While in vitro studies have revealed the important role of N-cadherin in myelination, our understanding in vivo remains quite limited. To obtain the role of N-cadherin during activity-dependent regulation of myelinating capacity of individual oligodendrocytes, we successfully built an in vivo dynamic imaging model of the Mauthner cell at the subcellular structure level in the zebrafish central nervous system. Enhanced green fluorescent protein (EGFP)-tagged N-cadherin was used to visualize the stable accumulations and mobile transports of N-cadherin by single-cell electroporation at the single-cell level. We found that pentylenetetrazol (PTZ) significantly enhanced the accumulation of N-cadherin in Mauthner axons, a response that was paralleled by enhanced sheath number per oligodendrocytes. By offsetting this phenotype using oligopeptide (AHAVD) which blocks the function of N-cadherin, we showed that PTZ regulates myelination in an N-cadherin-dependent manner. What is more, we further suggested that PTZ influences N-cadherin and myelination via a cAMP pathway. Consequently, our data indicated that N-cadherin is involved in neuronal activity-dependent regulation of myelinating capacity of zebrafish individual oligodendrocytes in vivo.
Collapse
|
24
|
Kirbaeva NV, Sharanova NE, Zhminchenko VM, Toropygin IY, Koplik EV, Pertsov SS, Vasil'ev AV. Effect of Coenzyme Q10 on Proteomic Profile of Rat Brain Amygdala during Acute Metabolic Stress. Bull Exp Biol Med 2016; 161:460-4. [PMID: 27590759 DOI: 10.1007/s10517-016-3438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Indexed: 11/29/2022]
Abstract
Differences in the proteomic profiles of the brain amygdala in rats with different prognostic resistance to stress were found on the model of metabolic stress. Differential expression of tropomodulin-2, GTP-binding protein SAR1, peroxiredoxin-2, calcineurin B homologous protein 1, Ras-related protein Rab-14, glutathione S-transferase omega-1, Tcrb protein, and NADH dehydrogenase [ubiquinone] iron-sulfur protein 8 (mitochondrial) was shown to depend on the behavioral pattern of animals and stage of the study. Specific features were observed in the involvement of the amygdala in the stress response of specimens with various behavioral characteristics.
Collapse
Affiliation(s)
- N V Kirbaeva
- Research Institute of Nutrition, Russian Academy of Medical Sciences, Moscow, Russia.
| | - N E Sharanova
- Research Institute of Nutrition, Russian Academy of Medical Sciences, Moscow, Russia
| | - V M Zhminchenko
- Research Institute of Nutrition, Russian Academy of Medical Sciences, Moscow, Russia
| | - I Yu Toropygin
- Center of Common Use "Human Proteome", V. I. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - E V Koplik
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - S S Pertsov
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - A V Vasil'ev
- Research Institute of Nutrition, Russian Academy of Medical Sciences, Moscow, Russia
| |
Collapse
|
25
|
Inaba H, Kai D, Kida S. N-glycosylation in the hippocampus is required for the consolidation and reconsolidation of contextual fear memory. Neurobiol Learn Mem 2016; 135:57-65. [PMID: 27343988 DOI: 10.1016/j.nlm.2016.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 01/14/2023]
Abstract
Memory consolidation and reconsolidation have been shown to require new gene expression. N-glycosylation, one of the major post-translational modifications, is known to play essential or regulatory roles in protein function. A previous study suggested that N-glycosylation is required for the maintenance of long-term potentiation in hippocampal CA1 neurons. However, the role of de novo N-glycosylation in learning and memory, such as memory consolidation and reconsolidation, still remains unclear. Here, we show critical roles for N-glycosylation in the consolidation and reconsolidation of contextual fear memory in mice. We examined the effects of pharmacological inhibition of N-glycosylation in the hippocampus on these memory processes using three different inhibitors (tunicamycin, 1-deoxynojirimycin, and swainsonine) that block the enzymatic activity required for N-glycosylation at different steps. Microinfusions of the N-glycosylation inhibitors into the dorsal hippocampus impaired long-term memory (LTM) formation without affecting short-term memory (STM). Similarly, this pharmacological blockade of N-glycosylation in the dorsal hippocampus also disrupted post-reactivation LTM after retrieval without affecting post-reactivation STM. Additionally, a microinfusion of swainsonine blocked c-fos induction in the hippocampus, which is observed when memory is consolidated. Our observations showed that N-glycosylation is required for the consolidation and reconsolidation of contextual fear memory and suggested that N-glycosylation contributes to the new gene expression necessary for these memory processes.
