1
|
Bergamasco MI, Abeysekera W, Garnham AL, Hu Y, Li-Wai-Suen CS, Sheikh BN, Smyth GK, Thomas T, Voss AK. KAT6B is required for histone 3 lysine 9 acetylation and SOX gene expression in the developing brain. Life Sci Alliance 2025; 8:e202402969. [PMID: 39537341 PMCID: PMC11561263 DOI: 10.26508/lsa.202402969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Heterozygous mutations in the histone lysine acetyltransferase gene KAT6B (MYST4/MORF/QKF) underlie neurodevelopmental disorders, but the mechanistic roles of KAT6B remain poorly understood. Here, we show that loss of KAT6B in embryonic neural stem and progenitor cells (NSPCs) impaired cell proliferation, neuronal differentiation, and neurite outgrowth. Mechanistically, loss of KAT6B resulted in reduced acetylation at histone H3 lysine 9 and reduced expression of key nervous system development genes in NSPCs and the developing cortex, including the SOX gene family, in particular Sox2, which is a key driver of neural progenitor proliferation, multipotency and brain development. In the fetal cortex, KAT6B occupied the Sox2 locus. Loss of KAT6B caused a reduction in Sox2 promoter activity in NSPCs. Sox2 overexpression partially rescued the proliferative defect of Kat6b -/- NSPCs. Collectively, these results elucidate molecular requirements for KAT6B in brain development and identify key KAT6B targets in neural precursor cells and the developing brain.
Collapse
Affiliation(s)
- Maria I Bergamasco
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Waruni Abeysekera
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Connie Sn Li-Wai-Suen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Bilal N Sheikh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Gao K, Han H, Cranick MG, Zhao S, Xu S, Yin B, Song H, Hu Y, Clarke MT, Wang D, Wong JM, Zhao Z, Burgstone BW, Farmer DL, Murthy N, Wang A. Widespread Gene Editing in the Brain via In Utero Delivery of mRNA Using Acid-Degradable Lipid Nanoparticles. ACS NANO 2024; 18:30293-30306. [PMID: 39445691 PMCID: PMC11544762 DOI: 10.1021/acsnano.4c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
In utero gene editing with mRNA-based therapeutics has the potential to revolutionize the treatment of neurodevelopmental disorders. However, a critical bottleneck in clinical application has been the lack of mRNA delivery vehicles that can efficiently transfect cells in the brain. In this report, we demonstrate that in utero intracerebroventricular (ICV) injection of densely PEGylated lipid nanoparticles (ADP-LNPs) containing an acid-degradable PEG-lipid can safely and effectively deliver mRNA for gene editing enzymes to the fetal mouse brain, resulting in successful transfection and editing of brain cells. ADP-LNPs containing Cre mRNA transfected 30% of the fetal brain cells in Ai9 mice and had no detectable adverse effects on fetal development and postnatal growth. In addition, ADP-LNPs efficiently transfected neural stem and progenitor cells in Ai9 mice with Cre mRNA, which subsequently proliferated and caused over 40% of the cortical neurons and 60% of the hippocampal neurons to be edited in treated mice 10 weeks after birth. Furthermore, using Angelman syndrome, a paradigmatic neurodevelopmental disorder, as a disease model, we demonstrate that ADP-LNPs carrying Cas9 mRNA and gRNA induced indels in 21% of brain cells within 7 days postpartum, underscoring the precision and potential of this approach. These findings demonstrate that LNP/mRNA complexes have the potential to be a transformative tool for in utero treatment of neurodevelopmental disorders and set the stage for a frontier in treating neurodevelopmental disorders that focuses on curing genetic diseases before birth.
Collapse
Affiliation(s)
- Kewa Gao
- Center
for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Institute
for Pediatric Regenerative Medicine, Shriners
Hospitals for Children, Sacramento, California 95817, United States
| | - Hesong Han
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Matileen G. Cranick
- Center
for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
| | - Sheng Zhao
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Shanxiu Xu
- Center
for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
| | - Boyan Yin
- Center
for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Hengyue Song
- Center
for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Department
of Burns and Plastic Surgery, The Third
Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Yibo Hu
- Clinical
Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Maria T. Clarke
- Center
for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
| | - David Wang
- Center
for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Department
of Biomedical Engineering, University of
California, Davis, Davis, California 95616, United States
| | - Jessica M. Wong
- Center
for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Department
of Biomedical Engineering, University of
California, Davis, Davis, California 95616, United States
| | - Zehua Zhao
- Center
for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
| | - Benjamin W. Burgstone
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Diana L. Farmer
- Center
for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Institute
for Pediatric Regenerative Medicine, Shriners
Hospitals for Children, Sacramento, California 95817, United States
| | - Niren Murthy
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Aijun Wang
- Center
for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Institute
for Pediatric Regenerative Medicine, Shriners
Hospitals for Children, Sacramento, California 95817, United States
- Department
of Biomedical Engineering, University of
California, Davis, Davis, California 95616, United States
| |
Collapse
|
3
|
Rajan A, Fame RM. Brain development and bioenergetic changes. Neurobiol Dis 2024; 199:106550. [PMID: 38849103 PMCID: PMC11495523 DOI: 10.1016/j.nbd.2024.106550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024] Open
Abstract
Bioenergetics describe the biochemical processes responsible for energy supply in organisms. When these changes become dysregulated in brain development, multiple neurodevelopmental diseases can occur, implicating bioenergetics as key regulators of neural development. Historically, the discovery of disease processes affecting individual stages of brain development has revealed critical roles that bioenergetics play in generating the nervous system. Bioenergetic-dependent neurodevelopmental disorders include neural tube closure defects, microcephaly, intellectual disability, autism spectrum disorders, epilepsy, mTORopathies, and oncogenic processes. Developmental timing and cell-type specificity of these changes determine the long-term effects of bioenergetic disease mechanisms on brain form and function. Here, we discuss key metabolic regulators of neural progenitor specification, neuronal differentiation (neurogenesis), and gliogenesis. In general, transitions between glycolysis and oxidative phosphorylation are regulated in early brain development and in oncogenesis, and reactive oxygen species (ROS) and mitochondrial maturity play key roles later in differentiation. We also discuss how bioenergetics interface with the developmental regulation of other key neural elements, including the cerebrospinal fluid brain environment. While questions remain about the interplay between bioenergetics and brain development, this review integrates the current state of known key intersections between these processes in health and disease.
Collapse
Affiliation(s)
- Arjun Rajan
- Developmental Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ryann M Fame
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
De Vincenti AP, Bonafina A, Ledda F, Paratcha G. Lrig1 regulates cell fate specification of glutamatergic neurons via FGF-driven Jak2/Stat3 signaling in cortical progenitors. Development 2024; 151:dev202879. [PMID: 39250533 DOI: 10.1242/dev.202879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
The cell-intrinsic mechanisms underlying the decision of a stem/progenitor cell to either proliferate or differentiate remain incompletely understood. Here, we identify the transmembrane protein Lrig1 as a physiological homeostatic regulator of FGF2-driven proliferation and self-renewal of neural progenitors at early-to-mid embryonic stages of cortical development. We show that Lrig1 is expressed in cortical progenitors (CPs), and its ablation caused expansion and increased proliferation of radial/apical progenitors and of neurogenic transit-amplifying Tbr2+ intermediate progenitors. Notably, our findings identify a previously unreported EGF-independent mechanism through which Lrig1 negatively regulates neural progenitor proliferation by modulating the FGF2-induced IL6/Jak2/Stat3 pathway, a molecular cascade that plays a pivotal role in the generation and maintenance of CPs. Consistently, Lrig1 knockout mice showed a significant increase in the density of pyramidal glutamatergic neurons placed in superficial layers 2 and 3 of the postnatal neocortex. Together, these results support a model in which Lrig1 regulates cortical neurogenesis by influencing the cycling activity of a set of progenitors that are temporally specified to produce upper layer glutamatergic neurons.
Collapse
Affiliation(s)
- Ana Paula De Vincenti
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina. Universidad de Buenos Aires (UBA), Buenos Aires CP1121, Argentina
| | - Antonela Bonafina
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina. Universidad de Buenos Aires (UBA), Buenos Aires CP1121, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires C1405 BWE, Argentina
| | - Fernanda Ledda
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires C1405 BWE, Argentina
| | - Gustavo Paratcha
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina. Universidad de Buenos Aires (UBA), Buenos Aires CP1121, Argentina
| |
Collapse
|
5
|
Shimojo H, Masaki T, Kageyama R. The Neurog2-Tbr2 axis forms a continuous transition to the neurogenic gene expression state in neural stem cells. Dev Cell 2024; 59:1913-1923.e6. [PMID: 38772376 DOI: 10.1016/j.devcel.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/04/2024] [Accepted: 04/28/2024] [Indexed: 05/23/2024]
Abstract
Neural stem cells (NSCs) differentiate into neuron-fated intermediate progenitor cells (IPCs) via cell division. Although differentiation from NSCs to IPCs is a discrete process, recent transcriptome analyses identified a continuous transcriptional trajectory during this process, raising the question of how to reconcile these contradictory observations. In mouse NSCs, Hes1 expression oscillates, regulating the oscillatory expression of the proneural gene Neurog2, while Hes1 expression disappears in IPCs. Thus, the transition from Hes1 oscillation to suppression is involved in the differentiation of NSCs to IPCs. Here, we found that Neurog2 oscillations induce the accumulation of Tbr2, which suppresses Hes1 expression, generating an IPC-like gene expression state in NSCs. In the absence of Tbr2, Hes1 expression is up-regulated, decreasing the formation of IPCs. These results indicate that the Neurog2-Tbr2 axis forms a continuous transcriptional trajectory to an IPC-like neurogenic state in NSCs, which then differentiate into IPCs via cell division.
Collapse
Affiliation(s)
- Hiromi Shimojo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Taimu Masaki
- RIKEN Center for Brain Science, Wako 351-0198, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Ryoichiro Kageyama
- RIKEN Center for Brain Science, Wako 351-0198, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
6
|
Lin L, Zhao J, Kubota N, Li Z, Lam YL, Nguyen LP, Yang L, Pokharel SP, Blue SM, Yee BA, Chen R, Yeo GW, Chen CW, Chen L, Zheng S. Epistatic interactions between NMD and TRP53 control progenitor cell maintenance and brain size. Neuron 2024; 112:2157-2176.e12. [PMID: 38697111 PMCID: PMC11446168 DOI: 10.1016/j.neuron.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024]
Abstract
Mutations in human nonsense-mediated mRNA decay (NMD) factors are enriched in neurodevelopmental disorders. We show that deletion of key NMD factor Upf2 in mouse embryonic neural progenitor cells causes perinatal microcephaly but deletion in immature neurons does not, indicating NMD's critical roles in progenitors. Upf2 knockout (KO) prolongs the cell cycle of radial glia progenitor cells, promotes their transition into intermediate progenitors, and leads to reduced upper-layer neurons. CRISPRi screening identified Trp53 knockdown rescuing Upf2KO progenitors without globally reversing NMD inhibition, implying marginal contributions of most NMD targets to the cell cycle defect. Integrated functional genomics shows that NMD degrades selective TRP53 downstream targets, including Cdkn1a, which, without NMD suppression, slow the cell cycle. Trp53KO restores the progenitor cell pool and rescues the microcephaly of Upf2KO mice. Therefore, one physiological role of NMD in the developing brain is to degrade selective TRP53 targets to control progenitor cell cycle and brain size.
