1
|
Park GY, Lee G, Yoon J, Han J, Choi P, Kim M, Lee S, Park C, Wu Z, Li Y, Choi M. Glia-like taste cells mediate an intercellular mode of peripheral sweet adaptation. Cell 2025; 188:141-156.e16. [PMID: 39561773 DOI: 10.1016/j.cell.2024.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/30/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
The sense of taste generally shows diminishing sensitivity to prolonged sweet stimuli, referred to as sweet adaptation. Yet, its mechanistic landscape remains incomplete. Here, we report that glia-like type I cells provide a distinct mode of sweet adaptation via intercellular crosstalk with chemosensory type II cells. Using the microfluidic-based intravital tongue imaging system, we found that sweet adaptation is facilitated along the synaptic transduction from type II cells to gustatory afferent nerves, while type I cells display temporally delayed and prolonged activities. We identified that type I cells receive purinergic input from adjacent type II cells via P2RY2 and provide inhibitory feedback to the synaptic transduction of sweet taste. Aligning with our cellular-level findings, purinergic activation of type I cells attenuated sweet licking behavior, and P2RY2 knockout mice showed decelerated adaptation behavior. Our study highlights a veiled intercellular mode of sweet adaptation, potentially contributing to the efficient encoding of prolonged sweetness.
Collapse
Affiliation(s)
- Gha Yeon Park
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Geehyun Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Jongmin Yoon
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Jisoo Han
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Pyonggang Choi
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Minjae Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Sungho Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Chaeri Park
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Ness N, Díaz-Clavero S, Hoekstra MMB, Brancaccio M. Rhythmic astrocytic GABA production synchronizes neuronal circadian timekeeping in the suprachiasmatic nucleus. EMBO J 2025; 44:356-381. [PMID: 39623138 PMCID: PMC11731042 DOI: 10.1038/s44318-024-00324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 01/15/2025] Open
Abstract
Astrocytes of the suprachiasmatic nucleus (SCN) can regulate sleep-wake cycles in mammals. However, the nature of the information provided by astrocytes to control circadian patterns of behavior is unclear. Neuronal circadian activity across the SCN is organized into spatiotemporal waves that govern seasonal adaptations and timely engagement of behavioral outputs. Here, we show that astrocytes across the mouse SCN exhibit instead a highly uniform, pulse-like nighttime activity. We find that rhythmic astrocytic GABA production via polyamine degradation provides an inhibitory nighttime tone required for SCN circuit synchrony, thereby acting as an internal astrocyte zeitgeber (or "astrozeit"). We further identify synaptic GABA and astrocytic GABA as two key players underpinning coherent spatiotemporal circadian patterns of SCN neuronal activity. In describing a new mechanism by which astrocytes contribute to circadian timekeeping, our work provides a general blueprint for understanding how astrocytes encode temporal information underlying complex behaviors in mammals.
Collapse
Affiliation(s)
- Natalie Ness
- Department of Brain Science, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Sandra Díaz-Clavero
- Department of Brain Science, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Marieke M B Hoekstra
- Department of Brain Science, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Marco Brancaccio
- Department of Brain Science, Imperial College London, London, UK.
- UK Dementia Research Institute at Imperial College London, London, UK.
| |
Collapse
|
3
|
Neupane C, Sharma R, Gao FF, Pham TL, Kim YS, Yoon BE, Jo EK, Sohn KC, Hur GM, Cha GH, Min SS, Kim CS, Park JB. Role of the STING→IRF3 Pathway in Ambient GABA Homeostasis and Cognitive Function. J Neurosci 2024; 44:e1810232024. [PMID: 39227159 PMCID: PMC11466066 DOI: 10.1523/jneurosci.1810-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Targeting altered expression and/or activity of GABA (γ-aminobutyric acid) transporters (GATs) provide therapeutic benefit for age-related impairments, including cognitive dysfunction. However, the mechanisms underlying the transcriptional regulation of GATs are unknown. In the present study, we demonstrated that the stimulator of interferon genes (STING) upregulates GAT1 and GAT3 expression in the brain, which resulted in cognitive dysfunction. Genetic and pharmacological intervention of STING suppressed the expression of both GAT1 and GAT3, increased the ambient GABA concentration, and therefore, enhanced tonic GABAA inhibition of principal hippocampal neurons, resulting in spatial learning and working memory deficits in mice in a type I interferon-independent manner. Stimulation of the STING→GAT pathway efficiently restored cognitive dysfunction in STING-deficient mice models. Our study uncovered for the first time that the STING signaling pathway regulates GAT expression in a cell autonomous manner and therefore could be a novel target for GABAergic cognitive deficits.
Collapse
Affiliation(s)
- Chiranjivi Neupane
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08823, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Ramesh Sharma
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08823, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Fei Fei Gao
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Thuy Linh Pham
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Eun-Kyeong Jo
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Departments of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Kyung-Cheol Sohn
- Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Gang Min Hur
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Guang-Ho Cha
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infectious Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Sun Seek Min
- Department of Physiology, Eulji University School of Medicine, Daejeon 35233, Korea
| | - Cuk-Seong Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jin Bong Park
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08823, Korea
| |
Collapse
|
4
|
Leitch B. Molecular Mechanisms Underlying the Generation of Absence Seizures: Identification of Potential Targets for Therapeutic Intervention. Int J Mol Sci 2024; 25:9821. [PMID: 39337309 PMCID: PMC11432152 DOI: 10.3390/ijms25189821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the molecular mechanisms underlying the generation of absence seizures is crucial for developing effective, patient-specific treatments for childhood absence epilepsy (CAE). Currently, one-third of patients remain refractive to the antiseizure medications (ASMs), previously called antiepileptic drugs (AEDs), available to treat CAE. Additionally, these ASMs often produce serious side effects and can even exacerbate symptoms in some patients. Determining the precise cellular and molecular mechanisms directly responsible for causing this type of epilepsy has proven challenging as they appear to be complex and multifactorial in patients with different genetic backgrounds. Aberrant neuronal activity in CAE may be caused by several mechanisms that are not fully understood. Thus, dissecting the causal factors that could be targeted in the development of precision medicines without side effects remains a high priority and the ultimate goal in this field of epilepsy research. The aim of this review is to highlight our current understanding of potential causative mechanisms for absence seizure generation, based on the latest research using cutting-edge technologies. This information will be important for identifying potential targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
5
|
Hammar I, Jankowska E. Modulation of sensory input to the spinal cord: Contribution of focal epidural polarization and of GABA released by interneurons and glial cells. Eur J Neurosci 2024; 60:5019-5039. [PMID: 39099396 DOI: 10.1111/ejn.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 07/13/2024] [Indexed: 08/06/2024]
Abstract
Modulation of input from primary afferent fibres has long been examined at the level of the first relays of these fibres. However, recent studies reveal that input to the spinal cord may also be modulated at the level of the very entry of afferent fibres to the spinal grey matter before action potentials in intraspinal collaterals of afferent fibres reach their target neurons. Such modulation greatly depends on the actions of GABA via extrasynaptic membrane receptors. In the reported study we hypothesized that the increase in excitability of afferent fibres following epidural polarization close to the site where collaterals of afferent fibres leave the dorsal columns is due to the release of GABA from two sources: not only GABAergic interneurons but also glial cells. We present evidence, primo, that GABA released from both these sources contributes to a long-lasting increase in the excitability and a shortening of the refractory period of epidurally stimulated afferent fibres and, secondo, that effects of epidural polarization on the release of GABA are more critical for these changes than direct effects of DC on the stimulated fibres. The experiments were carried out in deeply anaesthetized rats in which changes in compound action potentials evoked in hindlimb peripheral nerves by dorsal column stimulation were used as a measure of the excitability of afferent fibres. The study throws new light on the modulation of input to spinal networks but also on mechanisms underlying the restoration of spinal functions.
Collapse
Affiliation(s)
- Ingela Hammar
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Harding EK, Zhang Z, Canet-Pons J, Stokes-Heck S, Trang T, Zamponi GW. Expression of GAD2 in excitatory neurons projecting from the ventrolateral periaqueductal gray to the locus coeruleus. iScience 2024; 27:109972. [PMID: 38868198 PMCID: PMC11166693 DOI: 10.1016/j.isci.2024.109972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
The ventrolateral periaqueductal gray (vlPAG) functionally projects to diverse brain regions, including the locus coeruleus (LC). Excitatory projections from the vlPAG to the LC are well described, while few studies have indicated the possibility of inhibitory projections. Here, we quantified the relative proportion of excitatory and inhibitory vlPAG-LC projections in male and female mice, and found an unexpected overlapping population of neurons expressing both GAD2 and VGLUT2. Combined in vitro optogenetic stimulation and electrophysiology of LC neurons revealed that vlPAG neurons expressing channelrhodopsin-2 under the GAD2 promoter release both GABA and glutamate. Subsequent experiments identified a population of GAD2+/VGLUT2+ vlPAG neurons exclusively releasing glutamate onto LC neurons. Altogether, we demonstrate that ∼25% of vlPAG-LC projections are inhibitory, and that there is a significant GAD2 expressing population of glutamatergic projections. Our findings have broad implications for the utility of GAD2-Cre lines within midbrain and brainstem regions, and especially within the PAG.
Collapse
Affiliation(s)
- Erika K. Harding
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Zizhen Zhang
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Julia Canet-Pons
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sierra Stokes-Heck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tuan Trang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Gerald W. Zamponi
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
7
|
Djama D, Zirpel F, Ye Z, Moore G, Chue C, Edge C, Jager P, Delogu A, Brickley SG. The type of inhibition provided by thalamic interneurons alters the input selectivity of thalamocortical neurons. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 6:100130. [PMID: 38694514 PMCID: PMC11061260 DOI: 10.1016/j.crneur.2024.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
A fundamental problem in neuroscience is how neurons select for their many inputs. A common assumption is that a neuron's selectivity is largely explained by differences in excitatory synaptic input weightings. Here we describe another solution to this important problem. We show that within the first order visual thalamus, the type of inhibition provided by thalamic interneurons has the potential to alter the input selectivity of thalamocortical neurons. To do this, we developed conductance injection protocols to compare how different types of synchronous and asynchronous GABA release influence thalamocortical excitability in response to realistic patterns of retinal ganglion cell input. We show that the asynchronous GABA release associated with tonic inhibition is particularly efficient at maintaining information content, ensuring that thalamocortical neurons can distinguish between their inputs. We propose a model where alterations in GABA release properties results in rapid changes in input selectivity without requiring structural changes in the network.
