1
|
Pierrefiche O. [Epigenetic changes in alcohol addiction and therapeutic perspectives]. ANNALES PHARMACEUTIQUES FRANÇAISES 2024:S0003-4509(24)00142-1. [PMID: 39374866 DOI: 10.1016/j.pharma.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/26/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Alcohol consumption is a major public health issue. Patients with Alcohol Use Disorder (AUD) can benefit from five treatments that preferentially target membrane receptors, and whose efficacy is generally modest. However, a large body of experimental evidence points to an important role for epigenetics in the effects of alcohol consumption, and epidrugs that modify the epigenome offer an interesting alternative to current therapeutic options. This article reviews the most striking experimental evidence obtained at different ages in animal models, before comparing it with data obtained in humans and concluding on the relevance of using epidrugs. Finally, a new therapeutic option is suggested between psychedelics, recent molecules of interest, and epigenetic factors in alcohol intake.
Collapse
Affiliation(s)
- Olivier Pierrefiche
- Inserm UMR1247, groupe de recherche sur l'alcool et les pharmacodépendances, centre universitaire de recherche en santé, université Picardie Jules-Verne, chemin du Thil, Amiens, France.
| |
Collapse
|
2
|
Okeoma CM, Naushad W, Okeoma BC, Gartner C, Santos-Ortega Y, Vary C, Carregari VC, Larsen MR, Noghero A, Grassi-Oliveira R, Walss-Bass C. Lipidomic and Proteomic Insights from Extracellular Vesicles in Postmortem Dorsolateral Prefrontal Cortex Reveal Substance Use Disorder-Induced Brain Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607388. [PMID: 39211229 PMCID: PMC11360920 DOI: 10.1101/2024.08.09.607388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Substance use disorder (SUD) significantly increases the risk of neurotoxicity, inflammation, oxidative stress, and impaired neuroplasticity. The activation of inflammatory pathways by substances may lead to glial activation and chronic neuroinflammation, potentially mediated by the release of extracellular particles (EPs), such as extracellular condensates (ECs) and extracellular vesicles (EVs). These particles, which reflect the physiological, pathophysiological, and metabolic states of their cells of origin, might carry molecular signatures indicative of SUD. In particular, our study investigated neuroinflammatory signatures in SUD by isolating EVs from the dorsolateral prefrontal cortex (dlPFC) Brodmann's area 9 (BA9) in postmortem subjects. We isolated BA9-derived EVs from postmortem brain tissues of eight individuals (controls: n=4, SUD: n=4). The EVs were analyzed for physical properties (concentration, size, zeta potential, morphology) and subjected to integrative multi-omics analysis to profile the lipidomic and proteomic characteristics. We assessed the interactions and bioactivity of EVs by evaluating their uptake by glial cells. We further assessed the effects of EVs on complement mRNA expression in glial cells as well as their effects on microglial migration. No significant differences in EV concentration, size, zeta potential, or surface markers were observed between SUD and control groups. However, lipidomic analysis revealed significant enrichment of glycerophosphoinositol bisphosphate (PIP2) in SUD EVs. Proteomic analysis indicates downregulation of SERPINB12, ACYP2, CAMK1D, DSC1, and FLNB, and upregulation of C4A, C3, and ALB in SUD EVs. Gene ontology and protein-protein interactome analyses highlight functions such as cell motility, focal adhesion, and acute phase response signaling that is associated with the identified proteins. Both control and SUD EVs increased C3 and C4 mRNA expression in microglia, but only SUD EVs upregulated these genes in astrocytes. SUD EVs also significantly enhanced microglial migration in a wound healing assay.This study successfully isolated EVs from postmortem brains and used a multi-omics approach to identify EV-associated lipids and proteins in SUD. Elevated C3 and C4 in SUD EVs and the distinct effects of EVs on glial cells suggest a crucial role in acute phase response signaling and neuroinflammation.
Collapse
|
3
|
Zhu J, Hou Y, Li W, Wang X, Li F, Li N, Hu Y, Wang X, Ge SN. miR-181a expressed in the dorsal hippocampus regulates the reinstatement of cocaine CPP by targeting PRKAA1. Behav Brain Res 2024; 471:115097. [PMID: 38878971 DOI: 10.1016/j.bbr.2024.115097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Neuroadaptive changes in the hippocampus underlie addictive-like behaviors in humans or animals chronically exposed to cocaine. miR-181a, which is widely expressed in the hippocampus, acts as a regulator for synaptic plasticity, while its role in drug reinstatement is unclear. In this study, we found that miR-181a regulates the reinstatement of cocaine conditioned place preference(CPP), and altered miR-181a expression changes the complexity of hippocampal neurons and the density and morphology of dendritic spines. By using a luciferase gene reporter, we found that miR-181a targets PRKAA1, an upstream molecule in the mTOR pathway. High miR-181a expression reduced the expression of the PRKAA1 mRNA and promoted mTOR activity and the reinstatement of cocaine CPP. These results indicate that miR-181a is involved in neuronal structural plasticity induced by reinstatement of cocaine CPP, possibly through the activation of the mTOR signaling pathway. This study provides new microRNA targets and a theoretical foundation for the prevention of cocaine-induced reinstatement.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China; Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, China
| | - Yueru Hou
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China; Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, China
| | - Wan Li
- Xi'an Technological University, Xi'an 710021, China
| | - Xin Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Fei Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Nan Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Yan Hu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Xuelian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China.
| | - Shun-Nan Ge
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China.
| |
Collapse
|
4
|
Whelan SCM, Mutchler SM, Han A, Priestley C, Satlin LM, Kleyman TR, Shi S. Kcnma1 alternative splicing in mouse kidney: regulation during development and by dietary K + intake. Am J Physiol Renal Physiol 2024; 327:F49-F60. [PMID: 38779757 DOI: 10.1152/ajprenal.00100.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The pore-forming α-subunit of the large-conductance K+ (BK) channel is encoded by a single gene, KCNMA1. BK channel-mediated K+ secretion in the kidney is crucial for overall renal K+ homeostasis in both physiological and pathological conditions. BK channels achieve phenotypic diversity by various mechanisms, including substantial exon rearrangements at seven major alternative splicing sites. However, KCNMA1 alternative splicing in the kidney has not been characterized. The present study aims to identify the major splice variants of mouse Kcnma1 in whole kidney and distal nephron segments. We designed primers that specifically cross exons within each alternative splice site of mouse Kcnma1 and performed real-time quantitative RT-PCR (RT-qPCR) to quantify relative abundance of each splice variant. Our data suggest that Kcnma1 splice variants within mouse kidney are less diverse than in the brain. During postnatal kidney development, most Kcnma1 splice variants at site 5 and the COOH terminus increase in abundance over time. Within the kidney, the regulation of Kcnma1 alternative exon splicing within these two sites by dietary K+ loading is both site and sex specific. In microdissected distal tubules, the Kcnma1 alternative splicing profile, as well as its regulation by dietary K+, are distinctly different than in the whole kidney, suggesting segment and/or cell type specificity in Kcnma1 splicing events. Overall, our data provide evidence that Kcnma1 alternative splicing is regulated during postnatal development and may serve as an important adaptive mechanism to dietary K+ loading in mouse kidney.NEW & NOTEWORTHY We identified the major Kcnma1 splice variants that are specifically expressed in the whole mouse kidney or aldosterone-sensitive distal nephron segments. Our data suggest that Kcnma1 alternative splicing is developmentally regulated and subject to changes in dietary K+.
Collapse
Affiliation(s)
| | - Stephanie M Mutchler
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Agnes Han
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Catherine Priestley
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shujie Shi
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
5
|
Darbinian N, Hampe M, Martirosyan D, Bajwa A, Darbinyan A, Merabova N, Tatevosian G, Goetzl L, Amini S, Selzer ME. Fetal Brain-Derived Exosomal miRNAs from Maternal Blood: Potential Diagnostic Biomarkers for Fetal Alcohol Spectrum Disorders (FASDs). Int J Mol Sci 2024; 25:5826. [PMID: 38892014 PMCID: PMC11172088 DOI: 10.3390/ijms25115826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Fetal alcohol spectrum disorders (FASDs) are leading causes of neurodevelopmental disability but cannot be diagnosed early in utero. Because several microRNAs (miRNAs) are implicated in other neurological and neurodevelopmental disorders, the effects of EtOH exposure on the expression of these miRNAs and their target genes and pathways were assessed. In women who drank alcohol (EtOH) during pregnancy and non-drinking controls, matched individually for fetal sex and gestational age, the levels of miRNAs in fetal brain-derived exosomes (FB-Es) isolated from the mothers' serum correlated well with the contents of the corresponding fetal brain tissues obtained after voluntary pregnancy termination. In six EtOH-exposed cases and six matched controls, the levels of fetal brain and maternal serum miRNAs were quantified on the array by qRT-PCR. In FB-Es from 10 EtOH-exposed cases and 10 controls, selected miRNAs were quantified by ddPCR. Protein levels were quantified by ELISA. There were significant EtOH-associated reductions in the expression of several miRNAs, including miR-9 and its downstream neuronal targets BDNF, REST, Synapsin, and Sonic hedgehog. In 20 paired cases, reductions in FB-E miR-9 levels correlated strongly with reductions in fetal eye diameter, a prominent feature of FASDs. Thus, FB-E miR-9 levels might serve as a biomarker to predict FASDs in at-risk fetuses.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Monica Hampe
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Diana Martirosyan
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Ahsun Bajwa
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA;
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
6
|
Cordero Padilla K, Monefeldt GA, Guevárez Galán A, Marrero HG, Lloret-Torres ME, Velázquez-Marrero C. BK ZERO isoform HEK293 stably transfected cell lines differing 3'UTRs to assess miR-9 regulation. PLoS One 2024; 19:e0298966. [PMID: 38502673 PMCID: PMC10950231 DOI: 10.1371/journal.pone.0298966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
Research has identified the large conductance voltage- and calcium-activated potassium channel (BK) as a key regulator of neuronal excitability genetically associated to behavioral alcohol tolerance. Sensitivity to ethanol at the molecular level is characterized by acute potentiation of channel activity. BK isoforms show variations in alcohol sensitivity and are differentially distributed on the plasma membrane surface in response to prolonged exposure. MicroRNA (MiRNA) targeting of alcohol-sensitive isoforms coupled with active internalization of BK channels in response to ethanol are believed to be key in establishing homeostatic adaptations that produce persistent changes within the plasma membrane of neurons. In fact, microRNA 9 (miR-9) upregulated expression is a key event in persistent alcohol tolerance mediating acute EtOH desensitization of BK channels. The exact nature of these interactions remains a current topic of discussion. To further study the effects of miR-9 on the expression and distribution of BK channel isoforms we designed an experimental model by transfecting human BK channel isoforms ZERO heterologous constructs in human embryonic kidney cells 293 (HEK293) cells respectively expressing 2.1 (miR-9 responsive), 2.2 (unresponsive) and control (no sequence) 3'untranslated region (3'UTR) miRNA recognition sites. We used imaging techniques to characterize the stably transfected monoclonal cell lines, and electrophysiology to validate channel activity. Finally, we used immunocytochemistry to validate isoform responsiveness to miR-9. Our findings suggest the cell lines were successfully transfected to express either the 2.1 or 2.2 version of ZERO. Patch clamp recordings confirm that these channels retain their functionality and immunohistochemistry shows differential responses to miR-9, making these cells viable for use in future alcohol dependence studies.