Collapse
Affiliation(s)
- Lin Lin
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Jingrong Zhao
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Naoto Kubota
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Zhelin Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Yi-Li Lam
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Lauren P Nguyen
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sheela P Pokharel
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Renee Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA; City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA; Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
7
|
Schmidt AR, Jaime VS, Inserra PIF, Proietto S, Corso MC, Burd IA, Leopardo NP, Halperin J, Vitullo AD, Dorfman VB. Corticogenesis and folding process of the neopallium in the South American plains vizcacha, Lagostomus maximus. J Comp Neurol 2024; 532:e25631. [PMID: 38813760 DOI: 10.1002/cne.25631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
The plains vizcacha, Lagostomus maximus, is a precocial hystricomorph rodent with a gyrencephalic brain. This work aimed to perform a time-lapse analysis of the embryonic brain cortical development in the plains vizcacha to establish a species-specific temporal window for corticogenesis and the gyrencephaly onset. Additionally, a comparative examination with evolutionarily related rodents was conducted. Embryos from 40 embryonic days (ED) until the end of pregnancy ( ∼ $\sim $ 154 ED) were evaluated. The neuroanatomical examination determined transverse sulci at 80 ED and rostral lateral and caudal intraparietal sulci around 95 ED. Histological examination of corticogenesis showed emergence of the subplate at 43 ED and expansion of the subventricular zone (SVZ) and its division into inner and outer SVZs around 54 ED. The neocortical layers formation followed an inside-to-outside spatiotemporal gradient beginning with the emergence of layers VI and V at 68 ED and establishing the final six neocortical layers around 100 ED. A progressive increment of gyrencephalization index (GI) from 1.005 ± 0.003 around 70 ED, which reflects a smooth cortex, up to 1.07 ± 0.009 at the end of gestation, reflecting a gyrencephalic neuroanatomy, was determined. Contrarily, the minimum cortical thickness (MCT) progressively decreased from 61 ED up to the end of gestation. These results show that the decrease in the cortical thickness, which enables the onset of neocortical invaginations, occurs together with the expansion and subdivision of the SVZ. The temporal comparison of corticogenesis in plains vizcacha with that in relative species reflects a prenatal long process compared with other rodents that may give an evolutionary advantage to L. maximus as a precocial species.
Collapse
Affiliation(s)
- Alejandro Raúl Schmidt
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Vanina Soledad Jaime
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Pablo Ignacio Felipe Inserra
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sofía Proietto
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Clara Corso
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ileana Abigail Burd
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Noelia Paola Leopardo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Verónica Berta Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
8
|
Ito A, Miller C, Imamura F. Suppression of BMP signaling restores mitral cell development impaired by FGF signaling deficits in mouse olfactory bulb. Mol Cell Neurosci 2024; 128:103913. [PMID: 38056728 PMCID: PMC10939902 DOI: 10.1016/j.mcn.2023.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Fibroblast growth factors (FGFs) and bone morphogenic proteins (BMPs) play various important roles in the development of the central nervous system. However, the roles of FGF and BMP signaling in the development of the olfactory bulb (OB) are largely unknown. In this study, we first showed the expression of FGF receptors (FGFRs) and BMP receptors (BMPRs) in OB RGCs, radial glial cells (RGCs) in the developing OB, which generate the OB projection neurons, mitral and tufted cells. When the FGF signaling was inhibited by a dominant-negative form of FGFR1 (dnFGFR1), OB RGCs accelerated their state transition to mitral cell precursors without affecting their transcription cascade and fate. However, the mitral cell precursors could not radially migrate to form the mitral cell layer (MCL). In addition, FGF signaling inhibition reduced the expression of a BMP antagonist, Noggin, in the developing OB. When BMP signaling was suppressed by the ectopic expression of Noggin or a dominant-negative form of BMPR1a (dnBMPR1a) in the developing OB, the defect in MCL formation caused by the dnFGFR1 was rescued. However, the dnBMPR1a did not rescue the accelerated state transition of OB RGCs. These results demonstrate that FGF signaling is important for OB RGCs to maintain their self-renewal state and MCL formation. Moreover, the suppression of BMP signaling is required for mitral cells to form the MCL. This study sheds new light on the roles of FGFs and BMPs in OB development.
Collapse
Affiliation(s)
- Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Claire Miller
- Department of Pharmacology, Penn State College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, 500 University Dr., Hershey, PA 17033, USA.
| |
Collapse
|
9
|
Wang N, Wan R, Tang K. Transcriptional regulation in the development and dysfunction of neocortical projection neurons. Neural Regen Res 2024; 19:246-254. [PMID: 37488873 PMCID: PMC10503610 DOI: 10.4103/1673-5374.379039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 07/26/2023] Open
Abstract
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas, and between the neocortex and other regions of the brain and spinal cord. Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination, proliferation, specification, differentiation, migration, survival, axonogenesis, and synaptogenesis. These processes are precisely regulated in a tempo-spatial manner by intrinsic factors, extrinsic signals, and neural activities. The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions (such as sensory information integration, motor coordination, and cognition) but also to prevent the onset and progression of neurodevelopmental disorders (such as intellectual disability, autism spectrum disorders, anxiety, and depression). This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
Collapse
Affiliation(s)
- Ningxin Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Rong Wan
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| |
Collapse
|
10
|
Sokpor G, Kerimoglu C, Ulmke PA, Pham L, Nguyen HD, Brand-Saberi B, Staiger JF, Fischer A, Nguyen HP, Tuoc T. H3 Acetylation-Induced Basal Progenitor Generation and Neocortex Expansion Depends on the Transcription Factor Pax6. BIOLOGY 2024; 13:68. [PMID: 38392287 PMCID: PMC10886678 DOI: 10.3390/biology13020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
Enrichment of basal progenitors (BPs) in the developing neocortex is a central driver of cortical enlargement. The transcription factor Pax6 is known as an essential regulator in generation of BPs. H3 lysine 9 acetylation (H3K9ac) has emerged as a crucial epigenetic mechanism that activates the gene expression program required for BP pool amplification. In this current work, we applied immunohistochemistry, RNA sequencing, chromatin immunoprecipitation and sequencing, and the yeast two-hybrid assay to reveal that the BP-genic effect of H3 acetylation is dependent on Pax6 functionality in the developing mouse cortex. In the presence of Pax6, increased H3 acetylation caused BP pool expansion, leading to enhanced neurogenesis, which evoked expansion and quasi-convolution of the mouse neocortex. Interestingly, H3 acetylation activation exacerbates the BP depletion and corticogenesis reduction effect of Pax6 ablation in cortex-specific Pax6 mutants. Furthermore, we found that H3K9 acetyltransferase KAT2A/GCN5 interacts with Pax6 and potentiates Pax6-dependent transcriptional activity. This explains a genome-wide lack of H3K9ac, especially in the promoter regions of BP-genic genes, in the Pax6 mutant cortex. Together, these findings reveal a mechanistic coupling of H3 acetylation and Pax6 in orchestrating BP production and cortical expansion through the promotion of a BP gene expression program during cortical development.
Collapse
Affiliation(s)
- Godwin Sokpor
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
- Lincoln Medical School, University of Lincoln, Lincoln LN6 7TS, UK
| | - Cemil Kerimoglu
- German Center for Neurodegenerative Diseases, 37077 Goettingen, Germany
| | | | - Linh Pham
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Hoang Duy Nguyen
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, 37077 Goettingen, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| |
Collapse
|
11
|
Shen Z, Yang J, Zhang Q, Wang K, Lv X, Hu X, Ma J, Shi SH. How variable progenitor clones construct a largely invariant neocortex. Natl Sci Rev 2024; 11:nwad247. [PMID: 38274004 PMCID: PMC10810685 DOI: 10.1093/nsr/nwad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 01/27/2024] Open
Abstract
The neocortex contains a vast collection of diverse neurons organized into distinct layers. While nearly all neocortical neurons are generated by radial glial progenitors (RGPs), it remains largely unclear how a complex yet organized neocortex is constructed reliably and robustly. Here, we show that the division behavior and neuronal output of RGPs are highly constrained with patterned variabilities to support the reliable and robust construction of the mouse neocortex. The neurogenic process of RGPs can be well-approximated by a consistent Poisson-like process unfolding over time, producing deep to superficial layer neurons progressively. The exact neuronal outputs regarding layer occupation are variable; yet, this variability is constrained systematically to support all layer formation, largely reflecting the variable intermediate progenitor generation and RGP neurogenic entry and exit timing differences. Together, these results define the fundamental features of neocortical neurogenesis with a balanced reliability and variability for the construction of the complex neocortex.
Collapse
Affiliation(s)
- Zhongfu Shen
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiajun Yang
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiangqiang Zhang
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kuiyu Wang
- Department of Computer Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohui Lv
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaolin Hu
- Department of Computer Sciences, Tsinghua University, Beijing 100084, China
| | - Jian Ma
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Song-Hai Shi
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
12
|
Saha S, Jungas TT, Ohayon D, Audouard C, Ye T, Fawal MA, Davy A. Dihydrofolate reductase activity controls neurogenic transitions in the developing neocortex. Development 2023; 150:dev201696. [PMID: 37665322 DOI: 10.1242/dev.201696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
One-carbon/folate (1C) metabolism supplies methyl groups required for DNA and histone methylation, and is involved in the maintenance of self-renewal in stem cells. Dihydrofolate reductase (DHFR), a key enzyme in 1C metabolism, is highly expressed in human and mouse neural progenitors at the early stages of neocortical development. Here, we have investigated the role of DHFR in the developing neocortex and report that reducing its activity in human neural organoids and mouse embryonic neocortex accelerates indirect neurogenesis, thereby affecting neuronal composition of the neocortex. Furthermore, we show that decreasing DHFR activity in neural progenitors leads to a reduction in one-carbon/folate metabolites and correlates with modifications of H3K4me3 levels. Our findings reveal an unanticipated role for DHFR in controlling specific steps of neocortex development and indicate that variations in 1C metabolic cues impact cell fate transitions.