Collapse
Affiliation(s)
- Deyl Djama
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Florian Zirpel
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Zhiwen Ye
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Gerald Moore
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Charmaine Chue
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Edge
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Polona Jager
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | | |
Collapse
|
8
|
Zhu Q, Wan L, Huang H, Liao Z. IL-1β, the first piece to the puzzle of sepsis-related cognitive impairment? Front Neurosci 2024; 18:1370406. [PMID: 38665289 PMCID: PMC11043581 DOI: 10.3389/fnins.2024.1370406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis is a leading cause of death resulting from an uncontrolled inflammatory response to an infectious agent. Multiple organ injuries, including brain injuries, are common in sepsis. The underlying mechanism of sepsis-associated encephalopathy (SAE), which is associated with neuroinflammation, is not yet fully understood. Recent studies suggest that the release of interleukin-1β (IL-1β) following activation of microglial cells plays a crucial role in the development of long-lasting neuroinflammation after the initial sepsis episode. This review provides a comprehensive analysis of the recent literature on the molecular signaling pathways involved in microglial cell activation and interleukin-1β release. It also explores the physiological and pathophysiological role of IL-1β in cognitive function, with a particular focus on its contribution to long-lasting neuroinflammation after sepsis. The findings from this review may assist healthcare providers in developing novel interventions against SAE.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Wan
- Department of Medical Genetics/Prenatal Diagnostic Center Nursing and Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhimin Liao
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Shimoda Y, Leite M, Graham RT, Marvin JS, Hasseman J, Kolb I, Looger LL, Magloire V, Kullmann DM. Extracellular glutamate and GABA transients at the transition from interictal spiking to seizures. Brain 2024; 147:1011-1024. [PMID: 37787057 PMCID: PMC10907087 DOI: 10.1093/brain/awad336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/29/2023] [Accepted: 09/16/2023] [Indexed: 10/04/2023] Open
Abstract
Focal epilepsy is associated with intermittent brief population discharges (interictal spikes), which resemble sentinel spikes that often occur at the onset of seizures. Why interictal spikes self-terminate whilst seizures persist and propagate is incompletely understood. We used fluorescent glutamate and GABA sensors in an awake rodent model of neocortical seizures to resolve the spatiotemporal evolution of both neurotransmitters in the extracellular space. Interictal spikes were accompanied by brief glutamate transients which were maximal at the initiation site and rapidly propagated centrifugally. GABA transients lasted longer than glutamate transients and were maximal ∼1.5 mm from the focus where they propagated centripetally. Prior to seizure initiation GABA transients were attenuated, whilst glutamate transients increased, consistent with a progressive failure of local inhibitory restraint. As seizures increased in frequency, there was a gradual increase in the spatial extent of spike-associated glutamate transients associated with interictal spikes. Neurotransmitter imaging thus reveals a progressive collapse of an annulus of feed-forward GABA release, allowing seizures to escape from local inhibitory restraint.
Collapse
Affiliation(s)
- Yoshiteru Shimoda
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Marco Leite
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Robert T Graham
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jeremy Hasseman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ilya Kolb
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Vincent Magloire
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Dimitri M Kullmann
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
10
|
Suryavanshi P, Sawant-Pokam P, Clair S, Brennan KC. Increased presynaptic excitability in a migraine with aura mutation. Brain 2024; 147:680-697. [PMID: 37831655 PMCID: PMC10834252 DOI: 10.1093/brain/awad326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 10/15/2023] Open
Abstract
Migraine is a common and disabling neurological disorder. The headache and sensory amplifications of migraine are attributed to hyperexcitable sensory circuits, but a detailed understanding remains elusive. A mutation in casein kinase 1 delta (CK1δ) was identified in non-hemiplegic familial migraine with aura and advanced sleep phase syndrome. Mice carrying the CK1δT44A mutation were more susceptible to spreading depolarization (the phenomenon that underlies migraine aura), but mechanisms underlying this migraine-relevant phenotype were not known. We used a combination of whole-cell electrophysiology and multiphoton imaging, in vivo and in brain slices, to compare CK1δT44A mice (adult males) to their wild-type littermates. We found that despite comparable synaptic activity at rest, CK1δT44A neurons were more excitable upon repetitive stimulation than wild-type, with a reduction in presynaptic adaptation at excitatory but not inhibitory synapses. The mechanism of this adaptation deficit was a calcium-dependent enhancement of the size of the readily releasable pool of synaptic vesicles, and a resultant increase in glutamate release, in CK1δT44A compared to wild-type synapses. Consistent with this mechanism, CK1δT44A neurons showed an increase in the cumulative amplitude of excitatory post-synaptic currents, and a higher excitation-to-inhibition ratio during sustained activity compared to wild-type. At a local circuit level, action potential bursts elicited in CK1δT44A neurons triggered an increase in recurrent excitation compared to wild-type, and at a network level, CK1δT44A mice showed a longer duration of 'up state' activity, which is dependent on recurrent excitation. Finally, we demonstrated that the spreading depolarization susceptibility of CK1δT44A mice could be returned to wild-type levels with the same intervention (reduced extracellular calcium) that normalized presynaptic adaptation. Taken together, these findings show a stimulus-dependent presynaptic gain of function at glutamatergic synapses in a genetic model of migraine, that accounts for the increased spreading depolarization susceptibility and may also explain the sensory amplifications that are associated with the disease.
Collapse
Affiliation(s)
- Pratyush Suryavanshi
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Interdepartmental Neuroscience Program, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Punam Sawant-Pokam
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Sarah Clair
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - K C Brennan
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
11
|
Ferrucci L, Cantando I, Cordella F, Di Angelantonio S, Ragozzino D, Bezzi P. Microglia at the Tripartite Synapse during Postnatal Development: Implications for Autism Spectrum Disorders and Schizophrenia. Cells 2023; 12:2827. [PMID: 38132147 PMCID: PMC10742295 DOI: 10.3390/cells12242827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Synapses are the fundamental structures of neural circuits that control brain functions and behavioral and cognitive processes. Synapses undergo formation, maturation, and elimination mainly during postnatal development via a complex interplay with neighboring astrocytes and microglia that, by shaping neural connectivity, may have a crucial role in the strengthening and weakening of synaptic functions, that is, the functional plasticity of synapses. Indeed, an increasing number of studies have unveiled the roles of microglia and astrocytes in synapse formation, maturation, and elimination as well as in regulating synaptic function. Over the past 15 years, the mechanisms underlying the microglia- and astrocytes-dependent regulation of synaptic plasticity have been thoroughly studied, and researchers have reported that the disruption of these glial cells in early postnatal development may underlie the cause of synaptic dysfunction that leads to neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Laura Ferrucci
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
| | - Iva Cantando
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland;
| | - Federica Cordella
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- Center for Life Nano- & Neuro-Science, IIT, 00161 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- Center for Life Nano- & Neuro-Science, IIT, 00161 Rome, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Paola Bezzi
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland;
| |
Collapse
|
12
|
Koh W, Kwak H, Cheong E, Lee CJ. GABA tone regulation and its cognitive functions in the brain. Nat Rev Neurosci 2023; 24:523-539. [PMID: 37495761 DOI: 10.1038/s41583-023-00724-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter released at GABAergic synapses, mediating fast-acting phasic inhibition. Emerging lines of evidence unequivocally indicate that a small amount of extracellular GABA - GABA tone - exists in the brain and induces a tonic GABA current that controls neuronal activity on a slow timescale relative to that of phasic inhibition. Surprisingly, studies indicate that glial cells that synthesize GABA, such as astrocytes, release GABA through non-vesicular mechanisms, such as channel-mediated release, and thereby act as the source of GABA tone in the brain. In this Review, we first provide an overview of major advances in our understanding of the cell-specific molecular and cellular mechanisms of GABA synthesis, release and clearance that regulate GABA tone in various brain regions. We next examine the diverse ways in which the tonic GABA current regulates synaptic transmission and synaptic plasticity through extrasynaptic GABAA-receptor-mediated mechanisms. Last, we discuss the physiological mechanisms through which tonic inhibition modulates cognitive function on a slow timescale. In this Review, we emphasize that the cognitive functions of tonic GABA current extend beyond mere inhibition, laying a foundation for future research on the physiological and pathophysiological roles of GABA tone regulation in normal and abnormal psychiatric conditions.
Collapse
Affiliation(s)
- Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Hankyul Kwak
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea.
| |
Collapse
|
13
|
Schallmo MP, Weldon KB, Kamath RS, Moser HR, Montoya SA, Killebrew KW, Demro C, Grant AN, Marjańska M, Sponheim SR, Olman CA. The psychosis human connectome project: Design and rationale for studies of visual neurophysiology. Neuroimage 2023; 272:120060. [PMID: 36997137 PMCID: PMC10153004 DOI: 10.1016/j.neuroimage.2023.120060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Visual perception is abnormal in psychotic disorders such as schizophrenia. In addition to hallucinations, laboratory tests show differences in fundamental visual processes including contrast sensitivity, center-surround interactions, and perceptual organization. A number of hypotheses have been proposed to explain visual dysfunction in psychotic disorders, including an imbalance between excitation and inhibition. However, the precise neural basis of abnormal visual perception in people with psychotic psychopathology (PwPP) remains unknown. Here, we describe the behavioral and 7 tesla MRI methods we used to interrogate visual neurophysiology in PwPP as part of the Psychosis Human Connectome Project (HCP). In addition to PwPP (n = 66) and healthy controls (n = 43), we also recruited first-degree biological relatives (n = 44) in order to examine the role of genetic liability for psychosis in visual perception. Our visual tasks were designed to assess fundamental visual processes in PwPP, whereas MR spectroscopy enabled us to examine neurochemistry, including excitatory and inhibitory markers. We show that it is feasible to collect high-quality data across multiple psychophysical, functional MRI, and MR spectroscopy experiments with a sizable number of participants at a single research site. These data, in addition to those from our previously described 3 tesla experiments, will be made publicly available in order to facilitate further investigations by other research groups. By combining visual neuroscience techniques and HCP brain imaging methods, our experiments offer new opportunities to investigate the neural basis of abnormal visual perception in PwPP.
Collapse
Affiliation(s)
- Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Kimberly B Weldon
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Rohit S Kamath
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Hannah R Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Samantha A Montoya
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kyle W Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Caroline Demro
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Andrea N Grant
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Małgorzata Marjańska
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Veterans Affairs Medical Center, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Magloire V, Savtchenko LP, Jensen TP, Sylantyev S, Kopach O, Cole N, Tyurikova O, Kullmann DM, Walker MC, Marvin JS, Looger LL, Hasseman JP, Kolb I, Pavlov I, Rusakov DA. Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network. Curr Biol 2023; 33:1249-1264.e7. [PMID: 36921605 PMCID: PMC10615848 DOI: 10.1016/j.cub.2023.02.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Mechanisms that entrain and pace rhythmic epileptiform discharges remain debated. Traditionally, the quest to understand them has focused on interneuronal networks driven by synaptic GABAergic connections. However, synchronized interneuronal discharges could also trigger the transient elevations of extracellular GABA across the tissue volume, thus raising tonic conductance (Gtonic) of synaptic and extrasynaptic GABA receptors in multiple cells. Here, we monitor extracellular GABA in hippocampal slices using patch-clamp GABA "sniffer" and a novel optical GABA sensor, showing that periodic epileptiform discharges are preceded by transient, region-wide waves of extracellular GABA. Neural network simulations that incorporate volume-transmitted GABA signals point to a cycle of GABA-driven network inhibition and disinhibition underpinning this relationship. We test and validate this hypothesis using simultaneous patch-clamp recordings from multiple neurons and selective optogenetic stimulation of fast-spiking interneurons. Critically, reducing GABA uptake in order to decelerate extracellular GABA fluctuations-without affecting synaptic GABAergic transmission or resting GABA levels-slows down rhythmic activity. Our findings thus unveil a key role of extrasynaptic, volume-transmitted GABA in pacing regenerative rhythmic activity in brain networks.