Collapse
Affiliation(s)
- Hiroyoshi Inaba
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Daisuke Kai
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoshi Kida
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
26
|
Shea CJA, Carhuatanta KAK, Wagner J, Bechmann N, Moore R, Herman JP, Jankord R. Variable impact of chronic stress on spatial learning and memory in BXD mice. Physiol Behav 2015; 150:69-77. [PMID: 26079812 DOI: 10.1016/j.physbeh.2015.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022]
Abstract
The effects of chronic stress on learning are highly variable across individuals. This variability stems from gene-environment interactions. However, the mechanisms by which stress affects genetic predictors of learning are unclear. Thus, we aim to determine whether the genetic pathways that predict spatial memory performance are altered by previous exposure to chronic stress. Sixty-two BXD recombinant inbred strains of mice, as well as parent strains C57BL/6J and DBA/2J, were randomly assigned as behavioral control or to a chronic variable stress paradigm and then underwent behavioral testing to assess spatial memory and learning performance using the Morris water maze. Quantitative trait loci (QTL) mapping was completed for average escape latency times for both control and stress animals. Loci on chromosomes 5 and 10 were found in both control and stress environmental populations; eight additional loci were found to be unique to either the control or stress environment. In sum, results indicate that certain genetic loci predict spatial memory performance regardless of prior stress exposure, while exposure to stress also reveals unique genetic predictors of training during the memory task. Thus, we find that genetic predictors contributing to spatial learning and memory are susceptible to the presence of chronic stress.
Collapse
Affiliation(s)
- Chloe J A Shea
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, United States
| | - Kimberly A K Carhuatanta
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, United States; Research Associate Program, National Research Council, National Academies of Science, Washington DC 20001, United States
| | - Jessica Wagner
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, United States
| | - Naomi Bechmann
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, United States; Infoscitex, Inc., Dayton, OH 45435, United States
| | - Raquel Moore
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, United States; Infoscitex, Inc., Dayton, OH 45435, United States
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Ryan Jankord
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, United States.
| |
Collapse
|
27
|
Schevzov G, Kee AJ, Wang B, Sequeira VB, Hook J, Coombes JD, Lucas CA, Stehn JR, Musgrove EA, Cretu A, Assoian R, Fath T, Hanoch T, Seger R, Pleines I, Kile BT, Hardeman EC, Gunning PW. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Mol Biol Cell 2015; 26:2475-90. [PMID: 25971798 PMCID: PMC4571302 DOI: 10.1091/mbc.e14-10-1453] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 05/07/2015] [Indexed: 12/27/2022] Open
Abstract
Tropomyosin Tm5NM1 regulates cell proliferation and organ size. It mediates this effect by regulating the interaction of pERK and Imp7, leading to the regulation of pERK nuclear translocation. This demonstrates a role for a specific population of actin filaments in regulating a critical step in the MAPK/ERK signaling pathway. ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor–stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Anthony J Kee
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Bin Wang
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Vanessa B Sequeira
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jeff Hook
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jason D Coombes
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Christine A Lucas
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Justine R Stehn
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Elizabeth A Musgrove
- Kinghorn Cancer Centre, Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alexandra Cretu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Richard Assoian
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Thomas Fath
- Neurodegeneration and Repair Laboratory, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Tamar Hanoch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Irina Pleines
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Benjamin T Kile
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
28
|
Abel AM, Schuldt KM, Rajasekaran K, Hwang D, Riese MJ, Rao S, Thakar MS, Malarkannan S. IQGAP1: insights into the function of a molecular puppeteer. Mol Immunol 2015; 65:336-49. [PMID: 25733387 DOI: 10.1016/j.molimm.2015.02.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
The intracellular spatiotemporal organization of signaling events is critical for normal cellular function. In response to environmental stimuli, cells utilize highly organized signaling pathways that are subject to multiple layers of regulation. However, the molecular mechanisms that coordinate these complex processes remain an enigma. Scaffolding proteins (scaffolins) have emerged as critical regulators of signaling pathways, many of which have well-described functions in immune cells. IQGAP1, a highly conserved cytoplasmic scaffold protein, is able to curb, compartmentalize, and coordinate multiple signaling pathways in a variety of cell types. IQGAP1 plays a central role in cell-cell interaction, cell adherence, and movement via actin/tubulin-based cytoskeletal reorganization. Evidence also implicates IQGAP1 as an essential regulator of the MAPK and Wnt/β-catenin signaling pathways. Here, we summarize the recent advances on the cellular and molecular biology of IQGAP1. We also describe how this pleiotropic scaffolin acts as a true molecular puppeteer, and highlight the significance of future research regarding the role of IQGAP1 in immune cells.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kristina M Schuldt
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David Hwang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J Riese
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
29
|
Hedman AC, Smith JM, Sacks DB. The biology of IQGAP proteins: beyond the cytoskeleton. EMBO Rep 2015; 16:427-46. [PMID: 25722290 DOI: 10.15252/embr.201439834] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/07/2015] [Indexed: 01/02/2023] Open
Abstract
IQGAP scaffold proteins are evolutionarily conserved in eukaryotes and facilitate the formation of complexes that regulate cytoskeletal dynamics, intracellular signaling, and intercellular interactions. Fungal and mammalian IQGAPs are implicated in cytokinesis. IQGAP1, IQGAP2, and IQGAP3 have diverse roles in vertebrate physiology, operating in the kidney, nervous system, cardio-vascular system, pancreas, and lung. The functions of IQGAPs can be corrupted during oncogenesis and are usurped by microbial pathogens. Therefore, IQGAPs represent intriguing candidates for novel therapeutic agents. While modulation of the cytoskeletal architecture was initially thought to be the primary function of IQGAPs, it is now clear that they have roles beyond the cytoskeleton. This review describes contributions of IQGAPs to physiology at the organism level.