Collapse
Affiliation(s)
- Katherine Cordero Padilla
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
- Windsor University School of Medicine, St. Kitts, West Indies
| | - Gerardo Alvarado Monefeldt
- Department of Biology, University of Puerto Rico Cayey Campus, Cayey, Puerto Rico
- Samuel Merritt University, Oakland, California, United States of America
| | - Adriel Guevárez Galán
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
- Department of Biology, University of Puerto Rico Bayamón Campus, Bayamón, Puerto Rico
| | - Hector G. Marrero
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Mario E. Lloret-Torres
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Cristina Velázquez-Marrero
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
7
|
Okhuarobo A, Kreifeldt M, Gandhi PJ, Lopez C, Martinez B, Fleck K, Bajo M, Bhattacharyya P, Dopico AM, Roberto M, Roberts AJ, Homanics GE, Contet C. Ethanol's interaction with BK channel α subunit residue K361 does not mediate behavioral responses to alcohol in mice. Mol Psychiatry 2024; 29:529-542. [PMID: 38135755 PMCID: PMC11116116 DOI: 10.1038/s41380-023-02346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Large conductance potassium (BK) channels are among the most sensitive molecular targets of ethanol and genetic variations in the channel-forming α subunit have been nominally associated with alcohol use disorders. However, whether the action of ethanol at BK α influences the motivation to drink alcohol remains to be determined. To address this question, we first tested the effect of systemically administered BK channel modulators on voluntary alcohol consumption in C57BL/6J males. Penitrem A (blocker) exerted dose-dependent effects on moderate alcohol intake, while paxilline (blocker) and BMS-204352 (opener) were ineffective. Because pharmacological manipulations are inherently limited by non-specific effects, we then sought to investigate the behavioral relevance of ethanol's direct interaction with BK α by introducing in the mouse genome a point mutation known to render BK channels insensitive to ethanol while preserving their physiological function. The BK α K361N substitution prevented ethanol from reducing spike threshold in medial habenula neurons. However, it did not alter acute responses to ethanol in vivo, including ataxia, sedation, hypothermia, analgesia, and conditioned place preference. Furthermore, the mutation did not have reproducible effects on alcohol consumption in limited, continuous, or intermittent access home cage two-bottle choice paradigms conducted in both males and females. Notably, in contrast to previous observations made in mice missing BK channel auxiliary β subunits, the BK α K361N substitution had no significant impact on ethanol intake escalation induced by chronic intermittent alcohol vapor inhalation. It also did not affect the metabolic and locomotor consequences of chronic alcohol exposure. Altogether, these data suggest that the direct interaction of ethanol with BK α does not mediate the alcohol-related phenotypes examined here in mice.
Collapse
Affiliation(s)
- Agbonlahor Okhuarobo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Max Kreifeldt
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Pauravi J Gandhi
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Catherine Lopez
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Briana Martinez
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Kiera Fleck
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Michal Bajo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | | | - Alex M Dopico
- University of Tennessee Health Science Center, Department of Pharmacology, Addiction Science, and Toxicology, Memphis, TN, USA
| | - Marisa Roberto
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Amanda J Roberts
- The Scripps Research Institute, Animals Models Core Facility, La Jolla, CA, USA
| | - Gregg E Homanics
- University of Pittsburgh, Department of Anesthesiology and Perioperative Medicine, Pittsburgh, PA, USA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA.
| |
Collapse
|
8
|
Rezaee D, Saadatpour F, Akbari N, Zoghi A, Najafi S, Beyranvand P, Zamani-Rarani F, Rashidi MA, Bagheri-Mohammadi S, Bakhtiari M. The role of microRNAs in the pathophysiology of human central nervous system: A focus on neurodegenerative diseases. Ageing Res Rev 2023; 92:102090. [PMID: 37832609 DOI: 10.1016/j.arr.2023.102090] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
microRNAs (miRNAs) are suggested to play substantial roles in regulating the development and various physiologic functions of the central nervous system (CNS). These include neurogenesis, cell fate and differentiation, morphogenesis, formation of dendrites, and targeting non-neural mRNAs. Notably, deregulation of an increasing number of miRNAs is associated with several neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and CNS tumors. They are particularly known to affect the amyloid β (Aβ) cleavage and accumulation, tau protein homeostasis, and expression of alpha-synuclein (α-syn), Parkin, PINK1, and brain-derived neurotrophic factor (BDNF) that play pivotal roles in the pathogenesis of neurodegenerative diseases. These include miR-16, miR-17-5p, miR-20a, miR-106a, miR-106b, miR-15a, miR-15b, miR-103, miR-107, miR-298, miR-328, miR-195, miR-485, and miR-29. In CNS tumors, several miRNAs, including miR-31, miR-16, and miR-21 have been identified to modulate tumorigenesis through impacting tumor invasion and apoptosis. In this review article, we have a look at the recent advances on our knowledge about the role of miRNAs in human brain development and functions, neurodegenerative diseases, and their clinical potentials.
Collapse
Affiliation(s)
- Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Saadatpour
- Molecular Virology Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nayyereh Akbari
- Brain Mapping Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Zoghi
- Brain Mapping Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Parisa Beyranvand
- Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fahimeh Zamani-Rarani
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Rashidi
- Student Research Committee, Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Bakhtiari
- Department of Anatomical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| |
Collapse
|
9
|
Gerace E, Curti L, Caffino L, Bigagli E, Mottarlini F, Castillo Díaz F, Ilari A, Luceri C, Dani C, Fumagalli F, Masi A, Mannaioni G. Ethanol-induced AMPA alterations are mediated by mGLU5 receptors through miRNA upregulation in hippocampal slices. Eur J Pharmacol 2023; 955:175878. [PMID: 37433363 DOI: 10.1016/j.ejphar.2023.175878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Prenatal alcohol exposure (PAE) affects neuronal networks and brain development causing a range of physical, cognitive and behavioural disorders in newborns that persist into adulthood. The array of consequences associated with PAE can be grouped under the umbrella-term 'fetal alcohol spectrum disorders' (FASD). Unfortunately, there is no cure for FASD as the molecular mechanisms underlying this pathology are still unknown. We have recently demonstrated that chronic EtOH exposure, followed by withdrawal, induces a significant decrease in AMPA receptor (AMPAR) expression and function in developing hippocampus in vitro. Here, we explored the EtOH-dependent pathways leading to hippocampal AMPAR suppression. Organotypic hippocampal slices (2 days in cultures) were exposed to EtOH (150 mM) for 7 days followed by 24 h EtOH withdrawal. Then, the slices were analysed by means of RT-PCR for miRNA content, western blotting for AMPA and NMDA related-synaptic proteins expression in postsynaptic compartment and electrophysiology to record electrical properties from CA1 pyramidal neurons. We observed that EtOH induces a significant downregulation of postsynaptic AMPA and NMDA subunits and relative scaffolding protein expression and, accordingly, a decrease of AMPA-mediated neurotransmission. Simultaneously, we found that chronic EtOH induced-upregulation of miRNA 137 and 501-3p and decreased AMPA-mediated neurotransmission are prevented by application of the selective mGlu5 antagonist MPEP during EtOH withdrawal. Our data indicate mGlu5 via miRNA137 and 501-3p expression as key factors in the regulation of AMPAergic neurotransmission that may contribute, at least in part, to the pathogenesis of FASD.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Department of Health Sciences (DSS), University of Florence, Florence, Italy.
| | - Lorenzo Curti
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Elisabetta Bigagli
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Alice Ilari
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Carlo Dani
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
10
|
Mead EA, Wang Y, Patel S, Thekkumthala AP, Kepich R, Benn-Hirsch E, Lee V, Basaly A, Bergeson S, Siegelmann HT, Pietrzykowski AZ. miR-9 utilizes precursor pathways in adaptation to alcohol in mouse striatal neurons. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11323. [PMID: 38116240 PMCID: PMC10730111 DOI: 10.3389/adar.2023.11323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
microRNA-9 (miR-9) is one of the most abundant microRNAs in the mammalian brain, essential for its development and normal function. In neurons, it regulates the expression of several key molecules, ranging from ion channels to enzymes, to transcription factors broadly affecting the expression of many genes. The neuronal effects of alcohol, one of the most abused drugs in the world, seem to be at least partially dependent on regulating the expression of miR-9. We previously observed that molecular mechanisms of the development of alcohol tolerance are miR-9 dependent. Since a critical feature of alcohol action is temporal exposure to the drug, we decided to better understand the time dependence of alcohol regulation of miR-9 biogenesis and expression. We measured the effect of intoxicating concentration of alcohol (20 mM ethanol) on the expression of all major elements of miR-9 biogenesis: three pri-precursors (pri-mir-9-1, pri-mir-9-2, pri-mir-9-3), three pre-precursors (pre-mir-9-1, pre-mir-9-2, pre-mir-9-3), and two mature microRNAs: miR-9-5p and miR-9-3p, using digital PCR and RT-qPCR, and murine primary medium spiny neurons (MSN) cultures. We subjected the neurons to alcohol based on an exposure/withdrawal matrix of different exposure times (from 15 min to 24 h) followed by different withdrawal times (from 0 h to 24 h). We observed that a short exposure increased mature miR-9-5p expression, which was followed by a gradual decrease and subsequent increase of the expression, returning to pre-exposure levels within 24 h. Temporal changes of miR-9-3p expression were complementing miR-9-5p changes. Interestingly, an extended, continuous presence of the drug caused a similar pattern. These results suggest the presence of the adaptive mechanisms of miR-9 expression in the presence and absence of alcohol. Measurement of miR-9 pre- and pri-precursors showed further that the primary effect of alcohol on miR-9 is through the mir-9-2 precursor pathway with a smaller contribution of mir-9-1 and mir-9-3 precursors. Our results provide new insight into the adaptive mechanisms of neurons to alcohol exposure. It would be of interest to determine next which microRNA-based mechanisms are involved in a transition from the acute, intoxicating effects of alcohol to the chronic, addictive effects of the drug.
Collapse
Affiliation(s)
- Edward Andrew Mead
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Yongping Wang
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sunali Patel
- Thermo Fisher Scientific Inc., Austin, TX, United States
| | - Austin P. Thekkumthala
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Rebecca Kepich
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Elizabeth Benn-Hirsch
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Victoria Lee
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Azra Basaly
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Susan Bergeson
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hava T. Siegelmann
- Department of Machine Learning, Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates
- Biologically Inspired Neural & Dynamical Systems Laboratory, The Manning College of Information and Computer Sciences, University of Massachusetts, Amherst, MA, United States
| | - Andrzej Zbigniew Pietrzykowski
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
11
|
Popova D, Gameiro-Ros I, Youssef MM, Zalamea P, Morris AD, Prytkova I, Jadali A, Kwan KY, Kamarajan C, Salvatore JE, Xuei X, Chorlian DB, Porjesz B, Kuperman S, Dick DM, Goate A, Edenberg HJ, Tischfield JA, Pang ZP, Slesinger PA, Hart RP. Alcohol reverses the effects of KCNJ6 (GIRK2) noncoding variants on excitability of human glutamatergic neurons. Mol Psychiatry 2023; 28:746-758. [PMID: 36207584 PMCID: PMC9542475 DOI: 10.1038/s41380-022-01818-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/19/2023]
Abstract
Synonymous and noncoding single nucleotide polymorphisms (SNPs) in the KCNJ6 gene, encoding G protein-gated inwardly rectifying potassium channel subunit 2 (GIRK2), have been linked with increased electroencephalographic frontal theta event-related oscillations (ERO) in subjects diagnosed with alcohol use disorder (AUD). To identify molecular and cellular mechanisms while retaining the appropriate genetic background, we generated induced excitatory glutamatergic neurons (iN) from iPSCs derived from four AUD-diagnosed subjects with KCNJ6 variants ("Affected: AF") and four control subjects without variants ("Unaffected: UN"). Neurons were analyzed for changes in gene expression, morphology, excitability and physiological properties. Single-cell RNA sequencing suggests that KCNJ6 AF variant neurons have altered patterns of synaptic transmission and cell projection morphogenesis. Results confirm that AF neurons express lower levels of GIRK2, have greater neurite area, and elevated excitability. Interestingly, exposure to intoxicating concentrations of ethanol induces GIRK2 expression and reverses functional effects in AF neurons. Ectopic overexpression of GIRK2 alone mimics the effect of ethanol to normalize induced excitability. We conclude that KCNJ6 variants decrease GIRK2 expression and increase excitability and that this effect can be minimized or reduced with ethanol.
