1
|
Bukwich M, Campbell MG, Zoltowski D, Kingsbury L, Tomov MS, Stern J, Kim HR, Drugowitsch J, Linderman SW, Uchida N. Competitive integration of time and reward explains value-sensitive foraging decisions and frontal cortex ramping dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556267. [PMID: 37732217 PMCID: PMC10508756 DOI: 10.1101/2023.09.05.556267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Patch foraging presents a ubiquitous decision-making process in which animals decide when to abandon a resource patch of diminishing value to pursue an alternative. We developed a virtual foraging task in which mouse behavior varied systematically with patch value. Mouse behavior could be explained by a model integrating time and rewards antagonistically, scaled by a latent patience state. The model accounted for deviations from predictions of optimal foraging theory. Neural recordings throughout frontal areas revealed encoding of decision variables from the integrator model, most robustly in frontal cortex. Regression modeling followed by unsupervised clustering identified a subset of ramping neurons. These neurons' firing rates ramped up gradually (up to tens of seconds), were inhibited by rewards, and were better described as a continuous ramp than a discrete stepping process. Together, these results identify integration via frontal cortex ramping dynamics as a candidate mechanism for solving patch foraging problems.
Collapse
Affiliation(s)
- Michael Bukwich
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
- Center for Brain Science, Harvard University, Cambridge, MA, 02138
- Current address: Sainsbury Wellcome Centre, University College London, London, W1T 4JG, UK
| | - Malcolm G Campbell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
- Center for Brain Science, Harvard University, Cambridge, MA, 02138
| | - David Zoltowski
- Department of Statistics, Stanford University, Stanford, CA, 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Lyle Kingsbury
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
- Center for Brain Science, Harvard University, Cambridge, MA, 02138
| | - Momchil S Tomov
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
- Center for Brain Science, Harvard University, Cambridge, MA, 02138
- Current address: Motional AD LLC, Boston, MA 02210
| | - Joshua Stern
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
- Center for Brain Science, Harvard University, Cambridge, MA, 02138
| | - HyungGoo R Kim
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
- Center for Brain Science, Harvard University, Cambridge, MA, 02138
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jan Drugowitsch
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115
| | - Scott W Linderman
- Department of Statistics, Stanford University, Stanford, CA, 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
- Center for Brain Science, Harvard University, Cambridge, MA, 02138
| |
Collapse
|
2
|
Wang J, Li Y, Qi L, Mamtilahun M, Liu C, Liu Z, Shi R, Wu S, Yang GY. Advanced rehabilitation in ischaemic stroke research. Stroke Vasc Neurol 2024; 9:328-343. [PMID: 37788912 PMCID: PMC11420926 DOI: 10.1136/svn-2022-002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/20/2023] [Indexed: 10/05/2023] Open
Abstract
At present, due to the rapid progress of treatment technology in the acute phase of ischaemic stroke, the mortality of patients has been greatly reduced but the number of disabled survivors is increasing, and most of them are elderly patients. Physicians and rehabilitation therapists pay attention to develop all kinds of therapist techniques including physical therapy techniques, robot-assisted technology and artificial intelligence technology, and study the molecular, cellular or synergistic mechanisms of rehabilitation therapies to promote the effect of rehabilitation therapy. Here, we discussed different animal and in vitro models of ischaemic stroke for rehabilitation studies; the compound concept and technology of neurological rehabilitation; all kinds of biological mechanisms of physical therapy; the significance, assessment and efficacy of neurological rehabilitation; the application of brain-computer interface, rehabilitation robotic and non-invasive brain stimulation technology in stroke rehabilitation.
Collapse
Affiliation(s)
- Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medical, Shanghai, China
| | - Yongfang Li
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medical, Shanghai, China
| | - Lin Qi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Muyassar Mamtilahun
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rubing Shi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Asinof SK, Card GM. Neural Control of Naturalistic Behavior Choices. Annu Rev Neurosci 2024; 47:369-388. [PMID: 38724026 DOI: 10.1146/annurev-neuro-111020-094019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
In the natural world, animals make decisions on an ongoing basis, continuously selecting which action to undertake next. In the lab, however, the neural bases of decision processes have mostly been studied using artificial trial structures. New experimental tools based on the genetic toolkit of model organisms now make it experimentally feasible to monitor and manipulate neural activity in small subsets of neurons during naturalistic behaviors. We thus propose a new approach to investigating decision processes, termed reverse neuroethology. In this approach, experimenters select animal models based on experimental accessibility and then utilize cutting-edge tools such as connectomes and genetically encoded reagents to analyze the flow of information through an animal's nervous system during naturalistic choice behaviors. We describe how the reverse neuroethology strategy has been applied to understand the neural underpinnings of innate, rapid decision making, with a focus on defensive behavioral choices in the vinegar fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Samuel K Asinof
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, Maryland, USA
- Janelia Research Campus, Ashburn, Virginia, USA
| | - Gwyneth M Card
- Howard Hughes Medical Institute, Department of Neuroscience, and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA;
- Janelia Research Campus, Ashburn, Virginia, USA
| |
Collapse
|
4
|
Xu K, Yang Y, Ding J, Wang J, Fang Y, Tian H. Spatially Precise Genetic Engineering at the Electrode-Tissue Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401327. [PMID: 38692704 DOI: 10.1002/adma.202401327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/17/2024] [Indexed: 05/03/2024]
Abstract
The interface between electrodes and neural tissues plays a pivotal role in determining the efficacy and fidelity of neural activity recording and modulation. While considerable efforts have been made to improve the electrode-tissue interface, the majority of studies have primarily concentrated on the development of biocompatible neural electrodes through abiotic materials and structural engineering. In this study, an approach is presented that seamlessly integrates abiotic and biotic engineering principles into the electrode-tissue interface. Specifically, ultraflexible neural electrodes with short hairpin RNAs (shRNAs) designed to silence the expression of endogenous genes within neural tissues are combined. The system facilitates shRNA-mediated knockdown of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and polypyrimidine tract-binding protein 1 (PTBP1), two essential genes associated in neural survival/growth and neurogenesis, within specific cell populations located at the electrode-tissue interface. Additionally, it is demonstrated that the downregulation of PTEN in neurons can result in an enlargement of neuronal cell bodies at the electrode-tissue interface. Furthermore, the system enables long-term monitoring of neuronal activities following PTEN knockdown in a mouse model of Parkinson's disease and traumatic brain injury. The system provides a versatile approach for genetically engineering the electrode-tissue interface with unparalleled precision, paving the way for the development of regenerative electronics and next-generation brain-machine interfaces.
Collapse
Affiliation(s)
- Ke Xu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinan Yang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianfei Ding
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jinfen Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Ying Fang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Huihui Tian
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| |
Collapse
|
5
|
Beau M, Herzfeld DJ, Naveros F, Hemelt ME, D’Agostino F, Oostland M, Sánchez-López A, Chung YY, Michael Maibach, Kyranakis S, Stabb HN, Martínez Lopera MG, Lajko A, Zedler M, Ohmae S, Hall NJ, Clark BA, Cohen D, Lisberger SG, Kostadinov D, Hull C, Häusser M, Medina JF. A deep-learning strategy to identify cell types across species from high-density extracellular recordings. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577845. [PMID: 38352514 PMCID: PMC10862837 DOI: 10.1101/2024.01.30.577845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but don't reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals, revealing the computational roles of neurons with distinct functional, molecular, and anatomical properties. We combine optogenetic activation and pharmacology using the cerebellum as a testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers. We train a semi-supervised deep-learning classifier that predicts cell types with greater than 95% accuracy based on waveform, discharge statistics, and layer of the recorded neuron. The classifier's predictions agree with expert classification on recordings using different probes, in different laboratories, from functionally distinct cerebellar regions, and across animal species. Our classifier extends the power of modern dynamical systems analyses by revealing the unique contributions of simultaneously-recorded cell types during behavior.
Collapse
Affiliation(s)
- Maxime Beau
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - David J. Herzfeld
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Francisco Naveros
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Computer Engineering, Automation and Robotics, Research Centre for Information and Communication Technologies, University of Granada, Granada, Spain
| | - Marie E. Hemelt
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Federico D’Agostino
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Marlies Oostland
- Wolfson Institute for Biomedical Research, University College London, London, UK
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Young Yoon Chung
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Michael Maibach
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Stephen Kyranakis
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Hannah N. Stabb
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | - Agoston Lajko
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Marie Zedler
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Shogo Ohmae
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Nathan J. Hall
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Beverley A. Clark
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Dana Cohen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Dimitar Kostadinov
- Wolfson Institute for Biomedical Research, University College London, London, UK
- Centre for Developmental Neurobiology, King’s College London, London, UK
| | - Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Javier F. Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Deng J, Sun C, Zheng Y, Gao J, Cui X, Wang Y, Zhang L, Tang P. In vivo imaging of the neuronal response to spinal cord injury: a narrative review. Neural Regen Res 2024; 19:811-817. [PMID: 37843216 PMCID: PMC10664102 DOI: 10.4103/1673-5374.382225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 10/17/2023] Open
Abstract
Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury (SCI). However, this subject has been neglected in part because appropriate tools are lacking. Emerging in vivo imaging and labeling methods offer great potential for observing dynamic neural processes in the central nervous system in conditions of health and disease. This review first discusses in vivo imaging of the mouse spinal cord with a focus on the latest imaging techniques, and then analyzes the dynamic biological response of spinal cord sensory and motor neurons to SCI. We then summarize and compare the techniques behind these studies and clarify the advantages of in vivo imaging compared with traditional neuroscience examinations. Finally, we identify the challenges and possible solutions for spinal cord neuron imaging.