Collapse
Affiliation(s)
- Andrew C Hedman
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jessica M Smith
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Friedman LG, Benson DL, Huntley GW. Cadherin-based transsynaptic networks in establishing and modifying neural connectivity. Curr Top Dev Biol 2015; 112:415-65. [PMID: 25733148 DOI: 10.1016/bs.ctdb.2014.11.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is tacitly understood that cell adhesion molecules (CAMs) are critically important for the development of cells, circuits, and synapses in the brain. What is less clear is what CAMs continue to contribute to brain structure and function after the early period of development. Here, we focus on the cadherin family of CAMs to first briefly recap their multidimensional roles in neural development and then to highlight emerging data showing that with maturity, cadherins become largely dispensible for maintaining neuronal and synaptic structure, instead displaying new and narrower roles at mature synapses where they critically regulate dynamic aspects of synaptic signaling, structural plasticity, and cognitive function. At mature synapses, cadherins are an integral component of multiprotein networks, modifying synaptic signaling, morphology, and plasticity through collaborative interactions with other CAM family members as well as a variety of neurotransmitter receptors, scaffolding proteins, and other effector molecules. Such recognition of the ever-evolving functions of synaptic cadherins may yield insight into the pathophysiology of brain disorders in which cadherins have been implicated and that manifest at different times of life.
Collapse
Affiliation(s)
- Lauren G Friedman
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Deanna L Benson
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - George W Huntley
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
31
|
IQGAPs choreograph cellular signaling from the membrane to the nucleus. Trends Cell Biol 2015; 25:171-84. [PMID: 25618329 DOI: 10.1016/j.tcb.2014.12.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/18/2022]
Abstract
Since its discovery in 1994, recognized cellular functions for the scaffold protein IQGAP1 have expanded immensely. Over 100 unique IQGAP1-interacting proteins have been identified, implicating IQGAP1 as a critical integrator of cellular signaling pathways. Initial research established functions for IQGAP1 in cell-cell adhesion, cell migration, and cell signaling. Recent studies have revealed additional IQGAP1 binding partners, expanding the biological roles of IQGAP1. These include crosstalk between signaling cascades, regulation of nuclear function, and Wnt pathway potentiation. Investigation of the IQGAP2 and IQGAP3 homologs demonstrates unique functions, some of which differ from those of IQGAP1. Summarized here are recent observations that enhance our understanding of IQGAP proteins in the integration of diverse signaling pathways.
Collapse
|
32
|
Zhang Y, Brownstein AJ, Buonora M, Niikura K, Ho A, Correa da Rosa J, Kreek MJ, Ott J. Self administration of oxycodone alters synaptic plasticity gene expression in the hippocampus differentially in male adolescent and adult mice. Neuroscience 2014; 285:34-46. [PMID: 25446355 DOI: 10.1016/j.neuroscience.2014.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/19/2014] [Accepted: 11/04/2014] [Indexed: 11/16/2022]
Abstract
Abuse and addiction to prescription opioids such as oxycodone (a short-acting Mu opioid receptor (MOP-r) agonist) in adolescence is a pressing public health issue. We have previously shown differences in oxycodone self-administration behaviors between adolescent and adult C57BL/6J mice and expression of striatal neurotransmitter receptor genes, in areas involved in reward. In this study, we aimed to determine whether oxycodone self-administration differentially affects genes regulating synaptic plasticity in the hippocampus of adolescent compared to adult mice, since the hippocampus may be involved in learning aspects associated with chronic drug self administration. Hippocampus was isolated for mRNA analysis from mice that had self administered oxycodone (0.25 mg/kg/infusion) 2h/day for 14 consecutive days or from yoked saline controls. Gene expression was analyzed with real-time polymerase chain reaction (PCR) using a commercially available "synaptic plasticity" PCR array containing 84 genes. We found that adolescent and adult control mice significantly differed in the expression of several genes in the absence of oxycodone exposure, including those coding for mitogen-activated protein kinase, calcium/calmodulin-dependent protein kinase II gamma subunit, glutamate receptor, ionotropic AMPA2 and metabotropic 5. Chronic oxycodone self administration increased proviral integration site 1 (Pim1) and thymoma viral proto-oncogene 1 mRNA levels compared to controls in both age groups. Both Pim1 and cadherin 2 mRNAs showed a significant combined effect of Drug Condition and Age × Drug Condition. Furthermore, the mRNA levels of both cadherin 2 and cAMP response element modulators showed an experiment-wise significant difference between oxycodone and saline control in adult but not in adolescent mice. Overall, this study demonstrates for the first time that chronic oxycodone self-administration differentially alters synaptic plasticity gene expression in the hippocampus of adolescent and adult mice.