Collapse
Affiliation(s)
- Vincent Magloire
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | - Leonid P Savtchenko
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | - Thomas P Jensen
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Sergyi Sylantyev
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK; Rowett Institute, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK
| | - Olga Kopach
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Nicholas Cole
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Olga Tyurikova
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dimitri M Kullmann
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Matthew C Walker
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jeremy P Hasseman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ilya Kolb
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ivan Pavlov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
15
|
Kilb W, Kirischuk S. GABA Release from Astrocytes in Health and Disease. Int J Mol Sci 2022; 23:ijms232415859. [PMID: 36555501 PMCID: PMC9784789 DOI: 10.3390/ijms232415859] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Astrocytes are the most abundant glial cells in the central nervous system (CNS) mediating a variety of homeostatic functions, such as spatial K+ buffering or neurotransmitter reuptake. In addition, astrocytes are capable of releasing several biologically active substances, including glutamate and GABA. Astrocyte-mediated GABA release has been a matter of debate because the expression level of the main GABA synthesizing enzyme glutamate decarboxylase is quite low in astrocytes, suggesting that low intracellular GABA concentration ([GABA]i) might be insufficient to support a non-vesicular GABA release. However, recent studies demonstrated that, at least in some regions of the CNS, [GABA]i in astrocytes might reach several millimoles both under physiological and especially pathophysiological conditions, thereby enabling GABA release from astrocytes via GABA-permeable anion channels and/or via GABA transporters operating in reverse mode. In this review, we summarize experimental data supporting both forms of GABA release from astrocytes in health and disease, paying special attention to possible feedback mechanisms that might govern the fine-tuning of astrocytic GABA release and, in turn, the tonic GABAA receptor-mediated inhibition in the CNS.
Collapse
|
16
|
Tropea MR, Gulisano W, Vacanti V, Arancio O, Puzzo D, Palmeri A. Nitric oxide/cGMP/CREB pathway and amyloid-beta crosstalk: From physiology to Alzheimer's disease. Free Radic Biol Med 2022; 193:657-668. [PMID: 36400326 DOI: 10.1016/j.freeradbiomed.2022.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/30/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
The nitric oxide (NO)/cGMP pathway has been extensively studied for its pivotal role in synaptic plasticity and memory processes, resulting in an increase of cAMP response element-binding (CREB) phosphorylation, and consequent synthesis of plasticity-related proteins. The NO/cGMP/CREB signaling is downregulated during aging and neurodegenerative disorders and is affected by Amyloid-β peptide (Aβ) and tau protein, whose increase and deposition is considered the key pathogenic event of Alzheimer's disease (AD). On the other hand, in physiological conditions, the crosstalk between the NO/cGMP/PKG/CREB pathway and Aβ ensures long-term potentiation and memory formation. This review summarizes the current knowledge on the interaction between the NO/cGMP/PKG/CREB pathway and Aβ in the healthy and diseased brain, offering a new perspective to shed light on AD pathophysiology. We will focus on the synaptic mechanisms underlying Aβ physiological interplay with cGMP pathway and how this balance is corrupted in AD, as high levels of Aβ interfere with NO production and cGMP molecular signaling leading to cognitive impairment. Finally, we will discuss results from preclinical and clinical studies proposing the increase of cGMP signaling as a therapeutic strategy in the treatment of AD.
Collapse
Affiliation(s)
- Maria Rosaria Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Valeria Vacanti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, USA; Department of Pathology & Cell Biology and Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy; Oasi Research Institute-IRCCS, Troina (EN), 94018, Italy.
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| |
Collapse
|
17
|
Melani R, Tritsch NX. Inhibitory co-transmission from midbrain dopamine neurons relies on presynaptic GABA uptake. Cell Rep 2022; 39:110716. [PMID: 35443174 PMCID: PMC9097974 DOI: 10.1016/j.celrep.2022.110716] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Dopamine (DA)-releasing neurons in the substantia nigra pars compacta (SNcDA) inhibit target cells in the striatum through postsynaptic activation of γ-aminobutyric acid (GABA) receptors. However, the molecular mechanisms responsible for GABAergic signaling remain unclear, as SNcDA neurons lack enzymes typically required to produce GABA or package it into synaptic vesicles. Here, we show that aldehyde dehydrogenase 1a1 (Aldh1a1), an enzyme proposed to function as a GABA synthetic enzyme in SNcDA neurons, does not produce GABA for synaptic transmission. Instead, we demonstrate that SNcDA axons obtain GABA exclusively through presynaptic uptake using the membrane GABA transporter Gat1 (encoded by Slc6a1). GABA is then packaged for vesicular release using the vesicular monoamine transporter Vmat2. Our data therefore show that presynaptic transmitter recycling can substitute for de novo GABA synthesis and that Vmat2 contributes to vesicular GABA transport, expanding the range of molecular mechanisms available to neurons to support inhibitory synaptic communication. Melani and Tritsch demonstrate that inhibitory co-transmission from midbrain dopaminergic neurons does not depend on cell-autonomous GABA synthesis but instead on presynaptic import from the extracellular space through the membrane transporter Gat1 and that GABA loading into synaptic vesicles relies on the vesicular monoamine transporter Vmat2.
Collapse
Affiliation(s)
- Riccardo Melani
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY 10016, USA
| | - Nicolas X Tritsch
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
18
|
Fischer FP, Kasture AS, Hummel T, Sucic S. Molecular and Clinical Repercussions of GABA Transporter 1 Variants Gone Amiss: Links to Epilepsy and Developmental Spectrum Disorders. Front Mol Biosci 2022; 9:834498. [PMID: 35295842 PMCID: PMC7612498 DOI: 10.3389/fmolb.2022.834498] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
The human γ-aminobutyric acid (GABA) transporter 1 (hGAT-1) is the first member of the solute carrier 6 (SLC6) protein superfamily. GAT-1 (SLC6A1) is one of the main GABA transporters in the central nervous system. Its principal physiological role is retrieving GABA from the synapse into neurons and astrocytes, thus swiftly terminating neurotransmission. GABA is a key inhibitory neurotransmitter and shifts in GABAergic signaling can lead to pathological conditions, from anxiety and epileptic seizures to schizophrenia. Point mutations in the SLC6A1 gene frequently give rise to epilepsy, intellectual disability or autism spectrum disorders in the afflicted individuals. The mechanistic routes underlying these are still fairly unclear. Some loss-of-function variants impair the folding and intracellular trafficking of the protein (thus retaining the transporter in the endoplasmic reticulum compartment), whereas others, despite managing to reach their bona fide site of action at the cell surface, nonetheless abolish GABA transport activity (plausibly owing to structural/conformational defects). Whatever the molecular culprit(s), the physiological aftermath transpires into the absence of functional transporters, which in turn perturbs GABAergic actions. Dozens of mutations in the kin SLC6 family members are known to exhort protein misfolding. Such events typically elicit severe ailments in people, e.g., infantile parkinsonism-dystonia or X-linked intellectual disability, in the case of dopamine and creatine transporters, respectively. Flaws in protein folding can be rectified by small molecules known as pharmacological and/or chemical chaperones. The search for such apt remedies calls for a systematic investigation and categorization of the numerous disease-linked variants, by biochemical and pharmacological means in vitro (in cell lines and primary neuronal cultures) and in vivo (in animal models). We here give special emphasis to the utilization of the fruit fly Drosophila melanogaster as a versatile model in GAT-1-related studies. Jointly, these approaches can portray indispensable insights into the molecular factors underlying epilepsy, and ultimately pave the way for contriving efficacious therapeutic options for patients harboring pathogenic mutations in hGAT-1.
Collapse
Affiliation(s)
- Florian P. Fischer
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Epileptology and Neurology, University of Aachen, Aachen, Germany
| | - Ameya S. Kasture
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Logiacco F, Xia P, Georgiev SV, Franconi C, Chang YJ, Ugursu B, Sporbert A, Kühn R, Kettenmann H, Semtner M. Microglia sense neuronal activity via GABA in the early postnatal hippocampus. Cell Rep 2021; 37:110128. [PMID: 34965412 DOI: 10.1016/j.celrep.2021.110128] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 01/05/2023] Open
Abstract
Microglia, the resident macrophages in the central nervous system, express receptors for classical neurotransmitters, such as γ-aminobutyric acid (GABA) and glutamate, suggesting that they sense synaptic activity. To detect microglial Ca2+ responses to neuronal activity, we generate transgenic mouse lines expressing the fluorescent Ca2+ indicator GCaMP6m, specifically in microglia and demonstrate that electrical stimulation of the Schaffer collateral pathway results in microglial Ca2+ responses in early postnatal but not adult hippocampus. Preceding the microglial responses, we also observe similar Ca2+ responses in astrocytes, and both are sensitive to tetrodotoxin. Blocking astrocytic glutamate uptake or GABA transport abolishes stimulation-induced microglial responses as well as antagonizing the microglial GABAB receptor. Our data, therefore, suggest that the neuronal activity-induced glutamate uptake and the release of GABA by astrocytes trigger the activation of GABAB receptors in microglia. This neuron, astrocyte, and microglia communication pathway might modulate microglial activity in developing neuronal networks.
Collapse
Affiliation(s)
- Francesca Logiacco
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 12169 Berlin, Germany
| | - Pengfei Xia
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Svilen Veselinov Georgiev
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Celeste Franconi
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Yi-Jen Chang
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Bilge Ugursu
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; Experimental Ophthalmology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Anje Sporbert
- Advanced Light Microscopy, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Ralf Kühn
- Transgenic Core Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Helmut Kettenmann
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Marcus Semtner
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
| |
Collapse
|
20
|
Sood A, Preeti K, Fernandes V, Khatri DK, Singh SB. Glia: A major player in glutamate-GABA dysregulation-mediated neurodegeneration. J Neurosci Res 2021; 99:3148-3189. [PMID: 34748682 DOI: 10.1002/jnr.24977] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
The imbalance between glutamate and γ-aminobutyric acid (GABA) results in the loss of synaptic strength leading to neurodegeneration. The dogma on the field considered neurons as the main players in this excitation-inhibition (E/I) balance. However, current strategies focusing only on neurons have failed to completely understand this condition, bringing up the importance of glia as an alternative modulator for neuroinflammation as glia alter the activity of neurons and is a source of both neurotrophic and neurotoxic factors. This review's primary goal is to illustrate the role of glia over E/I balance in the central nervous system and its interaction with neurons. Rather than focusing only on the neuronal targets, we take a deeper look at glial receptors and proteins that could also be explored as drug targets, as they are early responders to neurotoxic insults. This review summarizes the neuron-glia interaction concerning GABA and glutamate, possible targets, and its involvement in the E/I imbalance in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis.