Collapse
Affiliation(s)
- Sulov Saha
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Thomas T Jungas
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - David Ohayon
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Christophe Audouard
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Mohamad-Ali Fawal
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Alice Davy
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
13
|
Zaghi M, Banfi F, Massimino L, Volpin M, Bellini E, Brusco S, Merelli I, Barone C, Bruni M, Bossini L, Lamparelli LA, Pintado L, D'Aliberti D, Spinelli S, Mologni L, Colasante G, Ungaro F, Cioni JM, Azzoni E, Piazza R, Montini E, Broccoli V, Sessa A. Balanced SET levels favor the correct enhancer repertoire during cell fate acquisition. Nat Commun 2023; 14:3212. [PMID: 37270547 DOI: 10.1038/s41467-023-39043-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Within the chromatin, distal elements interact with promoters to regulate specific transcriptional programs. Histone acetylation, interfering with the net charges of the nucleosomes, is a key player in this regulation. Here, we report that the oncoprotein SET is a critical determinant for the levels of histone acetylation within enhancers. We disclose that a condition in which SET is accumulated, the severe Schinzel-Giedion Syndrome (SGS), is characterized by a failure in the usage of the distal regulatory regions typically employed during fate commitment. This is accompanied by the usage of alternative enhancers leading to a massive rewiring of the distal control of the gene transcription. This represents a (mal)adaptive mechanism that, on one side, allows to achieve a certain degree of differentiation, while on the other affects the fine and corrected maturation of the cells. Thus, we propose the differential in cis-regulation as a contributing factor to the pathological basis of SGS and possibly other the SET-related disorders in humans.
Collapse
Affiliation(s)
- Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Federica Banfi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Luca Massimino
- Esperimental Gastroenterology Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Monica Volpin
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget); IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Simone Brusco
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Ivan Merelli
- CNR Institute of Biomedical Technologies, 20090, Segrate, Italy
| | - Cristiana Barone
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Michela Bruni
- RNA biology of the Neuron Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Linda Bossini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Luigi Antonio Lamparelli
- Esperimental Gastroenterology Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Laura Pintado
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Deborah D'Aliberti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Silvia Spinelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Luca Mologni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Federica Ungaro
- Esperimental Gastroenterology Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Jean-Michel Cioni
- RNA biology of the Neuron Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Rocco Piazza
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget); IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
| |
Collapse
|
14
|
Akeret K, Weller M, Krayenbühl N. The anatomy of neuroepithelial tumours. Brain 2023:7171408. [PMID: 37201913 PMCID: PMC10393414 DOI: 10.1093/brain/awad138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023] Open
Abstract
Many neurological conditions conceal specific anatomical patterns. Their study contributes to the understanding of disease biology and to tailored diagnostics and therapy. Neuroepithelial tumours exhibit distinct anatomical phenotypes and spatiotemporal dynamics that differ from those of other brain tumours. Brain metastases display a preference for the cortico-subcortical boundaries of watershed areas and have a predominantly spherical growth. Primary CNS lymphomas localize to the white matter and generally invade along fibre tracts. In neuroepithelial tumours, topographic probability mapping and unsupervised topological clustering have identified an inherent radial anatomy and adherence to ventriculopial configurations of specific hierarchical orders. Spatiotemporal probability and multivariate survival analyses have identified a temporal and prognostic sequence underlying the anatomical phenotypes of neuroepithelial tumours. Gradual neuroepithelial de-differentiation and declining prognosis follow (i) an expansion into higher order radial units; (ii) a subventricular spread; and (iii) the presence of mesenchymal patterns (expansion along white matter tracts, leptomeningeal or perivascular invasion, CSF spread). While different pathophysiological hypotheses have been proposed, the cellular and molecular mechanisms dictating this anatomical behaviour remain largely unknown. Here we adopt an ontogenetic approach towards the understanding of neuroepithelial tumour anatomy. Contemporary perception of histo- and morphogenetic processes during neurodevelopment permit us to conceptualize the architecture of the brain into hierarchically organized radial units. The anatomical phenotypes in neuroepithelial tumours and their temporal and prognostic sequences share remarkable similarities with the ontogenetic organization of the brain and the anatomical specifications that occur during neurodevelopment. This macroscopic coherence is reinforced by cellular and molecular observations that the initiation of various neuroepithelial tumours, their intratumoural hierarchy and tumour progression are associated with the aberrant reactivation of surprisingly normal ontogenetic programs. Generalizable topological phenotypes could provide the basis for an anatomical refinement of the current classification of neuroepithelial tumours. In addition, we have proposed a staging system for adult-type diffuse gliomas that is based on the prognostically critical steps along the sequence of anatomical tumour progression. Considering the parallels in anatomical behaviour between different neuroepithelial tumours, analogous staging systems may be implemented for other neuroepithelial tumour types and subtypes. Both the anatomical stage of a neuroepithelial tumour and the spatial configuration of its hosting radial unit harbour the potential to stratify treatment decisions at diagnosis and during follow-up. More data on specific neuroepithelial tumour types and subtypes are needed to increase the anatomical granularity in their classification and to determine the clinical impact of stage-adapted and anatomically tailored therapy and surveillance.
Collapse
Affiliation(s)
- Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Niklaus Krayenbühl
- Division of Paediatric Neurosurgery, University Children's Hospital, 8032 Zurich, Switzerland
| |
Collapse
|
15
|
Jalilian E, Shin SR. Novel model of cortical-meningeal organoid co-culture system improves human cortical brain organoid cytoarchitecture. Sci Rep 2023; 13:7809. [PMID: 37183210 PMCID: PMC10183460 DOI: 10.1038/s41598-023-35077-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023] Open
Abstract
Human cortical organoids (hCOs), derived from human induced pluripotent stem cells (iPSCs), provide a platform to interrogate mechanisms of human brain development and diseases in complex three- dimensional tissues. However, current hCO development methods lack important non-neural tissues, such as the surrounding meningeal layer, that have been shown to be essential for normal corticogenesis and brain development. Here, we first generated hCOs from a single rosette to create more homogenous organoids with consistent size around 250 µm by day 5. We then took advantage of a 3D co-culture system to encapsulate brain organoids with a thin layer of meningeal cells from the very early stages of cortical development. Immunostaining analysis was performed to display different cortical layer markers during different stages of development. Real-time monitoring of organoid development using IncuCyte displayed enhanced morphology and increased growth rate over time. We found that meningeal-encapsulated organoids illustrated better laminar organization by exhibiting higher expression of REELIN by Cajal-Retzius neurons. Presence of meningeal cells resulted in a greater expansion of TBR2 intermediate progenitor cells (IPCs), the deep cortical layer (CTIP2) and upper cortical layer (BRN2). Finally, meningeal-encapsulated organoids enhanced outer radial glial and astrocyte formation illustrated by stronger expression of HOPX and GFAP markers, respectively. This study presents a novel 3D co-culture platform to more closely mimic the in vivo cortical brain structure and enable us to better investigating mechanisms underlying the neurodevelopmental disorders during embryonic development.
Collapse
Affiliation(s)
- Elmira Jalilian
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| |
Collapse
|
16
|
Da Silva F, Niehrs C. Multimodal Wnt signalling in the mouse neocortex. Cells Dev 2023; 174:203838. [PMID: 37060946 DOI: 10.1016/j.cdev.2023.203838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
The neocortex is the site of higher cognitive functions and its development is tightly regulated by cell signalling pathways. Wnt signalling is inexorably linked with neocortex development but its precise role remains unclear. Most studies demonstrate that Wnt/β-catenin regulates neural progenitor self-renewal but others suggest it can also promote differentiation. Wnt/STOP signalling is a novel branch of the Wnt pathway that stabilizes proteins during G2/M by inhibiting glycogen synthase kinase 3 (GSK3)-mediated protein degradation. Recent data from Da Silva et al. (2021) demonstrate that Wnt/STOP is involved in neocortex development where, by stabilizing the neurogenic transcription factors Sox4 and Sox11, it promotes neural progenitor differentiation. The authors also show that Wnt/STOP regulates asymmetric cell division and cell cycle dynamics in apical and basal progenitors, respectively. This study reveals a division of labour in the Wnt signalling pathway by suggesting that Wnt/STOP is the primary driver of cortical neurogenesis while Wnt/β-catenin is mainly responsible for self-renewal. These results resolve a decades-old question on the role of Wnt signalling in cortical neural progenitors.
Collapse
Affiliation(s)
- Fabio Da Silva
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|
17
|
Daviaud N, Chen E, Edwards T, Sadiq SA. Cerebral organoids in primary progressive multiple sclerosis reveal stem cell and oligodendrocyte differentiation defect. Biol Open 2023; 12:286917. [PMID: 36744877 PMCID: PMC10040243 DOI: 10.1242/bio.059845] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is an auto-immune inflammatory disorder affecting the central nervous system. The cause of the disease is unknown but both genetic and environmental factors are implicated in the pathogenesis. We derived cerebral organoids from induced pluripotent stem cells (iPSC) of healthy control subjects as well as from primary progressive MS (PPMS), secondary progressive MS (SPMS) and relapsing remitting MS (RRMS) patients to better understand the pathologic basis of the varied clinical phenotypic expressions of MS. In MS organoids, most notably in PPMS, we observed a decrease of proliferation marker Ki67 and a reduction of the SOX2+ stem cell pool associated with an increased expression of neuronal markers CTIP2 and TBR1 as well as a strong decrease of oligodendrocyte differentiation. This dysregulation of the stem cell pool is associated with a decreased expression of the cell cycle inhibitor p21. Our findings show that the genetic background of a patient can directly alter stem cell function, provides new insights on the innate cellular dysregulation in MS and identifies p21 pathway as a new potential target for therapeutic strategies in MS.