Collapse
Affiliation(s)
- Y Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA.
| | - A J Brownstein
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - M Buonora
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - K Niikura
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - A Ho
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - J Correa da Rosa
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY 10065, USA
| | - M J Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - J Ott
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China; The Laboratory of Statistical Genetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
33
|
Yang L, Zhang R, Li M, Wu X, Wang J, Huang L, Shi X, Li Q, Su B. A functional MiR-124 binding-site polymorphism in IQGAP1 affects human cognitive performance. PLoS One 2014; 9:e107065. [PMID: 25222038 PMCID: PMC4164536 DOI: 10.1371/journal.pone.0107065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/06/2014] [Indexed: 01/07/2023] Open
Abstract
As a product of the unique evolution of the human brain, human cognitive performance is largely a collection of heritable traits. Rather surprisingly, to date there have been no reported cases to highlight genes that underwent adaptive evolution in humans and which carry polymorphisms that have a marked effect on cognitive performance. IQ motif containing GTPase activating protein 1 (IQGAP1), a scaffold protein, affects learning and memory in a dose-dependent manner. Its expression is regulated by miR-124 through the binding sites in the 3′UTR, where a SNP (rs1042538) exists in the core-binding motif. Here we showed that this SNP can influence the miR-target interaction both in vitro and in vivo. Individuals carrying the derived T alleles have higher IQGAP1 expression in the brain as compared to the ancestral A allele carriers. We observed a significant and male-specific association between rs1042538 and tactile performances in two independent cohorts. Males with the derived allele displayed higher tactual performances as compared to those with the ancestral allele. Furthermore, we found a highly diverged allele-frequency distribution of rs1042538 among world human populations, likely caused by natural selection and/or recent population expansion. These results suggest that current human populations still carry sequence variations that affect cognitive performances and that these genetic variants may likely have been subject to comparatively recent natural selection.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ming Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xujun Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jianhong Wang
- Laboratory of Primate Neuroscience Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lin Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaodong Shi
- Department of Biochemistry, Qujing Normal University, Qujing, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- * E-mail:
| |
Collapse
|
34
|
Stern SA, Kohtz AS, Pollonini G, Alberini CM. Enhancement of memories by systemic administration of insulin-like growth factor II. Neuropsychopharmacology 2014; 39:2179-90. [PMID: 24642597 PMCID: PMC4104337 DOI: 10.1038/npp.2014.69] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/19/2014] [Accepted: 03/16/2014] [Indexed: 01/01/2023]
Abstract
To treat cognitive disorders in humans, new effective therapies that can be easily delivered systemically are needed. Previous studies showed that a bilateral injection of insulin-like growth factor II (IGF-II) into the dorsal hippocampus of rats or mice enhances fear memories and facilitates fear extinction. Here, we report that, in mice, systemic treatments with IGF-II given before training significantly enhance the retention and persistence of several types of working, short-term and long-term memories, including fear conditioning, object recognition, object placement, social recognition, and spatial reference memory. IGF-II-mediated memory enhancement does not alter memory flexibility or the ability for new learning and also occurs when IGF-II treatment is given in concert with memory retrieval. Thus IGF-II may represent a potentially important and effective treatment for enhancing human cognitive and executive functions.
Collapse
Affiliation(s)
- Sarah A Stern
- Center for Neural Science, New York University, New York, NY, USA,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy S Kohtz
- Center for Neural Science, New York University, New York, NY, USA,Graduate Program in Psychology, University at Albany—SUNY, Albany, NY, USA
| | | | - Cristina M Alberini
- Center for Neural Science, New York University, New York, NY, USA,Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA, Tel: +1 212 998 7721, Fax: +1 212 995 4011, E-mail:
| |
Collapse
|
35
|
Nota B, Ndika JDT, van de Kamp JM, Kanhai WA, van Dooren SJM, van de Wiel MA, Pals G, Salomons GS. RNA Sequencing of Creatine Transporter (SLC6A8) Deficient Fibroblasts Reveals Impairment of the Extracellular Matrix. Hum Mutat 2014; 35:1128-35. [DOI: 10.1002/humu.22609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 06/16/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Benjamin Nota
- Metabolic Unit; Department of Clinical Chemistry; VU University Medical Center; Neuroscience Campus Amsterdam; Amsterdam The Netherlands
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Joseph D. T. Ndika
- Metabolic Unit; Department of Clinical Chemistry; VU University Medical Center; Neuroscience Campus Amsterdam; Amsterdam The Netherlands
| | - Jiddeke M. van de Kamp
- Department of Clinical Genetics; VU University Medical Center; Amsterdam The Netherlands
| | - Warsha A. Kanhai
- Metabolic Unit; Department of Clinical Chemistry; VU University Medical Center; Neuroscience Campus Amsterdam; Amsterdam The Netherlands
| | - Silvy J. M. van Dooren