Collapse
Affiliation(s)
- Junhao Deng
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chang Sun
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- Department of Orthopedics, Air Force Medical Center, PLA, Beijing, China
| | - Ying Zheng
- Medical School of Chinese PLA, Beijing, China
| | - Jianpeng Gao
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
7
|
Caznok Silveira AC, Antunes ASLM, Athié MCP, da Silva BF, Ribeiro dos Santos JV, Canateli C, Fontoura MA, Pinto A, Pimentel-Silva LR, Avansini SH, de Carvalho M. Between neurons and networks: investigating mesoscale brain connectivity in neurological and psychiatric disorders. Front Neurosci 2024; 18:1340345. [PMID: 38445254 PMCID: PMC10912403 DOI: 10.3389/fnins.2024.1340345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
The study of brain connectivity has been a cornerstone in understanding the complexities of neurological and psychiatric disorders. It has provided invaluable insights into the functional architecture of the brain and how it is perturbed in disorders. However, a persistent challenge has been achieving the proper spatial resolution, and developing computational algorithms to address biological questions at the multi-cellular level, a scale often referred to as the mesoscale. Historically, neuroimaging studies of brain connectivity have predominantly focused on the macroscale, providing insights into inter-regional brain connections but often falling short of resolving the intricacies of neural circuitry at the cellular or mesoscale level. This limitation has hindered our ability to fully comprehend the underlying mechanisms of neurological and psychiatric disorders and to develop targeted interventions. In light of this issue, our review manuscript seeks to bridge this critical gap by delving into the domain of mesoscale neuroimaging. We aim to provide a comprehensive overview of conditions affected by aberrant neural connections, image acquisition techniques, feature extraction, and data analysis methods that are specifically tailored to the mesoscale. We further delineate the potential of brain connectivity research to elucidate complex biological questions, with a particular focus on schizophrenia and epilepsy. This review encompasses topics such as dendritic spine quantification, single neuron morphology, and brain region connectivity. We aim to showcase the applicability and significance of mesoscale neuroimaging techniques in the field of neuroscience, highlighting their potential for gaining insights into the complexities of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ana Clara Caznok Silveira
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | | | - Maria Carolina Pedro Athié
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Bárbara Filomena da Silva
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Camila Canateli
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Marina Alves Fontoura
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Allan Pinto
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Simoni Helena Avansini
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Murilo de Carvalho
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
8
|
Jeong M, Choi JH, Jang H, Sohn DH, Wang Q, Lee J, Yao L, Lee EJ, Fan J, Pratelli M, Wang EH, Snyder CN, Wang XY, Shin S, Gittis AH, Sung TC, Spitzer NC, Lim BK. Viral vector-mediated transgene delivery with novel recombinase systems for targeting neuronal populations defined by multiple features. Neuron 2024; 112:56-72.e4. [PMID: 37909037 PMCID: PMC10916502 DOI: 10.1016/j.neuron.2023.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 05/21/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023]
Abstract
A comprehensive understanding of neuronal diversity and connectivity is essential for understanding the anatomical and cellular mechanisms that underlie functional contributions. With the advent of single-cell analysis, growing information regarding molecular profiles leads to the identification of more heterogeneous cell types. Therefore, the need for additional orthogonal recombinase systems is increasingly apparent, as heterogeneous tissues can be further partitioned into increasing numbers of specific cell types defined by multiple features. Critically, new recombinase systems should work together with pre-existing systems without cross-reactivity in vivo. Here, we introduce novel site-specific recombinase systems based on ΦC31 bacteriophage recombinase for labeling multiple cell types simultaneously and a novel viral strategy for versatile and robust intersectional expression of any transgene. Together, our system will help researchers specifically target different cell types with multiple features in the same animal.
Collapse
Affiliation(s)
- Minju Jeong
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jun-Hyeok Choi
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hyeonseok Jang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Qingdi Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joann Lee
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Li Yao
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eun Ji Lee
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jiachen Fan
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marta Pratelli
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric H Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christen N Snyder
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Xiao-Yun Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sora Shin
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, USA; Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Aryn H Gittis
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Tsung-Chang Sung
- Transgenic Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Ledderose JMT, Zolnik TA, Toumazou M, Trimbuch T, Rosenmund C, Eickholt BJ, Jaeger D, Larkum ME, Sachdev RNS. Layer 1 of somatosensory cortex: an important site for input to a tiny cortical compartment. Cereb Cortex 2023; 33:11354-11372. [PMID: 37851709 PMCID: PMC10690867 DOI: 10.1093/cercor/bhad371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/17/2023] [Indexed: 10/20/2023] Open
Abstract
Neocortical layer 1 has been proposed to be at the center for top-down and bottom-up integration. It is a locus for interactions between long-range inputs, layer 1 interneurons, and apical tuft dendrites of pyramidal neurons. While input to layer 1 has been studied intensively, the level and effect of input to this layer has still not been completely characterized. Here we examined the input to layer 1 of mouse somatosensory cortex with retrograde tracing and optogenetics. Our assays reveal that local input to layer 1 is predominantly from layers 2/3 and 5 pyramidal neurons and interneurons, and that subtypes of local layers 5 and 6b neurons project to layer 1 with different probabilities. Long-range input from sensory-motor cortices to layer 1 of somatosensory cortex arose predominantly from layers 2/3 neurons. Our optogenetic experiments showed that intra-telencephalic layer 5 pyramidal neurons drive layer 1 interneurons but have no effect locally on layer 5 apical tuft dendrites. Dual retrograde tracing revealed that a fraction of local and long-range neurons was both presynaptic to layer 5 neurons and projected to layer 1. Our work highlights the prominent role of local inputs to layer 1 and shows the potential for complex interactions between long-range and local inputs, which are both in position to modify the output of somatosensory cortex.
Collapse
Affiliation(s)
- Julia M T Ledderose
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
- Institute of Molecular Biology and Biochemistry, Charité—Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Timothy A Zolnik
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
- Institute of Molecular Biology and Biochemistry, Charité—Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Maria Toumazou
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Thorsten Trimbuch
- Institute of Neurophysiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
- Neurocure Centre for Excellence Charité—Universitätsmedizin Berlin Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | | | - Dieter Jaeger
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Matthew E Larkum
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
- Neurocure Centre for Excellence Charité—Universitätsmedizin Berlin Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Robert N S Sachdev
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| |
Collapse
|
10
|
Skinnider MA. From single cells to neural circuits. Science 2023; 382:528. [PMID: 37917683 DOI: 10.1126/science.adk3912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Neural circuits are mapped in high throughput with single-cell genomics.
Collapse
Affiliation(s)
- Michael A Skinnider
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| |
Collapse
|
11
|
Park H, Yao J, Jing Y. A frequency-domain model-based reconstruction method for transcranial photoacoustic imaging: A 2D numerical investigation. PHOTOACOUSTICS 2023; 33:100561. [PMID: 38021290 PMCID: PMC10658607 DOI: 10.1016/j.pacs.2023.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023]
Abstract
Phase aberration caused by the skull is a major barrier to achieving high quality photoacoustic images of human and non-human primates' brains. To address this issue, time-reversal methods have been used but they are computationally demanding and slow due to relying on solving the full-wave equation. The proposed approach is based on model-based image reconstruction in the frequency-domain to achieve near real-time image reconstruction. The relationship between an imaging region and transducer array elements can be mathematically described as a model matrix and the image reconstruction can be performed by pseudo-inverse of the model matrix. The model matrix is numerically calculated due to the lack of analytical solutions for transcranial ultrasound. However, this calculation only needs to be performed once for a given experimental setup and the same acoustic medium, and is an offline process not affecting the actual image reconstruction time. This non-iterative mode-based method demonstrates a substantial improvement in image reconstruction time, being approximately 18 times faster than the time-reversal method, all while maintaining comparable image quality.
Collapse
Affiliation(s)
- Hyungjoo Park
- The Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yun Jing
- The Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
12
|
Kong C, Wang Y, Xiao G. Neuron populations across layer 2-6 in the mouse visual cortex exhibit different coding abilities in the awake mice. Front Cell Neurosci 2023; 17:1238777. [PMID: 37817884 PMCID: PMC10560757 DOI: 10.3389/fncel.2023.1238777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction The visual cortex is a key region in the mouse brain, responsible for processing visual information. Comprised of six distinct layers, each with unique neuronal types and connections, the visual cortex exhibits diverse decoding properties across its layers. This study aimed to investigate the relationship between visual stimulus decoding properties and the cortical layers of the visual cortex while considering how this relationship varies across different decoders and brain regions. Methods This study reached the above conclusions by analyzing two publicly available datasets obtained through two-photon microscopy of visual cortex neuronal responses. Various types of decoders were tested for visual cortex decoding. Results Our findings indicate that the decoding accuracy of neuronal populations with consistent sizes varies among visual cortical layers for visual stimuli such as drift gratings and natural images. In particular, layer 4 neurons in VISp exhibited significantly higher decoding accuracy for visual stimulus identity compared to other layers. However, in VISm, the decoding accuracy of neuronal populations with the same size in layer 2/3 was higher than that in layer 4, despite the overall accuracy being lower than that in VISp and VISl. Furthermore, SVM surpassed other decoders in terms of accuracy, with the variation in decoding performance across layers being consistent among decoders. Additionally, we found that the difference in decoding accuracy across different imaging depths was not associated with the mean orientation selectivity index (OSI) and the mean direction selectivity index (DSI) neurons, but showed a significant positive correlation with the mean reliability and mean signal-to-noise ratio (SNR) of each layer's neuron population. Discussion These findings lend new insights into the decoding properties of the visual cortex, highlighting the role of different cortical layers and decoders in determining decoding accuracy. The correlations identified between decoding accuracy and factors such as reliability and SNR pave the way for more nuanced understandings of visual cortex functioning.
Collapse
Affiliation(s)
- Chui Kong
- School of Information Science and Technology, Fudan University, Shanghai, China
- Department of Communication Science and Engineering, Fudan University, Shanghai, China
| | - Yangzhen Wang
- School of Information Science and Technology, Fudan University, Shanghai, China
- Department of Automation, Tsinghua University, Beijing, China
| | - Guihua Xiao
- School of Information Science and Technology, Fudan University, Shanghai, China
- Department of Automation, Tsinghua University, Beijing, China
- BNRist, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Rivera JF, Weng W, Huang H, Rao S, Herring BE, Arnold DB. ATLAS: A rationally designed anterograde transsynaptic tracer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557425. [PMID: 37745471 PMCID: PMC10515852 DOI: 10.1101/2023.09.12.557425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Neural circuits, which constitute the substrate for brain processing, can be traced in the retrograde direction, from postsynaptic to presynaptic cells, using methods based on introducing modified rabies virus into genetically marked cell types. These methods have revolutionized the field of neuroscience. However, similarly reliable, transsynaptic, and non-toxic methods to trace circuits in the anterograde direction are not available. Here, we describe such a method based on an antibody-like protein selected against the extracellular N-terminus of the AMPA receptor subunit GluA1 (AMPA.FingR). ATLAS (Anterograde Transsynaptic Label based on Antibody-like Sensors) is engineered to release the AMPA.FingR and its payload, which can include Cre recombinase, from presynaptic sites into the synaptic cleft, after which it binds to GluA1, enters postsynaptic cells through endocytosis and subsequently carries its payload to the nucleus. Testing in vivo and in dissociated cultures shows that ATLAS mediates monosynaptic tracing from genetically determined cells that is strictly anterograde, synaptic, and non-toxic. Moreover, ATLAS shows activity dependence, which may make tracing active circuits that underlie specific behaviors possible.