Collapse
Affiliation(s)
- Dina Popova
- Human Genetics Institute, Rutgers University, Piscataway, NJ, USA
| | - Isabel Gameiro-Ros
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark M Youssef
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Petronio Zalamea
- Human Genetics Institute, Rutgers University, Piscataway, NJ, USA
| | - Ayeshia D Morris
- Joint Program in Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Iya Prytkova
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Azadeh Jadali
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Kelvin Y Kwan
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Chella Kamarajan
- Dept. of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jessica E Salvatore
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David B Chorlian
- Dept. of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Bernice Porjesz
- Dept. of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Samuel Kuperman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Danielle M Dick
- Rutgers Addiction Research Center, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Alison Goate
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana Univ School of Medicine, Indianapolis, IN, USA
| | - Jay A Tischfield
- Human Genetics Institute, Rutgers University, Piscataway, NJ, USA
| | - Zhiping P Pang
- Human Genetics Institute, Rutgers University, Piscataway, NJ, USA
- Child Health Institute, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald P Hart
- Human Genetics Institute, Rutgers University, Piscataway, NJ, USA.
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
12
|
Wang JQ, Liu YR, Xia QR, Liang J, Wang JL, Li J. Functional roles, regulatory mechanisms and theranostics applications of ncRNAs in alcohol use disorder. Int J Biol Sci 2023; 19:1316-1335. [PMID: 36923934 PMCID: PMC10008696 DOI: 10.7150/ijbs.81518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Alcohol use disorder (AUD) is one of the most prevalent neuropsychological disorders worldwide, and its pathogenesis is convoluted and poorly understood. There is considerable evidence demonstrating significant associations between multiple heritable factors and the onset and progression of AUD. In recent years, a substantial body of research conducted by emerging biotechnologies has increasingly highlighted the crucial roles of noncoding RNAs (ncRNAs) in the pathophysiology of mental diseases. As in-depth understanding of ncRNAs and their mechanisms of action, they have emerged as prospective diagnostic indicators and preclinical therapeutic targets for a variety of psychiatric illness, including AUD. Of note, dysregulated expression of ncRNAs such as circRNAs, lncRNAs and miRNAs was routinely found in AUD individuals, and besides, exogenous regulation of partial ncRNAs has also been shown to be effective in ameliorating alcohol preference and excessive alcohol consumption. However, the exact molecular mechanism still remains elusive. Herein, we systematically summarized current knowledge regarding alterations in the expression of certain ncRNAs as well as their-mediated regulatory mechanisms in individuals with AUD. And finally, we detailedly reviewed the potential theranostics applications of gene therapy agents targeting ncRNAs in AUD mice. Overall, a deeper comprehension of functional roles and biological mechanisms of ncRNAs may make significant contributions to the accurate diagnosis and effective treatment of AUD.
Collapse
Affiliation(s)
- Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Ya-Ru Liu
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230022, China
| | - Qing-Rong Xia
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jun Liang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jin-Liang Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
13
|
Fuentes-Beals C, Olivares-Costa M, Andrés ME, Haeger PA, Riadi G, Oliva C, Faunes F. Bioinformatic analysis predicts that ethanol exposure during early development causes alternative splicing alterations of genes involved in RNA post-transcriptional regulation. PLoS One 2023; 18:e0284357. [PMID: 37053190 PMCID: PMC10101408 DOI: 10.1371/journal.pone.0284357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Prenatal ethanol exposure is associated with neurodevelopmental defects and long-lasting cognitive deficits, which are grouped as fetal alcohol spectrum disorders (FASD). The molecular mechanisms underlying FASD are incompletely characterized. Alternative splicing, including the insertion of microexons (exons of less than 30 nucleotides in length), is highly prevalent in the nervous system. However, whether ethanol exposure can have acute or chronic deleterious effects in this process is poorly understood. In this work, we used the bioinformatic tools VAST-TOOLS, rMATS, MAJIQ, and MicroExonator to predict alternative splicing events affected by ethanol from available RNA sequencing data. Experimental protocols of ethanol exposure included human cortical tissue development, human embryoid body differentiation, and mouse development. We found common genes with predicted differential alternative splicing using distinct bioinformatic tools in different experimental designs. Notably, Gene Ontology and KEGG analysis revealed that the alternative splicing of genes related to RNA processing and protein synthesis was commonly affected in the different ethanol exposure schemes. In addition, the inclusion of microexons was also affected by ethanol. This bioinformatic analysis provides a reliable list of candidate genes whose splicing is affected by ethanol during nervous system development. Furthermore, our results suggest that ethanol particularly modifies the alternative splicing of genes related to post-transcriptional regulation, which probably affects neuronal proteome complexity and brain function.
Collapse
Affiliation(s)
- Camilo Fuentes-Beals
- Ph.D. Program in Sciences Mention Modeling of Chemical and Biological Systems, School of Bioinformatics Engineering, Center for Bioinformatics, Simulation, and Modeling, CBSM, Department of Bioinformatics, Faculty of Engineering, University of Talca, Campus Talca, Talca, Chile
| | - Montserrat Olivares-Costa
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - María Estela Andrés
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paola A Haeger
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Gonzalo Riadi
- ANID-Millennium Science Initiative Program Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Center for Bioinformatics, Simulation and Modeling, CBSM, Department of Bioinformatics, Faculty of Engineering, University of Talca, Talca, Chile
| | - Carlos Oliva
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Faunes
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
14
|
Seyednejad SA, Sartor GC. Noncoding RNA therapeutics for substance use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10807. [PMID: 36601439 PMCID: PMC9808746 DOI: 10.3389/adar.2022.10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although noncoding RNAs (ncRNAs) have been shown to regulate maladaptive neuroadaptations that drive compulsive drug use, ncRNA-targeting therapeutics for substance use disorder (SUD) have yet to be clinically tested. Recent advances in RNA-based drugs have improved many therapeutic issues related to immune response, specificity, and delivery, leading to multiple successful clinical trials for other diseases. As the need for safe and effective treatments for SUD continues to grow, novel nucleic acid-based therapeutics represent an appealing approach to target ncRNA mechanisms in SUD. Here, we review ncRNA processes implicated in SUD, discuss recent therapeutic approaches for targeting ncRNAs, and highlight potential opportunities and challenges of ncRNA-targeting therapeutics for SUD.
Collapse
Affiliation(s)
- Seyed Afshin Seyednejad
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| | - Gregory C. Sartor
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| |
Collapse
|
15
|
Sleep Modulates Alcohol Toxicity in Drosophila. Int J Mol Sci 2022; 23:ijms232012091. [PMID: 36292943 PMCID: PMC9603330 DOI: 10.3390/ijms232012091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022] Open
Abstract
Alcohol abuse is a significant public health problem. While considerable research has shown that alcohol use affects sleep, little is known about the role of sleep deprivation in alcohol toxicity. We investigated sleep as a factor modulating alcohol toxicity using Drosophila melanogaster, a model for studies of sleep, alcohol, and aging. Following 24 h of sleep deprivation using a paradigm that similarly affects males and females and induces rebound sleep, flies were given binge-like alcohol exposures. Sleep deprivation increased mortality, with no sex-dependent differences. Sleep deprivation also abolished functional tolerance measured at 24 h after the initial alcohol exposure, although there was no effect on alcohol absorbance or clearance. We investigated the effect of chronic sleep deprivation using mutants with decreased sleep, insomniac and insulin-like peptide 2, finding increased alcohol mortality. Furthermore, we investigated whether pharmacologically inducing sleep prior to alcohol exposure using the GABAA-receptor agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP) mitigated the effects of alcohol toxicity on middle-aged flies, flies with environmentally disrupted circadian clocks, and flies with short sleep. Pharmacologically increasing sleep prior to alcohol exposure decreased alcohol-induced mortality. Thus, sleep prior to binge-like alcohol exposure affects alcohol-induced mortality, even in vulnerable groups such as aging flies and those with circadian dysfunction.
Collapse
|
16
|
Mohammadi AH, Seyedmoalemi S, Moghanlou M, Akhlagh SA, Talaei Zavareh SA, Hamblin MR, Jafari A, Mirzaei H. MicroRNAs and Synaptic Plasticity: From Their Molecular Roles to Response to Therapy. Mol Neurobiol 2022; 59:5084-5102. [PMID: 35666404 DOI: 10.1007/s12035-022-02907-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Synaptic plasticity is the ability of synapses to weaken or strengthen over time, in response to changes in the activity of the neurons. It is orchestrated by a variety of genes, proteins, and external and internal factors, especially epigenetic factors. MicroRNAs (miRNAs) are well-acknowledged epigenetic modulators that regulate the translation and degradation of target genes in the nervous system. Increasing evidence has suggested that a number of miRNAs play important roles in modulating various aspects of synaptic plasticity. The deregulation of miRNAs could be associated with pathological alterations in synaptic plasticity, which could lead to different CNS-related diseases. Herein, we provide an update on the role of miRNAs in governing synaptic plasticity. In addition, we also summarize recent researches on the role of miRNAs in drug addiction, and their targets and mechanism of action. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel biomarkers and new therapeutic strategies for the diagnosis and treatment of plasticity-related diseases and drug addiction.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyedvahid Seyedmoalemi
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Moghanlou
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
17
|
Zhao Y, Qin F, Han S, Li S, Zhao Y, Wang H, Tian J, Cen X. MicroRNAs in drug addiction: Current status and future perspectives. Pharmacol Ther 2022; 236:108215. [DOI: 10.1016/j.pharmthera.2022.108215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
18
|
Mohebbati R, Sadeghnia HR. The value of the MicroRNAs on alcoholic addicts: A meta-analytic review. Curr Pharm Des 2022; 28:1926-1931. [PMID: 35619318 DOI: 10.2174/1381612828666220520112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION A growing body of evidence indicates that repeated alcohol exposure or withdrawal from alcohol can result in persistent molecular and cellular adaptations. One molecular adaptation that occurs is the regulation of gene expression, which is believed to lead to functional alterations that characterize addiction. MicroRNAs (miRs) have been recently identified as master regulators of gene expression through post-transcriptional regulation. The aim of this meta-analytic review was to evaluate the regulatory forms of miRs during alcoholism. METHODS We used several databases such as PubMed, Scopus, and Web of Science without limitations on publication time. All studies were analyzed by Comprehensive Meta-Analysis software. RESULTS AND DISCUSSION Six clinical papers with 243 alcoholic patients and 162 controls were included. In this study, 1680 articles were initially reviewed and eventually, six clinical studies were included in the meta-analysis. The results of the meta-analysis showed that according to the random model, the difference between the upregulation and downregulation of central addiction targets was statistically significant, indicating that most dopamine- or gamma-aminobutyric acid receptor subunit (GABA)-related miRs are upregulated in alcoholics (P: 0.00, CI: 0.149-0.439). CONCLUSION This study strongly suggests that dopamine- or GABA-related miRs were mostly upregulated in alcoholism. Our findings revealed that about 9% of miRs were downregulated in alcoholism, including miR-567, miR-126, miR-1, miR-432, and miR-153. To identify other or specific miRs as potential biomarkers in alcoholics, large-scale studies and more clinical work are required.
Collapse
Affiliation(s)
- Reza Mohebbati
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Sanghvi S, Szteyn K, Ponnalagu D, Sridharan D, Lam A, Hansra I, Chaudhury A, Majumdar U, Kohut AR, Gururaja Rao S, Khan M, Garg V, Singh H. Inhibition of BK Ca channels protects neonatal hearts against myocardial ischemia and reperfusion injury. Cell Death Dis 2022; 8:175. [PMID: 35393410 PMCID: PMC8989942 DOI: 10.1038/s41420-022-00980-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
BKCa channels are large-conductance calcium and voltage-activated potassium channels that are heterogeneously expressed in a wide array of cells. Activation of BKCa channels present in mitochondria of adult ventricular cardiomyocytes is implicated in cardioprotection against ischemia-reperfusion (IR) injury. However, the BKCa channel’s activity has never been detected in the plasma membrane of adult ventricular cardiomyocytes. In this study, we report the presence of the BKCa channel in the plasma membrane and mitochondria of neonatal murine and rodent cardiomyocytes, which protects the heart on inhibition but not activation. Furthermore, K+ currents measured in neonatal cardiomyocyte (NCM) was sensitive to iberiotoxin (IbTx), suggesting the presence of BKCa channels in the plasma membrane. Neonatal hearts subjected to IR when post-conditioned with NS1619 during reoxygenation increased the myocardial infarction whereas IbTx reduced the infarct size. In agreement, isolated NCM also presented increased apoptosis on treatment with NS1619 during hypoxia and reoxygenation, whereas IbTx reduced TUNEL-positive cells. In NCMs, activation of BKCa channels increased the intracellular reactive oxygen species post HR injury. Electrophysiological characterization of NCMs indicated that NS1619 increased the beat period, field, and action potential duration, and decreased the conduction velocity and spike amplitude. In contrast, IbTx had no impact on the electrophysiological properties of NCMs. Taken together, our data established that inhibition of plasma membrane BKCa channels in the NCM protects neonatal heart/cardiomyocytes from IR injury. Furthermore, the functional disparity observed towards the cardioprotective activity of BKCa channels in adults compared to neonatal heart could be attributed to their differential localization.