- Metabolic Unit; Department of Clinical Chemistry; VU University Medical Center; Neuroscience Campus Amsterdam; Amsterdam The Netherlands
| | - Mark A. van de Wiel
- Department of Epidemiology and Biostatistics; VU University Medical Center; Amsterdam The Netherlands
| | - Gerard Pals
- Department of Clinical Genetics; VU University Medical Center; Amsterdam The Netherlands
| | - Gajja S. Salomons
- Metabolic Unit; Department of Clinical Chemistry; VU University Medical Center; Neuroscience Campus Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
36
|
Lamprecht R. The actin cytoskeleton in memory formation. Prog Neurobiol 2014; 117:1-19. [DOI: 10.1016/j.pneurobio.2014.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 01/21/2023]
|
37
|
Cognitive flexibility and long-term depression (LTD) are impaired following β-catenin stabilization in vivo. Proc Natl Acad Sci U S A 2014; 111:8631-6. [PMID: 24912177 DOI: 10.1073/pnas.1404670111] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cadherin/β-catenin adhesion complex is a key mediator of the bidirectional changes in synapse strength which are believed to underlie complex learning and memory. In the present study, we demonstrate that stabilization of β-catenin in the hippocampus of adult mice results in significant impairments in cognitive flexibility and spatial reversal learning, including impaired extinction during the reversal phase of the Morris water maze and deficits in a delayed nonmatch to place T-maze task. In accordance with these deficits, β-catenin stabilization was found to abolish long-term depression by stabilizing cadherin at the synaptic membrane and impairing AMPA receptor endocytosis, while leaving basal synaptic transmission and long-term potentiation unaffected. These results demonstrate that the β-catenin/cadherin adhesion complex plays an important role in learning and memory and that aberrant increases in synaptic adhesion can have deleterious effects on cognitive function.
Collapse
|
38
|
Nikitczuk JS, Patil SB, Matikainen-Ankney BA, Scarpa J, Shapiro ML, Benson DL, Huntley GW. N-cadherin regulates molecular organization of excitatory and inhibitory synaptic circuits in adult hippocampus in vivo. Hippocampus 2014; 24:943-962. [PMID: 24753442 DOI: 10.1002/hipo.22282] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/31/2022]
Abstract
N-Cadherin and β-catenin form a transsynaptic adhesion complex required for spine and synapse development. In adulthood, N-cadherin mediates persistent synaptic plasticity, but whether the role of N-cadherin at mature synapses is similar to that at developing synapses is unclear. To address this, we conditionally ablated N-cadherin from excitatory forebrain synapses in mice starting in late postnatal life and examined hippocampal structure and function in adulthood. In the absence of N-cadherin, β-catenin levels were reduced, but numbers of excitatory synapses were unchanged, and there was no impact on number or shape of dendrites or spines. However, the composition of synaptic molecules was altered. Levels of GluA1 and its scaffolding protein PSD95 were diminished and the density of immunolabeled puncta was decreased, without effects on other glutamate receptors and their scaffolding proteins. Additionally, loss of N-cadherin at excitatory synapses triggered increases in the density of markers for inhibitory synapses and decreased severity of hippocampal seizures. Finally, adult mutant mice were profoundly impaired in hippocampal-dependent memory for spatial episodes. These results demonstrate a novel function for the N-cadherin/β-catenin complex in regulating ionotropic receptor composition of excitatory synapses, an appropriate balance of excitatory and inhibitory synaptic proteins and the maintenance of neural circuitry necessary to generate flexible yet persistent cognitive and synaptic function.
Collapse
Affiliation(s)
- Jessica S Nikitczuk
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029
| | - Shekhar B Patil
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029
| | - Bridget A Matikainen-Ankney
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029
| | - Joseph Scarpa
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029
| | - Matthew L Shapiro
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029
| | - Deanna L Benson
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029
| | - George W Huntley
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029
| |
Collapse
|
39
|
Palmitoylation of δ-catenin by DHHC5 mediates activity-induced synapse plasticity. Nat Neurosci 2014; 17:522-32. [PMID: 24562000 PMCID: PMC5025286 DOI: 10.1038/nn.3657] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/22/2014] [Indexed: 02/07/2023]
Abstract
Synaptic cadherin adhesion complexes are known to be key regulators of synapse plasticity. However, the molecular mechanisms that coordinate activity-induced modifications in cadherin localization and adhesion and subsequent changes in synapse morphology and efficacy, remain unanswered. We demonstrate that the intracellular cadherin binding protein, δ-catenin, is transiently palmitoylated by DHHC5 following enhanced synaptic activity, and that palmitoylation increases δ-catenin/cadherin interactions at synapses. Both the palmitoylation of δ-catenin and its binding to cadherin are required for activity-induced stabilization of N-cadherin at synapses, the enlargement of postsynaptic spines, as well as insertion of GluA1 and GluA2 subunits into the synaptic membrane and the concomitant increase in mEPSC amplitude. Importantly, context-dependent fear conditioning in mice results in increased δ-catenin palmitoylation as well as increased δ-catenin/cadherin associations at hippocampal synapses. Together, this suggests a role for palmitoylated δ-catenin in coordinating activity-dependent changes in synaptic adhesion molecules, synapse structure, and receptor localization that are involved in memory formation.