Collapse
Affiliation(s)
- Nicolas Daviaud
- Tisch Multiple Sclerosis Research Center of New York, 521 W. 57th St., 4th floor, New York, NY 10019, USA
| | - Eric Chen
- Tisch Multiple Sclerosis Research Center of New York, 521 W. 57th St., 4th floor, New York, NY 10019, USA
| | - Tara Edwards
- Tisch Multiple Sclerosis Research Center of New York, 521 W. 57th St., 4th floor, New York, NY 10019, USA
| | - Saud A Sadiq
- Tisch Multiple Sclerosis Research Center of New York, 521 W. 57th St., 4th floor, New York, NY 10019, USA
| |
Collapse
|
18
|
Gerstmann K, Kindbeiter K, Telley L, Bozon M, Reynaud F, Théoulle E, Charoy C, Jabaudon D, Moret F, Castellani V. A balance of noncanonical Semaphorin signaling from the cerebrospinal fluid regulates apical cell dynamics during corticogenesis. SCIENCE ADVANCES 2022; 8:eabo4552. [PMID: 36399562 PMCID: PMC9674300 DOI: 10.1126/sciadv.abo4552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/03/2022] [Indexed: 06/01/2023]
Abstract
During corticogenesis, dynamic regulation of apical adhesion is fundamental to generate correct numbers and cell identities. While radial glial cells (RGCs) maintain basal and apical anchors, basal progenitors and neurons detach and settle at distal positions from the apical border. Whether diffusible signals delivered from the cerebrospinal fluid (CSF) contribute to the regulation of apical adhesion dynamics remains fully unknown. Secreted class 3 Semaphorins (Semas) trigger cell responses via Plexin-Neuropilin (Nrp) membrane receptor complexes. Here, we report that unconventional Sema3-Nrp preformed complexes are delivered by the CSF from sources including the choroid plexus to Plexin-expressing RGCs via their apical endfeet. Through analysis of mutant mouse models and various ex vivo assays mimicking ventricular delivery to RGCs, we found that two different complexes, Sema3B/Nrp2 and Sema3F/Nrp1, exert dual effects on apical endfeet dynamics, nuclei positioning, and RGC progeny. This reveals unexpected balance of CSF-delivered guidance molecules during cortical development.
Collapse
Affiliation(s)
- Katrin Gerstmann
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Karine Kindbeiter
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Ludovic Telley
- Department of Basic Neuroscience, University of Geneva, 1211 Geneva 4, Switzerland
| | - Muriel Bozon
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Florie Reynaud
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Emy Théoulle
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Camille Charoy
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Denis Jabaudon
- Department of Basic Neuroscience, University of Geneva, 1211 Geneva 4, Switzerland
| | - Frédéric Moret
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Valerie Castellani
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| |
Collapse
|
19
|
Fischer J, Fernández Ortuño E, Marsoner F, Artioli A, Peters J, Namba T, Eugster Oegema C, Huttner WB, Ladewig J, Heide M. Human-specific ARHGAP11B ensures human-like basal progenitor levels in hominid cerebral organoids. EMBO Rep 2022; 23:e54728. [PMID: 36098218 PMCID: PMC9646322 DOI: 10.15252/embr.202254728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 02/06/2023] Open
Abstract
The human-specific gene ARHGAP11B has been implicated in human neocortex expansion. However, the extent of ARHGAP11B's contribution to this expansion during hominid evolution is unknown. Here we address this issue by genetic manipulation of ARHGAP11B levels and function in chimpanzee and human cerebral organoids. ARHGAP11B expression in chimpanzee cerebral organoids doubles basal progenitor levels, the class of cortical progenitors with a key role in neocortex expansion. Conversely, interference with ARHGAP11B's function in human cerebral organoids decreases basal progenitors down to the chimpanzee level. Moreover, ARHGAP11A or ARHGAP11B rescue experiments in ARHGAP11A plus ARHGAP11B double-knockout human forebrain organoids indicate that lack of ARHGAP11B, but not of ARHGAP11A, decreases the abundance of basal radial glia-the basal progenitor type thought to be of particular relevance for neocortex expansion. Taken together, our findings demonstrate that ARHGAP11B is necessary and sufficient to ensure the elevated basal progenitor levels that characterize the fetal human neocortex, suggesting that this human-specific gene was a major contributor to neocortex expansion during human evolution.
Collapse
Affiliation(s)
- Jan Fischer
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- Present address:
Institute for Clinical GeneticsUniversity Hospital Carl Gustav CarusDresdenGermany
| | | | - Fabio Marsoner
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Annasara Artioli
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jula Peters
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- Present address:
Neuroscience Center, HiLIFE ‐ Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | | | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
| | - Julia Ladewig
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Michael Heide
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- German Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| |
Collapse
|
20
|
Dong C, Zhao C, Chen X, Berry K, Wang J, Zhang F, Liao Y, Han R, Ogurek S, Xu L, Zhang L, Lin Y, Zhou W, Xin M, Lim DA, Campbell K, Nakafuku M, Waclaw RR, Lu QR. Conserved and Distinct Functions of the Autism-Related Chromatin Remodeler CHD8 in Embryonic and Adult Forebrain Neurogenesis. J Neurosci 2022; 42:8373-8392. [PMID: 36127134 PMCID: PMC9653284 DOI: 10.1523/jneurosci.2400-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
The chromatin remodeler CHD8 represents a high-confidence risk factor in autism, a multistage progressive neurologic disorder, however the underlying stage-specific functions remain elusive. In this study, by analyzing Chd8 conditional knock-out mice (male and female), we find that CHD8 controls cortical neural stem/progenitor cell (NSC) proliferation and survival in a stage-dependent manner. Strikingly, inducible genetic deletion reveals that CHD8 is required for the production and fitness of transit-amplifying intermediate progenitors (IPCs) essential for upper-layer neuron expansion in the embryonic cortex. p53 loss of function partially rescues apoptosis and neurogenesis defects in the Chd8-deficient brain. Further, transcriptomic and epigenomic profiling indicates that CHD8 regulates the chromatin accessibility landscape to activate neurogenesis-promoting factors including TBR2, a key regulator of IPC neurogenesis, while repressing DNA damage- and p53-induced apoptotic programs. In the adult brain, CHD8 depletion impairs forebrain neurogenesis by impeding IPC differentiation from NSCs in both subventricular and subgranular zones; however, unlike in embryos, it does not affect NSC proliferation and survival. Treatment with an antidepressant approved by the Federal Drug Administration (FDA), fluoxetine, partially restores adult hippocampal neurogenesis in Chd8-ablated mice. Together, our multistage functional studies identify temporally specific roles for CHD8 in developmental and adult neurogenesis, pointing to a potential strategy to enhance neurogenesis in the CHD8-deficient brain.SIGNIFICANCE STATEMENT The role of the high-confidence autism gene CHD8 in neurogenesis remains incompletely understood. Here, we identify a stage-specific function of CHD8 in development of NSCs in developing and adult brains by conserved, yet spatiotemporally distinct, mechanisms. In embryonic cortex, CHD8 is critical for the proliferation, survival, and differentiation of both NSC and IPCs during cortical neurogenesis. In adult brain, CHD8 is required for IPC generation but not the proliferation and survival of adult NSCs. Treatment with FDA-approved antidepressant fluoxetine partially rescues the adult neurogenesis defects in CHD8 mutants. Thus, our findings help resolve CHD8 functions throughout life during embryonic and adult neurogenesis and point to a potential avenue to promote neurogenesis in CHD8 deficiency.
Collapse
Affiliation(s)
- Chen Dong
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Chuntao Zhao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Xiang Chen
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Kalen Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Jiajia Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Feng Zhang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Yunfei Liao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Rong Han
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Sean Ogurek
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Lingli Xu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Li Zhang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Yifeng Lin
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Mei Xin
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Daniel A Lim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Kenneth Campbell
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Masato Nakafuku
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Ronald R Waclaw
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
21
|
Patoori S, Barnada SM, Large C, Murray JI, Trizzino M. Young transposable elements rewired gene regulatory networks in human and chimpanzee hippocampal intermediate progenitors. Development 2022; 149:dev200413. [PMID: 36052683 PMCID: PMC9641669 DOI: 10.1242/dev.200413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/21/2022] [Indexed: 01/19/2023]
Abstract
The hippocampus is associated with essential brain functions, such as learning and memory. Human hippocampal volume is significantly greater than expected compared with that of non-human apes, suggesting a recent expansion. Intermediate progenitors, which are able to undergo multiple rounds of proliferative division before a final neurogenic division, may have played a role in evolutionary hippocampal expansion. To investigate the evolution of gene regulatory networks underpinning hippocampal neurogenesis in apes, we leveraged the differentiation of human and chimpanzee induced pluripotent stem cells into TBR2 (or EOMES)-positive hippocampal intermediate progenitor cells (hpIPCs). We found that the gene networks active in hpIPCs are significantly different between humans and chimpanzees, with ∼2500 genes being differentially expressed. We demonstrate that species-specific transposon-derived enhancers contribute to these transcriptomic differences. Young transposons, predominantly endogenous retroviruses and SINE-Vntr-Alus (SVAs), were co-opted as enhancers in a species-specific manner. Human-specific SVAs provided substrates for thousands of novel TBR2-binding sites, and CRISPR-mediated repression of these SVAs attenuated the expression of ∼25% of the genes that are upregulated in human intermediate progenitors relative to the same cell population in the chimpanzee.
Collapse
Affiliation(s)
- Sruti Patoori
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Samantha M. Barnada
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher Large
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John I. Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
22
|
Fischer J, Fernández Ortuño E, Marsoner F, Artioli A, Peters J, Namba T, Eugster Oegema C, Huttner WB, Ladewig J, Heide M. Human-specific ARHGAP11B ensures human-like basal progenitor levels in hominid cerebral organoids. EMBO Rep 2022; 23:e54728. [PMID: 36381990 PMCID: PMC9646322 DOI: 10.1101/2020.10.01.322792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023] Open
Abstract
The human-specific gene ARHGAP11B has been implicated in human neocortex expansion. However, the extent of ARHGAP11B's contribution to this expansion during hominid evolution is unknown. Here we address this issue by genetic manipulation of ARHGAP11B levels and function in chimpanzee and human cerebral organoids. ARHGAP11B expression in chimpanzee cerebral organoids doubles basal progenitor levels, the class of cortical progenitors with a key role in neocortex expansion. Conversely, interference with ARHGAP11B's function in human cerebral organoids decreases basal progenitors down to the chimpanzee level. Moreover, ARHGAP11A or ARHGAP11B rescue experiments in ARHGAP11A plus ARHGAP11B double-knockout human forebrain organoids indicate that lack of ARHGAP11B, but not of ARHGAP11A, decreases the abundance of basal radial glia - the basal progenitor type thought to be of particular relevance for neocortex expansion. Taken together, our findings demonstrate that ARHGAP11B is necessary and sufficient to ensure the elevated basal progenitor levels that characterize the fetal human neocortex, suggesting that this human-specific gene was a major contributor to neocortex expansion during human evolution.