Collapse
Affiliation(s)
- Shridhar Sanghvi
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | - Kalina Szteyn
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Devasena Ponnalagu
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Divya Sridharan
- Department of Emergency Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Alexander Lam
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Inderjot Hansra
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ankur Chaudhury
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Uddalak Majumdar
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrew R Kohut
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA, USA.,Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shubha Gururaja Rao
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, USA
| | - Mahmood Khan
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Emergency Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
20
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
21
|
Mead EA, Boulghassoul-Pietrzykowska N, Wang Y, Anees O, Kinstlinger NS, Lee M, Hamza S, Feng Y, Pietrzykowski AZ. Non-Invasive microRNA Profiling in Saliva can Serve as a Biomarker of Alcohol Exposure and Its Effects in Humans. Front Genet 2022; 12:804222. [PMID: 35126468 PMCID: PMC8812725 DOI: 10.3389/fgene.2021.804222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Alcohol Use Disorder (AUD) is one of the most prevalent mental disorders worldwide. Considering the widespread occurrence of AUD, a reliable, cheap, non-invasive biomarker of alcohol consumption is desired by healthcare providers, clinicians, researchers, public health and criminal justice officials. microRNAs could serve as such biomarkers. They are easily detectable in saliva, which can be sampled from individuals in a non-invasive manner. Moreover, microRNAs expression is dynamically regulated by environmental factors, including alcohol. Since excessive alcohol consumption is a hallmark of alcohol abuse, we have profiled microRNA expression in the saliva of chronic, heavy alcohol abusers using microRNA microarrays. We observed significant changes in salivary microRNA expression caused by excessive alcohol consumption. These changes fell into three categories: downregulated microRNAs, upregulated microRNAs, and microRNAs upregulated de novo. Analysis of these combinatorial changes in microRNA expression suggests dysregulation of specific biological pathways leading to impairment of the immune system and development of several types of epithelial cancer. Moreover, some of the altered microRNAs are also modulators of inflammation, suggesting their contribution to pro-inflammatory mechanisms of alcohol actions. Establishment of the cellular source of microRNAs in saliva corroborated these results. We determined that most of the microRNAs in saliva come from two types of cells: leukocytes involved in immune responses and inflammation, and buccal cells, involved in development of epithelial, oral cancers. In summary, we propose that microRNA profiling in saliva can be a useful, non-invasive biomarker allowing the monitoring of alcohol abuse, as well as alcohol-related inflammation and early detection of cancer.
Collapse
Affiliation(s)
- Edward A. Mead
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nadia Boulghassoul-Pietrzykowska
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Mayo Clinic Health System, NWWI, Barron, WI, United States
- Department of Medicine, Capital Health, Trenton, NJ, United States
- Weight and Life MD, Hamilton, NJ, United States
| | - Yongping Wang
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Holmdel Township School, Holmdel, NJ, United States
| | - Onaiza Anees
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Virginia Commonwealth University Health, CMH Behavioral Health, South Hill, VA, United States
| | - Noah S. Kinstlinger
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maximillian Lee
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- George Washington University, School of Medicine and Health Sciences, Washington DC, MA, United States
| | - Shireen Hamza
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Department of the History of Science, Harvard University, Cambridge, MA, United States
| | - Yaping Feng
- Waksman Genomics Core Facility, Rutgers University, Piscataway, NJ, United States
- Bioinformatics Department, Admera Health, South Plainfield, NJ, United States
| | - Andrzej Z. Pietrzykowski
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Weight and Life MD, Hamilton, NJ, United States
| |
Collapse
|
22
|
Kyzar EJ, Bohnsack JP, Pandey SC. Current and Future Perspectives of Noncoding RNAs in Brain Function and Neuropsychiatric Disease. Biol Psychiatry 2022; 91:183-193. [PMID: 34742545 PMCID: PMC8959010 DOI: 10.1016/j.biopsych.2021.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Noncoding RNAs (ncRNAs) represent the majority of the transcriptome and play important roles in regulating neuronal functions. ncRNAs are exceptionally diverse in both structure and function and include enhancer RNAs, long ncRNAs, and microRNAs, all of which demonstrate specific temporal and regional expression in the brain. Here, we review recent studies demonstrating that ncRNAs modulate chromatin structure, act as chaperone molecules, and contribute to synaptic remodeling and behavior. In addition, we discuss ncRNA function within the context of neuropsychiatric diseases, particularly focusing on addiction and schizophrenia, and the recent methodological developments that allow for better understanding of ncRNA function in the brain. Overall, ncRNAs represent an underrecognized molecular contributor to complex neuronal processes underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Evan J Kyzar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, New York
| | - John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, University of Illinois at Chicago, Chicago, Illinois; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
23
|
Gu XY, Jin B, Qi ZD, Yin XF. MicroRNA is a potential target for therapies to improve the physiological function of skeletal muscle after trauma. Neural Regen Res 2021; 17:1617-1622. [PMID: 34916449 PMCID: PMC8771090 DOI: 10.4103/1673-5374.330620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
MicroRNAs can regulate the function of ion channels in many organs. Based on our previous study we propose that miR-142a-39, which is highly expressed in denervated skeletal muscle, might affect cell excitability through similar mechanisms. In this study, we overexpressed or knocked down miR-142a-3p in C2C12 cells using a lentivirus method. After 7 days of differentiation culture, whole-cell currents were recorded. The results showed that overexpression of miR-142a-3p reduced the cell membrane capacitance, increased potassium current density and decreased calcium current density. Knockdown of miR-142a-3p reduced sodium ion channel current density. The results showed that change in miR-142a-3p expression affected the ion channel currents in C2C12 cells, suggesting its possible roles in muscle cell electrophysiology. This study was approved by the Animal Ethics Committee of Peking University in July 2020 (approval No. LA2017128).
Collapse
Affiliation(s)
- Xin-Yi Gu
- Department of Orthopedics and Traumatology, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Bo Jin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu Province, China
| | - Zhi-Dan Qi
- Department of Orthopedics and Traumatology, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Xiao-Feng Yin
- Department of Orthopedics and Traumatology, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| |
Collapse
|
24
|
Sanghvi S, Szteyn K, Ponnalagu D, Sridharan D, Lam A, Hansra I, Chaudhury A, Majumdar U, Kohut AR, Rao SG, Khan M, Garg V, Singh H. Inhibition of BK Ca channels protects neonatal hearts against myocardial ischemia and reperfusion injury.. [DOI: 10.1101/2021.11.02.466585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractBKCa channels are large-conductance calcium and voltage-activated potassium channels that are heterogeneously expressed in a wide array of cells. Activation of BKCa channels present in mitochondria of adult ventricular cardiomyocytes is implicated in cardioprotection against ischemia-reperfusion (IR) injury. However, the BKCa channel’s activity has never been detected in the plasma membrane of adult ventricular cardiomyocytes. In this study, we report the presence of the BKCa channel in the plasma membrane and mitochondria of neonatal murine and rodent cardiomyocytes which protects the heart on inhibition but not activation. Furthermore, K+ currents measured in neonatal cardiomyocyte (NCM) was sensitive to iberiotoxin (IbTx), suggesting the presence of BKCa channels in the plasma membrane. Neonatal hearts subjected to IR when post-conditioned with NS1619 during reoxygenation increased the myocardial infarction whereas IbTx reduced the infarct size. In agreement, isolated NCM also presented increased apoptosis on treatment with NS1619 during hypoxia and reoxygenation, whereas IbTx reduced TUNEL positive cells. In NCMs, activation of BKCa channels increased the intracellular reactive oxygen species post HR injury. Electrophysiological characterization of NCMs indicated that NS1619 increased the beat period, field, and action potential duration, and decreased the conduction velocity and spike amplitude. In contrast, IbTx had no impact on the electrophysiological properties of NCMs. Taken together, our data established that inhibition of plasma membrane BKCa channels in the NCM protects neonatal heart/cardiomyocytes from IR injury. Furthermore, the functional disparity observed towards the cardioprotective activity of BKCa channels in adults compared to neonatal heart could be attributed to their differential localization.
Collapse
|
25
|
Liu Y, Li J, Bu H, Wang H, Zhang Y, Shen Q, Li M, Lu Z, Rong X, Zheng D, Peng Y. Circular RNA expression alteration identifies a novel circulating biomarker in serum exosomal for detection of alcohol dependence. Addict Biol 2021; 26:e13031. [PMID: 33821559 DOI: 10.1111/adb.13031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/22/2020] [Accepted: 03/05/2021] [Indexed: 12/15/2022]
Abstract
Alcohol dependence (AD) is one of the most common and detrimental neuropsychological disorders. Recently, more and more studies have focused on circular RNA as markers for central nervous system (CNS) diseases. The present study was conducted to evaluate the circular RNA expression alteration in serum exosomal and to identify a novel circulating biomarker for the detection of AD. We first isolated exosomes from serum and then investigated the circRNA expression alterations by high throughput whole transcriptome sequencing. The data were then analyzed using bioinformatics methods. Moreover, we verified the circRNA-seq by qRT-PCR. Furthermore, we analyzed the correlations between the levels of hsa_circ_0004771 and both Severity of Alcohol Dependence Questionnaire (SADQ) and Alcohol Dependence Scale (ADS). The diagnostic value of hsa_circ_0004771 in AD patients was evaluated by receiver operating characteristic (ROC). In this study, 254 differentially expressed circRNAs were identified, with 149 upregulated and 105 downregulated. GO analysis showed that these differentially expressed circRNAs from exosomes might be associated with the regulation of neuron projection and axon regeneration. KEGG analysis revealed that T cell receptor signaling and antigen processing and presentation pathway had a regulating effect on upstream levels. We found that hsa_circ_0004771 was related to the severity of AD. The AUC for the diagnostic value of hsa_circ_0004771 in AD patients was 0.874. These findings indicated that circRNA in serum exosomes provide novel targets for further research on molecular mechanisms of AD. Among these, hsa_circ_0004771 may be a sensitive biomarker that was related to the severity of AD.
Collapse
Affiliation(s)
- Yunyun Liu
- Department of Neurology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| | - Jiande Li
- Department of Neurology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| | - Huanhuan Bu
- Department of Neurology The Affiliated Brain Hospital of Guangzhou Medical University Guangzhou China
| | - Hongxuan Wang
- Department of Neurology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| | - Yuanpei Zhang
- Department of Neurology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| | - Qingyu Shen
- Department of Neurology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| | - Mei Li
- Department of Neurology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| | - Zijing Lu
- Department of Plastic and Cosmetic Surgery Nanfang Hospital, Southern Medical University Guangzhou China
| | - Xiaoming Rong
- Department of Neurology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| | - Dong Zheng
- Department of Neurology The Affiliated Brain Hospital of Guangzhou Medical University Guangzhou China
| | - Ying Peng
- Department of Neurology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| |
Collapse
|
26
|
Lim Y, Beane-Ebel JE, Tanaka Y, Ning B, Husted CR, Henderson DC, Xiang Y, Park IH, Farrer LA, Zhang H. Exploration of alcohol use disorder-associated brain miRNA-mRNA regulatory networks. Transl Psychiatry 2021; 11:504. [PMID: 34601489 PMCID: PMC8487426 DOI: 10.1038/s41398-021-01635-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023] Open
Abstract
Transcriptomic changes in specific brain regions can influence the risk of alcohol use disorder (AUD), but the underlying mechanism is not fully understood. We investigated AUD-associated miRNA-mRNA regulatory networks in multiple brain regions by analyzing transcriptomic changes in two sets of postmortem brain tissue samples and ethanol-exposed human embryonic stem cell (hESC)-derived cortical interneurons. miRNA and mRNA transcriptomes were profiled in 192 tissue samples (Set 1) from eight brain regions (amygdala, caudate nucleus, cerebellum, hippocampus, nucleus accumbens, prefrontal cortex, putamen, and ventral tegmental area) of 12 AUD and 12 control European Australians. Nineteen differentially expressed miRNAs (fold-change>2.0 & P < 0.05) and 97 differentially expressed mRNAs (fold-change>2.0 & P < 0.001) were identified in one or multiple brain regions of AUD subjects. AUD-associated miRNA-mRNA regulatory networks in each brain region were constructed using differentially expressed and negatively correlated miRNA-mRNA pairs. AUD-relevant pathways (including CREB Signaling, IL-8 Signaling, and Axonal Guidance Signaling) were potentially regulated by AUD-associated brain miRNA-mRNA pairs. Moreover, miRNA and mRNA transcriptomes were mapped in additional 96 tissue samples (Set 2) from six of the above eight brain regions of eight AUD and eight control European Australians. Some of the AUD-associated miRNA-mRNA regulatory networks were confirmed. In addition, miRNA and mRNA transcriptomes were analyzed in hESC-derived cortical interneurons with or without ethanol exposure, and ethanol-influenced miRNA-mRNA regulatory networks were constructed. This study provided evidence that alcohol could induce concerted miRNA and mRNA expression changes in reward-related or alcohol-responsive brain regions. We concluded that altered brain miRNA-mRNA regulatory networks might contribute to AUD development.