Collapse
|
40
|
Yi MH, Kim S, Zhang E, Kang JW, Park JB, Lee YH, Chung CK, Kim YM, Kim DW. IQGAP1 expression in spared CA1 neurons after an excitotoxic lesion in the mouse hippocampus. Cell Mol Neurobiol 2013; 33:1003-12. [PMID: 23907317 DOI: 10.1007/s10571-013-9968-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Repeated seizures induce permanent alterations in the hippocampal circuits in experimental models with intractable temporal lobe epilepsy. Sprouting and synaptic reorganization induced by seizures has been well-studied in the mossy fiber pathway. However, studies investigating sprouting and synaptic reorganization beyond the mossy fiber pathway are limited. The present study examined the biochemical changes of CA1 pyramidal neurons undergoing morphological changes after excitotoxicity-induced hippocampal CA3 neuronal death. IQ-domain GTPase-activating proteins (IQGAP1), is an effector of Rac1 and Cdc42 and an actin-binding protein, was upregulated in CA1 pyramidal neurons after kainic acid-induced hippocampal CA3 neuronal degeneration. IQGAP1 + cells were colocalized with Nestin, but not in astrocytes or mature neurons. Furthermore, IQGAP1 did not originate from newly divided local precursors or NG2 + cells. IQGAP1 and adenomatous polyposis coli localized in CA1 pyramidal neurons, and Cdc42 activation was followed by IQGAP1 recruitment. These findings suggest that IQGAP1 is upregulated in pre-existed sparing neurons of the CA1 layer undergoing morphological changes after excitoxicity-induced hippocampal CA3 neuronal death. It demonstrates the utility of IQGAP1 as a possible marker for spared pyramidal neurons, which may contribute to structural and functional alternations responsible for the development of epilepsy.
Collapse
Affiliation(s)
- Min-Hee Yi
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 301-747, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Togashi H. [The role of cell adhesion molecules in neurite recognition and synaptogenesis of the mammalian nervous system]. Nihon Yakurigaku Zasshi 2013; 142:100-5. [PMID: 24025489 DOI: 10.1254/fpj.142.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Jo C, Koh YH. Cadmium induces N-cadherin cleavage via ERK-mediated γ-secretase activation in C6 astroglia cells. Toxicol Lett 2013; 222:117-21. [PMID: 23876460 DOI: 10.1016/j.toxlet.2013.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/13/2013] [Accepted: 07/11/2013] [Indexed: 11/17/2022]
Abstract
N-cadherin has known to be involved in tumor progression and metastasis. However, it is still obscure about the signaling pathway involving in the processing of N-cadherin. Thus, we examined which signaling pathway plays a major role in the processing of N-cadherin in C6 glioma cells following treatment of cadmium (Cd), a highly ubiquitous heavy metal. A cleavage product of N-cadherin, N-cad/CTF2 was observed by the treatment of Cd to C6 cells in a time and concentration-dependent manner. The production of N-cad/CTF2 was inhibited by pretreatment of γ-secretase inhibitors or siRNA transfection of nicastrin, indicating that γ-secretase is involved in the cleavage. Interestingly, Cd could activate both ERK and JNK signaling pathways in C6 cells; however, γ-secretase-mediated N-cad/CTF2 production by Cd was completely blocked by MEK1/2 inhibitors PD184352 and U0126, but not by a JNK inhibitor SP600125, demonstrating that the ERK signaling pathway plays a major role in the cleavage. In addition, pretreatment of an antioxidant or Ca²⁺ blocker blocked the production of N-cad/CTF2 by Cd together with the inhibition of ERK1/2 phosphorylation. Collectively, these results suggest that Cd increases intracellular Ca²⁺ or ROS, which induces γ-secretase-dependent N-cad/CTF2 production via the activation of the ERK signaling pathway in C6 glial cells.
Collapse
Affiliation(s)
- Chulman Jo
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Gangoe-myeon, Cheongwon-gun, Chungcheongbuk-do 363-951, Republic of Korea
| | | |
Collapse
|
43
|
Shirao T, González-Billault C. Actin filaments and microtubules in dendritic spines. J Neurochem 2013; 126:155-64. [PMID: 23692384 DOI: 10.1111/jnc.12313] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 01/26/2023]
Abstract
Dendritic spines are small protrusions emerging from their parent dendrites, and their morphological changes are involved in synaptic plasticity. These tiny structures are composed of thousands of different proteins belonging to several subfamilies such as membrane receptors, scaffold proteins, signal transduction proteins, and cytoskeletal proteins. Actin filaments in dendritic spines consist of double helix of actin protomers decorated with drebrin and ADF/cofilin, and the balance of the two is closely related to the actin dynamics, which may govern morphological and functional synaptic plasticity. During development, the accumulation of drebrin-binding type actin filaments is one of the initial events occurring at the nascent excitatory postsynaptic site, and plays a pivotal role in spine formation as well as small GTPases. It has been recently reported that microtubules transiently appear in dendritic spines in correlation with synaptic activity. Interestingly, it is suggested that microtubule dynamics might couple with actin dynamics. In this review, we will summarize the contribution of both actin filaments and microtubules to the formation and regulation of dendritic spines, and further discuss the role of cytoskeletal deregulation in neurological disorders.