Collapse
Affiliation(s)
- Jan Fischer
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- Present address:
Institute for Clinical GeneticsUniversity Hospital Carl Gustav CarusDresdenGermany
| | | | - Fabio Marsoner
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Annasara Artioli
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jula Peters
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- Present address:
Neuroscience Center, HiLIFE ‐ Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | | | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
| | - Julia Ladewig
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Michael Heide
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- German Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| |
Collapse
|
23
|
Crespo I, Pignatelli J, Kinare V, Méndez-Gómez HR, Esgleas M, Román MJ, Canals JM, Tole S, Vicario C. Tbr1 Misexpression Alters Neuronal Development in the Cerebral Cortex. Mol Neurobiol 2022; 59:5750-5765. [PMID: 35781633 PMCID: PMC9395452 DOI: 10.1007/s12035-022-02936-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
Changes in the transcription factor (TF) expression are critical for brain development, and they may also underlie neurodevelopmental disorders. Indeed, T-box brain1 (Tbr1) is a TF crucial for the formation of neocortical layer VI, and mutations and microdeletions in that gene are associated with malformations in the human cerebral cortex, alterations that accompany autism spectrum disorder (ASD). Interestingly, Tbr1 upregulation has also been related to the occurrence of ASD-like symptoms, although limited studies have addressed the effect of increased Tbr1 levels during neocortical development. Here, we analysed the impact of Tbr1 misexpression in mouse neural progenitor cells (NPCs) at embryonic day 14.5 (E14.5), when they mainly generate neuronal layers II-IV. By E18.5, cells accumulated in the intermediate zone and in the deep cortical layers, whereas they became less abundant in the upper cortical layers. In accordance with this, the proportion of Sox5+ cells in layers V-VI increased, while that of Cux1+ cells in layers II-IV decreased. On postnatal day 7, fewer defects in migration were evident, although a higher proportion of Sox5+ cells were seen in the upper and deep layers. The abnormal neuronal migration could be partially due to the altered multipolar-bipolar neuron morphologies induced by Tbr1 misexpression, which also reduced dendrite growth and branching, and disrupted the corpus callosum. Our results indicate that Tbr1 misexpression in cortical NPCs delays or disrupts neuronal migration, neuronal specification, dendrite development and the formation of the callosal tract. Hence, genetic changes that provoke ectopic Tbr1 upregulation during development could provoke cortical brain malformations.
Collapse
Affiliation(s)
- Inmaculada Crespo
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- CES Cardenal Cisneros, Madrid, Spain
| | - Jaime Pignatelli
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Veena Kinare
- Department of Life Sciences, Sophia College for Women, Mumbai, 400026, India
| | - Héctor R Méndez-Gómez
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Miriam Esgleas
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - María José Román
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Josep M Canals
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Carlos Vicario
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
24
|
Jaylet T, Quintens R, Benotmane MA, Luukkonen J, Tanaka IB, Ibanez C, Durand C, Sachana M, Azimzadeh O, Adam-Guillermin C, Tollefsen KE, Laurent O, Audouze K, Armant O. Development of an Adverse Outcome Pathway for radiation-induced microcephaly via expert consultation and machine learning. Int J Radiat Biol 2022; 98:1752-1762. [PMID: 35947014 DOI: 10.1080/09553002.2022.2110312] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Brain development during embryogenesis and in early postnatal life is particularly complex and involves the interplay of many cellular processes and molecular mechanisms, making it extremely vulnerable to exogenous insults, including ionizing radiation (IR). Microcephaly is one of the most frequent neurodevelopmental abnormalities that is characterized by small brain size, and is often associated with intellectual deficiency. Decades of research span from epidemiological data on in utero exposure of the A-bomb survivors, to studies on animal and cellular models that allowed deciphering the most prominent molecular mechanisms leading to microcephaly. The Adverse Outcome Pathway (AOP) framework is used to organize, evaluate and portray the scientific knowledge of toxicological effects spanning different biological levels of organizations, from the initial interaction with molecular targets to the occurrence of a disease or adversity. In the present study, the framework was used in an attempt to organize the current scientific knowledge on microcephaly progression in the context of ionizing radiation (IR) exposure. This work was performed by a group of experts formed during a recent workshop organized jointly by the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radioecology Alliance (ALLIANCE) associations to present the AOP approach and tools. Here we report on the development of a putative AOP for congenital microcephaly resulting from IR exposure based on discussions of the working group and we emphasize the use of a novel machine-learning approach to assist in the screening of the available literature to develop AOPs. CONCLUSION The expert consultation led to the identification of crucial biological events for the progression of microcephaly upon exposure to IR, and highlighted current knowledge gaps. The machine learning approach was successfully used to screen the existing knowledge and helped to rapidly screen the body of evidence and in particular the epidemiological data. This systematic review approach also ensured that the analysis was sufficiently comprehensive to identify the most relevant data and facilitate rapid and consistent AOP development. We anticipate that as machine learning approaches become more user-friendly through easy-to-use web interface, this would allow AOP development to become more efficient and less time consuming.
Collapse
Affiliation(s)
- Thomas Jaylet
- Université Paris Cité, T3S, Inserm UMRS 1124, Paris, France
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK-CEN, Mol, Belgium
| | | | - Jukka Luukkonen
- University of Eastern Finland, Kuopio Campus, Department of Environmental and Biological Sciences, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ignacia Braga Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 lenomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Chrystelle Ibanez
- PSE-SANTE/SESANE/LRTOX Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Christelle Durand
- PSE-SANTE/SESANE/LRTOX Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Environment Health and Safety Division, 75775 CEDEX 16 Paris, France
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (Bfs), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Christelle Adam-Guillermin
- PSE-SANTE/SDOS/LMDN, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579, Oslo, Norway.,Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Olivier Laurent
- PSE-SANTE/SESANE/LEPID, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Karine Audouze
- Université Paris Cité, T3S, Inserm UMRS 1124, Paris, France
| | - Olivier Armant
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France
| |
Collapse
|
25
|
Espinós A, Fernández‐Ortuño E, Negri E, Borrell V. Evolution of genetic mechanisms regulating cortical neurogenesis. Dev Neurobiol 2022; 82:428-453. [PMID: 35670518 PMCID: PMC9543202 DOI: 10.1002/dneu.22891] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
The size of the cerebral cortex increases dramatically across amniotes, from reptiles to great apes. This is primarily due to different numbers of neurons and glial cells produced during embryonic development. The evolutionary expansion of cortical neurogenesis was linked to changes in neural stem and progenitor cells, which acquired increased capacity of self‐amplification and neuron production. Evolution works via changes in the genome, and recent studies have identified a small number of new genes that emerged in the recent human and primate lineages, promoting cortical progenitor proliferation and increased neurogenesis. However, most of the mammalian genome corresponds to noncoding DNA that contains gene‐regulatory elements, and recent evidence precisely points at changes in expression levels of conserved genes as key in the evolution of cortical neurogenesis. Here, we provide an overview of basic cellular mechanisms involved in cortical neurogenesis across amniotes, and discuss recent progress on genetic mechanisms that may have changed during evolution, including gene expression regulation, leading to the expansion of the cerebral cortex.
Collapse
Affiliation(s)
- Alexandre Espinós
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| | | | - Enrico Negri
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| | - Víctor Borrell
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| |
Collapse
|
26
|
Tarantal AF, Hartigan-O'Connor DJ, Noctor SC. Translational Utility of the Nonhuman Primate Model. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:491-497. [PMID: 35283343 PMCID: PMC9576492 DOI: 10.1016/j.bpsc.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/15/2022]
Abstract
Nonhuman primates are essential for the study of human disease and to explore the safety of new diagnostics and therapies proposed for human use. They share similar genetic, physiologic, immunologic, reproductive, and developmental features with humans and thus have proven crucial for the study of embryonic/fetal development, organ system ontogeny, and the role of the maternal-placental-fetal interface in health and disease. The fetus may be exposed to a variety of inflammatory stimuli including infectious microbes as well as maternal inflammation, which can result from infections, obesity, or environmental exposures. Growing evidence supports that inflammation is a mediator of fetal programming and that the maternal immune system is tightly integrated with fetal-placental immune responses that may set a postnatal path for future health or disease. This review addresses some of the unique features of the nonhuman primate model system, specifically the rhesus monkey (Macaca mulatta), and importance of the species for studies focused on organ system ontogeny and the impact of viral teratogens in relation to development and congenital disorders.
Collapse
Affiliation(s)
- Alice F Tarantal
- Department of Pediatrics, School of Medicine, University of California Davis, Davis, California; Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California; California National Primate Research Center, University of California Davis, Davis, California.
| | - Dennis J Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California; California National Primate Research Center, University of California Davis, Davis, California
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Davis, California; Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis, Davis, California
| |
Collapse
|
27
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
28
|
Sokpor G, Brand-Saberi B, Nguyen HP, Tuoc T. Regulation of Cell Delamination During Cortical Neurodevelopment and Implication for Brain Disorders. Front Neurosci 2022; 16:824802. [PMID: 35281509 PMCID: PMC8904418 DOI: 10.3389/fnins.2022.824802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical development is dependent on key processes that can influence apical progenitor cell division and progeny. Pivotal among such critical cellular processes is the intricate mechanism of cell delamination. This indispensable cell detachment process mainly entails the loss of apical anchorage, and subsequent migration of the mitotic derivatives of the highly polarized apical cortical progenitors. Such apical progenitor derivatives are responsible for the majority of cortical neurogenesis. Many factors, including transcriptional and epigenetic/chromatin regulators, are known to tightly control cell attachment and delamination tendency in the cortical neurepithelium. Activity of these molecular regulators principally coordinate morphogenetic cues to engender remodeling or disassembly of tethering cellular components and external cell adhesion molecules leading to exit of differentiating cells in the ventricular zone. Improper cell delamination is known to frequently impair progenitor cell fate commitment and neuronal migration, which can cause aberrant cortical cell number and organization known to be detrimental to the structure and function of the cerebral cortex. Indeed, some neurodevelopmental abnormalities, including Heterotopia, Schizophrenia, Hydrocephalus, Microcephaly, and Chudley-McCullough syndrome have been associated with cell attachment dysregulation in the developing mammalian cortex. This review sheds light on the concept of cell delamination, mechanistic (transcriptional and epigenetic regulation) nuances involved, and its importance for corticogenesis. Various neurodevelopmental disorders with defective (too much or too little) cell delamination as a notable etiological underpinning are also discussed.