Collapse
Affiliation(s)
- Jacqueline F. Rivera
- Department of Biology, University of Southern California, Los Angeles, CA 90089
- These authors contributed equally
| | - Weiguang Weng
- Department of Biology, University of Southern California, Los Angeles, CA 90089
- These authors contributed equally
| | - Haoyang Huang
- Department of Biology, University of Southern California, Los Angeles, CA 90089
- These authors contributed equally
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089
| | - Sadhna Rao
- Department of Biology, University of Southern California, Los Angeles, CA 90089
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089
| | - Bruce E. Herring
- Department of Biology, University of Southern California, Los Angeles, CA 90089
| | - Don B. Arnold
- Department of Biology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
14
|
Ding L, Balsamo G, Diamantaki M, Preston-Ferrer P, Burgalossi A. Opto-juxtacellular interrogation of neural circuits in freely moving mice. Nat Protoc 2023; 18:2415-2440. [PMID: 37420087 DOI: 10.1038/s41596-023-00842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2023] [Indexed: 07/09/2023]
Abstract
Neural circuits are assembled from an enormous variety of neuronal cell types. Although significant advances have been made in classifying neurons on the basis of morphological, molecular and electrophysiological properties, understanding how this diversity contributes to brain function during behavior has remained a major experimental challenge. Here, we present an extension to our previous protocol, in which we describe the technical procedures for performing juxtacellular opto-tagging of single neurons in freely moving mice by using Channelrhodopsin-2-expressing viral vectors. This method allows one to selectively target molecularly defined cell classes for in vivo single-cell recordings. The targeted cells can be labeled via juxtacellular procedures and further characterized via post-hoc morphological and molecular analysis. In its current form, the protocol allows multiple recording and labeling attempts to be performed within individual animals, by means of a mechanical pipette micropositioning system. We provide proof-of-principle validation of this technique by recording from Calbindin-positive pyramidal neurons in the mouse hippocampus during spatial exploration; however, this approach can easily be extended to other behaviors and cortical or subcortical areas. The procedures described here, from the viral injection to the histological processing of brain sections, can be completed in ~4-5 weeks.This protocol is an extension to: Nat. Protoc. 9, 2369-2381 (2014): https://doi.org/10.1038/nprot.2014.161.
Collapse
Affiliation(s)
- Lingjun Ding
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Giuseppe Balsamo
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Maria Diamantaki
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Greece
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| |
Collapse
|
15
|
Buzsáki G, Tingley D. Cognition from the Body-Brain Partnership: Exaptation of Memory. Annu Rev Neurosci 2023; 46:191-210. [PMID: 36917822 PMCID: PMC10793243 DOI: 10.1146/annurev-neuro-101222-110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Examination of cognition has historically been approached from language and introspection. However, human language-dependent definitions ignore the evolutionary roots of brain mechanisms and constrain their study in experimental animals. We promote an alternative view, namely that cognition, including memory, can be explained by exaptation and expansion of the circuits and algorithms serving bodily functions. Regulation and protection of metabolic and energetic processes require time-evolving brain computations enabling the organism to prepare for altered future states. Exaptation of such circuits was likely exploited for exploration of the organism's niche. We illustrate that exploration gives rise to a cognitive map, and in turn, environment-disengaged computation allows for mental travel into the past (memory) and the future (planning). Such brain-body interactions not only occur during waking but also persist during sleep. These exaptation steps are illustrated by the dual, endocrine-homeostatic and memory, contributions of the hippocampal system, particularly during hippocampal sharp-wave ripples.
Collapse
Affiliation(s)
- György Buzsáki
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY, USA;
- Center for Neural Science, New York University, New York, NY, USA
| | - David Tingley
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY, USA;
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Osanai H, Nair IR, Kitamura T. Dissecting cell-type-specific pathways in medial entorhinal cortical-hippocampal network for episodic memory. J Neurochem 2023; 166:172-188. [PMID: 37248771 PMCID: PMC10538947 DOI: 10.1111/jnc.15850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Episodic memory, which refers to our ability to encode and recall past events, is essential to our daily lives. Previous research has established that both the entorhinal cortex (EC) and hippocampus (HPC) play a crucial role in the formation and retrieval of episodic memories. However, to understand neural circuit mechanisms behind these processes, it has become necessary to monitor and manipulate the neural activity in a cell-type-specific manner with high temporal precision during memory formation, consolidation, and retrieval in the EC-HPC networks. Recent studies using cell-type-specific labeling, monitoring, and manipulation have demonstrated that medial EC (MEC) contains multiple excitatory neurons that have differential molecular markers, physiological properties, and anatomical features. In this review, we will comprehensively examine the complementary roles of superficial layers of neurons (II and III) and the roles of deeper layers (V and VI) in episodic memory formation and recall based on these recent findings.
Collapse
Affiliation(s)
- Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Indrajith R Nair
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
17
|
Medrano M, Allaoui W, Van Bulck M, Thys S, Makrini-Maleville L, Seuntjens E, De Vos WH, Valjent E, Gaszner B, Van Eeckhaut A, Smolders I, De Bundel D. Neuroanatomical characterization of the Nmu-Cre knock-in mice reveals an interconnected network of unique neuropeptidergic cells. Open Biol 2023; 13:220353. [PMID: 37311538 PMCID: PMC10264104 DOI: 10.1098/rsob.220353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
Neuromedin U (NMU) is an evolutionary conserved neuropeptide that has been implicated in multiple processes, such as circadian regulation, energy homeostasis, reward processing and stress coping. Although the central expression of NMU has been addressed previously, the lack of specific and sensitive tools has prevented a comprehensive characterization of NMU-expressing neurons in the brain. We have generated a knock-in mouse model constitutively expressing Cre recombinase under the Nmu promoter. We have validated the model using a multi-level approach based on quantitative reverse-transcription polymerase chain reactions, in situ hybridization, a reporter mouse line and an adenoviral vector driving Cre-dependent expression of a fluorescent protein. Using the Nmu-Cre mouse, we performed a complete characterization of NMU expression in adult mouse brain, unveiling a potential midline NMU modulatory circuit with the ventromedial hypothalamic nucleus (VMH) as a key node. Moreover, immunohistochemical analysis suggested that NMU neurons in the VMH mainly constitute a unique population of hypothalamic cells. Taken together, our results suggest that Cre expression in the Nmu-Cre mouse model largely reflects NMU expression in the adult mouse brain, without altering endogenous NMU expression. Thus, the Nmu-Cre mouse model is a powerful and sensitive tool to explore the role of NMU neurons in mice.
Collapse
Affiliation(s)
- Mireia Medrano
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Wissal Allaoui
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathias Van Bulck
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Sofie Thys
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology and Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, 2610 Antwerp, Belgium
| | | | - Eve Seuntjens
- Department of Biology, Laboratory of Developmental Neurobiology, KU Leuven, 3000 Leuven, Belgium
| | - Winnok H. De Vos
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology and Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, 2610 Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, 2610 Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), 2610 Wilrijk, Belgium
| | - Emmanuel Valjent
- IGF, Université de Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Bálazs Gaszner
- Medical School, Research Group for Mood Disorders, Department of Anatomy and Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Ann Van Eeckhaut
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ilse Smolders
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Dimitri De Bundel
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| |
Collapse
|
18
|
Wilson AC, Sweeney LB. Spinal cords: Symphonies of interneurons across species. Front Neural Circuits 2023; 17:1146449. [PMID: 37180760 PMCID: PMC10169611 DOI: 10.3389/fncir.2023.1146449] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Vertebrate movement is orchestrated by spinal inter- and motor neurons that, together with sensory and cognitive input, produce dynamic motor behaviors. These behaviors vary from the simple undulatory swimming of fish and larval aquatic species to the highly coordinated running, reaching and grasping of mice, humans and other mammals. This variation raises the fundamental question of how spinal circuits have changed in register with motor behavior. In simple, undulatory fish, exemplified by the lamprey, two broad classes of interneurons shape motor neuron output: ipsilateral-projecting excitatory neurons, and commissural-projecting inhibitory neurons. An additional class of ipsilateral inhibitory neurons is required to generate escape swim behavior in larval zebrafish and tadpoles. In limbed vertebrates, a more complex spinal neuron composition is observed. In this review, we provide evidence that movement elaboration correlates with an increase and specialization of these three basic interneuron types into molecularly, anatomically, and functionally distinct subpopulations. We summarize recent work linking neuron types to movement-pattern generation across fish, amphibians, reptiles, birds and mammals.
Collapse
Affiliation(s)
| | - Lora B. Sweeney
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Lower Austria, Austria
| |
Collapse
|
19
|
Gao C, Gohel CA, Leng Y, Ma J, Goldman D, Levine AJ, Penzo MA. Molecular and spatial profiling of the paraventricular nucleus of the thalamus. eLife 2023; 12:81818. [PMID: 36867023 PMCID: PMC10014079 DOI: 10.7554/elife.81818] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/02/2023] [Indexed: 03/04/2023] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) is known to regulate various cognitive and behavioral processes. However, while functional diversity among PVT circuits has often been linked to cellular differences, the molecular identity and spatial distribution of PVT cell types remain unclear. To address this gap, here we used single nucleus RNA sequencing (snRNA-seq) and identified five molecularly distinct PVT neuronal subtypes in the mouse brain. Additionally, multiplex fluorescent in situ hybridization of top marker genes revealed that PVT subtypes are organized by a combination of previously unidentified molecular gradients. Lastly, comparing our dataset with a recently published single-cell sequencing atlas of the thalamus yielded novel insight into the PVT's connectivity with the cortex, including unexpected innervation of auditory and visual areas. This comparison also revealed that our data contains a largely non-overlapping transcriptomic map of multiple midline thalamic nuclei. Collectively, our findings uncover previously unknown features of the molecular diversity and anatomical organization of the PVT and provide a valuable resource for future investigations.
Collapse
Affiliation(s)
- Claire Gao
- National Institute of Mental HealthBethesdaUnited States
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Chiraag A Gohel
- National Institute on Alcohol Abuse and AlcoholismRockvilleUnited States
| | - Yan Leng
- National Institute of Mental HealthBethesdaUnited States
| | - Jun Ma
- National Institute of Mental HealthBethesdaUnited States
| | - David Goldman
- National Institute on Alcohol Abuse and AlcoholismRockvilleUnited States
| | - Ariel J Levine
- National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Mario A Penzo
- National Institute of Mental HealthBethesdaUnited States
| |
Collapse
|
20
|
Eftekharpour E, Shcholok T. Cre-recombinase systems for induction of neuron-specific knockout models: a guide for biomedical researchers. Neural Regen Res 2023; 18:273-279. [PMID: 35900402 PMCID: PMC9396489 DOI: 10.4103/1673-5374.346541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Gene deletion has been a valuable tool for unraveling the mysteries of molecular biology. Early approaches included gene trapping and gene targetting to disrupt or delete a gene randomly or at a specific location, respectively. Using these technologies in mouse embryos led to the generation of mouse knockout models and many scientific discoveries. The efficacy and specificity of these approaches have significantly increased with the advent of new technology such as clustered regularly interspaced short palindromic repeats for targetted gene deletion. However, several limitations including unwanted off-target gene deletion have hindered their widespread use in the field. Cre-recombinase technology has provided additional capacity for cell-specific gene deletion. In this review, we provide a summary of currently available literature on the application of this system for targetted deletion of neuronal genes. This article has been constructed to provide some background information for the new trainees on the mechanism and to provide necessary information for the design, and application of the Cre-recombinase system through reviewing the most frequent promoters that are currently available for genetic manipulation of neurons. We additionally will provide a summary of the latest technological developments that can be used for targeting neurons. This may also serve as a general guide for the selection of appropriate models for biomedical research.