Collapse
Affiliation(s)
- Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | | |
Collapse
|
44
|
Nectin-3 links CRHR1 signaling to stress-induced memory deficits and spine loss. Nat Neurosci 2013; 16:706-13. [DOI: 10.1038/nn.3395] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022]
|
45
|
Jausoro I, Mestres I, Quassollo G, Masseroni L, Heredia F, Caceres A. Regulation of spine density and morphology by IQGAP1 protein domains. PLoS One 2013; 8:e56574. [PMID: 23441206 PMCID: PMC3575492 DOI: 10.1371/journal.pone.0056574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/15/2013] [Indexed: 11/25/2022] Open
Abstract
IQGAP1 is a scaffolding protein that regulates spine number. We now show a differential role for IQGAP1 domains in spine morphogenesis, in which a region of the N-terminus that promotes Arp2/3-mediated actin polymerization and branching stimulates spine head formation while a region that binds to Cdc42 and Rac is required for stalk extension. Conversely, IQGAP1 rescues spine deficiency induced by expression of dominant negative Cdc42 by stimulating formation of stubby spines. Together, our observations place IQGAP1 as a crucial regulator of spine number and shape acting through the N-Wasp Arp2/3 complex, as well as upstream and downstream of Cdc42.
Collapse
Affiliation(s)
- Ignacio Jausoro
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ivan Mestres
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gonzalo Quassollo
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lujan Masseroni
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia Heredia
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo Caceres
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
46
|
Velpula KK, Rehman AA, Chelluboina B, Dasari VR, Gondi CS, Rao JS, Veeravalli KK. Glioma stem cell invasion through regulation of the interconnected ERK, integrin α6 and N-cadherin signaling pathway. Cell Signal 2012; 24:2076-84. [DOI: 10.1016/j.cellsig.2012.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/03/2012] [Indexed: 01/26/2023]
|
47
|
Fuentes F, Zimmer D, Atienza M, Schottenfeld J, Penkala I, Bale T, Bence KK, Arregui CO. Protein tyrosine phosphatase PTP1B is involved in hippocampal synapse formation and learning. PLoS One 2012; 7:e41536. [PMID: 22844492 PMCID: PMC3402386 DOI: 10.1371/journal.pone.0041536] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/22/2012] [Indexed: 01/01/2023] Open
Abstract
ER-bound PTP1B is expressed in hippocampal neurons, and accumulates among neurite contacts. PTP1B dephosphorylates ß-catenin in N-cadherin complexes ensuring cell-cell adhesion. Here we show that endogenous PTP1B, as well as expressed GFP-PTP1B, are present in dendritic spines of hippocampal neurons in culture. GFP-PTP1B overexpression does not affect filopodial density or length. In contrast, impairment of PTP1B function or genetic PTP1B-deficiency leads to increased filopodia-like dendritic spines and a reduction in mushroom-like spines, while spine density is unaffected. These morphological alterations are accompanied by a disorganization of pre- and post-synapses, as judged by decreased clustering of synapsin-1 and PSD-95, and suggest a dynamic synaptic phenotype. Notably, levels of ß-catenin-Tyr-654 phosphorylation increased ∼5-fold in the hippocampus of adult PTP1B−/− (KO) mice compared to wild type (WT) mice and this was accompanied by a reduction in the amount of ß-catenin associated with N-cadherin. To determine whether PTP1B-deficiency alters learning and memory, we generated mice lacking PTP1B in the hippocampus and cortex (PTP1Bfl/fl–Emx1-Cre). PTP1Bfl/fl–Emx1-Cre mice displayed improved performance in the Barnes maze (decreased time to find and enter target hole), utilized a more efficient strategy (cued), and had better recall compared to WT controls. Our results implicate PTP1B in structural plasticity within the hippocampus, likely through modulation of N-cadherin function by ensuring dephosphorylation of ß-catenin on Tyr-654. Disruption of hippocampal PTP1B function or expression leads to elongation of dendritic filopodia and improved learning and memory, demonstrating an exciting novel role for this phosphatase.