Collapse
Affiliation(s)
- Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
21
|
Milla BM. Loss of MeCP2 increases GABA uptake by astrocytes to suppress tonic inhibition of CA1 pyramidal neurons. J Neurophysiol 2021; 126:1310-1313. [PMID: 34495776 DOI: 10.1152/jn.00222.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder characterized a spectrum of phenotypes affecting neuronal and glial populations. Recent work by Dong et al. (Dong Q, Kim J, Nguyen L, Bu Q, Chang Q. J Neurosci 40: 6250-6261, 2020) suggests that augmented GABA uptake by astrocytes diminishes tonic inhibition in the hippocampus and contributes to increased seizure propensity in RTT. Here, I will review evidence supporting this possibility and critically evaluate how increased expression of a GABA transporter might contribute to this mechanism.
Collapse
Affiliation(s)
- Brenda M Milla
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
22
|
Bai X, Kirchhoff F, Scheller A. Oligodendroglial GABAergic Signaling: More Than Inhibition! Neurosci Bull 2021; 37:1039-1050. [PMID: 33928492 PMCID: PMC8275815 DOI: 10.1007/s12264-021-00693-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022] Open
Abstract
GABA is the main inhibitory neurotransmitter in the CNS acting at two distinct types of receptor: ligand-gated ionotropic GABAA receptors and G protein-coupled metabotropic GABAB receptors, thus mediating fast and slow inhibition of excitability at central synapses. GABAergic signal transmission has been intensively studied in neurons in contrast to oligodendrocytes and their precursors (OPCs), although the latter express both types of GABA receptor. Recent studies focusing on interneuron myelination and interneuron-OPC synapses have shed light on the importance of GABA signaling in the oligodendrocyte lineage. In this review, we start with a short summary on GABA itself and neuronal GABAergic signaling. Then, we elaborate on the physiological role of GABA receptors within the oligodendrocyte lineage and conclude with a description of these receptors as putative targets in treatments of CNS diseases.
Collapse
Affiliation(s)
- Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| |
Collapse
|
23
|
Ryan RM, Ingram SL, Scimemi A. Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression. Front Cell Neurosci 2021; 15:670346. [PMID: 33927596 PMCID: PMC8076567 DOI: 10.3389/fncel.2021.670346] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 01/31/2023] Open
Abstract
Neurotransmitter transporters limit spillover between synapses and maintain the extracellular neurotransmitter concentration at low yet physiologically meaningful levels. They also exert a key role in providing precursors for neurotransmitter biosynthesis. In many cases, neurons and astrocytes contain a large intracellular pool of transporters that can be redistributed and stabilized in the plasma membrane following activation of different signaling pathways. This means that the uptake capacity of the brain neuropil for different neurotransmitters can be dynamically regulated over the course of minutes, as an indirect consequence of changes in neuronal activity, blood flow, cell-to-cell interactions, etc. Here we discuss recent advances in the mechanisms that control the cell membrane trafficking and biophysical properties of transporters for the excitatory, inhibitory and modulatory neurotransmitters glutamate, GABA, and dopamine.
Collapse
Affiliation(s)
- Renae M. Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Susan L. Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
24
|
Sears SM, Hewett SJ. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med (Maywood) 2021; 246:1069-1083. [PMID: 33554649 DOI: 10.1177/1535370221989263] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An optimally functional brain requires both excitatory and inhibitory inputs that are regulated and balanced. A perturbation in the excitatory/inhibitory balance-as is the case in some neurological disorders/diseases (e.g. traumatic brain injury Alzheimer's disease, stroke, epilepsy and substance abuse) and disorders of development (e.g. schizophrenia, Rhett syndrome and autism spectrum disorder)-leads to dysfunctional signaling, which can result in impaired cognitive and motor function, if not frank neuronal injury. At the cellular level, transmission of glutamate and GABA, the principle excitatory and inhibitory neurotransmitters in the central nervous system control excitatory/inhibitory balance. Herein, we review the synthesis, release, and signaling of GABA and glutamate followed by a focused discussion on the importance of their transport systems to the maintenance of excitatory/inhibitory balance.
Collapse
Affiliation(s)
- Sheila Ms Sears
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
25
|
Ferland MC, Therrien-Blanchet JM, Proulx S, Klees-Themens G, Bacon BA, Dang Vu TT, Théoret H. Transcranial Magnetic Stimulation and H 1-Magnetic Resonance Spectroscopy Measures of Excitation and Inhibition Following Lorazepam Administration. Neuroscience 2020; 452:235-246. [PMID: 33246064 DOI: 10.1016/j.neuroscience.2020.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/16/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022]
Abstract
This study aimed at better understanding the neurochemistry underlying transcranial magnetic stimulation (TMS) and magnetic resonance spectroscopy (MRS) measurements as it pertains to GABAergic activity following administration of allosteric GABAA receptor agonist lorazepam. Seventeen healthy adults (8 females, 26.0 ± 5.4 years old) participated in a double-blind, crossover, placebo-controlled study, where participants underwent TMS and MRS two hours after drug intake (placebo or lorazepam; 2.5 mg). Neuronavigated TMS measures reflecting cortical inhibition and excitation were obtained in the left primary motor cortex. Sensorimotor cortex and occipital cortex MRS data were acquired using a 3T scanner with a MEGA-PRESS sequence, allowing water-referenced [GABA] and [Glx] (glutamate + glutamine) quantification. Lorazepam administration decreased occipital [GABA], decreased motor cortex excitability and increased GABAA-receptor mediated motor cortex inhibition (short intracortical inhibition (SICI)). Lorazepam intake did not modulate sensorimotor [GABA] and TMS measures of intra-cortical facilitation, long-interval cortical inhibition, cortical silent period, and resting motor threshold. Furthermore, higher sensorimotor [GABA] was associated with higher cortical inhibition (SICI) following lorazepam administration, suggesting that baseline sensorimotor [GABA] may be valuable in predicting pharmacological or neuromodulatory treatment response. Finally, the differential effects of lorazepam on MRS and TMS measures, with respect to GABA, support the idea that TMS measures of cortical inhibition reflect synaptic GABAergic phasic inhibitory activity while MRS reflects extrasynaptic GABA.
Collapse
Affiliation(s)
| | | | | | | | | | - Thien Thanh Dang Vu
- Center for Studies in Behavioral Neurobiology and Perform Center, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada; Research Center, Institut Universitaire de Gériatrie de Montréal, Montréal, Qc, Canada
| | - Hugo Théoret
- Département de psychologie, Université de Montréal, Québec, Canada; Centre de recherche du Centre Hospitalier Universitaire de l'Hôpital Sainte-Justine, Montréal, Québec, Canada.
| |
Collapse
|
26
|
Zafar S, Jabeen I. Molecular Dynamic Simulations to Probe Stereoselectivity of Tiagabine Binding with Human GAT1. Molecules 2020; 25:molecules25204745. [PMID: 33081136 PMCID: PMC7587590 DOI: 10.3390/molecules25204745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
The human gamma aminobutyric acid transporter subtype 1 (hGAT1) located in the nerve terminals is known to catalyze the neuronal function by the electrogenic reuptake of γ-aminobutyric acid (GABA) with the co-transport of Na+ and Cl− ions. In the past, there has been a major research drive focused on the dysfunction of hGAT1 in several neurological disorders. Thus, hGAT1 of the GABAergic system has been well established as an attractive target for such diseased conditions. Till date, there are various reports about stereo selectivity of –COOH group of tiagabine, a Food and Drug Administration (FDA)-approved hGAT1-selective antiepileptic drug. However, the effect of the stereochemistry of the protonated –NH group of tiagabine has never been scrutinized. Therefore, in this study, tiagabine has been used to explore the binding hypothesis of different enantiomers of tiagabine. In addition, the impact of axial and equatorial configuration of the–COOH group attached at the meta position of the piperidine ring of tiagabine enantiomers was also investigated. Further, the stability of the finally selected four hGAT1–tiagabine enantiomers namely entries 3, 4, 6, and 9 was evaluated through 100 ns molecular dynamics (MD) simulations for the selection of the best probable tiagabine enantiomer. The results indicate that the protonated –NH group in the R-conformation and the –COOH group of Tiagabine in the equatorial configuration of entry 4 provide maximum strength in terms of interaction within the hGAT1 binding pocket to prevent the change in hGAT1 conformational state, i.e., from open-to-out to open-to-in as compared to other selected tiagabine enantiomers 3, 6, and 9.
Collapse
|
27
|
Ramakrishna Y, Sadeghi SG. Activation of GABA B receptors results in excitatory modulation of calyx terminals in rat semicircular canal cristae. J Neurophysiol 2020; 124:962-972. [PMID: 32816581 PMCID: PMC7509296 DOI: 10.1152/jn.00243.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Previous studies have found GABA in vestibular end organs. However, existence of GABA receptors or possible GABAergic effects on vestibular nerve afferents has not been investigated. The current study was conducted to determine whether activation of GABAB receptors affects calyx afferent terminals in the central region of the cristae of semicircular canals. We used patch-clamp recording in postnatal day 13-18 (P13-P18) Sprague-Dawley rats of either sex. Application of GABAB receptor agonist baclofen inhibited voltage-sensitive potassium currents. This effect was blocked by selective GABAB receptor antagonist CGP 35348. Application of antagonists of small (SK)- and large-conductance potassium (BK) channels almost completely blocked the effects of baclofen. The remaining baclofen effect was blocked by cadmium chloride, suggesting that it could be due to inhibition of voltage-gated calcium channels. Furthermore, baclofen had no effect in the absence of calcium in the extracellular fluid. Inhibition of potassium currents by GABAB activation resulted in an excitatory effect on calyx terminal action potential firing. While in the control condition calyces could only fire a single action potential during step depolarizations, in the presence of baclofen they fired continuously during steps and a few even showed repetitive discharge. We also found a decrease in threshold for action potential generation and a decrease in first-spike latency during step depolarization. These results provide the first evidence for the presence of GABAB receptors on calyx terminals, showing that their activation results in an excitatory effect and that GABA inputs could be used to modulate calyx response properties.NEW & NOTEWORTHY Using in vitro whole cell patch-clamp recordings from calyx terminals in the vestibular end organs, we show that activation of GABAB receptors result in an excitatory effect, with decreased spike-frequency adaptation and shortened first-spike latencies. Our results suggest that these effects are mediated through inhibition of calcium-sensitive potassium channels.