Collapse
|
21
|
Edwards-Faret G, de Vin F, Slezak M, Gollenbeck L, Karaman R, Shinmyo Y, Batiuk MY, Pando CM, Urschitz J, Rincon MY, Moisyadi S, Schnütgen F, Kawasaki H, Schmucker D, Holt MG. A New Technical Approach for Cross-species Examination of Neuronal Wiring and Adult Neuron-glia Functions. Neuroscience 2023; 508:40-51. [PMID: 36464177 DOI: 10.1016/j.neuroscience.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Advances in single cell sequencing have enabled the identification of a large number of genes, expressed in many different cell types, and across a variety of model organisms. In particular, the nervous system harbors an immense number of interacting cell types, which are poorly characterized. Future loss- and gain-of-function experiments will be essential in determining how novel genes play critical roles in diverse cellular, as well as evolutionarily adapted, contexts. However, functional analysis across species is often hampered by technical limitations, in non-genetic animal systems. Here, we describe a new single plasmid system, misPiggy. The system is based around the hyperactive piggyBac transposon system, which combines stable genomic integration of transgenes (for long-term expression) with large cargo capacity. Taking full advantage of these characteristics, we engineered novel expression modules into misPiggy that allow for cell-type specific loss- and gain-of-gene function. These modules work widely across species from frog to ferret. As a proof of principle, we present a loss-of-function analysis of the neuronal receptor Deleted in Colorectal Cancer (DCC) in retinal ganglion cells (RGCs) of Xenopus tropicalis tadpoles. Single axon tracings of mosaic knock-out cells reveal a specific cell-intrinsic requirement of DCC, specifically in axonal arborization within the frog tectum, rather than retina-to-brain axon guidance. Furthermore, we report additional technical advances that enable temporal control of knock-down or gain-of-function analysis. We applied this to visualize and manipulate labeled neurons, astrocytes and other glial cells in the central nervous system (CNS) of mouse, rat and ferret. We propose that misPiggy will be a valuable tool for rapid, flexible and cost-effective screening of gene function across a variety of animal models.
Collapse
Affiliation(s)
- Gabriela Edwards-Faret
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium; Neuronal Wiring Group, Life & Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, Bonn D53115, Germany
| | - Filip de Vin
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Michal Slezak
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Lennart Gollenbeck
- Neuronal Wiring Group, Life & Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, Bonn D53115, Germany
| | - Ruçhan Karaman
- VIB Center for Cancer Biology, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Oncology, Herestraat 49, Leuven 3000, Belgium
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medicine, Kanazawa University, Ishikawa 920-1192, Japan
| | - Mykhailo Y Batiuk
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Carmen Menacho Pando
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Johann Urschitz
- Institute for Biogenesis Research, University of Hawaii, 1960 East-West Rd. E-124, Honolulu, HI 96822, USA
| | - Melvin Y Rincon
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Stefan Moisyadi
- Institute for Biogenesis Research, University of Hawaii, 1960 East-West Rd. E-124, Honolulu, HI 96822, USA
| | - Frank Schnütgen
- Department of Medicine 2, University Hospital Frankfurt, Goethe University, Theodor Stern Kai 7, Frankfurt am Main D60590, Germany; LOEWE Center for Cell and Gene Therapy, University Hospital Frankfurt, Goethe University, Theodor Stern Kai 7, Frankfurt am Main D60590, Germany; FCI, Frankfurt Cancer Institute, University Hospital Frankfurt, Goethe University, Theodor Stern Kai 7, Frankfurt am Main D60590, Germany
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medicine, Kanazawa University, Ishikawa 920-1192, Japan
| | - Dietmar Schmucker
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium; Neuronal Wiring Group, Life & Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, Bonn D53115, Germany; Leuven Brain Institute, Herestraat 49, Leuven 3000, Belgium.
| | - Matthew G Holt
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium; Leuven Brain Institute, Herestraat 49, Leuven 3000, Belgium; University of Porto, Instituto de Investigaçāo e Inovaçāo em Saúde (i3S), Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
22
|
Lu Z, Xu CS, Hayworth KJ, Pang S, Shinomiya K, Plaza SM, Scheffer LK, Rubin GM, Hess HF, Rivlin PK, Meinertzhagen IA. En bloc preparation of Drosophila brains enables high-throughput FIB-SEM connectomics. Front Neural Circuits 2022; 16:917251. [PMID: 36589862 PMCID: PMC9801301 DOI: 10.3389/fncir.2022.917251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/22/2022] [Indexed: 12/23/2022] Open
Abstract
Deriving the detailed synaptic connections of an entire nervous system is the unrealized goal of the nascent field of connectomics. For the fruit fly Drosophila, in particular, we need to dissect the brain, connectives, and ventral nerve cord as a single continuous unit, fix and stain it, and undertake automated segmentation of neuron membranes. To achieve this, we designed a protocol using progressive lowering of temperature dehydration (PLT), a technique routinely used to preserve cellular structure and antigenicity. We combined PLT with low temperature en bloc staining (LTS) and recover fixed neurons as round profiles with darkly stained synapses, suitable for machine segmentation and automatic synapse detection. Here we report three different PLT-LTS methods designed to meet the requirements for FIB-SEM imaging of the Drosophila brain. These requirements include: good preservation of ultrastructural detail, high level of en bloc staining, artifact-free microdissection, and smooth hot-knife cutting to reduce the brain to dimensions suited to FIB-SEM. In addition to PLT-LTS, we designed a jig to microdissect and pre-fix the fly's delicate brain and central nervous system. Collectively these methods optimize morphological preservation, allow us to image the brain usually at 8 nm per voxel, and simultaneously speed the formerly slow rate of FIB-SEM imaging.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS, Canada,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - C. Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, United States
| | - Kenneth J. Hayworth
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States,Yale School of Medicine, New Haven, CT, United States
| | - Kazunori Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Stephen M. Plaza
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Louis K. Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Gerald M. Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Harald F. Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Patricia K. Rivlin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States,Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States,*Correspondence: Patricia K. Rivlin,
| | - Ian A. Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS, Canada,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States,*Correspondence: Patricia K. Rivlin,
| |
Collapse
|
23
|
Le Gratiet KL, Anderson CK, Puente N, Grandes P, Copas C, Nahirney PC, Delaney KR, Nashmi R. Differential Subcellular Distribution and Release Dynamics of Cotransmitted Cholinergic and GABAergic Synaptic Inputs Modify Dopaminergic Neuronal Excitability. J Neurosci 2022; 42:8670-8693. [PMID: 36195440 PMCID: PMC9671585 DOI: 10.1523/jneurosci.2514-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
We identified three types of monosynaptic cholinergic inputs spatially arranged onto medial substantia nigra dopaminergic neurons in male and female mice: cotransmitted acetylcholine (ACh)/GABA, GABA-only, and ACh only. There was a predominant GABA-only conductance along lateral dendrites and soma-centered ACh/GABA cotransmission. In response to repeated stimulation, the GABA conductance found on lateral dendrites decremented less than the proximally located GABA conductance, and was more effective at inhibiting action potentials. While soma-localized ACh/GABA cotransmission showed depression of the GABA component with repeated stimulation, ACh-mediated nicotinic responses were largely maintained. We investigated whether this differential change in inhibitory/excitatory inputs leads to altered neuronal excitability. We found that a depolarizing current or glutamate preceded by cotransmitted ACh/GABA was more effective in eliciting an action potential compared with current, glutamate, or ACh/GABA alone. This enhanced excitability was abolished with nicotinic receptor inhibitors, and modulated by T- and L-type calcium channels, thus establishing that activity of multiple classes of ion channels integrates to shape neuronal excitability.SIGNIFICANCE STATEMENT Our laboratory has previously discovered a population of substantia nigra dopaminegic neurons (DA) that receive cotransmitted ACh and GABA. This study used subcellular optogenetic stimulation of cholinergic presynaptic terminals to map the functional ACh and GABA synaptic inputs across the somatodendritic extent of substantia nigra DA neurons. We determined spatially clustered GABA-only inputs on the lateral dendrites while cotransmitted ACh and GABA clustered close to the soma. We have shown that the action of GABA and ACh in cotransmission spatially clustered near the soma play a critical role in enhancing glutamate-mediated neuronal excitability through the activation of T- and L-type voltage-gated calcium channels.
Collapse
Affiliation(s)
| | | | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country Universidad del Pais Vasco / Euskal Herriko Unibertsitatea, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, E-48940, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country Universidad del Pais Vasco / Euskal Herriko Unibertsitatea, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, E-48940, Leioa, Spain
| | - Charlotte Copas
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Patrick C Nahirney
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Kerry R Delaney
- Department of Biology
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Raad Nashmi
- Department of Biology
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
24
|
Arias A, Manubens-Gil L, Dierssen M. Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Front Mol Neurosci 2022; 15:958222. [PMID: 36211979 PMCID: PMC9538927 DOI: 10.3389/fnmol.2022.958222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
A paradigm shift is occurring in neuroscience and in general in life sciences converting biomedical research from a descriptive discipline into a quantitative, predictive, actionable science. Living systems are becoming amenable to quantitative description, with profound consequences for our ability to predict biological phenomena. New experimental tools such as tissue clearing, whole-brain imaging, and genetic engineering technologies have opened the opportunity to embrace this new paradigm, allowing to extract anatomical features such as cell number, their full morphology, and even their structural connectivity. These tools will also allow the exploration of new features such as their geometrical arrangement, within and across brain regions. This would be especially important to better characterize brain function and pathological alterations in neurological, neurodevelopmental, and neurodegenerative disorders. New animal models for mapping fluorescent protein-expressing neurons and axon pathways in adult mice are key to this aim. As a result of both developments, relevant cell populations with endogenous fluorescence signals can be comprehensively and quantitatively mapped to whole-brain images acquired at submicron resolution. However, they present intrinsic limitations: weak fluorescent signals, unequal signal strength across the same cell type, lack of specificity of fluorescent labels, overlapping signals in cell types with dense labeling, or undetectable signal at distal parts of the neurons, among others. In this review, we discuss the recent advances in the development of fluorescent transgenic mouse models that overcome to some extent the technical and conceptual limitations and tradeoffs between different strategies. We also discuss the potential use of these strains for understanding disease.