Collapse
Affiliation(s)
- Yolpanhchana Lim
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- The Bioinformatics Program, Boston University Graduate School of Arts and Sciences, Boston, MA, USA
| | - Jennifer E Beane-Ebel
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, H1T 2M4, Canada
| | - Boting Ning
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Christopher R Husted
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - David C Henderson
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Yangfei Xiang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - In-Hyun Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Lindsay A Farrer
- Section of Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Departments of Neurology and Ophthalmology, Boston University School of Medicine, Boston, MA, USA
- Departments of Biostatistics and Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.
- Departments of Biostatistics and Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
27
|
Alcohol induced impairment/abnormalities in brain: Role of MicroRNAs. Neurotoxicology 2021; 87:11-23. [PMID: 34478768 DOI: 10.1016/j.neuro.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/12/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022]
Abstract
Alcohol is a highly toxic substance and has teratogenic properties that can lead to a wide range of developmental disorders. Excessive use of alcohol can change the structural and functional aspects of developed brain and other organs. Which can further lead to significant health, social and economic implications in many countries of the world. Convincing evidence support the involvement of microRNAs (miRNAs) as important post-transcriptional regulators of gene expression in neurodevelopment and maintenance. They also show differential expression following an injury. MiRNAs are the special class of small non coding RNAs that can modify the gene by targeting the mRNA and fine tune the development of cells to organs. Numerous pieces of evidences have shown the relationship between miRNA, alcohol and brain damage. These studies also show how miRNA controls different cellular mechanisms involved in the development of alcohol use disorder. With the increasing number of research studies, the roles of miRNAs following alcohol-induced injury could help researchers to recognize alternative therapeutic methods to treat/cure alcohol-induced brain damage. The present review summarizes the available data and brings together the important miRNAs, that play a crucial role in alcohol-induced brain damage, which will help in better understanding complex mechanisms. Identifying these miRNAs will not only expand the current knowledge but can lead to the identification of better targets for the development of novel therapeutic interventions.
Collapse
|
28
|
Chivero ET, Dagur RS, Peeples ES, Sil S, Liao K, Ma R, Chen L, Gurumurthy CB, Buch S, Hu G. Biogenesis, physiological functions and potential applications of extracellular vesicles in substance use disorders. Cell Mol Life Sci 2021; 78:4849-4865. [PMID: 33821293 PMCID: PMC10563196 DOI: 10.1007/s00018-021-03824-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/02/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Substance use disorder (SUD) is a growing health problem that affects several millions of people worldwide, resulting in negative socioeconomic impacts and increased health care costs. Emerging evidence suggests that extracellular vesicles (EVs) play a crucial role in SUD pathogenesis. EVs, including exosomes and microvesicles, are membrane-encapsulated particles that are released into the extracellular space by most types of cells. EVs are important players in mediating cell-to-cell communication through transfer of cargo such as proteins, lipids and nucleic acids. The EV cargo can alter the status of recipient cells, thereby contributing to both physiological and pathological processes; some of these play critical roles in SUD. Although the functions of EVs under several pathological conditions have been extensively reviewed, EV functions and potential applications in SUD remain less studied. In this review, we provide an overview of the current knowledge of the role of EVs in SUD, including alcohol, cocaine, heroin, marijuana, nicotine and opiate abuse. The review will focus on the biogenesis and cargo composition of EVs as well as the potential use of EVs as biomarkers of SUD or therapeutic targets in SUD.
Collapse
Affiliation(s)
- Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Raghubendra Singh Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68105, USA
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong, China
- Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong, China
| | - Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
29
|
Bezerra DP, de Aguiar JP, Keasey MP, Rodrigues CG, de Oliveira JRM. MiR-9-5p Regulates Genes Linked to Cerebral Calcification in the Osteogenic Differentiation Model and Induces Generalized Alteration in the Ion Channels. J Mol Neurosci 2021; 71:1897-1905. [PMID: 34041689 DOI: 10.1007/s12031-021-01830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/15/2021] [Indexed: 12/01/2022]
Abstract
MicroRNA-9 (miR-9) modulates gene expression and demonstrates high structural conservation and wide expression in the central nervous system. Bioinformatics analysis predicts almost 100 ion channels, membrane transporters and receptors, including genes linked to primary familial brain calcification (PFBC), as possible miR-9-5p targets. PFBC is a neurodegenerative disorder, characterized by bilateral and symmetrical calcifications in the brain, associated with motor and behavioral disturbances. In this work, we seek to study the influence of miR-9-5p in regulating genes involved in PFBC, in an osteogenic differentiation model with SaOs-2 cells. During the induced calcification process, solute carrier family 20 member 2 (SLC20A2) and platelet-derived growth factor receptor beta (PDGFRB) were downregulated, while platelet-derived growth factor beta (PDGFB) showed no significant changes. Significantly decreased levels of SLC20A2 and PDGFRB were caused by the presence of miR-9-5p, while PDGFB showed no regulation. We confirmed the findings using an miR-9-5p inhibitor and also probed the cells in electrophysiological analysis to assess whether such microRNA might affect a broader range of ion channels, membrane transporters and receptors. Our electrophysiological data show that an increase of the miR-9-5p in SaOs-2 cells decreased the density and amplitude of the output ionic currents, indicating that it may influence the activity, and perhaps the expression, of some ionic channels. Additional investigations should determine whether such an effect is specific to miR-9-5p, and whether it could be used, together with the miR-9-5p inhibitor, as a therapeutic or diagnostic tool.
Collapse
Affiliation(s)
| | | | - Matthew Philip Keasey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | | | - João Ricardo Mendes de Oliveira
- Keizo Asami Laboratory, Federal University of Pernambuco, Recife, PE, Brazil. .,Neuropsychiatry Department, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
30
|
Sterken MG, van Wijk MH, Quamme EC, Riksen JAG, Carnell L, Mathies LD, Davies AG, Kammenga JE, Bettinger JC. Transcriptional analysis of the response of C. elegans to ethanol exposure. Sci Rep 2021; 11:10993. [PMID: 34040055 PMCID: PMC8155136 DOI: 10.1038/s41598-021-90282-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/07/2021] [Indexed: 11/30/2022] Open
Abstract
Ethanol-induced transcriptional changes underlie important physiological responses to ethanol that are likely to contribute to the addictive properties of the drug. We examined the transcriptional responses of Caenorhabditis elegans across a timecourse of ethanol exposure, between 30 min and 8 h, to determine what genes and genetic pathways are regulated in response to ethanol in this model. We found that short exposures to ethanol (up to 2 h) induced expression of metabolic enzymes involved in metabolizing ethanol and retinol, while longer exposure (8 h) had much more profound effects on the transcriptome. Several genes that are known to be involved in the physiological response to ethanol, including direct ethanol targets, were regulated at 8 h of exposure. This longer exposure to ethanol also resulted in the regulation of genes involved in cilia function, which is consistent with an important role for the effects of ethanol on cilia in the deleterious effects of chronic ethanol consumption in humans. Finally, we found that food deprivation for an 8-h period induced gene expression changes that were somewhat ameliorated by the presence of ethanol, supporting previous observations that worms can use ethanol as a calorie source.
Collapse
Affiliation(s)
- Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Marijke H van Wijk
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Elizabeth C Quamme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, 23298, USA
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Lucinda Carnell
- Department of Biological Sciences, Central Washington University, Ellensburg, WA, 98926, USA
| | - Laura D Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, 23298, USA
- Virginia Commonwealth University Alcohol Research Center, Richmond, VA, USA
| | - Andrew G Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, 23298, USA
- Virginia Commonwealth University Alcohol Research Center, Richmond, VA, USA
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, 23298, USA.
- Virginia Commonwealth University Alcohol Research Center, Richmond, VA, USA.
| |
Collapse
|
31
|
Gowen AM, Odegaard KE, Hernandez J, Chand S, Koul S, Pendyala G, Yelamanchili SV. Role of microRNAs in the pathophysiology of addiction. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1637. [PMID: 33336550 PMCID: PMC8026578 DOI: 10.1002/wrna.1637] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Addiction is a chronic and relapsing brain disorder characterized by compulsive seeking despite adverse consequences. There are both heritable and epigenetic mechanisms underlying drug addiction. Emerging evidence suggests that non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding RNAs, and circular RNAs regulate synaptic plasticity and related behaviors caused by substances of abuse. These ncRNAs modify gene expression and may contribute to the behavioral phenotypes of addiction. Among the ncRNAs, the most widely researched and impactful are miRNAs. The goal in this systematic review is to provide a detailed account of recent research involving the role of miRNAs in addiction. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Austin M Gowen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katherine E Odegaard
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jordan Hernandez
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sneh Koul
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sowmya V Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
32
|
Pöstyéni E, Kovács-Valasek A, Urbán P, Czuni L, Sétáló G, Fekete C, Gabriel R. Analysis of mir-9 Expression Pattern in Rat Retina during Postnatal Development. Int J Mol Sci 2021; 22:ijms22052577. [PMID: 33806574 PMCID: PMC7961372 DOI: 10.3390/ijms22052577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
It is well established that miR-9 contributes to retinal neurogenesis. However, little is known about its presence and effects in the postnatal period. To expand our knowledge, miRNA-small RNA sequencing and in situ hybridization supported by RT-qPCR measurement were carried out. Mir-9 expression showed two peaks in the first three postnatal weeks in Wistar rats. The first peak was detected at postnatal Day 3 (P3) and the second at P10, then the expression gradually decreased until P21. Furthermore, we performed in silico prediction and established that miR-9 targets OneCut2 or synaptotagmin-17. Another two microRNAs (mir-135, mir-218) were found from databases which also target these proteins. They showed a similar tendency to mir-9; their lowest expression was at P7 and afterwards, they showed increase. We revealed that miR-9 is localized mainly in the inner retina. Labeling was observed in ganglion and amacrine cells. Additionally, horizontal cells were also marked. By dual miRNA-in situ hybridization/immunocytochemistry and qPCR, we revealed alterations in their temporal and spatial expression. Our results shed light on the significance of mir-9 regulation during the first three postnatal weeks in rat retina and suggest that miRNA could act on their targets in a stage-specific manner.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary;
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary;
- Correspondence: (A.K.-V.); (R.G.)
| | - Péter Urbán
- János Szentágothai Research Centre, 7624 Pécs, Hungary; (P.U.); (L.C.); (C.F.)
| | - Lilla Czuni
- János Szentágothai Research Centre, 7624 Pécs, Hungary; (P.U.); (L.C.); (C.F.)
| | - György Sétáló
- Department of Medical Biology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Csaba Fekete
- János Szentágothai Research Centre, 7624 Pécs, Hungary; (P.U.); (L.C.); (C.F.)