Collapse
Affiliation(s)
- Yugandhar Ramakrishna
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Communication Disorders and Sciences, California State University, Northridge, Northridge, California
| | - Soroush G Sadeghi
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, Buffalo, New York
- Neuroscience Program, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
28
|
Hoshino O, Kameno R, Kubo J, Watanabe K. Spatiotemporal regulation of GABA concentration in extracellular space by gliotransmission crucial for extrasynaptic receptor-mediated improvement of sensory tuning performance in schizophrenia. J Comput Neurosci 2020; 48:317-332. [PMID: 32761409 DOI: 10.1007/s10827-020-00755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 06/14/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
In schizophrenic patients, sensory tuning performance tends to be deteriorated (i.e., flattened sensory tuning), for which impaired intracortical tonic inhibition arising from a reduction in GABA concentration in extracellular space might be responsible. The δ subunit-containing GABAA receptor, located on extrasynaptic sites, is known to be involved in mediating tonic inhibitory currents in cortical pyramidal cells and is considered to be one of the beneficial therapeutic targets for the treatment of schizophrenia. The transporter GAT-1 in glial (astrocytic) membrane controls concentration of GABA molecules by removing them from extracellular space. We speculated that the upregulation of extrasynaptic receptors might compensate for the impaired tonic inhibition and thus improve their sensory tuning performance, in which the astrocytic GABA transporter might play an important role. To test our hypothesis, we simulated a schizophrenic neural network model with a GABAergic gliotransmission (i.e., GABA transport by transporters embedded in astrocytic membranes) mechanism that modulates local ambient (extracellular) GABA levels in a neuronal activity-dependent manner. Upregulating extrasynaptic GABA receptors compensated the impaired tonic inhibition and sharpened the sensory tuning, provided that ambient GABA molecules around stimulus-sensitive pyramidal cells were actively removed during sensory stimulation. We suggest that the upregulation of extrasynaptic GABA receptors can improve the performance of sensory tuning in schizophrenic patients, for which spatiotemporal regulation of ambient GABA concentration by gliotransmission may be crucial.
Collapse
Affiliation(s)
- Osamu Hoshino
- Department of Intelligent Systems Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan. .,Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, 7-115 Yatsuyamada, Koriyama, Fukushima, 963-8563, Japan.
| | - Rikiya Kameno
- Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, 7-115 Yatsuyamada, Koriyama, Fukushima, 963-8563, Japan
| | - Jin Kubo
- Department of Rehabilitation Medicine, International University of Health and Welfare, Ichikawa Hospital, 6-1-14 Konodai, Ichikawa, Chiba, 272-0827, Japan
| | - Kazuo Watanabe
- Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, 7-115 Yatsuyamada, Koriyama, Fukushima, 963-8563, Japan
| |
Collapse
|
29
|
Sharma R, Nakamura M, Neupane C, Jeon BH, Shin H, Melnick SM, Glenn KJ, Jang IS, Park JB. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate. Eur J Pharmacol 2020; 879:173117. [DOI: 10.1016/j.ejphar.2020.173117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
|
30
|
Zhang W, Sun L, Yang X, Wang R, Wang H. Inhibition of NADPH oxidase within midbrain periaqueductal gray decreases pain sensitivity in Parkinson's disease via GABAergic signaling pathway. Physiol Res 2020; 69:711-720. [PMID: 32584140 DOI: 10.33549/physiolres.934478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hypersensitive pain response is observed in patients with Parkinson's disease (PD). However, the signal pathways leading to hyperalgesia still need to be clarified. Chronic oxidative stress is one of the hallmarks of PD pathophysiology. Since the midbrain periaqueductal gray (PAG) is an important component of the descending inhibitory pathway controlling on central pain transmission, we examined the role NADPH oxidase (NOX) of the PAG in regulating exaggerated pain evoked by PD. PD was induced by central microinjection of 6-hydroxydopamine to lesion the left medial forebrain bundle of rats. Then, Western Blot analysis and ELISA were used to determine NOXs and products of oxidative stress (i.e., 8-isoprostaglandin F2alpha and 8-hydroxy-2'-deoxyguanosine). Pain responses to mechanical and thermal stimulation were further examined in control rats and PD rats. In results, among the NOXs, protein expression of NOX4 in the PAG of PD rats was significantly upregulated, thereby the products of oxidative stress were increased. Blocking NOX4 pathway in the PAG attenuated mechanical and thermal pain responses in PD rats and this was accompanied with decreasing production of oxidative stress. In addition, inhibition of NOX4 largely restored the impaired GABA within the PAG. Stimulation of GABA receptors in the PAG of PD rats also blunted pain responses. In conclusions, NOX4 activation of oxidative stress in the PAG of PD rats is likely to impair the descending inhibitory GABAergic pathways in regulating pain transmission and thereby plays a role in the development of pain hypersensitivity in PD. Inhibition of NOX4 has beneficial effects on the exaggerated pain evoked by PD.
Collapse
Affiliation(s)
- W Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China.
| | | | | | | | | |
Collapse
|
31
|
Felix L, Stephan J, Rose CR. Astrocytes of the early postnatal brain. Eur J Neurosci 2020; 54:5649-5672. [PMID: 32406559 DOI: 10.1111/ejn.14780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
In the rodent forebrain, the majority of astrocytes are generated during the early postnatal phase. Following differentiation, astrocytes undergo maturation which accompanies the development of the neuronal network. Neonate astrocytes exhibit a distinct morphology and domain size which differs to their mature counterparts. Moreover, many of the plasma membrane proteins prototypical for fully developed astrocytes are only expressed at low levels at neonatal stages. These include connexins and Kir4.1, which define the low membrane resistance and highly negative membrane potential of mature astrocytes. Newborn astrocytes moreover express only low amounts of GLT-1, a glutamate transporter critical later in development. Furthermore, they show specific differences in the properties and spatio-temporal pattern of intracellular calcium signals, resulting from differences in their repertoire of receptors and signalling pathways. Therefore, roles fulfilled by mature astrocytes, including ion and transmitter homeostasis, are underdeveloped in the young brain. Similarly, astrocytic ion signalling in response to neuronal activity, a process central to neuron-glia interaction, differs between the neonate and mature brain. This review describes the unique functional properties of astrocytes in the first weeks after birth and compares them to later stages of development. We conclude that with an immature neuronal network and wider extracellular space, astrocytic support might not be as demanding and critical compared to the mature brain. The delayed differentiation and maturation of astrocytes in the first postnatal weeks might thus reflect a reduced need for active, energy-consuming regulation of the extracellular space and a less tight control of glial feedback onto synaptic transmission.
Collapse
Affiliation(s)
- Lisa Felix
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Jonathan Stephan
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
32
|
Extracellular Signal-Regulated Kinases Mediate an Autoregulation of GABA B-Receptor-Activated Whole-Cell Current in Locus Coeruleus Neurons. Sci Rep 2020; 10:7869. [PMID: 32398643 PMCID: PMC7217949 DOI: 10.1038/s41598-020-64292-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/09/2020] [Indexed: 11/09/2022] Open
Abstract
The norepinephrine-releasing neurons in the locus coeruleus (LC) are well known to regulate wakefulness/arousal. They display active firing during wakefulness and a decreased discharge rate during sleep. We have previously reported that LC neurons express large numbers of GABAB receptors (GABABRs) located at peri-/extrasynaptic sites and are subject to tonic inhibition due to the continuous activation of GABABRs by ambient GABA, which is significantly higher during sleep than during wakefulness. In this study, we further showed using western blot analysis that the activation of GABABRs with baclofen could increase the level of phosphorylated extracellular signal-regulated kinase 1 (ERK1) in LC tissue. Recordings from LC neurons in brain slices showed that the inhibition of ERK1/2 with U0126 and FR180204 accelerated the decay of whole-cell membrane current induced by prolonged baclofen application. In addition, the inhibition of ERK1/2 also increased spontaneous firing and reduced tonic inhibition of LC neurons after prolonged exposure to baclofen. These results suggest a new role of GABABRs in mediating ERK1-dependent autoregulation of the stability of GABABR-activated whole-cell current, in addition to its well-known effect on gated potassium channels, to cause a tonic current in LC neurons.
Collapse
|
33
|
GABAB receptor-mediated tonic inhibition of locus coeruleus neurons plays a role in deep anesthesia induced by isoflurane. Neuroreport 2020; 31:557-564. [PMID: 32282581 DOI: 10.1097/wnr.0000000000001450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Noradrenergic neurons in the locus coeruleus referred to as locus coeruleus neurons, provide the major supply of norepinephrine to the forebrain and play important roles in behavior through regulation of wakefulness and arousal. In a previous study using brain slice preparations, we reported that locus coeruleus neurons are subject to tonic inhibition mediated by γ-aminobutyric acid B receptors (GABABRs) and that the extent of tonic inhibition varies with ambient GABA levels. Since ambient GABA in the locus coeruleus was reported to fluctuate during the sleep-wakefulness cycle, here we tested whether GABABR-mediated tonic inhibition of locus coeruleus neurons could be a mechanism underlying changes in brain arousal. We first demonstrated that GABABR-mediated tonic inhibition of locus coeruleus neurons also exists in vivo by showing that local infusion of CGP35348, a GABABR antagonist, into the locus coeruleus increased the firing rate of locus coeruleus neurons in anesthetized rats. We then showed that this manipulation accelerated the behavioral emergence of rats from deep anesthesia induced by isoflurane. Together, these observations show that GABABR-mediated tonic inhibition of locus coeruleus neurons occurs in vivo and support the idea that this effect may be important in regulating the functional state of the brain.
Collapse
|
34
|
Łątka K, Jończyk J, Bajda M. γ-Aminobutyric acid transporters as relevant biological target: Their function, structure, inhibitors and role in the therapy of different diseases. Int J Biol Macromol 2020; 158:S0141-8130(20)32987-1. [PMID: 32360967 DOI: 10.1016/j.ijbiomac.2020.04.126] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022]
Abstract
γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the nervous system. It plays a crucial role in many physiological processes. Upon release from the presynaptic element, it is removed from the synaptic cleft by reuptake due to the action of GABA transporters (GATs). GATs belong to a large SLC6 protein family whose characteristic feature is sodium-dependent relocation of neurotransmitters through the cell membrane. GABA transporters are characterized in many contexts, but their spatial structure is not fully known. They are divided into four types, which differ in occurrence and role. Herein, the special attention was paid to these transporting proteins. This comprehensive review presents the current knowledge about GABA transporters. Their distribution in the body, physiological functions and possible utilization in the therapy of different diseases were fully discussed. The important structural features were described based on published data, including sequence analysis, mutagenesis studies, and comparison with known SLC6 transporters for leucine (LeuT), dopamine (DAT) and serotonin (SERT). Moreover, the most important inhibitors of GABA transporters of various basic scaffolds, diverse selectivity and potency were presented.