Collapse
Affiliation(s)
- Federico Fuentes
- Instituto de Investigaciones Biotecnológicas, Universidad de San Martín/CONICET, San Martín, Buenos Aires, Argentina
| | - Derek Zimmer
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marybless Atienza
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jamie Schottenfeld
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ian Penkala
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tracy Bale
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kendra K. Bence
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (COA); (KKB)
| | - Carlos O. Arregui
- Instituto de Investigaciones Biotecnológicas, Universidad de San Martín/CONICET, San Martín, Buenos Aires, Argentina
- * E-mail: (COA); (KKB)
| |
Collapse
|
48
|
Abstract
Cadherins are Ca(2+)-dependent cell-cell adhesion molecules that play critical roles in animal morphogenesis. Various cadherin-related molecules have also been identified, which show diverse functions, not only for the regulation of cell adhesion but also for that of cell proliferation and planar cell polarity. During the past decade, understanding of the roles of these molecules in the nervous system has significantly progressed. They are important not only for the development of the nervous system but also for its functions and, in turn, for neural disorders. In this review, we discuss the roles of cadherins and related molecules in neural development and function in the vertebrate brain.
Collapse
Affiliation(s)
- Shinji Hirano
- Department of Neurobiology and Anatomy, Kochi Medical School, Okoh-cho Kohasu, Nankoku-City 783–8505, Japan.
| | | |
Collapse
|
49
|
Tanaka H, Takafuji K, Taguchi A, Wiriyasermkul P, Ohgaki R, Nagamori S, Suh PG, Kanai Y. Linkage of N-cadherin to multiple cytoskeletal elements revealed by a proteomic approach in hippocampal neurons. Neurochem Int 2012; 61:240-50. [PMID: 22609377 DOI: 10.1016/j.neuint.2012.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 01/21/2023]
Abstract
The CNS synapse is an adhesive junction differentiated for chemical neurotransmission and is equipped with presynaptic vesicles and postsynaptic neurotransmitter receptors. Cell adhesion molecule cadherins not only maintain connections between pre- and postsynaptic membranes but also modulate the efficacy of synaptic transmission. Although the components of the cadherin-mediated adhesive apparatus have been studied extensively in various cell systems, the complete picture of these components, particularly at the synaptic junction, remains elusive. Here, we describe the proteomic assortment of the N-cadherin-mediated synaptic adhesion apparatus in cultured hippocampal neurons. N-cadherin immunoprecipitated from Triton X-100-solubilized neuronal extract contained equal amounts of β- and α-catenins, as well as F-actin-related membrane anchor proteins such as integrins bridged with α-actinin-4, and Na(+)/K(+)-ATPase bridged with spectrins. A close relative of β-catenin, plakoglobin, and its binding partner, desmoplakin, were also found, suggesting that a subset of the N-cadherin-mediated adhesive apparatus also anchors intermediate filaments. Moreover, dynein heavy chain and LEK1/CENPF/mitosin were found. This suggests that internalized pools of N-cadherin in trafficking vesicles are conveyed by dynein motors on microtubules. In addition, ARVCF and NPRAP/neurojungin/δ2-catenin, but not p120ctn/δ1-catenin or plakophilins-1, -2, -3, -4 (p0071), were found, suggesting other possible bridges to microtubules. Finally, synaptic stimulation by membrane depolarization resulted in an increased 93-kDa band, which corresponded to proteolytically truncated β-catenin. The integration of three different classes of cytoskeletal systems found in the synaptic N-cadherin complex may imply a dynamic switching of adhesive scaffolds in response to synaptic activity.
Collapse
Affiliation(s)
- Hidekazu Tanaka
- Department of Pharmacology, Osaka University School of Medicine, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Vetterkind S, Saphirstein RJ, Morgan KG. Stimulus-specific activation and actin dependency of distinct, spatially separated ERK1/2 fractions in A7r5 smooth muscle cells. PLoS One 2012; 7:e30409. [PMID: 22363435 PMCID: PMC3283592 DOI: 10.1371/journal.pone.0030409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/15/2011] [Indexed: 12/16/2022] Open
Abstract
A proliferative response of smooth muscle cells to activation of extracellular signal regulated kinases 1 and 2 (ERK1/2) has been linked to cardiovascular disease. In fully differentiated smooth muscle, however, ERK1/2 activation can also regulate contraction. Here, we use A7r5 smooth muscle cells, stimulated with 12-deoxyphorbol 13-isobutylate 20-acetate (DPBA) to induce cytoskeletal remodeling or fetal calf serum (FCS) to induce proliferation, to identify factors that determine the outcomes of ERK1/2 activation in smooth muscle. Knock down experiments, immunoprecipitation and proximity ligation assays show that the ERK1/2 scaffold caveolin-1 mediates ERK1/2 activation in response to DPBA, but not FCS, and that ERK1/2 is released from caveolin-1 upon DPBA, but not FCS, stimulation. Conversely, ERK1/2 associated with the actin cytoskeleton is significantly reduced after FCS, but not DPBA stimulation, as determined by Triton X fractionation. Furthermore, cytochalasin treatment inhibits DPBA, but not FCS-induced ERK1/2 phosphorylation, indicating that the actin cytoskeleton is not only a target but also is required for ERK1/2 activation. Our results show that (1) at least two ERK1/2 fractions are regulated separately by specific stimuli, and that (2) the association of ERK1/2 with the actin cytoskeleton regulates the outcome of ERK1/2 signaling.
Collapse
Affiliation(s)
- Susanne Vetterkind
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America.
| | | | | |
Collapse
|