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary;
- Department of Medical Biology, Medical School, University of Pécs, 7624 Pécs, Hungary;
- Correspondence: (A.K.-V.); (R.G.)
| |
Collapse
|
33
|
Drake J, McMichael GO, Vornholt ES, Cresswell K, Williamson V, Chatzinakos C, Mamdani M, Hariharan S, Kendler KS, Kalsi G, Riley BP, Dozmorov M, Miles MF, Bacanu S, Vladimirov VI. Assessing the Role of Long Noncoding RNA in Nucleus Accumbens in Subjects With Alcohol Dependence. Alcohol Clin Exp Res 2020; 44:2468-2480. [PMID: 33067813 PMCID: PMC7756309 DOI: 10.1111/acer.14479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Long noncoding RNA (lncRNA) have been implicated in the etiology of alcohol use. Since lncRNA provide another layer of complexity to the transcriptome, assessing their expression in the brain is the first critical step toward understanding lncRNA functions in alcohol use and addiction. Thus, we sought to profile lncRNA expression in the nucleus accumbens (NAc) in a large postmortem alcohol brain sample. METHODS LncRNA and protein-coding gene (PCG) expressions in the NAc from 41 subjects with alcohol dependence (AD) and 41 controls were assessed via a regression model. Weighted gene coexpression network analysis was used to identify lncRNA and PCG networks (i.e., modules) significantly correlated with AD. Within the significant modules, key network genes (i.e., hubs) were also identified. The lncRNA and PCG hubs were correlated via Pearson correlations to elucidate the potential biological functions of lncRNA. The lncRNA and PCG hubs were further integrated with GWAS data to identify expression quantitative trait loci (eQTL). RESULTS At Bonferroni adj. p-value ≤ 0.05, we identified 19 lncRNA and 5 PCG significant modules, which were enriched for neuronal and immune-related processes. In these modules, we further identified 86 and 315 PCG and lncRNA hubs, respectively. At false discovery rate (FDR) of 10%, the correlation analyses between the lncRNA and PCG hubs revealed 3,125 positive and 1,860 negative correlations. Integration of hubs with genotype data identified 243 eQTLs affecting the expression of 39 and 204 PCG and lncRNA hubs, respectively. CONCLUSIONS Our study identified lncRNA and gene networks significantly associated with AD in the NAc, coordinated lncRNA and mRNA coexpression changes, highlighting potentially regulatory functions for the lncRNA, and our genetic (cis-eQTL) analysis provides novel insights into the etiological mechanisms of AD.
Collapse
Affiliation(s)
- John Drake
- From the Center for Integrative Life Sciences Education (JD)Virginia Commonwealth UniversityRichmondVirginia
| | - Gowon O. McMichael
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
| | - Eric Sean Vornholt
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
| | - Kellen Cresswell
- Department of Biostatistics(KC, MD)Virginia Commonwealth UniversityRichmondVirginia
| | - Vernell Williamson
- Department of Pathology(VW)Virginia Commonwealth UniversityRichmondVirginia
| | - Chris Chatzinakos
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
| | - Mohammed Mamdani
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
| | - Siddharth Hariharan
- Summer Research Fellowship(SH)School of MedicineVirginia Commonwealth UniversityRichmondVirginia
| | - Kenneth S. Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
- Department of Psychiatry(KSK, BPR, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
- Department of Human and Molecular Genetics(KSK, BPR)Virginia Commonwealth UniversityRichmondVirginia
| | - Gursharan Kalsi
- Department of Social, Genetic and Developmental Psychiatry(GK)Institute of PsychiatryLondonUK
| | - Brien P. Riley
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
- Department of Psychiatry(KSK, BPR, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
- Department of Human and Molecular Genetics(KSK, BPR)Virginia Commonwealth UniversityRichmondVirginia
| | - Mikhail Dozmorov
- Department of Biostatistics(KC, MD)Virginia Commonwealth UniversityRichmondVirginia
| | - Michael F. Miles
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
- Department of Pharmacology and Toxicology(MFM)Virginia Commonwealth UniversityRichmondVirginia
| | - Silviu‐Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
- Department of Psychiatry(KSK, BPR, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
| | - Vladimir I. Vladimirov
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
- Department of Psychiatry(KSK, BPR, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
- Center for Biomarker Research and Personalized Medicine(VIV)Virginia Commonwealth UniversityRichmondVirginia
- Lieber Institute for Brain Development(VIV)Johns Hopkins UniversityBaltimoreMaryland
| |
Collapse
|
34
|
Yang J, Li L, Hong S, Zhang D, Zhou Y. Methamphetamine leads to the alterations of microRNA profiles in the nucleus accumbens of rats. PHARMACEUTICAL BIOLOGY 2020; 58:797-805. [PMID: 32893733 PMCID: PMC8641683 DOI: 10.1080/13880209.2020.1803366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/07/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT MicroRNA (miRNA) is an important regulator of gene expression. Methamphetamine (METH) induces a variety of alterations in different systems by affecting gene expression, but the effects of METH on miRNA profiles need to be elucidated. OBJECTIVES This study develops a rat model of METH addiction, and analyzes the expression profile alterations of miRNA in nucleus accumbens (NAc) of the METH-addicted rats. MATERIALS AND METHODS Sprague-Dawley rats were administered 10 mg/kg METH or vehicle twice a day for 4 weeks. The addictive behaviour of rats was estimated by CPP test. The pathological changes of brain tissues were then observed by HE and Glee silver staining. The miRNA profile analysis of the NAc of the rats was performed using an Illumina HiSeq™ 2500 sequencing system. RESULTS CPP test indicated that METH significantly prolonged the residence time of the rats in the drug box (from 307 ± 97 to 592 ± 96 s). The pathological staining showed the distorted axons, and fewer polarized neurons in the METH-treated rats. We further identified 40 differential miRNAs (17 up- and 23 down-regulated) and three novel miRNAs (novel 237, 296 and 501) that responded to METH. The bioinformatic analysis for the potential targets of the differential miRNA suggests that the downstream were concentrated in the Wnt signalling pathway, tuberculosis, toxoplasmosis, spliceosome, lysosome, and axon guidance. DISCUSSION AND CONCLUSIONS A number of miRNAs responding to METH were identified in the NAc of rats. These METH-regulated miRNAs provide a new perspective for revealing the molecular mechanisms of METH addiction.
Collapse
Affiliation(s)
- Jing Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Lihua Li
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Shijun Hong
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Dongxian Zhang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Yiqing Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
35
|
Differential expression of microRNAs in the hippocampi of male and female rodents after chronic alcohol administration. Biol Sex Differ 2020; 11:65. [PMID: 33228793 PMCID: PMC7684718 DOI: 10.1186/s13293-020-00342-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Women are more vulnerable than men to the neurotoxicity and severe brain damage caused by chronic heavy alcohol use. In addition, brain damage due to chronic heavy alcohol use may be associated with sex-dependent epigenetic modifications. This study aimed to identify microRNAs (miRNAs) and their target genes that are differentially expressed in the hippocampi of male and female animal models in response to alcohol. Methods After chronic alcohol administration (3~3.5 g/kg/day) in male (control, n = 10; alcohol, n = 12) or female (control, n = 10; alcohol, n = 12) Sprague-Dawley rats for 6 weeks, we measured body weights and doublecortin (DCX; a neurogenesis marker) concentrations and analyzed up- or downregulated miRNAs using GeneChip miRNA 4.0 arrays. The differentially expressed miRNAs and their putative target genes were validated by RT-qPCR. Results Alcohol attenuated body weight gain only in the male group. On the other hand, alcohol led to increased serum AST in female rats and decreased serum total cholesterol concentrations in male rats. The expression of DCX was significantly reduced in the hippocampi of male alcohol-treated rats. Nine miRNAs were significantly up- or downregulated in male alcohol-treated rats, including upregulation of miR-125a-3p, let-7a-5p, and miR-3541, and downregulation of their target genes (Prdm5, Suv39h1, Ptprz1, Mapk9, Ing4, Wt1, Nkx3-1, Dab2ip, Rnf152, Ripk1, Lin28a, Apbb3, Nras, and Acvr1c). On the other hand, 7 miRNAs were significantly up- or downregulated in alcohol-treated female rats, including downregulation of miR-881-3p and miR-504 and upregulation of their target genes (Naa50, Clock, Cbfb, Arih1, Ube2g1, and Gng7). Conclusions These results suggest that chronic heavy alcohol use produces sex-dependent effects on neurogenesis and miRNA expression in the hippocampus and that sex differences should be considered when developing miRNA biomarkers to diagnose or treat alcoholics. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-020-00342-3.
Collapse
|
36
|
Signor SA. Evolution of Plasticity in Response to Ethanol between Sister Species with Different Ecological Histories ( Drosophila melanogaster and D. simulans). Am Nat 2020; 196:620-633. [PMID: 33064591 DOI: 10.1086/710763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWhen populations evolve adaptive reaction norms in response to novel environments, it can occur through a process termed genetic accommodation. Under this model, the initial response to the environment is widely variable between genotypes as a result of cryptic genetic variation, which is then refined by selection to a single adaptive response. Here, I empirically test these predictions from genetic accommodation by measuring reaction norms in individual genotypes and across several time points. I compare two species of Drosophila that differ in their adaptation to ethanol (D. melanogaster and D. simulans). Both species are human commensals with a recent cosmopolitan expansion, but only D. melanogaster is adapted to ethanol exposure. Using gene expression as a phenotype and an approach that combines information about expression and alternative splicing, I find that D. simulans exhibits cryptic genetic variation in the response to ethanol, while D. melanogaster has almost no genotype-specific variation in reaction norm. This is evidence for adaptation to ethanol through genetic accommodation, suggesting that the evolution of phenotypic plasticity could be an important contributor to the ability to exploit novel resources.
Collapse
|
37
|
Epigenetic and non-coding regulation of alcohol abuse and addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:63-86. [PMID: 33461665 DOI: 10.1016/bs.irn.2020.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcohol use disorder is a chronic debilitated condition adversely affecting the lives of millions of individuals throughout the modern world. Individuals suffering from an alcohol use disorder diagnosis frequently have serious cooccurring conditions, which often further exacerbates problematic drinking behavior. Comprehending the biochemical processes underlying the progression and perpetuation of disease is essential for mitigating maladaptive behavior in order to restore both physiological and psychological health. The range of cellular and biological systems contributing to, and affected by, alcohol use disorder and other comorbid disorders necessitates a fundamental grasp of intricate functional relationships that govern molecular biology. Epigenetic factors are recognized as essential mediators of cellular behavior, orchestrating a symphony of gene expression changes within multicellular environments that are ultimately responsible for directing human behavior. Understanding the epigenetic and transcriptional regulatory mechanisms involved in the pathogenesis of disease is important for improving available pharmacotherapies and reducing the incidence of alcohol abuse and cooccurring conditions.
Collapse
|
38
|
Odegaard KE, Chand S, Wheeler S, Tiwari S, Flores A, Hernandez J, Savine M, Gowen A, Pendyala G, Yelamanchili SV. Role of Extracellular Vesicles in Substance Abuse and HIV-Related Neurological Pathologies. Int J Mol Sci 2020; 21:E6765. [PMID: 32942668 PMCID: PMC7554956 DOI: 10.3390/ijms21186765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are a broad, heterogeneous class of membranous lipid-bilayer vesicles that facilitate intercellular communication throughout the body. As important carriers of various types of cargo, including proteins, lipids, DNA fragments, and a variety of small noncoding RNAs, including miRNAs, mRNAs, and siRNAs, EVs may play an important role in the development of addiction and other neurological pathologies, particularly those related to HIV. In this review, we summarize the findings of EV studies in the context of methamphetamine (METH), cocaine, nicotine, opioid, and alcohol use disorders, highlighting important EV cargoes that may contribute to addiction. Additionally, as HIV and substance abuse are often comorbid, we discuss the potential role of EVs in the intersection of substance abuse and HIV. Taken together, the studies presented in this comprehensive review shed light on the potential role of EVs in the exacerbation of substance use and HIV. As a subject of growing interest, EVs may continue to provide information about mechanisms and pathogenesis in substance use disorders and CNS pathologies, perhaps allowing for exploration into potential therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.E.O.); (S.C.); (S.W.); (S.T.); (A.F.); (J.H.); (M.S.); (A.G.); (G.P.)
| |
Collapse
|
39
|
Yapijakis C. Regulatory Role of MicroRNAs in Brain Development and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1195:237-247. [PMID: 32468482 DOI: 10.1007/978-3-030-32633-3_32] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules of about 20-22 nucleotides. After their posttranscriptional maturation, miRNAs are loaded into the ribonucleoprotein complex RISC and modulate gene expression by binding to the 3' untranslated region of their target mRNAs through base-pairing, which in turn triggers mRNA degradation or translational inhibition. There is mounting evidence that miRNAs regulate various biological processes, including cell proliferation, differentiation, and apoptosis. Several studies have shown that miRNAs play an important role in neurogenesis and brain development.This review discusses recent progress on understanding the implication of precisely regulated miRNA expression in normal brain development and function. In addition, it reports known cases of dysregulation of miRNA expression and function implicated in the pathogenesis of neurodevelopmental disorders, craniofacial dysmorphic syndromes, neurodegenerative diseases, and psychiatric disorders. Current knowledge regarding the role of miRNAs in the brain in conjunction with the complex interplay between genetic and epigenetic factors are discussed.