Collapse
Affiliation(s)
- Kamil Łątka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland
| | - Jakub Jończyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland
| | - Marek Bajda
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland.
| |
Collapse
|
35
|
Abstract
Neurons that synthesize and release 5-hydroxytryptamine (5-HT; serotonin) express a core set of genes that establish and maintain this neurotransmitter phenotype and distinguish these neurons from other brain cells. Beyond a shared 5-HTergic phenotype, these neurons display divergent cellular properties in relation to anatomy, morphology, hodology, electrophysiology and gene expression, including differential expression of molecules supporting co-transmission of additional neurotransmitters. This diversity suggests that functionally heterogeneous subtypes of 5-HT neurons exist, but linking subsets of these neurons to particular functions has been technically challenging. We discuss recent data from molecular genetic, genomic and functional methods that, when coupled with classical findings, yield a reframing of the 5-HT neuronal system as a conglomeration of diverse subsystems with potential to inspire novel, more targeted therapies for clinically distinct 5-HT-related disorders.
Collapse
|
36
|
Gao D, Yu H, Li B, Chen L, Li X, Gu W. Cisplatin Toxicology: The Role of Pro-inflammatory Cytokines and GABA Transporters in Cochlear Spiral Ganglion. Curr Pharm Des 2020; 25:4820-4826. [PMID: 31692421 DOI: 10.2174/1381612825666191106143743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
Background:
The current study was conducted to examine the specific activation of pro-inflammatory
cytokines (PICs), namely IL-1β, IL-6 and TNF-α in the cochlear spiral ganglion of rats after ototoxicity induced
by cisplatin. Since γ-aminobutyric acid (GABA) and its receptors are involved in pathophysiological processes of
ototoxicity, we further examined the role played by PICs in regulating expression of GABA transporter type 1
and 3 (GAT-1 and GAT-3), as two essential subtypes of GATs responsible for the regulation of extracellular
GABA levels in the neuronal tissues.
Methods:
ELISA and western blot analysis were employed to examine the levels of PICs and GATs; and auditory
brainstem response was used to assess ototoxicity induced by cisplatin.
Results:
IL-1β, IL-6 and TNF-α as well as their receptors were significantly increased in the spiral ganglion of
ototoxic rats as compared with sham control animals (P<0.05, ototoxic rats vs. control rats). Cisplatin-ototoxicity
also induced upregulation of the protein levels of GAT-1 and GAT-3 in the spiral ganglion (P<0.05 vs. controls).
In addition, administration of inhibitors to IL-1β, IL-6 and TNF-α attenuated amplification of GAT-1 and GAT-3
and improved hearing impairment induced by cisplatin.
Conclusion:
Our data indicate that PIC signals are activated in the spiral ganglion during cisplatin-ototoxicity
which thereby leads to upregulation of GABA transporters. As a result, it is likely that de-inhibition of GABA
system is enhanced in the cochlear spiral ganglion. This supports a role for PICs in engagement of the signal
mechanisms associated with cisplatin-ototoxicity, and has pharmacological implications to target specific PICs
for GABAergic dysfunction and vulnerability related to cisplatin-ototoxicity.
Collapse
Affiliation(s)
- Dongmei Gao
- Department of Otorhinolaryngology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hong Yu
- Department of Otorhinolaryngology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Bo Li
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Li Chen
- Hospital of Stomatology, Jilin University, Changchun, Jilin 130000, China
| | - Xiaoyu Li
- Department of Otorhinolaryngology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wenqing Gu
- Department of Otorhinolaryngology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
37
|
Pandit S, Neupane C, Woo J, Sharma R, Nam MH, Lee GS, Yi MH, Shin N, Kim DW, Cho H, Jeon BH, Kim HW, Lee CJ, Park JB. Bestrophin1-mediated tonic GABA release from reactive astrocytes prevents the development of seizure-prone network in kainate-injected hippocampi. Glia 2019; 68:1065-1080. [PMID: 31833596 DOI: 10.1002/glia.23762] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022]
Abstract
Tonic extrasynaptic GABAA receptor (GABAA R) activation is under the tight control of tonic GABA release from astrocytes to maintain the brain's excitation/inhibition (E/I) balance; any slight E/I balance disturbance can cause serious pathological conditions including epileptic seizures. However, the pathophysiological role of tonic GABA release from astrocytes has not been tested in epileptic seizures. Here, we report that pharmacological or genetic intervention of the GABA-permeable Bestrophin-1 (Best1) channel prevented the generation of tonic GABA inhibition, disinhibiting CA1 pyramidal neuronal firing and augmenting seizure susceptibility in kainic acid (KA)-induced epileptic mice. Astrocyte-specific Best1 over-expression in KA-injected Best1 knockout mice fully restored the generation of tonic GABA inhibition and effectively suppressed seizure susceptibility. We demonstrate for the first time that tonic GABA from reactive astrocytes strongly contributes to the compensatory shift of E/I balance in epileptic hippocampi, serving as a good therapeutic target against altered E/I balance in epileptic seizures.
Collapse
Affiliation(s)
- Sudip Pandit
- Department of Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Chiranjivi Neupane
- Department of Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Junsung Woo
- Center for Glia-Neuron Interaction and Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ramesh Sharma
- Department of Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Min-Ho Nam
- Center for Glia-Neuron Interaction and Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Gyu-Seung Lee
- Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Min-Hee Yi
- Department of Anatomy, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Nara Shin
- Department of Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea.,Department of Anatomy, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Dong Woon Kim
- Department of Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea.,Department of Anatomy, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Hyunsill Cho
- Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun-Woo Kim
- Department of Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - C Justin Lee
- Center for Glia-Neuron Interaction and Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jin Bong Park
- Department of Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
38
|
Chazalon M, Paredes-Rodriguez E, Morin S, Martinez A, Cristóvão-Ferreira S, Vaz S, Sebastiao A, Panatier A, Boué-Grabot E, Miguelez C, Baufreton J. GAT-3 Dysfunction Generates Tonic Inhibition in External Globus Pallidus Neurons in Parkinsonian Rodents. Cell Rep 2019; 23:1678-1690. [PMID: 29742425 DOI: 10.1016/j.celrep.2018.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/08/2018] [Accepted: 04/02/2018] [Indexed: 12/26/2022] Open
Abstract
The external globus pallidus (GP) is a key GABAergic hub in the basal ganglia (BG) circuitry, a neuronal network involved in motor control. In Parkinson's disease (PD), the rate and pattern of activity of GP neurons are profoundly altered and contribute to the motor symptoms of the disease. In rodent models of PD, the striato-pallidal pathway is hyperactive, and extracellular GABA concentrations are abnormally elevated in the GP, supporting the hypothesis of an alteration of neuronal and/or glial clearance of GABA. Here, we discovered the existence of persistent GABAergic tonic inhibition in GP neurons of dopamine-depleted (DD) rodent models. We showed that glial GAT-3 transporters are downregulated while neuronal GAT-1 function remains normal in DD rodents. Finally, we showed that blocking GAT-3 activity in vivo alters the motor coordination of control rodents, suggesting that GABAergic tonic inhibition in the GP contributes to the pathophysiology of PD.
Collapse
Affiliation(s)
- Marine Chazalon
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France
| | | | - Stéphanie Morin
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France
| | - Audrey Martinez
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France
| | - Sofia Cristóvão-Ferreira
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, and Unit of Neuroscience, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Sandra Vaz
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, and Unit of Neuroscience, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Ana Sebastiao
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, and Unit of Neuroscience, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Aude Panatier
- INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France; Université de Bordeaux, 33000 Bordeaux, France
| | - Eric Boué-Grabot
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France
| | - Cristina Miguelez
- Department of Pharmacology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Jérôme Baufreton
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France.
| |
Collapse
|
39
|
Longitudinal assessment of 1H-MRS (GABA and Glx) and TMS measures of cortical inhibition and facilitation in the sensorimotor cortex. Exp Brain Res 2019; 237:3461-3474. [PMID: 31734787 DOI: 10.1007/s00221-019-05691-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 11/09/2019] [Indexed: 01/05/2023]
Abstract
The purpose of the present study was to investigate the long-term stability of water-referenced GABA and Glx neurometabolite concentrations in the sensorimotor cortex using MRS and to assess the long-term stability of GABA- and glutamate-related intracortical excitability using transcranial magnetic stimulation (TMS). Healthy individuals underwent two sessions of MRS and TMS at a 3-month interval. A MEGA-PRESS sequence was used at 3 T to acquire MRS signals in the sensorimotor cortex. Metabolites were quantified by basis spectra fitting and metabolite concentrations were derived using unsuppressed water reference scans accounting for relaxation and partial volume effects. TMS was performed using published standards. After performing stability and reliability analyses for MRS and TMS, reliable change indexes were computed for all measures with a statistically significant test-retest correlation. No significant effect of time was found for GABA, Glx and TMS measures. There was an excellent ICC and a strong correlation across time for GABA and Glx. Analysis of TMS measure stability revealed an excellent ICC for rMT CSP and %MSO and a fair ICC for 2 ms SICI. There was no significant correlation between MRS and TMS measures at any time point. This study shows that MRS-GABA and MRS-Glx of the sensorimotor cortex have good stability over a 3-month period, with variability across time comparable to that reported in other brain areas. While resting motor threshold, %MSO and CSP were found to be stable and reliable, other TMS measures had greater variability and lesser reliability.
Collapse
|
40
|
Serrano-Regal MP, Luengas-Escuza I, Bayón-Cordero L, Ibarra-Aizpurua N, Alberdi E, Pérez-Samartín A, Matute C, Sánchez-Gómez MV. Oligodendrocyte Differentiation and Myelination Is Potentiated via GABA B Receptor Activation. Neuroscience 2019; 439:163-180. [PMID: 31349008 DOI: 10.1016/j.neuroscience.2019.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
Differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs) is a key event for axonal myelination in the central nervous system (CNS). Several growth factors and neurotransmitters like GABA are postulated as important regulators of that process, and different protein kinases may also participate in OL differentiation and myelination. However, the molecular mechanisms underlying the regulation of myelination by neurotransmitters are only partially known. In the present study, we provide evidence showing that GABA receptors (GABARs) play an important role in OL differentiation. First, we observed that OPCs and OLs synthesize GABA and expressed GABAR and transporters, both in vitro and in vivo and, in contrast to GABAARs, the subunits GABAB1R and GABAB2R are expressed in OLs over time. Then, we found that exogenous GABA increases the number of myelin segments and MBP expression in DRG-OPC cocultures, indicating that GABA regulates myelination when OLs are in contact with axons. Notably, in purified rat OPC cultures, chronic treatment with GABA and baclofen, specific GABABR agonist, accelerates OPC differentiation by enhancing the processes branching and myelin protein expression, effects that are reverted in presence of GABABR specific antagonist CGP55845. Exposure of OPCs to baclofen promotes the Src-phosphorylation, and the baclofen-induced maturation is attenuated in presence of the Src-family kinases inhibitor PP2. None of these effects are mediated by the GABAAR agonist muscimol. Together, these results highlight the relevance of the GABAergic system in OL differentiation, and indicate that this functional role is mediated through GABABR involving the participation of Src-family kinases. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Mari Paz Serrano-Regal
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience, Leioa, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Irene Luengas-Escuza
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Laura Bayón-Cordero
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Naroa Ibarra-Aizpurua
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Elena Alberdi
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience, Leioa, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Alberto Pérez-Samartín
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience, Leioa, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Carlos Matute
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience, Leioa, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| | - María Victoria Sánchez-Gómez
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience, Leioa, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| |
Collapse
|
41
|
Malomouzh A, Ilyin V, Nikolsky E. Components of the GABAergic signaling in the peripheral cholinergic synapses of vertebrates: a review. Amino Acids 2019; 51:1093-1102. [PMID: 31236726 DOI: 10.1007/s00726-019-02754-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/19/2019] [Indexed: 12/23/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system. Since the 1970s, many studies have focused on the role of GABA in the mammalian peripheral nervous system, and particularly in the cholinergic synapses. In this review, we present current findings for the cholinergic neurons of vegetative ganglia as well as for the neurons innervating smooth and striated muscles. Synaptic contacts formed by these neurons contain GABA and the enzyme, glutamic acid decarboxylase, which catalyzes the synthesis of GABA from glutamate. Newly formed GABA is released in the cholinergic synapses and mostly all the peripheral cholinergic synaptic contacts contain iono- and metabotropic GABA receptors. Although the underlying molecular mechanism of the release is not well understood, still, it is speculated that GABA is released by a vesicular and/or non-vesicular way via reversal of the GABA transporter. We also review the signaling role of GABA in the peripheral cholinergic synapses by modulating acetylcholine release, but its exact physiological function remains to be elucidated.