Collapse
Affiliation(s)
- Adrian Arias
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Linus Manubens-Gil
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Mara Dierssen
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
25
|
Sumser A, Joesch M, Jonas P, Ben-Simon Y. Fast, high-throughput production of improved rabies viral vectors for specific, efficient and versatile transsynaptic retrograde labeling. eLife 2022; 11:e79848. [PMID: 36040301 PMCID: PMC9477495 DOI: 10.7554/elife.79848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
To understand the function of neuronal circuits, it is crucial to disentangle the connectivity patterns within the network. However, most tools currently used to explore connectivity have low throughput, low selectivity, or limited accessibility. Here, we report the development of an improved packaging system for the production of the highly neurotropic RVdGenvA-CVS-N2c rabies viral vectors, yielding titers orders of magnitude higher with no background contamination, at a fraction of the production time, while preserving the efficiency of transsynaptic labeling. Along with the production pipeline, we developed suites of 'starter' AAV and bicistronic RVdG-CVS-N2c vectors, enabling retrograde labeling from a wide range of neuronal populations, tailored for diverse experimental requirements. We demonstrate the power and flexibility of the new system by uncovering hidden local and distal inhibitory connections in the mouse hippocampal formation and by imaging the functional properties of a cortical microcircuit across weeks. Our novel production pipeline provides a convenient approach to generate new rabies vectors, while our toolkit flexibly and efficiently expands the current capacity to label, manipulate and image the neuronal activity of interconnected neuronal circuits in vitro and in vivo.
Collapse
Affiliation(s)
- Anton Sumser
- Institute of Science and Technology Austria (ISTA)KlosterneuburgAustria
| | - Maximilian Joesch
- Institute of Science and Technology Austria (ISTA)KlosterneuburgAustria
| | - Peter Jonas
- Institute of Science and Technology Austria (ISTA)KlosterneuburgAustria
| | - Yoav Ben-Simon
- Institute of Science and Technology Austria (ISTA)KlosterneuburgAustria
- Department of Neurophysiology and Neuropharmacology, Vienna Medical UniversityViennaAustria
- Allen Institute for Brain ScienceSeattle, WAUnited States
| |
Collapse
|
26
|
Kosten L, Emmi SA, Missault S, Keliris GA. Combining magnetic resonance imaging with readout and/or perturbation of neural activity in animal models: Advantages and pitfalls. Front Neurosci 2022; 16:938665. [PMID: 35911983 PMCID: PMC9334914 DOI: 10.3389/fnins.2022.938665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
One of the main challenges in brain research is to link all aspects of brain function: on a cellular, systemic, and functional level. Multimodal neuroimaging methodology provides a continuously evolving platform. Being able to combine calcium imaging, optogenetics, electrophysiology, chemogenetics, and functional magnetic resonance imaging (fMRI) as part of the numerous efforts on brain functional mapping, we have a unique opportunity to better understand brain function. This review will focus on the developments in application of these tools within fMRI studies and highlight the challenges and choices neurosciences face when designing multimodal experiments.
Collapse
Affiliation(s)
- Lauren Kosten
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Serena Alexa Emmi
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Stephan Missault
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Foundation for Research & Technology – Hellas, Heraklion, Greece
| |
Collapse
|
27
|
Wang XJ. Theory of the Multiregional Neocortex: Large-Scale Neural Dynamics and Distributed Cognition. Annu Rev Neurosci 2022; 45:533-560. [PMID: 35803587 DOI: 10.1146/annurev-neuro-110920-035434] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The neocortex is a complex neurobiological system with many interacting regions. How these regions work together to subserve flexible behavior and cognition has become increasingly amenable to rigorous research. Here, I review recent experimental and theoretical work on the modus operandi of a multiregional cortex. These studies revealed several general principles for the neocortical interareal connectivity, low-dimensional macroscopic gradients of biological properties across cortical areas, and a hierarchy of timescales for information processing. Theoretical work suggests testable predictions regarding differential excitation and inhibition along feedforward and feedback pathways in the cortical hierarchy. Furthermore, modeling of distributed working memory and simple decision-making has given rise to a novel mathematical concept, dubbed bifurcation in space, that potentially explains how different cortical areas, with a canonical circuit organization but gradients of biological heterogeneities, are able to subserve their respective (e.g., sensory coding versus executive control) functions in a modularly organized brain.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA;
| |
Collapse
|
28
|
Russell LE, Dalgleish HWP, Nutbrown R, Gauld OM, Herrmann D, Fişek M, Packer AM, Häusser M. All-optical interrogation of neural circuits in behaving mice. Nat Protoc 2022; 17:1579-1620. [PMID: 35478249 PMCID: PMC7616378 DOI: 10.1038/s41596-022-00691-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/09/2022] [Indexed: 12/22/2022]
Abstract
Recent advances combining two-photon calcium imaging and two-photon optogenetics with computer-generated holography now allow us to read and write the activity of large populations of neurons in vivo at cellular resolution and with high temporal resolution. Such 'all-optical' techniques enable experimenters to probe the effects of functionally defined neurons on neural circuit function and behavioral output with new levels of precision. This greatly increases flexibility, resolution, targeting specificity and throughput compared with alternative approaches based on electrophysiology and/or one-photon optogenetics and can interrogate larger and more densely labeled populations of neurons than current voltage imaging-based implementations. This protocol describes the experimental workflow for all-optical interrogation experiments in awake, behaving head-fixed mice. We describe modular procedures for the setup and calibration of an all-optical system (~3 h), the preparation of an indicator and opsin-expressing and task-performing animal (~3-6 weeks), the characterization of functional and photostimulation responses (~2 h per field of view) and the design and implementation of an all-optical experiment (achievable within the timescale of a normal behavioral experiment; ~3-5 h per field of view). We discuss optimizations for efficiently selecting and targeting neuronal ensembles for photostimulation sequences, as well as generating photostimulation response maps from the imaging data that can be used to examine the impact of photostimulation on the local circuit. We demonstrate the utility of this strategy in three brain areas by using different experimental setups. This approach can in principle be adapted to any brain area to probe functional connectivity in neural circuits and investigate the relationship between neural circuit activity and behavior.
Collapse
Affiliation(s)
- Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Henry W P Dalgleish
- Wolfson Institute for Biomedical Research, University College London, London, UK
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Rebecca Nutbrown
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Oliver M Gauld
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Dustin Herrmann
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mehmet Fişek
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College London, London, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
29
|
Chen HS, Zhang XL, Yang RR, Wang GL, Zhu XY, Xu YF, Wang DY, Zhang N, Qiu S, Zhan LJ, Shen ZM, Xu XH, Long G, Xu C. An intein-split transactivator for intersectional neural imaging and optogenetic manipulation. Nat Commun 2022; 13:3605. [PMID: 35739125 PMCID: PMC9226064 DOI: 10.1038/s41467-022-31255-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The cell-type-specific recording and manipulation is instrumental to disentangle causal neural mechanisms in physiology and behavior and increasingly requires intersectional control; however, current approaches are largely limited by the number of intersectional features, incompatibility of common effectors and insufficient gene expression. Here, we utilized the protein-splicing technique mediated by intervening sequences (intein) and devised an intein-based intersectional synthesis of transactivator (IBIST) to selectively control gene expression of common effectors in multiple-feature defined cell types in mice. We validated the specificity and sufficiency of IBIST to control fluorophores, optogenetic opsins and Ca2+ indicators in various intersectional conditions. The IBIST-based Ca2+ imaging showed that the IBIST can intersect five features and that hippocampal neurons tune differently to distinct emotional stimuli depending on the pattern of projection targets. Collectively, the IBIST multiplexes the capability to intersect cell-type features and controls common effectors to effectively regulate gene expression, monitor and manipulate neural activities. Cell-type-specific recording and manipulation is important for understanding neural circuits. Here the authors describe molecular tools to access cell types based on genetics and connectivity in the brain, and demonstrated the utility of these tools in neural recording and manipulations.
Collapse
Affiliation(s)
- Hao-Shan Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Long Zhang
- University of the Chinese Academy of Sciences, Beijing, 100049, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Rong-Rong Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guang-Ling Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xin-Yue Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuan-Fang Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dan-Yang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Na Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shou Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Jie Zhan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhi-Ming Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gang Long
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China. .,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
| | - Chun Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
30
|
Zheng N, Li M, Wu Y, Kaewborisuth C, Li Z, Gui Z, Wu J, Cai A, Lin K, Su KP, Xiang H, Tian X, Manyande A, Xu F, Wang J. A novel technology for in vivo detection of cell type-specific neural connection with AQP1-encoding rAAV2-retro vector and metal-free MRI. Neuroimage 2022; 258:119402. [PMID: 35732245 DOI: 10.1016/j.neuroimage.2022.119402] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 01/10/2023] Open
Abstract
A mammalian brain contains numerous neurons with distinct cell types for complex neural circuits. Virus-based circuit tracing tools are powerful in tracking the interaction among the different brain regions. However, detecting brain-wide neural networks in vivo remains challenging since most viral tracing systems rely on postmortem optical imaging. We developed a novel approach that enables in vivo detection of brain-wide neural connections based on metal-free magnetic resonance imaging (MRI). The recombinant adeno-associated virus (rAAV) with retrograde ability, the rAAV2-retro, encoding the human water channel aquaporin 1 (AQP1) MRI reporter gene was generated to label neural connections. The mouse was micro-injected with the virus at the Caudate Putamen (CPU) region and subjected to detection with Diffusion-weighted MRI (DWI). The prominent structure of the CPU-connected network was clearly defined. In combination with a Cre-loxP system, rAAV2-retro expressing Cre-dependent AQP1 provides a CPU-connected network of specific type neurons. Here, we established a sensitive, metal-free MRI-based strategy for in vivo detection of cell type-specific neural connections in the whole brain, which could visualize the dynamic changes of neural networks in rodents and potentially in non-human primates.
Collapse
Affiliation(s)
- Ning Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Mei Li
- The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Zhen Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhu Gui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kuan-Pin Su
- Department of Psychiatry, China Medical University Hospital, Taichung City, Taiwan, China
| | - Hongbing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex, TW8 9GA, UK
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
31
|
Zhang Y, Wang J, Li J, Chen Y, Sun J, Lu Z, Li Y, Liu T. Functional analysis of mutations endowing rAAV2-retro with retrograde tracing capacity. Neurosci Lett 2022; 784:136746. [PMID: 35718237 DOI: 10.1016/j.neulet.2022.136746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Recombinant adeno-associated viruses (rAAVs) are widespread vectors in neuroscience research. However, the nearly absent retrograde access to projection neurons hampers their application in functional dissection of neural circuits and in therapeutic intervention. Recently, engineering of the AAV2 capsid has generated an AAV variant, called rAAV2-retro, with exceptional retrograde functionality. This variant comprises a 10-mer peptide insertion at residue 587 and two point mutations (LADQDYTKTA + V708I + N382D). Here, we evaluated the contribution of each mutation to retrograde transport in prefrontal cortex -striatum and amygdala-striatum pathways, respectively. Results showed that disruption of the inserted decapeptide almost completely abolishes the retrograde access to neurons projecting to striatum. Eliminating N382D has little effect on the retrograde functionality. Restoring another mutation V708I, however, even improves its performance in amygdala-striatum pathway. Parallel comparison within same animal further confirms this conflicting effect of V708I. These results demonstrate a pivotal role of decapeptide insertion in gaining the capacity of retrograde transport and highlight a neural circuit-dependent contribution of V708I. It suggests constant and custom engineering of rAAV2-retro might be required to tackle the challenge of tremendous neuronal heterogeneity.