Collapse
Affiliation(s)
- Christos Yapijakis
- 1st Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Haghia Sophia" Hospital, Athens, Greece. .,Department of Molecular Genetics, Cephalogenetics Diagnostic Center, Athens, Greece.
| |
Collapse
|
40
|
Bahi A, Dreyer JL. Lentiviral-mediated up-regulation of let-7d microRNA decreases alcohol intake through down-regulating the dopamine D3 receptor. Eur Neuropsychopharmacol 2020; 37:70-81. [PMID: 32646740 DOI: 10.1016/j.euroneuro.2020.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 01/02/2023]
Abstract
Recent studies have shown that Lethal-7 (let-7) microRNA (miRNA) is involved in a wide range of psychiatric disorders such as anxiety, depression, schizophrenia, and cocaine addiction. However, the exact role of let-7d miRNA in regulating ethanol intake and preference remains to be elucidated. The aim of the present study was to clarify the role of accumbal let-7d in controlling ethanol-related behaviors in adult rats. For this purpose, stereotaxic injections of let-7d-overexpressing lentiviral vectors (LV) were administered bilaterally into the nucleus accumbens (Nacc) of Wistar rats. The ethanol-related behaviors were investigated using the two-bottle choice (TBC) access paradigm, in which the rats had access to 2.5, 5, and 10% ethanol solutions, the grid hanging test (GHT) and ethanol-induced loss-of-righting-reflex (LORR) test. The results showed that intra-accumbally administered let-7d-overexpressing LV significantly decreased ethanol intake and preference without having significant effects on body weight, consumption or preference for tastants (saccharin and quinine) or ethanol metabolism. Furthermore, accumbal let-7d increased resistance to ethanol-induced sedation in the GHT and LORR test. Most importantly, the data showed that the dopamine D3 receptor (D3R) was a candidate target of let-7d In fact, and using real time PCR, let-7d was found to directly target D3R mRNA to decrease its expression. Further analyses proved that D3R expression was negatively correlated with the levels of let-7d and ethanol-related behaviors parameters. Taken together, the data indicating that let-7d impaired ethanol-related behaviors by targeting D3R will open up new exciting possibilities and might provide potential therapeutic evidence for alcoholism.
Collapse
Affiliation(s)
- Amine Bahi
- College of Medicine, Ajman University, Ajman, UAE; Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, UAE.
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
41
|
Singh T, Yadav S. Role of microRNAs in neurodegeneration induced by environmental neurotoxicants and aging. Ageing Res Rev 2020; 60:101068. [PMID: 32283224 DOI: 10.1016/j.arr.2020.101068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
The progressive loss of neuronal structure and functions resulting in the death of neurons is considered as neurodegeneration. Environmental toxicants induced degeneration of neurons is accelerated with aging. In adult brains, most of the neurons are post-mitotic, and their loss results in the development of diseases like amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). Neurodegenerative diseases have several similarities at the sub-cellular and molecular levels, such as synaptic degeneration, oxidative stress, inflammation, and cognitive decline, which are also known in brain aging. Identification of these similarities at the molecular level offers hope for the development of new therapeutics to ameliorate all neurodegenerative diseases simultaneously. Aging is known as the most strongly associated additive factor in the pathogenesis of neurodegenerative diseases. Studies carried out so far identified several genes, which are responsible for selective degeneration of neurons in different neurodegenerative diseases. Countless efforts have been made in identifying therapeutics for neurodegenerative diseases; however, the discovery of effective therapy remains elusive. Findings made in the last two decades identified microRNAs (miRNAs) as the most potent post-transcription regulatory RNA molecule, which can condition protein levels in the cell and tissue-specific manner. Identification of miRNAs, which regulate both neurotoxicant and aging-associated degeneration of brain cells, raises the possibility that roads leading to aging and neurotoxicant induced neurodegeneration cross at some point. Identification of miRNAs, which are common to aging and neurotoxicant induced neurodegeneration, will help in understanding the complex mechanism of neurodegenerative disease development. In the future, the use of natural miRNAs in vivo in therapy will be able to tackle several issues of aging and neurodegeneration. In the present review, we have provided a summary of findings made on the role of miRNAs in neurodegeneration and explored the common link made by miRNAs between aging and neurotoxicants induced neurodegeneration.
Collapse
Affiliation(s)
- Tanisha Singh
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Neurological Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, Pennsylvania-15213, USA.
| | - Sanjay Yadav
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, Munsiganj, Raebareli 229405, UP, India.
| |
Collapse
|
42
|
Li B, Suutari BS, Sun SD, Luo Z, Wei C, Chenouard N, Mandelberg NJ, Zhang G, Wamsley B, Tian G, Sanchez S, You S, Huang L, Neubert TA, Fishell G, Tsien RW. Neuronal Inactivity Co-opts LTP Machinery to Drive Potassium Channel Splicing and Homeostatic Spike Widening. Cell 2020; 181:1547-1565.e15. [PMID: 32492405 DOI: 10.1016/j.cell.2020.05.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 01/28/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
Homeostasis of neural firing properties is important in stabilizing neuronal circuitry, but how such plasticity might depend on alternative splicing is not known. Here we report that chronic inactivity homeostatically increases action potential duration by changing alternative splicing of BK channels; this requires nuclear export of the splicing factor Nova-2. Inactivity and Nova-2 relocation were connected by a novel synapto-nuclear signaling pathway that surprisingly invoked mechanisms akin to Hebbian plasticity: Ca2+-permeable AMPA receptor upregulation, L-type Ca2+ channel activation, enhanced spine Ca2+ transients, nuclear translocation of a CaM shuttle, and nuclear CaMKIV activation. These findings not only uncover commonalities between homeostatic and Hebbian plasticity but also connect homeostatic regulation of synaptic transmission and neuronal excitability. The signaling cascade provides a full-loop mechanism for a classic autoregulatory feedback loop proposed ∼25 years ago. Each element of the loop has been implicated previously in neuropsychiatric disease.
Collapse
Affiliation(s)
- Boxing Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510810, China; Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA.
| | - Benjamin S Suutari
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Simón(e) D. Sun
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Zhengyi Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China
| | - Chuanchuan Wei
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510810, China
| | - Nicolas Chenouard
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA
| | - Nataniel J Mandelberg
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA
| | - Guoan Zhang
- Department of Biochemistry and Molecular Pharmacology and Skirball Institute, NYU Grossman Medical Center, New York, NY 10016, USA
| | - Brie Wamsley
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA; Stanley Center for Psychiatric Research, The Broad Institute, Cambridge, MA 02142, USA
| | - Guoling Tian
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA
| | - Sandrine Sanchez
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA
| | - Sikun You
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510810, China
| | - Lianyan Huang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510810, China
| | - Thomas A Neubert
- Department of Biochemistry and Molecular Pharmacology and Skirball Institute, NYU Grossman Medical Center, New York, NY 10016, USA
| | - Gordon Fishell
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA; Stanley Center for Psychiatric Research, The Broad Institute, Cambridge, MA 02142, USA
| | - Richard W Tsien
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
43
|
Ng HM, Ho JCH, Nong W, Hui JHL, Lai KP, Wong CKC. Genome-wide analysis of MicroRNA-messenger RNA interactome in ex-vivo gill filaments, Anguilla japonica. BMC Genomics 2020; 21:208. [PMID: 32131732 PMCID: PMC7057501 DOI: 10.1186/s12864-020-6630-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
Background Gills of euryhaline fishes possess great physiological and structural plasticity to adapt to large changes in external osmolality and to participate in ion uptake/excretion, which is essential for the re-establishment of fluid and electrolyte homeostasis. The osmoregulatory plasticity of gills provides an excellent model to study the role of microRNAs (miRs) in adaptive osmotic responses. The present study is to characterize an ex-vivo gill filament culture and using omics approach, to decipher the interaction between tonicity-responsive miRs and gene targets, in orchestrating the osmotic stress-induced responses. Results Ex-vivo gill filament culture was exposed to Leibovitz’s L-15 medium (300 mOsmol l− 1) or the medium with an adjusted osmolality of 600 mOsmol l− 1 for 4, 8 and 24 h. Hypertonic responsive genes, including osmotic stress transcriptional factor, Na+/Cl−-taurine transporter, Na+/H+ exchange regulatory cofactor, cystic fibrosis transmembrane regulator, inward rectifying K+ channel, Na+/K+-ATPase, and calcium-transporting ATPase were significantly upregulated, while the hypo-osmotic gene, V-type proton ATPase was downregulated. The data illustrated that the ex-vivo gill filament culture exhibited distinctive responses to hyperosmotic challenge. In the hyperosmotic treatment, four key factors (i.e. drosha RNase III endonuclease, exportin-5, dicer ribonuclease III and argonaute-2) involved in miR biogenesis were dysregulated (P < 0.05). Transcriptome and miR-sequencing of gill filament samples at 4 and 8 h were conducted and two downregulated miRs, miR-29b-3p and miR-200b-3p were identified. An inhibition of miR-29b-3p and miR-200b-3p in primary gill cell culture led to an upregulation of 100 and 93 gene transcripts, respectively. Commonly upregulated gene transcripts from the hyperosmotic experiments and miR-inhibition studies, were overlaid, in which two miR-29b-3p target-genes [Krueppel-like factor 4 (klf4), Homeobox protein Meis2] and one miR-200b-3p target-gene (slc17a5) were identified. Integrated miR-mRNA-omics analysis revealed the specific binding of miR-29b-3p on Klf4 and miR-200b-3p on slc17a5. The target-genes are known to regulate differentiation of gill ionocytes and cellular osmolality. Conclusions In this study, we have characterized the hypo-osmoregulatory responses and unraveled the modulation of miR-biogenesis factors/the dysregulation of miRs, using ex-vivo gill filament culture. MicroRNA-messenger RNA interactome analysis of miR-29b-3p and miR-200b-3p revealed the gene targets are essential for osmotic stress responses.
Collapse
Affiliation(s)
- Hoi Man Ng
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, HKSAR, Hong Kong
| | - Jeff Cheuk Hin Ho
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, HKSAR, Hong Kong
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, HKSAR, Hong Kong
| | - Jerome Ho Lam Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, HKSAR, Hong Kong
| | - Keng Po Lai
- Guanxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, People's Republic of China.
| | - Chris Kong Chu Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, HKSAR, Hong Kong.
| |
Collapse
|
44
|
Gu WJ, Zhang C, Zhong Y, Luo J, Zhang CY, Zhang C, Wang C. Altered serum microRNA expression profile in subjects with heroin and methamphetamine use disorder. Biomed Pharmacother 2020; 125:109918. [PMID: 32036213 DOI: 10.1016/j.biopha.2020.109918] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/02/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Drug abuse is one of the most severe global social and public health problems, especially in China. However, objective blood biomarkers that are easy to detect are still in great need. This study was aim to explore the expression pattern of circulating microRNAs (miRNAs) in subjects with drug addiction and test the potential of altered serum miRNAs as noninvasive diagnostic tools for drug abuse. METHODS Serum samples were obtained from 42 heroin abusers, 42 methamphetamine (MA) abusers and 42 controls. Microarray-based miRNA analysis was first applied to screen unique serum miRNA profiles in drug abusers on a training set of serum samples from 12 heroin abusers, 12 MA abusers and 12 control subjects. The expression levels of selected candidate miRNAs were subsequently verified in individual samples of the training set and further confirmed independently in a validation set of samples from 30 heroin abusers, 30 MA abusers and 30 controls using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS Microarray analysis identified 116 and 109 significantly altered miRNAs in heroin abusers and MA abusers, respectively. Three miRNAs, including let-7b-5p, miR-206 and miR-486-5p, were verified to be significantly and steadily increased in heroin abusers, and miR-9-3p was significantly increased in MA abusers compared with normal controls. The areas under the curve (AUCs) of the ROC curve of these miRNAs ranged from 0.718 to 0.867. CONCLUSIONS Our study raises the possibility that the altered serum miRNAs could potentially be used as an auxiliary tool to identify individuals in drug abuse and addiction.