Collapse
Affiliation(s)
- Artem Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, P.O. box 30, Kazan, 420111, Russia.
| | - Victor Ilyin
- Neuropharmacology Lab, Kazan Federal University, 18 Kremlyovskaya St, Kazan, 420008, Russia
| | - Evgeny Nikolsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, P.O. box 30, Kazan, 420111, Russia.,Neuropharmacology Lab, Kazan Federal University, 18 Kremlyovskaya St, Kazan, 420008, Russia
| |
Collapse
|
42
|
Sakamoto R, Kameno R, Kobayashi T, Ishiyama A, Watanabe K, Hoshino O. Extracellular GABA assisting in organizing dynamic cell assemblies to shorten reaction time to sensory stimulation. BIOLOGICAL CYBERNETICS 2019; 113:257-271. [PMID: 30746602 DOI: 10.1007/s00422-019-00793-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Until recently, glia, which exceeds the number of neurons, was considered to only have supportive roles in the central nervous system, providing homeostatic controls and metabolic supports. However, recent studies suggest that glia interacts with neurons and plays active roles in information processing within neuronal circuits. To elucidate how glia contributes to neuronal information processing, we simulated a sensory neuron-glia (neuron-astrocyte) network model. It was investigated in association with ambient (extracellular) GABA level, because the astrocyte has a major role in removing extracellular GABA molecules. In the network model, transporters, embedded in plasma membranes of astrocytes, modulated local ambient GABA levels by actively removing extracellular GABA molecules which persistently acted on receptors in membranes outside synapses and provided pyramidal cells with inhibitory currents. Gap-junction coupling between astrocytes mediated a concordant decrease in local ambient GABA levels, which solicited a prompt population response of pyramidal cells (i.e., activation of an ensemble of pyramidal cells) to a sensory stimulus. As a consequence, the reaction time of a motor network, to which axons of pyramidal cells of the sensory network project, to the sensory stimulus was shortened. We suggest that the astrocytic gap-junction coupling may assist in organizing dynamic cell assemblies by coordinating a reduction in local ambient GABA levels, thereby shortening reaction time to sensory stimulation.
Collapse
Affiliation(s)
- Ryuta Sakamoto
- Department of Intelligent Systems Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan
| | - Rikiya Kameno
- Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, 7-115, Yatsuyamada, Koriyama, Fukushima, 963-8563, Japan
| | - Taira Kobayashi
- Department of Intelligent Systems Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan
| | - Asahi Ishiyama
- Production Engineering HQ, TDK Corporation, 151, Aza-Maeda, Hirasawa, Nikaho-shi, Akita, 018-0402, Japan
| | - Kazuo Watanabe
- Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, 7-115, Yatsuyamada, Koriyama, Fukushima, 963-8563, Japan
| | - Osamu Hoshino
- Department of Intelligent Systems Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan.
- Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, 7-115, Yatsuyamada, Koriyama, Fukushima, 963-8563, Japan.
| |
Collapse
|
43
|
Hawrysh PJ, Buck LT. Oxygen-sensitive interneurons exhibit increased activity and GABA release during ROS scavenging in the cerebral cortex of the western painted turtle. J Neurophysiol 2019; 122:466-479. [PMID: 31141433 DOI: 10.1152/jn.00104.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The western painted turtle (Chrysemys picta bellii) has the unique ability of surviving several months in the absence of oxygen, which is termed anoxia. One major protective strategy that the turtle employs during anoxia is a reduction in neuronal electrical activity, which may result from a natural reduction in reactive oxygen species (ROS). We previously linked a reduction in ROS levels to an increase in γ-amino butyric acid (GABA) receptor currents. The purpose of this study is to understand how fast-spiking, GABA-releasing neurons respond to reductions in ROS and how this affects GABA release. Using a fluorescence-coupled enzymatic microplate assay for GABA, we found that anoxia, the ROS scavenger N-(2-mercaptopriopionyl)glycine (MPG), or the mitochondria-specific ROS scavenger MitoTEMPO resulted in a 2.5-, 2.0-, and 2.5-fold increase in extracellular GABA concentration, respectively. This phenomenon could be blocked with TTX, indicating that it is activity dependent. Using whole cell patch-clamping techniques, we found that fast-spiking, burst-firing GABAergic turtle neurons increase the duration and number of action potentials per burst by 26% and 42%, respectively, in response to ROS scavenging via MPG. These results suggest that the reduction in mitochondrially produced ROS that occurs during anoxia leads to increased GABA release, which promotes postsynaptic inhibitory activity through activation of GABA receptors.NEW & NOTEWORTHY This is a novel study examining the response of cerebral cortical stellate interneurons to anoxia and mitochondrial reactive oxygen species (ROS) scavenging with MitoTEMPO. Under both conditions burst firing increases in these cells, and we show that extracellular GABA release increases in the presence of the ROS scavenger. We conclude that in the anoxia-tolerant painted turtle brain, a decrease in ROS levels is an important low oxygen signal.
Collapse
Affiliation(s)
- Peter John Hawrysh
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Leslie Thomas Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Zhang W, Wang L, Pang X, Zhang J, Guan Y. Role of microRNA-155 in modifying neuroinflammation and γ-aminobutyric acid transporters in specific central regions after post-ischaemic seizures. J Cell Mol Med 2019; 23:5017-5024. [PMID: 31144434 PMCID: PMC6653087 DOI: 10.1111/jcmm.14358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/14/2019] [Accepted: 04/14/2019] [Indexed: 12/16/2022] Open
Abstract
In the central nervous system, interleukin (IL)‐1β, IL‐6 and tumour necrosis factor (TNF)‐α have a regulatory role in pathophysiological processes of epilepsy. In addition, γ‐aminobutyric acid (GABA) transporter type 1 and type 3 (GAT‐1 and GAT‐3) modulate the levels of extracellular GABA in involvement in the neuroinflammation on epileptogenesis. Thus, in the current report we examined the effects of inhibiting microRNA‐155 (miR‐155) on the levels of IL‐1β, IL‐6 and TNF‐α, and expression of GAT‐1 and GAT‐3 in the parietal cortex, hippocampus and amygdala of rats with nonconvulsive seizure (NCS) following cerebral ischaemia. Real time RT‐PCR, ELISA and Western blot analysis were used to examine the miR‐155, proinflammatory cytokines (PICs) and GAT‐1/GAT‐3 respectively. With induction of NCS, the levels of miR‐155 were amplified in the parietal cortex, hippocampus and amygdala and this was accompanied with increases of IL‐1β, IL‐6 and TNF‐α. In those central areas, expression of GAT‐1 and GAT‐3 was upregulated; and GABA was reduced in rats following NCS. Intracerebroventricular infusion of miR‐155 inhibitor attenuated the elevation of PICs, amplification of GAT‐1 and GAT‐3 and impairment of GABA. Furthermore, inhibition of miR‐155 decreased the number of NCS events following cerebral ischaemia. Inhibition of miR‐155 further improved post‐ischaemia‐evoked NCS by altering neuroinflammation‐GABA signal pathways in the parietal cortex, hippocampus and amygdala. Results suggest the role of miR‐155 in regulating post‐ischaemic seizures via PICs‐GABA mechanisms.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Luping Wang
- Department of Anesthesiology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xiaochuan Pang
- Clinical Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jian Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi Guan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
45
|
Héja L, Simon Á, Szabó Z, Kardos J. Feedback adaptation of synaptic excitability via Glu:Na + symport driven astrocytic GABA and Gln release. Neuropharmacology 2019; 161:107629. [PMID: 31103619 DOI: 10.1016/j.neuropharm.2019.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/30/2019] [Accepted: 05/07/2019] [Indexed: 02/08/2023]
Abstract
Glutamatergic transmission composed of the arriving of action potential at the axon terminal, fast vesicular Glu release, postsynaptic Glu receptor activation, astrocytic Glu clearance and Glu→Gln shuttle is an abundantly investigated phenomenon. Despite its essential role, however, much less is known about the consequences of the mechanistic connotations of Glu:Na+ symport. Due to the coupled Na+ transport, Glu uptake results in significantly elevated intracellular astrocytic [Na+] that markedly alters the driving force of other Na+-coupled astrocytic transporters. The resulting GABA and Gln release by reverse transport through the respective GAT-3 and SNAT3 transporters help to re-establish the physiological Na+ homeostasis without ATP dissipation and consequently leads to enhanced tonic inhibition and replenishment of axonal glutamate pool. Here, we place this emerging astrocytic adjustment of synaptic excitability into the centre of future perspectives. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
| |
Collapse
|
46
|
Wu Y, Proch KL, Teran FA, Lechtenberg RJ, Kothari H, Richerson GB. Chemosensitivity of Phox2b-expressing retrotrapezoid neurons is mediated in part by input from 5-HT neurons. J Physiol 2019; 597:2741-2766. [PMID: 30866045 PMCID: PMC6826216 DOI: 10.1113/jp277052] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/07/2019] [Indexed: 01/18/2023] Open
Abstract
KEY POINTS Neurons of the retrotrapezoid nucleus (RTN) and medullary serotonin (5-HT) neurons are both candidates for central CO2 /pH chemoreceptors, but it is not known how interactions between them influence their responses to pH. We found that RTN neurons in brain slices were stimulated by exogenous 5-HT and by heteroexchange release of endogenous 5-HT, and these responses were blocked by antagonists of 5-HT7 receptors. The pH response of RTN neurons in brain slices was markedly reduced by the same antagonists of 5-HT7 receptors. Similar results were obtained in dissociated, primary cell cultures prepared from the ventral medulla, where it was also found that the pH response of RTN neurons was blocked by preventing 5-HT synthesis and enhanced by blocking 5-HT reuptake. Exogenous 5-HT did not enable latent intrinsic RTN chemosensitivity. RTN neurons may play more of a role as relays from other central and peripheral chemoreceptors than as CO2 sensors. ABSTRACT Phox2b-expressing neurons in the retrotrapezoid nucleus (RTN) and serotonin (5-HT) neurons in the medullary raphe have both been proposed to be central respiratory chemoreceptors. How interactions between these two sets of neurons influence their responses to acidosis is not known. Here we recorded from mouse Phox2b+ RTN neurons in brain slices, and found that their response to moderate hypercapnic acidosis (pH 7.4 to ∼7.2) was markedly reduced by antagonists of 5-HT7 receptors. RTN neurons were stimulated in response to heteroexchange release of 5-HT, indicating that RTN neurons are sensitive to endogenous 5-HT. This electrophysiological behaviour was replicated in primary, dissociated cell cultures containing 5-HT and RTN neurons grown together. In addition, pharmacological inhibition of 5-HT synthesis in culture reduced RTN neuron chemosensitivity, and blocking 5-HT reuptake enhanced chemosensitivity. The effect of 5-HT on RTN neuron chemosensitivity was not explained by a mechanism whereby activation of 5-HT7 receptors enables or potentiates intrinsic chemosensitivity of RTN neurons, as exogenous 5-HT did not enhance the pH response. The ventilatory response to inhaled CO2 of mice was markedly decreased in vivo after systemic treatment with ketanserin, an antagonist of 5-HT2 and 5-HT7 receptors. These data indicate that 5-HT and RTN neurons may interact synergistically in a way that enhances the respiratory chemoreceptor response. The primary role of RTN neurons may be as relays and amplifiers of the pH response from 5-HT neurons and other chemoreceptors rather than as pH sensors themselves.