Collapse
Affiliation(s)
- Yujing Zhang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Wang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiamin Li
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yefei Chen
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Jing Sun
- Department of Anesthesiology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen 518055, China
| | - Zhonghua Lu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Yuantao Li
- Department of Anesthesiology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen 518055, China.
| | - Taian Liu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China.
| |
Collapse
|
32
|
Sokhadze G, Campbell PW, Charalambakis N, Govindaiah G, Guido W, McGee AW. Cre driver mouse lines for thalamocortical circuit mapping. J Comp Neurol 2022; 530:1049-1063. [PMID: 34545582 PMCID: PMC9891227 DOI: 10.1002/cne.25248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 02/04/2023]
Abstract
Subpopulations of neurons and associated neural circuits can be targeted in mice with genetic tools in a highly selective manner for visualization and manipulation. However, there are not well-defined Cre "driver" lines that target the expression of Cre recombinase to thalamocortical (TC) neurons. Here, we characterize three Cre driver lines for the nuclei of the dorsal thalamus: Oligodendrocyte transcription factor 3 (Olig3)-Cre, histidine decarboxylase (HDC)-Cre, and corticotropin-releasing hormone (CRH)-Cre. We examined the postnatal distribution of Cre expression for each of these lines with the Cre-dependent reporter CAG-tdTomato (Ai9). Cre-dependent expression of tdTomato reveals that Olig3-Cre expresses broadly within the thalamus, including TC neurons and interneurons, while HDC-Cre and CRH-Cre each have unique patterns of expression restricted to TC neurons within and across the sensory relay nuclei of the dorsal thalamus. Cre expression is present by the time of natural birth in all three lines, underscoring their utility for developmental studies. To demonstrate the utility of these Cre drivers for studying sensory TC circuitry, we targeted the expression of channelrhodopsin-2 to thalamus from the CAG-COP4*H134R/EYFP (Ai32) allele with either HDC-Cre or CRH-Cre. Optogenetic activation of TC afferents in primary visual cortex was sufficient to measure frequency-dependent depression. Thus, these Cre drivers provide selective Cre-dependent gene expression in thalamus suitable for both anatomical and functional studies.
Collapse
Affiliation(s)
- Guela Sokhadze
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Peter W Campbell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Naomi Charalambakis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Gubbi Govindaiah
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Aaron W McGee
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
33
|
Guardamagna M, Eichler R, Pedrosa R, Aarts AAA, Meyer AF, Battaglia F. The Hybrid Drive: a chronic implant device combining tetrode arrays with silicon probes for layer-resolved ensemble electrophysiology in freely moving mice. J Neural Eng 2022; 19. [PMID: 35421850 DOI: 10.1088/1741-2552/ac6771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
Objective. Understanding the function of brain cortices requires simultaneous investigation at multiple spatial and temporal scales and to link neural activity to an animal's behavior. A major challenge is to measure within- and across-layer information in actively behaving animals, in particular in mice that have become a major species in neuroscience due to an extensive genetic toolkit. Here we describe the Hybrid Drive, a new chronic implant for mice that combines tetrode arrays to record within-layer information with silicon probes to simultaneously measure across-layer information.Approach. The design of our device combines up to 14 tetrodes and 2 silicon probes, that can be arranged in custom arrays to generate unique areas-specific (and multi-area) layouts.Main Results. We show that large numbers of neurons and layer-resolved local field potentials can be recorded from the same brain region across weeks without loss in electrophysiological signal quality. The drive's lightweight structure (~3.5 g) leaves animal behavior largely unchanged, compared to other tetrode drives, during a variety of experimental paradigms. We demonstrate how the data collected with the Hybrid Drive allow state-of-the-art analysis in a series of experiments linking the spiking activity of CA1 pyramidal layer neurons to the oscillatory activity across hippocampal layers.Significance. Our new device fits a gap in the existing technology and increases the range and precision of questions that can be addressed about neural computations in freely behaving mice.
Collapse
Affiliation(s)
| | - Ronny Eichler
- Radboud University, Heyendaalseweg 135, Nijmegen, 6500 HC, NETHERLANDS
| | - Rafael Pedrosa
- Radboud University, Heyendaalseweg 135, Nijmegen, 6500 HC, NETHERLANDS
| | - Arno A A Aarts
- ATLAS Neuroengineering, Kapeldreef 75, Leuven, B-3000, BELGIUM
| | - Arne F Meyer
- Radboud University, Heyendaalseweg 135, Nijmegen, 6500 HC, NETHERLANDS
| | | |
Collapse
|
34
|
Newmaster KT, Kronman FA, Wu YT, Kim Y. Seeing the Forest and Its Trees Together: Implementing 3D Light Microscopy Pipelines for Cell Type Mapping in the Mouse Brain. Front Neuroanat 2022; 15:787601. [PMID: 35095432 PMCID: PMC8794814 DOI: 10.3389/fnana.2021.787601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
The brain is composed of diverse neuronal and non-neuronal cell types with complex regional connectivity patterns that create the anatomical infrastructure underlying cognition. Remarkable advances in neuroscience techniques enable labeling and imaging of these individual cell types and their interactions throughout intact mammalian brains at a cellular resolution allowing neuroscientists to examine microscopic details in macroscopic brain circuits. Nevertheless, implementing these tools is fraught with many technical and analytical challenges with a need for high-level data analysis. Here we review key technical considerations for implementing a brain mapping pipeline using the mouse brain as a primary model system. Specifically, we provide practical details for choosing methods including cell type specific labeling, sample preparation (e.g., tissue clearing), microscopy modalities, image processing, and data analysis (e.g., image registration to standard atlases). We also highlight the need to develop better 3D atlases with standardized anatomical labels and nomenclature across species and developmental time points to extend the mapping to other species including humans and to facilitate data sharing, confederation, and integrative analysis. In summary, this review provides key elements and currently available resources to consider while developing and implementing high-resolution mapping methods.
Collapse
Affiliation(s)
- Kyra T Newmaster
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| | - Fae A Kronman
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
35
|
Gillespie TH, Tripathy SJ, Sy MF, Martone ME, Hill SL. The Neuron Phenotype Ontology: A FAIR Approach to Proposing and Classifying Neuronal Types. Neuroinformatics 2022; 20:793-809. [PMID: 35267146 PMCID: PMC9547803 DOI: 10.1007/s12021-022-09566-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/31/2022]
Abstract
The challenge of defining and cataloging the building blocks of the brain requires a standardized approach to naming neurons and organizing knowledge about their properties. The US Brain Initiative Cell Census Network, Human Cell Atlas, Blue Brain Project, and others are generating vast amounts of data and characterizing large numbers of neurons throughout the nervous system. The neuroscientific literature contains many neuron names (e.g. parvalbumin-positive interneuron or layer 5 pyramidal cell) that are commonly used and generally accepted. However, it is often unclear how such common usage types relate to many evidence-based types that are proposed based on the results of new techniques. Further, comparing different types across labs remains a significant challenge. Here, we propose an interoperable knowledge representation, the Neuron Phenotype Ontology (NPO), that provides a standardized and automatable approach for naming cell types and normalizing their constituent phenotypes using identifiers from community ontologies as a common language. The NPO provides a framework for systematically organizing knowledge about cellular properties and enables interoperability with existing neuron naming schemes. We evaluate the NPO by populating a knowledge base with three independent cortical neuron classifications derived from published data sets that describe neurons according to molecular, morphological, electrophysiological, and synaptic properties. Competency queries to this knowledge base demonstrate that the NPO knowledge model enables interoperability between the three test cases and neuron names commonly used in the literature.
Collapse
Affiliation(s)
| | - Shreejoy J. Tripathy
- Department of Psychiatry, University of Toronto, Toronto, ON Canada ,Department of Physiology, University of Toronto, Toronto, ON Canada ,Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Mohameth François Sy
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | | | - Sean L. Hill
- Department of Psychiatry, University of Toronto, Toronto, ON Canada ,Department of Physiology, University of Toronto, Toronto, ON Canada ,Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON Canada ,Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| |
Collapse
|
36
|
Engel TA, Schölvinck ML, Lewis CM. The diversity and specificity of functional connectivity across spatial and temporal scales. Neuroimage 2021; 245:118692. [PMID: 34751153 PMCID: PMC9531047 DOI: 10.1016/j.neuroimage.2021.118692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
Macroscopic neuroimaging modalities in humans have revealed the organization of brain-wide activity into distributed functional networks that re-organize according to behavioral demands. However, the inherent coarse-graining of macroscopic measurements conceals the diversity and specificity in responses and connectivity of many individual neurons contained in each local region. New invasive approaches in animals enable recording and manipulating neural activity at meso- and microscale resolution, with cell-type specificity and temporal precision down to milliseconds. Determining how brain-wide activity patterns emerge from interactions across spatial and temporal scales will allow us to identify the key circuit mechanisms contributing to global brain states and how the dynamic activity of these states enables adaptive behavior.
Collapse
Affiliation(s)
- Tatiana A Engel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States.
| | - Marieke L Schölvinck
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany.
| | - Christopher M Lewis
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zürich, Zürich 8057, Switzerland.
| |
Collapse
|
37
|
Zou L, Tian H, Guan S, Ding J, Gao L, Wang J, Fang Y. Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology. Nat Commun 2021; 12:5871. [PMID: 34620851 PMCID: PMC8497603 DOI: 10.1038/s41467-021-26168-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/17/2021] [Indexed: 11/12/2022] Open
Abstract
Optogenetics combined with electrical recording has emerged as a powerful tool for investigating causal relationships between neural circuit activity and function. However, the size of optogenetically manipulated tissue is typically 1-2 orders of magnitude larger than that can be electrically recorded, rendering difficulty for assigning functional roles of recorded neurons. Here we report a viral vector-delivery optrode (VVD-optrode) system for precise integration of optogenetics and electrophysiology in the brain. Our system consists of flexible microelectrode filaments and fiber optics that are simultaneously self-assembled in a nanoliter-scale, viral vector-delivery polymer carrier. The highly localized delivery and neuronal expression of opsin genes at microelectrode-tissue interfaces ensure high spatial congruence between optogenetically manipulated and electrically recorded neuronal populations. We demonstrate that this multifunctional system is capable of optogenetic manipulation and electrical recording of spatially defined neuronal populations for three months, allowing precise and long-term studies of neural circuit functions. The authors present a viral vector-delivery optrode system to integrate optogenetics and electrophysiology. The flexible microelectrode filaments and fiber optics self-assemble in a nanoliter-scale, viral vector-delivery polymer carrier for localized delivery and expression of opsin genes at microelectrode-tissue interfaces.