Collapse
Affiliation(s)
- Godwin Sokpor
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Godwin Sokpor,
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Tran Tuoc,
| |
Collapse
|
29
|
Heng JIT, Viti L, Pugh K, Marshall OJ, Agostino M. Understanding the impact of ZBTB18 missense variation on transcription factor function in neurodevelopment and disease. J Neurochem 2022; 161:219-235. [PMID: 35083747 PMCID: PMC9302683 DOI: 10.1111/jnc.15572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 12/01/2022]
Abstract
Mutations to genes that encode DNA‐binding transcription factors (TFs) underlie a broad spectrum of human neurodevelopmental disorders. Here, we highlight the pathological mechanisms arising from mutations to TF genes that influence the development of mammalian cerebral cortex neurons. Drawing on recent findings for TF genes including ZBTB18, we discuss how functional missense mutations to such genes confer non‐native gene regulatory actions in developing neurons, leading to cell‐morphological defects, neuroanatomical abnormalities during foetal brain development and functional impairment. Further, we discuss how missense variation to human TF genes documented in the general population endow quantifiable changes to transcriptional regulation, with potential cell biological effects on the temporal progression of cerebral cortex neuron development and homeostasis. We offer a systematic approach to investigate the functional impact of missense variation in brain TFs and define their direct molecular and cellular actions in foetal neurodevelopment, tissue homeostasis and disease states.![]()
Collapse
Affiliation(s)
- Julian I-T Heng
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Neuroscience Laboratories, Sarich Neuroscience Institute, Crawley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Leon Viti
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Kye Pugh
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Owen J Marshall
- Menzies Institute for Medical Research, The University of Tasmania, Hobart, Australia
| | - Mark Agostino
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Institute for Computation, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
30
|
Zaghi M, Banfi F, Bellini E, Sessa A. Rare Does Not Mean Worthless: How Rare Diseases Have Shaped Neurodevelopment Research in the NGS Era. Biomolecules 2021; 11:1713. [PMID: 34827709 PMCID: PMC8616022 DOI: 10.3390/biom11111713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022] Open
Abstract
The advent of next-generation sequencing (NGS) is heavily changing both the diagnosis of human conditions and basic biological research. It is now possible to dig deep inside the genome of hundreds of thousands or even millions of people and find both common and rare genomic variants and to perform detailed phenotypic characterizations of both physiological organs and experimental models. Recent years have seen the introduction of multiple techniques using NGS to profile transcription, DNA and chromatin modifications, protein binding, etc., that are now allowing us to profile cells in bulk or even at a single-cell level. Although rare and ultra-rare diseases only affect a few people, each of these diseases represent scholarly cases from which a great deal can be learned about the pathological and physiological function of genes, pathways, and mechanisms. Therefore, for rare diseases, state-of-the-art investigations using NGS have double valence: their genomic cause (new variants) and the characterize the underlining the mechanisms associated with them (discovery of gene function) can be found. In a non-exhaustive manner, this review will outline the main usage of NGS-based techniques for the diagnosis and characterization of neurodevelopmental disorders (NDDs), under whose umbrella many rare and ultra-rare diseases fall.
Collapse
Affiliation(s)
- Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (M.Z.); (F.B.); (E.B.)
| | - Federica Banfi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (M.Z.); (F.B.); (E.B.)
- CNR Institute of Neuroscience, 20129 Milan, Italy
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (M.Z.); (F.B.); (E.B.)
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (M.Z.); (F.B.); (E.B.)
| |
Collapse
|
31
|
Wang A, Wang J, Tian K, Huo D, Ye H, Li S, Zhao C, Zhang B, Zheng Y, Xu L, Hua X, Wang K, Wu QF, Wu X, Zeng T, Liu Y, Zhou Y. An epigenetic circuit controls neurogenic programs during neocortex development. Development 2021; 148:273471. [PMID: 35020876 DOI: 10.1242/dev.199772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022]
Abstract
The production and expansion of intermediate progenitors (IPs) are essential for neocortical neurogenesis during development and over evolution. Here, we have characterized an epigenetic circuit that precisely controls neurogenic programs, particularly properties of IPs, during neocortical development. The circuit comprises a long non-coding RNA (LncBAR) and the BAF (SWI/SNF) chromatin-remodeling complex, which transcriptionally maintains the expression of Zbtb20. LncBAR knockout neocortex contains more deep-layer but fewer upper-layer projection neurons. Intriguingly, loss of LncBAR promotes IP production, but paradoxically prolongs the duration of the cell cycle of IPs during mid-later neocortical neurogenesis. Moreover, in LncBAR knockout mice, depletion of the neural progenitor pool at embryonic stage results in fewer adult neural progenitor cells in the subventricular zone of lateral ventricles, leading to a failure in adult neurogenesis to replenish the olfactory bulb. LncBAR binds to BRG1, the core enzymatic component of the BAF chromatin-remodeling complex. LncBAR depletion enhances association of BRG1 with the genomic locus of, and suppresses the expression of, Zbtb20, a transcription factor gene known to regulate both embryonic and adult neurogenesis. ZBTB20 overexpression in LncBAR-knockout neural precursors reverses compromised cell cycle progressions of IPs.
Collapse
Affiliation(s)
- Andi Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Junbao Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Kuan Tian
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Dawei Huo
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China200072
| | - Hanzhe Ye
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Si Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China 300070
| | - Chen Zhao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Bo Zhang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Yue Zheng
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Lichao Xu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Xiaojiao Hua
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Kun Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China 100101
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China 300070
| | - Tao Zeng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China200072
| | - Ying Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Yan Zhou
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| |
Collapse
|
32
|
Ito A, Imamura F. Expression of Maf family proteins in glutamatergic neurons of the mouse olfactory bulb. Dev Neurobiol 2021; 82:77-87. [PMID: 34679244 DOI: 10.1002/dneu.22859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022]
Abstract
The fate of neurons in the developing brain is largely determined by the combination of transcription factors they express. In particular, stem cells must follow different transcriptional cascades during differentiation in order to generate neurons with different neurotransmitter properties, such as glutamatergic and GABAergic neurons. In the mouse cerebral cortex, it has been shown that large Maf family proteins, MafA, MafB and c-Maf, regulate the development of specific types of GABAergic interneurons but are not expressed in glutamatergic neurons. In this study, we examined the expression of large Maf family proteins in the developing mouse olfactory bulb (OB) by immunohistochemistry and found that the cell populations expressing MafA and MafB are almost identical, and most of them express Tbr2. As Tbr2 is expressed in glutamatergic neurons in the OB, we further examined the expression of glutamatergic and GABAergic neuronal markers in MafA and MafB positive cells. The results showed that in the OB, MafA and MafB are expressed exclusively in glutamatergic neurons, but not in GABAergic neurons. We also found that few cells express c-Maf in the OB. These results indicate that, unlike the cerebral cortex, MafA and/or MafB may regulate the development of glutamatergic neurons in the developing OB. This study advances our knowledge about the development of glutamatergic neurons in the olfactory bulb, and also might suggest that mechanisms for the generation of projection neurons and interneurons differ between the cortex and the olfactory bulb, even though they both develop from the telencephalon.
Collapse
Affiliation(s)
- Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
33
|
Girskis KM, Stergachis AB, DeGennaro EM, Doan RN, Qian X, Johnson MB, Wang PP, Sejourne GM, Nagy MA, Pollina EA, Sousa AMM, Shin T, Kenny CJ, Scotellaro JL, Debo BM, Gonzalez DM, Rento LM, Yeh RC, Song JHT, Beaudin M, Fan J, Kharchenko PV, Sestan N, Greenberg ME, Walsh CA. Rewiring of human neurodevelopmental gene regulatory programs by human accelerated regions. Neuron 2021; 109:3239-3251.e7. [PMID: 34478631 DOI: 10.1016/j.neuron.2021.08.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/02/2021] [Accepted: 08/06/2021] [Indexed: 01/21/2023]
Abstract
Human accelerated regions (HARs) are the fastest-evolving regions of the human genome, and many are hypothesized to function as regulatory elements that drive human-specific gene regulatory programs. We interrogate the in vitro enhancer activity and in vivo epigenetic landscape of more than 3,100 HARs during human neurodevelopment, demonstrating that many HARs appear to act as neurodevelopmental enhancers and that sequence divergence at HARs has largely augmented their neuronal enhancer activity. Furthermore, we demonstrate PPP1R17 to be a putative HAR-regulated gene that has undergone remarkable rewiring of its cell type and developmental expression patterns between non-primates and primates and between non-human primates and humans. Finally, we show that PPP1R17 slows neural progenitor cell cycle progression, paralleling the cell cycle length increase seen predominantly in primate and especially human neurodevelopment. Our findings establish HARs as key components in rewiring human-specific neurodevelopmental gene regulatory programs and provide an integrated resource to study enhancer activity of specific HARs.
Collapse
Affiliation(s)
- Kelly M Girskis
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Ellen M DeGennaro
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xuyu Qian
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew B Johnson
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Peter P Wang
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabrielle M Sejourne
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Aurel Nagy
- Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Pollina
- Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - André M M Sousa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Taehwan Shin
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston MA, USA
| | - Connor J Kenny
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia L Scotellaro
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian M Debo
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Dilenny M Gonzalez
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lariza M Rento
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca C Yeh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Janet H T Song
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc Beaudin
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jean Fan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Nenad Sestan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Michael E Greenberg
- Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Chowdhury R, Wang Y, Campbell M, Goderie SK, Doyle F, Tenenbaum SA, Kusek G, Kiehl TR, Ansari SA, Boles NC, Temple S. STAU2 binds a complex RNA cargo that changes temporally with production of diverse intermediate progenitor cells during mouse corticogenesis. Development 2021; 148:271165. [PMID: 34345913 DOI: 10.1242/dev.199376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
STAU2 is a double-stranded RNA-binding protein enriched in the nervous system. During asymmetric divisions in the developing mouse cortex, STAU2 preferentially distributes into the intermediate progenitor cell (IPC), delivering RNA molecules that can impact IPC behavior. Corticogenesis occurs on a precise time schedule, raising the hypothesis that the cargo STAU2 delivers into IPCs changes over time. To test this, we combine RNA-immunoprecipitation with sequencing (RIP-seq) over four stages of mouse cortical development, generating a comprehensive cargo profile for STAU2. A subset of the cargo was 'stable', present at all stages, and involved in chromosome organization, macromolecule localization, translation and DNA repair. Another subset was 'dynamic', changing with cortical stage, and involved in neurogenesis, cell projection organization, neurite outgrowth, and included cortical layer markers. Notably, the dynamic STAU2 cargo included determinants of IPC versus neuronal fates and genes contributing to abnormal corticogenesis. Knockdown of one STAU2 target, Taf13, previously linked to microcephaly and impaired myelination, reduced oligodendrogenesis in vitro. We conclude that STAU2 contributes to the timing of corticogenesis by binding and delivering complex and temporally regulated RNA cargo into IPCs.