Collapse
Affiliation(s)
- Yuanming Wu
- Department of NeurologyUniversity of IowaIowa CityIA52242USA
| | - Katherine L. Proch
- Department of NeurologyUniversity of IowaIowa CityIA52242USA
- Graduate Program in NeuroscienceUniversity of IowaIowa CityIA52242USA
| | - Frida A. Teran
- Department of NeurologyUniversity of IowaIowa CityIA52242USA
- Graduate Program in NeuroscienceUniversity of IowaIowa CityIA52242USA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIA52242USA
| | | | - Harsh Kothari
- Department of PediatricsUniversity of IowaIowa CityIA52242USA
| | - George B. Richerson
- Department of NeurologyUniversity of IowaIowa CityIA52242USA
- Graduate Program in NeuroscienceUniversity of IowaIowa CityIA52242USA
- Department of Molecular Physiology & BiophysicsUniversity of IowaIowa CityIA52242USA
- Neurology ServiceVeterans Affairs Medical CenterIowa CityIA52242USA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIA52242USA
| |
Collapse
|
47
|
Nicaise C, Marneffe C, Bouchat J, Gilloteaux J. Osmotic Demyelination: From an Oligodendrocyte to an Astrocyte Perspective. Int J Mol Sci 2019; 20:E1124. [PMID: 30841618 PMCID: PMC6429405 DOI: 10.3390/ijms20051124] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Osmotic demyelination syndrome (ODS) is a disorder of the central myelin that is often associated with a precipitous rise of serum sodium. Remarkably, while the myelin and oligodendrocytes of specific brain areas degenerate during the disease, neighboring neurons and axons appear unspoiled, and neuroinflammation appears only once demyelination is well established. In addition to blood‒brain barrier breakdown and microglia activation, astrocyte death is among one of the earliest events during ODS pathology. This review will focus on various aspects of biochemical, molecular and cellular aspects of oligodendrocyte and astrocyte changes in ODS-susceptible brain regions, with an emphasis on the crosstalk between those two glial cells. Emerging evidence pointing to the initiating role of astrocytes in region-specific degeneration are discussed.
Collapse
Affiliation(s)
| | - Catherine Marneffe
- Laboratory of Glia Biology (VIB-KU Leuven Center for Brain & Disease Research), Department of Neuroscience, KU Leuven, 3000 Leuven, Belgium.
| | - Joanna Bouchat
- URPhyM-NARILIS, Université de Namur, 5000 Namur, Belgium.
| | - Jacques Gilloteaux
- URPhyM-NARILIS, Université de Namur, 5000 Namur, Belgium.
- Department of Anatomical Sciences, St George's University School of Medicine, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
48
|
Zafar S, Nguyen ME, Muthyala R, Jabeen I, Sham YY. Modeling and Simulation of hGAT1: A Mechanistic Investigation of the GABA Transport Process. Comput Struct Biotechnol J 2018; 17:61-69. [PMID: 30619541 PMCID: PMC6312766 DOI: 10.1016/j.csbj.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/06/2018] [Accepted: 12/09/2018] [Indexed: 01/30/2023] Open
Abstract
Human γ-Aminobutyric acid transporter 1 (hGAT1) is a Na+/Cl- dependent co-transporter that plays a key role in the inhibitory neurotransmission of GABA in the brain. Due to the lack of structural data, the exact co-transport mechanism of GABA reuptake by hGAT1 remains unclear. To examine the roles of the co-transport ions and the nature of their interactions with GABA, homology modeling and molecular dynamics simulations of the hGAT1 in the open-to-out conformation were carried out. Our study focused on the sequential preloading of Na+ and Cl- ions, followed by GABA binding. Our simulations showed pre-loading of ions maintains the transport ready state of hGAT1 in the open-to-out conformation essential for GABA binding. Of the four putative preloaded states, GABA binding to the fully loaded state is most favored. Binding of Na+ ion to the Na1 site helps to maintain the open-to-out conformation for GABA binding as compared to the Na2 site. GABA binding to the mono-sodium or the di-sodium loaded states leads to destabilization of Na+ ions within their binding sites. The two most prominent interactions required for GABA binding include interaction between carboxylate group of GABA with the bound Na+ ion in Na1 binding site and the hydroxyl group of Y140. Overall our results support the fully loaded state as the predominate state for GABA binding. Our study further illustrates that Na+ ion within the Na1 site is crucial for GABA recognition. Therefore, a revised mechanism is proposed for the initial step of hGAT1 translocation cycle.
Collapse
Affiliation(s)
- Sadia Zafar
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Megin E. Nguyen
- Bioinformatics and Computational Biology Program, University of Minnesota, United States
| | - Ramaiah Muthyala
- Department of Experimental and Clinical Pharmacology & Center for Orphan Drug Research, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Ishrat Jabeen
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Yuk Y. Sham
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN 55455, United States
- Bioinformatics and Computational Biology Program, University of Minnesota, United States
| |
Collapse
|
49
|
Abudara V, Retamal MA, Del Rio R, Orellana JA. Synaptic Functions of Hemichannels and Pannexons: A Double-Edged Sword. Front Mol Neurosci 2018; 11:435. [PMID: 30564096 PMCID: PMC6288452 DOI: 10.3389/fnmol.2018.00435] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/08/2018] [Indexed: 01/18/2023] Open
Abstract
The classical view of synapses as the functional contact between presynaptic and postsynaptic neurons has been challenged in recent years by the emerging regulatory role of glial cells. Astrocytes, traditionally considered merely supportive elements are now recognized as active modulators of synaptic transmission and plasticity at the now so-called "tripartite synapse." In addition, an increasing body of evidence indicates that beyond immune functions microglia also participate in various processes aimed to shape synaptic plasticity. Release of neuroactive compounds of glial origin, -process known as gliotransmission-, constitute a widespread mechanism through which glial cells can either potentiate or reduce the synaptic strength. The prevailing vision states that gliotransmission depends on an intracellular Ca2+/exocytotic-mediated release; notwithstanding, growing evidence is pointing at hemichannels (connexons) and pannexin channels (pannexons) as alternative non-vesicular routes for gliotransmitters efflux. In concurrence with this novel concept, both hemichannels and pannexons are known to mediate the transfer of ions and signaling molecules -such as ATP and glutamate- between the cytoplasm and the extracellular milieu. Importantly, recent reports show that glial hemichannels and pannexons are capable to perceive synaptic activity and to respond to it through changes in their functional state. In this article, we will review the current information supporting the "double edge sword" role of hemichannels and pannexons in the function of central and peripheral synapses. At one end, available data support the idea that these channels are chief components of a feedback control mechanism through which gliotransmitters adjust the synaptic gain in either resting or stimulated conditions. At the other end, we will discuss how the excitotoxic release of gliotransmitters and [Ca2+]i overload linked to the opening of hemichannels/pannexons might impact cell function and survival in the nervous system.
Collapse
Affiliation(s)
- Verónica Abudara
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| |
Collapse
|
50
|
Crabtree GW, Gogos JA. Role of Endogenous Metabolite Alterations in Neuropsychiatric Disease. ACS Chem Neurosci 2018; 9:2101-2113. [PMID: 30044078 DOI: 10.1021/acschemneuro.8b00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The potential role in neuropsychiatric disease risk arising from alterations and derangements of endogenous small-molecule metabolites remains understudied. Alterations of endogenous metabolite concentrations can arise in multiple ways. Marked derangements of single endogenous small-molecule metabolites are found in a large group of rare genetic human diseases termed "inborn errors of metabolism", many of which are associated with prominent neuropsychiatric symptomology. Whether such metabolites act neuroactively to directly lead to distinct neural dysfunction has been frequently hypothesized but rarely demonstrated unequivocally. Here we discuss this disease concept in the context of our recent findings demonstrating that neural dysfunction arising from accumulation of the schizophrenia-associated metabolite l-proline is due to its structural mimicry of the neurotransmitter GABA that leads to alterations in GABA-ergic short-term synaptic plasticity. For cases in which a similar direct action upon neurotransmitter binding sites is suspected, we lay out a systematic approach that can be extended to assessing the potential disruptive action of such candidate disease metabolites. To address the potentially important and broader role in neuropsychiatric disease, we also consider whether the more subtle yet more ubiquitous variations in endogenous metabolites arising from natural allelic variation may likewise contribute to disease risk but in a more complex and nuanced manner.
Collapse
Affiliation(s)
- Gregg W. Crabtree
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, New York 10032, United States
- Zuckerman Mind Brain Behavior Institute, New York, New York 10025, United States
| | - Joseph A. Gogos
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, New York 10032, United States
- Zuckerman Mind Brain Behavior Institute, New York, New York 10025, United States
- Department of Neuroscience, Columbia University Medical Center, New York, New York 10032, United States
| |
Collapse
|