Collapse
Affiliation(s)
- Liang Zou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huihui Tian
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Shouliang Guan
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianfei Ding
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lei Gao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfen Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ying Fang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
38
|
Speed A, Haider B. Probing mechanisms of visual spatial attention in mice. Trends Neurosci 2021; 44:822-836. [PMID: 34446296 PMCID: PMC8484049 DOI: 10.1016/j.tins.2021.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
The role of spatial attention for visual perception has been thoroughly studied in primates, but less so in mice. Several behavioral tasks in mice reveal spatial attentional effects, with similarities to observations in primates. Pairing these tasks with large-scale, cell-type-specific techniques could enable deeper access to underlying mechanisms, and help define the utility and limitations of resolving attentional effects on visual perception and neural activity in mice. In this Review, we evaluate behavioral and neural evidence for visual spatial attention in mice; assess how specializations of the mouse visual system and behavioral repertoire impact interpretation of spatial attentional effects; and outline how several measurement and manipulation techniques in mice could precisely test and refine models of attentional modulation across scales.
Collapse
Affiliation(s)
- Anderson Speed
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Bilal Haider
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
| |
Collapse
|
39
|
Matteucci G, Zattera B, Bellacosa Marotti R, Zoccolan D. Rats spontaneously perceive global motion direction of drifting plaids. PLoS Comput Biol 2021; 17:e1009415. [PMID: 34520476 PMCID: PMC8462730 DOI: 10.1371/journal.pcbi.1009415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/24/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022] Open
Abstract
Computing global motion direction of extended visual objects is a hallmark of primate high-level vision. Although neurons selective for global motion have also been found in mouse visual cortex, it remains unknown whether rodents can combine multiple motion signals into global, integrated percepts. To address this question, we trained two groups of rats to discriminate either gratings (G group) or plaids (i.e., superpositions of gratings with different orientations; P group) drifting horizontally along opposite directions. After the animals learned the task, we applied a visual priming paradigm, where presentation of the target stimulus was preceded by the brief presentation of either a grating or a plaid. The extent to which rat responses to the targets were biased by such prime stimuli provided a measure of the spontaneous, perceived similarity between primes and targets. We found that gratings and plaids, when used as primes, were equally effective at biasing the perception of plaid direction for the rats of the P group. Conversely, for the G group, only the gratings acted as effective prime stimuli, while the plaids failed to alter the perception of grating direction. To interpret these observations, we simulated a decision neuron reading out the representations of gratings and plaids, as conveyed by populations of either component or pattern cells (i.e., local or global motion detectors). We concluded that the findings for the P group are highly consistent with the existence of a population of pattern cells, playing a functional role similar to that demonstrated in primates. We also explored different scenarios that could explain the failure of the plaid stimuli to elicit a sizable priming magnitude for the G group. These simulations yielded testable predictions about the properties of motion representations in rodent visual cortex at the single-cell and circuitry level, thus paving the way to future neurophysiology experiments.
Collapse
Affiliation(s)
- Giulio Matteucci
- Visual Neuroscience Lab, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Benedetta Zattera
- Visual Neuroscience Lab, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Davide Zoccolan
- Visual Neuroscience Lab, International School for Advanced Studies (SISSA), Trieste, Italy
- * E-mail:
| |
Collapse
|
40
|
Sternson SM, Bleakman D. Chemogenetics: drug-controlled gene therapies for neural circuit disorders. ACTA ACUST UNITED AC 2021; 6:1079-1094. [PMID: 34422319 PMCID: PMC8376173 DOI: 10.18609/cgti.2020.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many patients with nervous system disorders have considerable unmet clinical needs or suffer debilitating drug side effects. A major limitation of exiting treatment approaches is that traditional small molecule pharmacotherapy lacks sufficient specificity to effectively treat many neurological diseases. Chemogenetics is a new gene therapy technology that targets an engineered receptor to cell types involved in nervous system dysfunction, enabling highly selective drug-controlled neuromodulation. Here, we discuss chemogenetic platforms and considerations for their potential application as human nervous system therapies.
Collapse
Affiliation(s)
- Scott M Sternson
- Janelia Research Campus, HHMI, 19700 Helix Dr. Ashburn, VA 20147, USA
| | - David Bleakman
- Redpin Therapeutics, 1329, Madison Avenue, Suite 125, New York, NY 10029, USA
| |
Collapse
|
41
|
Nishio N, Hayashi K, Ishikawa AW, Yoshimura Y. The role of early visual experience in the development of spatial-frequency preference in the primary visual cortex. J Physiol 2021; 599:4131-4152. [PMID: 34275157 DOI: 10.1113/jp281463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/15/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The mature functioning of the primary visual cortex depends on postnatal visual experience, while the orientation/direction preference is established just after eye-opening, independently of visual experience. In this study, we find that visual experience is required for the normal development of spatial-frequency (SF) preference in mouse primary visual cortex. We show that age- and experience-dependent shifts in optimal SFs towards higher frequencies occurred similarly in excitatory neurons and parvalbumin-positive interneurons. We also show that some excitatory and parvalbumin-positive neurons preferentially responded to visual stimuli consisting of very high SFs and posterior directions, and that the preference was established at earlier developmental stages than the SF preference in the standard frequency range. These results suggest that early visual experience is required for the development of SF representation and shed light on the experience-dependent developmental mechanisms underlying visual cortical functions. ABSTRACT Early visual experience is crucial for the maturation of visual cortical functions. It has been demonstrated that the orientation and direction preferences in individual neurons of the primary visual cortex are well established immediately after eye-opening. The postnatal development of spatial frequency (SF) tuning and its dependence on visual experience, however, has not been thoroughly quantified. In this study, macroscopic imaging with flavoprotein autofluorescence revealed that the optimal SFs shift towards higher frequency values during normal development in mouse primary visual cortex. This developmental shift was impaired by binocular deprivation during the sensitive period, postnatal 3 weeks (PW3) to PW6. Furthermore, two-photon Ca2+ imaging revealed that the developmental shift of the optimal SFs, depending on visual experience, concurrently occurs in excitatory neurons and parvalbumin-positive inhibitory interneurons (PV neurons). In addition, some excitatory and PV neurons exhibited a preference for visual stimuli consisting of particularly high SFs and posterior directions at relatively early developmental stages; this preference was not affected by binocular deprivation. Thus, there may be two distinct developmental mechanisms for the establishment of SF preference depending on the frequency values. After PW3, SF tuning for neurons tuned to standard frequency ranges was sharper in excitatory neurons and slightly broader in PV neurons, leading to considerably attenuated SF tuning in PV neurons compared to excitatory neurons by PW5. Our findings suggest that early visual experience is far more important than orientation/direction selectivity for the development of the neural representation of the diverse SFs.
Collapse
Affiliation(s)
- Nana Nishio
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kenji Hayashi
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Ayako Wendy Ishikawa
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| |
Collapse
|
42
|
Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S, Jarraya B, Konofagou EE, Krauzlis RJ, Messinger A, Mitchell AS, Ortiz-Rios M, Oya H, Roberts AC, Roe AW, Rushworth MFS, Sallet J, Schmid MC, Schroeder CE, Tasserie J, Tsao DY, Uhrig L, Vanduffel W, Wilke M, Kagan I, Petkov CI. Combining brain perturbation and neuroimaging in non-human primates. Neuroimage 2021; 235:118017. [PMID: 33794355 PMCID: PMC11178240 DOI: 10.1016/j.neuroimage.2021.118017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.
Collapse
Affiliation(s)
- P Christiaan Klink
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Vincent P Ferrera
- Department of Neuroscience & Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Andrew S Fox
- Department of Psychology & California National Primate Research Center, University of California, Davis, CA, USA
| | | | - Béchir Jarraya
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France; Foch Hospital, UVSQ, Suresnes, France
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Adam Messinger
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Michael Ortiz-Rios
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Hiroyuki Oya
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neurosurgery, University of Iowa, Iowa city, IA, USA
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | | | - Jérôme Sallet
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Michael Christoph Schmid
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | - Charles E Schroeder
- Nathan Kline Institute, Orangeburg, NY, USA; Columbia University, New York, NY, USA
| | - Jordy Tasserie
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Doris Y Tsao
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience; Howard Hughes Medical Institute; Computation and Neural Systems, Caltech, Pasadena, CA, USA
| | - Lynn Uhrig
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Neurosciences Department, KU Leuven Medical School, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven Belgium; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Melanie Wilke
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Department of Cognitive Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Igor Kagan
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.
| | - Christopher I Petkov
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
43
|
Brunner C, Grillet M, Urban A, Roska B, Montaldo G, Macé E. Whole-brain functional ultrasound imaging in awake head-fixed mice. Nat Protoc 2021; 16:3547-3571. [PMID: 34089019 DOI: 10.1038/s41596-021-00548-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Most brain functions engage a network of distributed regions. Full investigation of these functions thus requires assessment of whole brains; however, whole-brain functional imaging of behaving animals remains challenging. This protocol describes how to follow brain-wide activity in awake head-fixed mice using functional ultrasound imaging, a method that tracks cerebral blood volume dynamics. We describe how to set up a functional ultrasound imaging system with a provided acquisition software (miniScan), establish a chronic cranial window (timing surgery: ~3-4 h) and image brain-wide activity associated with a stimulus at high resolution (100 × 110 × 300 µm and 10 Hz per brain slice, which takes ~45 min per imaging session). We include codes that enable data to be registered to a reference atlas, production of 3D activity maps, extraction of the activity traces of ~250 brain regions and, finally, combination of data from multiple sessions (timing analysis averages ~2 h). This protocol enables neuroscientists to observe global brain processes in mice.
Collapse
Affiliation(s)
- Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Micheline Grillet
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Alan Urban
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
- NCCR Molecular Systems Engineering, Basel, Switzerland
| | - Gabriel Montaldo
- Neuro-Electronics Research Flanders, Leuven, Belgium.
- VIB, Leuven, Belgium.
- Imec, Leuven, Belgium.