Collapse
Affiliation(s)
- Rebecca Chowdhury
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA
| | - Yue Wang
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA
| | - Melissa Campbell
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA
| | - Susan K Goderie
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA
| | - Francis Doyle
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Scott A Tenenbaum
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Gretchen Kusek
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA
| | - Thomas R Kiehl
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA
| | - Suraiya A Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Nathan C Boles
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA
| | - Sally Temple
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA
| |
Collapse
|
35
|
Chen CK, Kiyama T, Weber N, Whitaker CM, Pan P, Badea TC, Massey SC, Mao CA. Characterization of Tbr2-expressing retinal ganglion cells. J Comp Neurol 2021; 529:3513-3532. [PMID: 34245014 DOI: 10.1002/cne.25208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
The mammalian retina contains more than 40 retinal ganglion cell (RGC) subtypes based on their unique morphologies, functions, and molecular profiles. Among them, intrinsically photosensitive RGCs (ipRGCs) are the first specified RGC type emerging from a common retinal progenitor pool during development. Previous work has shown that T-box transcription factor T-brain 2 (Tbr2) is essential for the formation and maintenance of ipRGCs, and that Tbr2-expressing RGCs activate Opn4 expression upon native ipRGC ablation, suggesting that Tbr2+ RGCs contain a reservoir for ipRGCs. However, the identity of Tbr2+ RGCs has not been fully vetted. Here, using genetic sparse labeling and single cell recording, we showed that Tbr2-expressing retinal neurons include RGCs and a subset of GABAergic displaced amacrine cells (dACs). Most Tbr2+ RGCs are intrinsically photosensitive and morphologically resemble native ipRGCs with identical retinofugal projections. Tbr2+ RGCs also include a unique and rare Pou4f1-expressing OFF RGC subtype. Using a loss-of-function strategy, we have further demonstrated that Tbr2 is essential for the survival of these RGCs and dACs, as well as maintaining the expression of Opn4. These data set a strong foundation to study how Tbr2 regulates ipRGC development and survival, as well as the expression of molecular machinery regulating intrinsic photosensitivity.
Collapse
Affiliation(s)
- Ching-Kang Chen
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Nicole Weber
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Christopher M Whitaker
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Ping Pan
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Tudor C Badea
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.,Research and Development Institute, Transilvania University of Brasov, School of Medicine, Brasov, Romania
| | - Stephen C Massey
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA.,The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA.,The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
36
|
D'Souza L, Channakkar AS, Muralidharan B. Chromatin remodelling complexes in cerebral cortex development and neurodevelopmental disorders. Neurochem Int 2021; 147:105055. [PMID: 33964373 PMCID: PMC7611358 DOI: 10.1016/j.neuint.2021.105055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022]
Abstract
The diverse number of neurons in the cerebral cortex are generated during development by neural stem cells lining the ventricle, and they continue maturing postnatally. Dynamic chromatin regulation in these neural stem cells is a fundamental determinant of the emerging property of the functional neural network, and the chromatin remodellers are critical determinants of this process. Chromatin remodellers participate in several steps of this process from proliferation, differentiation, migration leading to complex network formation which forms the basis of higher-order functions of cognition and behaviour. Here we review the role of these ATP-dependent chromatin remodellers in cortical development in health and disease and highlight several key mouse mutants of the subunits of the complexes which have revealed how the remodelling mechanisms control the cortical stem cell chromatin landscape for expression of stage-specific transcripts. Consistent with their role in cortical development, several putative risk variants in the subunits of the remodelling complexes have been identified as the underlying causes of several neurodevelopmental disorders. A basic understanding of the detailed molecular mechanism of their action is key to understating how mutations in the same networks lead to disease pathologies and perhaps pave the way for therapeutic development for these complex multifactorial disorders.
Collapse
Affiliation(s)
- Leora D'Souza
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Asha S Channakkar
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Bhavana Muralidharan
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India.
| |
Collapse
|
37
|
Abstract
Studies of the spatiotemporal, transcriptomic, and morphological diversity of radial glia (RG) have spurred our current models of human corticogenesis. In the developing cortex, neural intermediate progenitor cells (nIPCs) are a neuron-producing transit-amplifying cell type born in the germinal zones of the cortex from RG. The potential diversity of the nIPC population, that produces a significant portion of excitatory cortical neurons, is understudied, particularly in the developing human brain. Here we explore the spatiotemporal, transcriptomic, and morphological variation that exists within the human nIPC population and provide a resource for future studies. We observe that the spatial distribution of nIPCs in the cortex changes abruptly around gestational week (GW) 19/20, marking a distinct shift in cellular distribution and organization during late neurogenesis. We also identify five transcriptomic subtypes, one of which appears at this spatiotemporal transition. Finally, we observe a diversity of nIPC morphologies that do not correlate with specific transcriptomic subtypes. These results provide an analysis of the spatiotemporal, transcriptional, and morphological diversity of nIPCs in developing brain tissue and provide an atlas of nIPC subtypes in the developing human cortex that can benchmark in vitro models of human development such as cerebral organoids and help inform future studies of how nIPCs contribute to cortical neurogenesis.
Collapse
|
38
|
Martins M, Galfrè S, Terrigno M, Pandolfini L, Appolloni I, Dunville K, Marranci A, Rizzo M, Mercatanti A, Poliseno L, Morandin F, Pietrosanto M, Helmer-Citterich M, Malatesta P, Vignali R, Cremisi F. A eutherian-specific microRNA controls the translation of Satb2 in a model of cortical differentiation. Stem Cell Reports 2021; 16:1496-1509. [PMID: 34019815 PMCID: PMC8190598 DOI: 10.1016/j.stemcr.2021.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 10/25/2022] Open
Abstract
Cerebral cortical development is controlled by key transcription factors that specify the neuronal identities in the different layers. The mechanisms controlling their expression in distinct cells are only partially known. We investigated the expression and stability of Tbr1, Bcl11b, Fezf2, Satb2, and Cux1 mRNAs in single developing mouse cortical cells. We observe that Satb2 mRNA appears much earlier than its protein and in a set of cells broader than expected, suggesting an initial inhibition of its translation, subsequently released during development. Mechanistically, Satb2 3'UTR modulates protein translation of GFP reporters during mouse corticogenesis. We select miR-541, a eutherian-specific miRNA, and miR-92a/b as the best candidates responsible for SATB2 inhibition, being strongly expressed in early and reduced in late progenitor cells. Their inactivation triggers robust and premature SATB2 translation in both mouse and human cortical cells. Our findings indicate RNA interference as a major mechanism in timing cortical cell identities.
Collapse
Affiliation(s)
- Manuella Martins
- Scuola Normale, Pisa, Italy; Istituto di Biofisica CNR, Pisa, Italy
| | - Silvia Galfrè
- Scuola Normale, Pisa, Italy; Dipartimento di Biologia, Università Roma Tor Vergata, Roma, Italy
| | - Marco Terrigno
- Scuola Normale, Pisa, Italy; Istituto di Biofisica CNR, Pisa, Italy
| | | | - Irene Appolloni
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy; Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genova, Italy
| | - Keagan Dunville
- Scuola Normale, Pisa, Italy; Istituto di Biofisica CNR, Pisa, Italy
| | - Andrea Marranci
- Istituto di Fisiologia Clinica CNR, Pisa, Italy; Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy
| | | | | | - Laura Poliseno
- Istituto di Fisiologia Clinica CNR, Pisa, Italy; Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy
| | - Francesco Morandin
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parma, Italy
| | | | | | - Paolo Malatesta
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy; Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genova, Italy
| | - Robert Vignali
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Federico Cremisi
- Scuola Normale, Pisa, Italy; Istituto di Biofisica CNR, Pisa, Italy.
| |
Collapse
|
39
|
Nucleocytoplasmic transport of the RNA-binding protein CELF2 regulates neural stem cell fates. Cell Rep 2021; 35:109226. [PMID: 34107259 DOI: 10.1016/j.celrep.2021.109226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 05/13/2021] [Indexed: 01/12/2023] Open
Abstract
The development of the cerebral cortex requires balanced expansion and differentiation of neural stem/progenitor cells (NPCs), which rely on precise regulation of gene expression. Because NPCs often exhibit transcriptional priming of cell-fate-determination genes, the ultimate output of these genes for fate decisions must be carefully controlled in a timely fashion at the post-transcriptional level, but how that is achieved is poorly understood. Here, we report that de novo missense variants in an RNA-binding protein CELF2 cause human cortical malformations and perturb NPC fate decisions in mice by disrupting CELF2 nucleocytoplasmic transport. In self-renewing NPCs, CELF2 resides in the cytoplasm, where it represses mRNAs encoding cell fate regulators and neurodevelopmental disorder-related factors. The translocation of CELF2 into the nucleus releases mRNA for translation and thereby triggers NPC differentiation. Our results reveal that CELF2 translocation between subcellular compartments orchestrates mRNA at the translational level to instruct cell fates in cortical development.
Collapse
|
40
|
Fischer M, Chander P, Kang H, Mellios N, Weick JP. Transcriptomic changes due to early, chronic intermittent alcohol exposure during forebrain development implicate WNT signaling, cell-type specification, and cortical regionalization as primary determinants of fetal alcohol syndrome. Alcohol Clin Exp Res 2021; 45:979-995. [PMID: 33682149 PMCID: PMC8643076 DOI: 10.1111/acer.14590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fetal alcohol syndrome (FAS) due to gestational alcohol exposure represents one of the most common causes of nonheritable lifelong disability worldwide. In vitro and in vivo models have successfully recapitulated multiple facets of the disorder, including morphological and behavioral deficits, but far less is understood regarding the molecular and genetic mechanisms underlying FAS. METHODS In this study, we utilized an in vitro human pluripotent stem cell-based (hPSC) model of corticogenesis to probe the effects of early, chronic intermittent alcohol exposure on the transcriptome of first trimester-equivalent cortical neurons. RESULTS We used RNA sequencing of developing hPSC-derived neurons treated for 50 days with 50 mM ethanol and identified a relatively small number of biological pathways significantly altered by alcohol exposure. These included cell-type specification, axon guidance, synaptic function, and regional patterning, with a notable upregulation of WNT signaling-associated transcripts observed in alcohol-exposed cultures relative to alcohol-naïve controls. Importantly, this effect paralleled a shift in gene expression of transcripts associated with regional patterning, such that caudal forebrain-related transcripts were upregulated at the expense of more anterior ones. Results from H9 embryonic stem cells were largely replicated in an induced pluripotent stem cell line (IMR90-4), indicating that these patterning alterations are not cell line-specific. CONCLUSIONS We found that a major effect of chronic intermittent alcohol on the developing cerebral cortex is an overall imbalance in regionalization, with enrichment of gene expression related to the production of posterodorsal progenitors and a diminution of anteroventral progenitors. This finding parallels behavioral and morphological phenotypes observed in animal models of high-dose prenatal alcohol exposure, as well as patients with FAS.