Collapse
Affiliation(s)
- Wan-Jian Gu
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, 210002, China; Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Cuiping Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, 210002, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, 210046, China
| | - Yujie Zhong
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, 210002, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, 210046, China
| | - Jun Luo
- Central Laboratory of Jiangsu Health Vocational College, Nanjing, 210029, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, 210046, China
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, 210002, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, 210046, China.
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, 210002, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, 210046, China.
| |
Collapse
|
45
|
Janeczek P, Colson N, Dodd PR, Lewohl JM. Sex Differences in the Expression of the α5 Subunit of the GABA A Receptor in Alcoholics with and without Cirrhosis of the Liver. Alcohol Clin Exp Res 2020; 44:423-434. [PMID: 31840824 DOI: 10.1111/acer.14266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Alcohol exposure alters the expression of a large number of genes, resulting in neuronal adaptions and neuronal loss, but the underlying mechanisms are largely unknown. miRNAs are gene repressors that are abundant in the brain. A recent study identified ~ 35 miRNAs that are up-regulated in the prefrontal cortex of human alcoholics and predicted to target genes that are down-regulated in the same region. Although interactions between alcohol-responsive miRNAs and their target genes have been predicted, few studies have validated these predictions. METHODS We measured the expression of GABAA α5 mRNA in the prefrontal and motor cortices of human alcoholics and matched controls using real-time PCR. The expression of miR-203 was measured in a subset of these cases. The predicted interaction of miR-203 and GABRA5 was validated for miR-203 using a luciferase reporter assay. RESULTS In both frontal and motor cortices, the expression of GABAA α5 was significantly lower in cirrhotic alcoholics compared with controls. Further, the pattern of expression between the groups was significantly different between males and females. The expression of miR-203 was higher in the prefrontal cortex of cirrhotic alcoholics compared with controls and uncomplicated alcoholics. These differences were particularly marked in female cases. Cotransfection of GABRA5 with miR-203 in HEK293T cells reduced luciferase reporter activity. CONCLUSION There are sex differences in the expression of GABAA α5 and miR-203 in the brain of human alcoholics which are particularly marked in alcoholics with cirrhosis of the liver. Further, miR-203 may mediate the changes in expression of this GABAA receptor isoform that is brought about by alcohol exposure.
Collapse
Affiliation(s)
- Paulina Janeczek
- From the, School of Medical Science, (PJ, NC, JML), Griffith University Gold Coast campus, Southport, Queensland, Australia
| | - Natalie Colson
- From the, School of Medical Science, (PJ, NC, JML), Griffith University Gold Coast campus, Southport, Queensland, Australia
| | - Peter R Dodd
- School of Chemistry and Molecular Biosciences, (PRD), The University of Queensland St Lucia campus, Brisbane, Queensland, Australia
| | - Joanne M Lewohl
- From the, School of Medical Science, (PJ, NC, JML), Griffith University Gold Coast campus, Southport, Queensland, Australia
| |
Collapse
|
46
|
Pucci M, Micioni Di Bonaventura MV, Wille-Bille A, Fernández MS, Maccarrone M, Pautassi RM, Cifani C, D’Addario C. Environmental stressors and alcoholism development: Focus on molecular targets and their epigenetic regulation. Neurosci Biobehav Rev 2019; 106:165-181. [DOI: 10.1016/j.neubiorev.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/13/2018] [Accepted: 07/09/2018] [Indexed: 01/17/2023]
|
47
|
Martinez M, Rossetto IMU, Arantes RMS, Lizarte FSN, Tirapelli LF, Tirapelli DPC, Chuffa LGA, Martinez FE. Serum miRNAs are differentially altered by ethanol and caffeine consumption in rats. Toxicol Res (Camb) 2019; 8:842-849. [PMID: 32055392 PMCID: PMC7003974 DOI: 10.1039/c9tx00069k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Alcoholism is a multifactorial disease with high risk for dependence determined by genetic background, environmental factors and neuroadaptations. The excessive consumption of this substance is related to psychiatric problems, epilepsy, cardiovascular disease, cirrhosis and cancers. Caffeine is one of the most popular psychostimulants currently consumed in the world. The combination of ethanol and caffeine ingested by consuming "energy drinks" is becoming increasingly popular among young people. We analyzed the effect of simultaneous consumption of ethanol and caffeine on the serum profile of miRNAs differentially expressed in the ethanol-drinking rat model (UChB strain). Adult rats were divided into three groups (n = 5 per group): UChB group (rats fed with 1 : 10 (v/v) ethanol ad libitum); UChB + caffeine group (rats fed with 1 : 10 (v/v) ethanol ad libitum + 3 g L-1 of caffeine); control group (rats drinking water used as the control for UChB). The treatment with caffeine occurred from day 95 to 150 days old, totalizing 55 days of ethanol + caffeine ingestion. The expressions of microRNAs (miR) -9-3p, -15b-5p, -16-5p, -21-5p, -200a-3p and -222-3p were detected by Real Time-PCR (RT-PCR). The expressions of miR-9-3p, -15b-5p, -16-5p and -222-3p were upregulated in the UChB group. Conversely, simultaneous ingestion of ethanol and caffeine significantly reversed these expressions to similar levels to control animals, thus emphasizing that caffeine had a protective effect in the presence of ethanol. In addition, miR-21-5p was downregulated with ethanol consumption whereas miR-222-3p was unchanged. Ethanol and caffeine consumption was capable of altering serum miRNAs, which are potential biomarkers for the systemic effects of these addictive substances.
Collapse
Affiliation(s)
- M Martinez
- Department of Morphology and Pathology , Federal University of São Carlos (UFSCar) , São Carlos , SP , Brazil
| | - I M U Rossetto
- Department Structural and Functional Biology , University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - R M S Arantes
- Department of Morphology and Pathology , Federal University of São Carlos (UFSCar) , São Carlos , SP , Brazil
| | - F S N Lizarte
- Department of Surgery and Anatomy , University of São Paulo (USP) , Ribeirão Preto , SP , Brazil
| | - L F Tirapelli
- Department of Surgery and Anatomy , University of São Paulo (USP) , Ribeirão Preto , SP , Brazil
| | - D P C Tirapelli
- Department of Surgery and Anatomy , University of São Paulo (USP) , Ribeirão Preto , SP , Brazil
| | - L G A Chuffa
- Department of Anatomy , State University of São Paulo (UNESP) , Botucatu , SP , Brazil . ; ; Tel: +55 (14) 3880-0024
| | - F E Martinez
- Department of Anatomy , State University of São Paulo (UNESP) , Botucatu , SP , Brazil . ; ; Tel: +55 (14) 3880-0024
| |
Collapse
|
48
|
Bailey CS, Moldenhauer HJ, Park SM, Keros S, Meredith AL. KCNMA1-linked channelopathy. J Gen Physiol 2019; 151:1173-1189. [PMID: 31427379 PMCID: PMC6785733 DOI: 10.1085/jgp.201912457] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Bailey et al. review a new neurological channelopathy associated with KCNMA1, encoding the BK voltage- and Ca2+-activated K+ channel. KCNMA1 encodes the pore-forming α subunit of the “Big K+” (BK) large conductance calcium and voltage-activated K+ channel. BK channels are widely distributed across tissues, including both excitable and nonexcitable cells. Expression levels are highest in brain and muscle, where BK channels are critical regulators of neuronal excitability and muscle contractility. A global deletion in mouse (KCNMA1−/−) is viable but exhibits pathophysiology in many organ systems. Yet despite the important roles in animal models, the consequences of dysfunctional BK channels in humans are not well characterized. Here, we summarize 16 rare KCNMA1 mutations identified in 37 patients dating back to 2005, with an array of clinically defined pathological phenotypes collectively referred to as “KCNMA1-linked channelopathy.” These mutations encompass gain-of-function (GOF) and loss-of-function (LOF) alterations in BK channel activity, as well as several variants of unknown significance (VUS). Human KCNMA1 mutations are primarily associated with neurological conditions, including seizures, movement disorders, developmental delay, and intellectual disability. Due to the recent identification of additional patients, the spectrum of symptoms associated with KCNMA1 mutations has expanded but remains primarily defined by brain and muscle dysfunction. Emerging evidence suggests the functional BK channel alterations produced by different KCNMA1 alleles may associate with semi-distinct patient symptoms, such as paroxysmal nonkinesigenic dyskinesia (PNKD) with GOF and ataxia with LOF. However, due to the de novo origins for the majority of KCNMA1 mutations identified to date and the phenotypic variability exhibited by patients, additional evidence is required to establish causality in most cases. The symptomatic picture developing from patients with KCNMA1-linked channelopathy highlights the importance of better understanding the roles BK channels play in regulating cell excitability. Establishing causality between KCNMA1-linked BK channel dysfunction and specific patient symptoms may reveal new treatment approaches with the potential to increase therapeutic efficacy over current standard regimens.
Collapse
Affiliation(s)
- Cole S Bailey
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Hans J Moldenhauer
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Su Mi Park
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Sotirios Keros
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD
| | - Andrea L Meredith
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
49
|
Pinson MR, Miranda RC. Noncoding RNAs in development and teratology, with focus on effects of cannabis, cocaine, nicotine, and ethanol. Birth Defects Res 2019; 111:1308-1319. [PMID: 31356004 DOI: 10.1002/bdr2.1559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Completion of the Human Genome Project has led to the identification of a large number of transcription start sites that are not paired with protein-coding genes, supporting the growing recognition of the abundance of encoded nonprotein-coding RNAs (ncRNAs) and their importance for speciation and species-specific development. Present in both plants and animals, ncRNAs vary in size, function, primary sequence, and secondary structure. While microRNAs (miRNAs) are the best known, there are a number of other ncRNAs (long[er] nonprotein-coding RNA, pseudogenes, circular RNAs, and so on) that have been shown to play an important role in the development either directly or via networks of proteins and other ncRNAs, including modulating the impact of miRNAs. Furthermore, these ncRNAs and their developmental regulatory networks are sensitive to teratogens such as ethanol, cannabis, cocaine, and nicotine. A better understanding of the developmental role of ncRNAs and their capacity to mediate teratogenesis is a necessary step in efforts to minimize the long-term consequences of developmental exposures to drugs-of-abuse. Moreover, with increasing awareness of the prevalence of polydrug use, experimental models will need to incorporate more complex drug exposure paradigms into meaningful assessments of developmental ncRNA function.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Pkwy Suite 1005 MREB, Bryan, Texas
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Pkwy Suite 1005 MREB, Bryan, Texas
| |
Collapse
|
50
|
Abstract
Although historically research has focused on transcription as the central governor of protein expression, protein translation is now increasingly being recognized as a major factor for determining protein levels within cells. The central nervous system relies on efficient updating of the protein landscape. Thus, coordinated regulation of mRNA localization, initiation, or termination of translation is essential for proper brain function. In particular, dendritic protein synthesis plays a key role in synaptic plasticity underlying learning and memory as well as cognitive processes. Increasing evidence suggests that impaired mRNA translation is a common feature found in numerous psychiatric disorders. In this review, we describe how malfunction of translation contributes to development of psychiatric diseases, including schizophrenia, major depression, bipolar disorder, and addiction.
Collapse
Affiliation(s)
- Sophie Laguesse
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.,GIGA-Neurosciences, GIGA-Stem Cells, University of Liège, Liège, Belgium
| | - Dorit Ron
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|