- Department of Neurosciences, KU Leuven, Leuven, Belgium.
| | - Emilie Macé
- Brain-Wide Circuits for Behavior Lab, Max Planck Institute of Neurobiology, Martinsried, Germany.
| |
Collapse
|
44
|
Yamaguchi T. Neural circuit mechanisms of sex and fighting in male mice. Neurosci Res 2021; 174:1-8. [PMID: 34175319 DOI: 10.1016/j.neures.2021.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Surviving in the animal kingdom hinges on the ability to fight competitors and to mate with partners. Dedicated neural circuits in the brain allow animals to mate and attack without any prior experience. Classical lesioning and stimulation studies demonstrated that medial hypothalamic and limbic areas are crucial for male sexual and aggressive behaviors. Moreover, recent functional manipulation tools have uncovered neural circuits critical for mating and aggression, and optical and electrophysiological recordings have revealed how socially relevant information (e.g. sex-specific sensory signals, action commands for specific behaviors, mating- and aggression-specific motivational states) is encoded in these circuits. A better understanding of the neural mechanisms of innate social behaviors will provide critical insights to how complex behavioral outputs are coordinated at the circuit level. In this paper, I review these recent studies and discuss the potential circuit logic of male sexual and aggressive behaviors in mice.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, United States.
| |
Collapse
|
45
|
A Confocal Microscopic Study of Gene Transfer into the Mesencephalic Tegmentum of Juvenile Chum Salmon, Oncorhynchus keta, Using Mouse Adeno-Associated Viral Vectors. Int J Mol Sci 2021; 22:ijms22115661. [PMID: 34073457 PMCID: PMC8199053 DOI: 10.3390/ijms22115661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/17/2022] Open
Abstract
To date, data on the presence of adenoviral receptors in fish are very limited. In the present work, we used mouse recombinant adeno-associated viral vectors (rAAV) with a calcium indicator of the latest generation GCaMP6m that are usually applied for the dorsal hippocampus of mice but were not previously used for gene delivery into fish brain. The aim of our work was to study the feasibility of transduction of rAAV in the mouse hippocampus into brain cells of juvenile chum salmon and subsequent determination of the phenotype of rAAV-labeled cells by confocal laser scanning microscopy (CLSM). Delivery of the gene in vivo was carried out by intracranial injection of a GCaMP6m-GFP-containing vector directly into the mesencephalic tegmentum region of juvenile (one-year-old) chum salmon, Oncorhynchus keta. AAV incorporation into brain cells of the juvenile chum salmon was assessed at 1 week after a single injection of the vector. AAV expression in various areas of the thalamus, pretectum, posterior-tuberal region, postcommissural region, medial and lateral regions of the tegmentum, and mesencephalic reticular formation of juvenile O. keta was evaluated using CLSM followed by immunohistochemical analysis of the localization of the neuron-specific calcium binding protein HuCD in combination with nuclear staining with DAPI. The results of the analysis showed partial colocalization of cells expressing GCaMP6m-GFP with red fluorescent HuCD protein. Thus, cells of the thalamus, posterior tuberal region, mesencephalic tegmentum, cells of the accessory visual system, mesencephalic reticular formation, hypothalamus, and postcommissural region of the mesencephalon of juvenile chum salmon expressing GCaMP6m-GFP were attributed to the neuron-specific line of chum salmon brain cells, which indicates the ability of hippocampal mammal rAAV to integrate into neurons of the central nervous system of fish with subsequent expression of viral proteins, which obviously indicates the neuronal expression of a mammalian adenoviral receptor homolog by juvenile chum salmon neurons.
Collapse
|
46
|
Jin X, Tian Y, Zhang ZC, Gu P, Liu C, Han J. A subset of DN1p neurons integrates thermosensory inputs to promote wakefulness via CNMa signaling. Curr Biol 2021; 31:2075-2087.e6. [PMID: 33740429 DOI: 10.1016/j.cub.2021.02.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/15/2020] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
Sleep is an essential and evolutionarily conserved behavior that is modulated by many environmental factors. Ambient temperature shifting usually occurs during climatic or seasonal change or travel from high-latitude area to low-latitude area that affects animal physiology. Increasing ambient temperature modulates sleep in both humans and Drosophila. Although several thermosensory molecules and neurons have been identified, the neural mechanisms that integrate temperature sensation into the sleep neural circuit remain poorly understood. Here, we reveal that prolonged increasing of ambient temperature induces a reversible sleep reduction and impaired sleep consolidation in Drosophila via activating the internal thermosensory anterior cells (ACs). ACs form synaptic contacts with a subset of posterior dorsal neuron 1 (DN1p) neurons and release acetylcholine to promote wakefulness. Furthermore, we identify that this subset of DN1ps promotes wakefulness by releasing CNMamide (CNMa) neuropeptides to inhibit the Dh44-positive pars intercerebralis (PI) neurons through CNMa receptors. Our study demonstrates that the AC-DN1p-PI neural circuit is responsible for integrating thermosensory inputs into the sleep neural circuit. Moreover, we identify the CNMa signaling pathway as a newly recognized wakefulness-promoting DN1 pathway.
Collapse
Affiliation(s)
- Xi Jin
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Yao Tian
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Zi Chao Zhang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Pengyu Gu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Chang Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226021, China.
| |
Collapse
|
47
|
James N, Bell A. Minimally invasive brain injections for viral-mediated transgenesis: New tools for behavioral genetics in sticklebacks. PLoS One 2021; 16:e0251653. [PMID: 33999965 PMCID: PMC8128275 DOI: 10.1371/journal.pone.0251653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Behavioral genetics in non-model organisms is currently gated by technological limitations. However, with the growing availability of genome editing and functional genomic tools, complex behavioral traits such as social behavior can now be explored in diverse organisms. Here we present a minimally invasive neurosurgical procedure for a classic behavioral, ecological and evolutionary system: threespine stickleback (Gasterosteus aculeatus). Direct brain injection enables viral-mediated transgenesis and pharmaceutical delivery which bypasses the blood-brain barrier. This method is flexible, fast, and amenable to statistically powerful within-subject experimental designs, making it well-suited for use in genetically diverse animals such as those collected from natural populations. Developing this minimally invasive neurosurgical protocol required 1) refining the anesthesia process, 2) building a custom surgical rig, and 3) determining the normal recovery pattern allowing us to clearly identify warning signs of failure to thrive. Our custom-built surgical rig (publicly available) and optimized anesthetization methods resulted in high (90%) survival rates and quick behavioral recovery. Using this method, we detected changes in aggression from the overexpression of either of two different genes, arginine vasopressin (AVP) and monoamine oxidase (MAOA), in outbred animals in less than one month. We successfully used multiple promoters to drive expression, allowing for tailored expression profiles through time. In addition, we demonstrate that widely available mammalian plasmids work with this method, lowering the barrier of entry to the technique. By using repeated measures of behavior on the same fish before and after transfection, we were able to drastically reduce the necessary sample size needed to detect significant changes in behavior, making this a viable approach for examining genetic mechanisms underlying complex social behaviors.
Collapse
Affiliation(s)
- Noelle James
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Evolution, Ecology and Behavior, University of Illinois at Urbana, Urbana, Illinois, United States of America
| | - Alison Bell
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Evolution, Ecology and Behavior, University of Illinois at Urbana, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
48
|
Boehm MA, Bonaventura J, Gomez JL, Solís O, Stein EA, Bradberry CW, Michaelides M. Translational PET applications for brain circuit mapping with transgenic neuromodulation tools. Pharmacol Biochem Behav 2021; 204:173147. [PMID: 33549570 PMCID: PMC8297666 DOI: 10.1016/j.pbb.2021.173147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023]
Abstract
Transgenic neuromodulation tools have transformed the field of neuroscience over the past two decades by enabling targeted manipulation of neuronal populations and circuits with unprecedented specificity. Chemogenetic and optogenetic neuromodulation systems are among the most widely used and allow targeted control of neuronal activity through the administration of a selective compound or light, respectively. Innovative genetic targeting strategies are utilized to transduce specific cells to express transgenic receptors and opsins capable of manipulating neuronal activity. These allow mapping of neuroanatomical projection sites and link cellular manipulations with brain circuit functions and behavior. As these tools continue to expand knowledge of the nervous system in preclinical models, developing translational applications for human therapies is becoming increasingly possible. However, new strategies for implementing and monitoring transgenic tools are needed for safe and effective use in translational research and potential clinical applications. A major challenge for such applications is the need to track the location and function of chemogenetic receptors and opsins in vivo, and new developments in positron emission tomography (PET) imaging techniques offer promising solutions. The goal of this review is to summarize current research combining transgenic tools with PET for in vivo mapping and manipulation of brain circuits and to propose future directions for translational applications.
Collapse
Affiliation(s)
- Matthew A Boehm
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States; Department of Neuroscience, Brown University, Providence, RI 02906, United States.
| | - Jordi Bonaventura
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Juan L Gomez
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Oscar Solís
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Elliot A Stein
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Charles W Bradberry
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Michael Michaelides
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States; Department of Psychiatry & Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
49
|
Inoue N, Nishizumi H, Ooyama R, Mogi K, Nishimori K, Kikusui T, Sakano H. The olfactory critical period is determined by activity-dependent Sema7A/PlxnC1 signaling within glomeruli. eLife 2021; 10:65078. [PMID: 33780330 PMCID: PMC8007213 DOI: 10.7554/elife.65078] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/18/2021] [Indexed: 12/26/2022] Open
Abstract
In mice, early exposure to environmental odors affects social behaviors later in life. A signaling molecule, Semaphorin 7A (Sema7A), is induced in the odor-responding olfactory sensory neurons. Plexin C1 (PlxnC1), a receptor for Sema7A, is expressed in mitral/tufted cells, whose dendrite-localization is restricted to the first week after birth. Sema7A/PlxnC1 signaling promotes post-synaptic events and dendrite selection in mitral/tufted cells, resulting in glomerular enlargement that causes an increase in sensitivity to the experienced odor. Neonatal odor experience also induces positive responses to the imprinted odor. Knockout and rescue experiments indicate that oxytocin in neonates is responsible for imposing positive quality on imprinted memory. In the oxytocin knockout mice, the sensitivity to the imprinted odor increases, but positive responses cannot be promoted, indicating that Sema7A/PlxnC1 signaling and oxytocin separately function. These results give new insights into our understanding of olfactory imprinting during the neonatal critical period.
Collapse
Affiliation(s)
- Nobuko Inoue
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan
| | - Hirofumi Nishizumi
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan
| | - Rumi Ooyama
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Katsuhiko Nishimori
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan
| |
Collapse
|
50
|
Chadney OMT, Blankvoort S, Grimstvedt JS, Utz A, Kentros CG. Multiplexing viral approaches to the study of the neuronal circuits. J Neurosci Methods 2021; 357:109142. [PMID: 33753126 DOI: 10.1016/j.jneumeth.2021.109142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
Neural circuits are composed of multitudes of elaborately interconnected cell types. Understanding neural circuit function requires not only cell-specific knowledge of connectivity, but the ability to record and manipulate distinct cell types independently. Recent advances in viral vectors promise the requisite specificity to perform true "circuit-breaking" experiments. However, such new avenues of multiplexed, cell-specific investigation raise new technical issues: one must ensure that both the viral vectors and their transgene payloads do not overlap with each other in both an anatomical and a functional sense. This review describes benefits and issues regarding the use of viral vectors to analyse the function of neural circuits and provides a resource for the design and implementation of such multiplexing experiments.
Collapse
Affiliation(s)
- Oscar M T Chadney
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway.
| | - Stefan Blankvoort
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway
| | - Joachim S Grimstvedt
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway
| | - Annika Utz
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway
| | - Clifford G Kentros
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway.
| |
Collapse
|