Collapse
Affiliation(s)
- Máté Fischer
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA
| | - Praveen Chander
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA
| | - Huining Kang
- Department of Internal Medicine, University of New Mexico HSC, Albuquerque, NM, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA.,Autophagy Inflammation and Metabolism (AIM) Center, University of New Mexico HSC, Albuquerque, NM, USA
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA.,Center for Brain Recovery and Repair, University of New Mexico HSC, Albuquerque, NM, USA.,New Mexico Alcohol Research Center, University of New Mexico HSC, Albuquerque, NM, USA
| |
Collapse
|
41
|
Ulmke PA, Sakib MS, Ditte P, Sokpor G, Kerimoglu C, Pham L, Xie Y, Mao X, Rosenbusch J, Teichmann U, Nguyen HP, Fischer A, Eichele G, Staiger JF, Tuoc T. Molecular Profiling Reveals Involvement of ESCO2 in Intermediate Progenitor Cell Maintenance in the Developing Mouse Cortex. Stem Cell Reports 2021; 16:968-984. [PMID: 33798452 PMCID: PMC8072132 DOI: 10.1016/j.stemcr.2021.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Intermediate progenitor cells (IPCs) are neocortical neuronal precursors. Although IPCs play crucial roles in corticogenesis, their molecular features remain largely unknown. In this study, we aimed to characterize the molecular profile of IPCs. We isolated TBR2-positive (+) IPCs and TBR2-negative (-) cell populations in the developing mouse cortex. Comparative genome-wide gene expression analysis of TBR2+ IPCs versus TBR2- cells revealed differences in key factors involved in chromatid segregation, cell-cycle regulation, transcriptional regulation, and cell signaling. Notably, mutation of many IPC genes in human has led to intellectual disability and caused a wide range of cortical malformations, including microcephaly and agenesis of corpus callosum. Loss-of-function experiments in cortex-specific mutants of Esco2, one of the novel IPC genes, demonstrate its critical role in IPC maintenance, and substantiate the identification of a central genetic determinant of IPC biogenesis. Our data provide novel molecular characteristics of IPCs in the developing mouse cortex.
Collapse
Affiliation(s)
- Pauline Antonie Ulmke
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - M Sadman Sakib
- German Center for Neurodegenerative Diseases, Goettingen, Germany
| | - Peter Ditte
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | - Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Goettingen, Germany; Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Cemil Kerimoglu
- German Center for Neurodegenerative Diseases, Goettingen, Germany
| | - Linh Pham
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Goettingen, Germany; Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Yuanbin Xie
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Xiaoyi Mao
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Ulrike Teichmann
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Goettingen, Germany
| | - Gregor Eichele
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Goettingen, Germany; Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany.
| |
Collapse
|
42
|
Kawaguchi A. Neuronal Delamination and Outer Radial Glia Generation in Neocortical Development. Front Cell Dev Biol 2021; 8:623573. [PMID: 33614631 PMCID: PMC7892903 DOI: 10.3389/fcell.2020.623573] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022] Open
Abstract
During neocortical development, many neuronally differentiating cells (neurons and intermediate progenitor cells) are generated at the apical/ventricular surface by the division of neural progenitor cells (apical radial glial cells, aRGs). Neurogenic cell delamination, in which these neuronally differentiating cells retract their apical processes and depart from the apical surface, is the first step of their migration. Since the microenvironment established by the apical endfeet is crucial for maintaining neuroepithelial (NE)/aRGs, proper timing of the detachment of the apical endfeet is critical for the quantitative control of neurogenesis in cerebral development. During delamination, the microtubule-actin-AJ (adherens junction) configuration at the apical endfeet shows dynamic changes, concurrent with the constriction of the AJ ring at the apical endfeet and downregulation of cadherin expression. This process is mediated by transcriptional suppression of AJ-related molecules and multiple cascades to regulate cell adhesion and cytoskeletal architecture in a posttranscriptional manner. Recent advances have added molecules to the latter category: the interphase centrosome protein AKNA affects microtubule dynamics to destabilize the microtubule-actin-AJ complex, and the microtubule-associated protein Lzts1 inhibits microtubule assembly and activates actomyosin systems at the apical endfeet of differentiating cells. Moreover, Lzts1 induces the oblique division of aRGs, and loss of Lzts1 reduces the generation of outer radial glia (oRGs, also called basal radial glia, bRGs), another type of neural progenitor cell in the subventricular zone. These findings suggest that neurogenic cell delamination, and in some cases oRG generation, could be caused by a spectrum of interlinked mechanisms.
Collapse
Affiliation(s)
- Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
43
|
Exner CRT, Willsey HR. Xenopus leads the way: Frogs as a pioneering model to understand the human brain. Genesis 2021; 59:e23405. [PMID: 33369095 PMCID: PMC8130472 DOI: 10.1002/dvg.23405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
From its long history in the field of embryology to its recent advances in genetics, Xenopus has been an indispensable model for understanding the human brain. Foundational studies that gave us our first insights into major embryonic patterning events serve as a crucial backdrop for newer avenues of investigation into organogenesis and organ function. The vast array of tools available in Xenopus laevis and Xenopus tropicalis allows interrogation of developmental phenomena at all levels, from the molecular to the behavioral, and the application of CRISPR technology has enabled the investigation of human disorder risk genes in a higher-throughput manner. As the only major tetrapod model in which all developmental stages are easily manipulated and observed, frogs provide the unique opportunity to study organ development from the earliest stages. All of these features make Xenopus a premier model for studying the development of the brain, a notoriously complex process that demands an understanding of all stages from fertilization to organogenesis and beyond. Importantly, core processes of brain development are conserved between Xenopus and human, underlining the advantages of this model. This review begins by summarizing discoveries made in amphibians that form the cornerstones of vertebrate neurodevelopmental biology and goes on to discuss recent advances that have catapulted our understanding of brain development in Xenopus and in relation to human development and disease. As we engage in a new era of patient-driven gene discovery, Xenopus offers exceptional potential to uncover conserved biology underlying human brain disorders and move towards rational drug design.
Collapse
Affiliation(s)
- Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
44
|
Abstract
The mammalian cerebral cortex is the pinnacle of brain evolution, reaching its maximum complexity in terms of neuron number, diversity and functional circuitry. The emergence of this outstanding complexity begins during embryonic development, when a limited number of neural stem and progenitor cells manage to generate myriads of neurons in the appropriate numbers, types and proportions, in a process called neurogenesis. Here we review the current knowledge on the regulation of cortical neurogenesis, beginning with a description of the types of progenitor cells and their lineage relationships. This is followed by a review of the determinants of neuron fate, the molecular and genetic regulatory mechanisms, and considerations on the evolution of cortical neurogenesis in vertebrates leading to humans. We finish with an overview on how dysregulation of neurogenesis is a leading cause of human brain malformations and functional disabilities.
Collapse
Affiliation(s)
- Ana Villalba
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Zentrum München & Biomedical Center, Ludwig-Maximilians Universitaet, Planegg-Martinsried, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
| |
Collapse
|
45
|
Learning about cell lineage, cellular diversity and evolution of the human brain through stem cell models. Curr Opin Neurobiol 2020; 66:166-177. [PMID: 33246264 DOI: 10.1016/j.conb.2020.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Here, we summarize the current knowledge on cell diversity in the cortex and other brain regions from in vivo mouse models and in vitro models based on pluripotent stem cells. We discuss the mechanisms underlying cell proliferation and temporal progression that leads to the sequential generation of neurons dedicated to different layers of the cortex. We highlight models of corticogenesis from stem cells that recapitulate specific transcriptional and connectivity patterns from different cortical areas. We overview state-of-the art of human brain organoids modeling different brain regions, and we discuss insights into human cortical evolution from stem cells. Finally, we interrogate human brain organoid models for their competence to recapitulate the essence of human brain development.
Collapse
|
46
|
Li Z, Tyler WA, Zeldich E, Santpere Baró G, Okamoto M, Gao T, Li M, Sestan N, Haydar TF. Transcriptional priming as a conserved mechanism of lineage diversification in the developing mouse and human neocortex. SCIENCE ADVANCES 2020; 6:6/45/eabd2068. [PMID: 33158872 PMCID: PMC7673705 DOI: 10.1126/sciadv.abd2068] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/23/2020] [Indexed: 05/23/2023]
Abstract
How the rich variety of neurons in the nervous system arises from neural stem cells is not well understood. Using single-cell RNA-sequencing and in vivo confirmation, we uncover previously unrecognized neural stem and progenitor cell diversity within the fetal mouse and human neocortex, including multiple types of radial glia and intermediate progenitors. We also observed that transcriptional priming underlies the diversification of a subset of ventricular radial glial cells in both species; genetic fate mapping confirms that the primed radial glial cells generate specific types of basal progenitors and neurons. The different precursor lineages therefore diversify streams of cell production in the developing murine and human neocortex. These data show that transcriptional priming is likely a conserved mechanism of mammalian neural precursor lineage specialization.
Collapse
Affiliation(s)
- Zhen Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - William A Tyler
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Gabriel Santpere Baró
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Neurogenomics group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mayumi Okamoto
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan
| | - Tianliuyun Gao
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Mingfeng Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Departments of Genetics, of Psychiatry and of Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Tarik F Haydar
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
47
|
Bartkowska K, Tepper B, Gawda A, Jarosik M, Sobolewska P, Turlejski K, Djavadian RL. Inhibition of TrkB- and TrkC-Signaling Pathways Affects Neurogenesis in the Opossum Developing Neocortex. Cereb Cortex 2020; 29:3666-3675. [PMID: 30272136 DOI: 10.1093/cercor/bhy246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022] Open
Abstract
We have previously reported that the blockage of TrkB and TrkC signaling in primary culture of opossum neocortical cells affects neurogenesis that involves a range of processes including cell proliferation, differentiation, and survival. Here, we studied whether TrkB and TrkC activity specifically affects various types of progenitor cell populations during neocortex formation in the Monodelphis opossum in vivo. We found that the inhibition of TrkB and TrkC activities affects the same proliferative cellular phenotype, but TrkC causes more pronounced changes in the rate of cell divisions. Additionally, inhibition of TrkB and TrkC does not affect apoptosis in vivo, which was found in cell culture experiments. The lack of TrkB and TrkC receptor activity caused the arrest of newly generated neurons; therefore, they could not penetrate the subplate zone. We suggest that at this time point in development, migration consists of 2 steps. During the initial step, neurons migrate and reach the base of the subplate, whereas during the next step the migration of neurons to their final position is regulated by TrkB or TrkC signaling.
Collapse
Affiliation(s)
- K Bartkowska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - B Tepper
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - A Gawda
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Jarosik
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Poland
| | - P Sobolewska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - K Turlejski
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Poland
| | - R L Djavadian
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
48
|
Jungas T, Joseph M, Fawal MA, Davy A. Population Dynamics and Neuronal Polyploidy in the Developing Neocortex. Cereb Cortex Commun 2020; 1:tgaa063. [PMID: 34296126 PMCID: PMC8152829 DOI: 10.1093/texcom/tgaa063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 11/27/2022] Open
Abstract
The mammalian neocortex is composed of different subtypes of projection neurons that are generated sequentially during embryogenesis by differentiation of neural progenitors. While molecular mechanisms that control neuronal production in the developing neocortex have been extensively studied, the dynamics and absolute numbers of the different progenitor and neuronal populations are still poorly characterized. Here, we describe a medium throughput approach based on flow cytometry and well-known identity markers of cortical subpopulations to collect quantitative data over the course of mouse neocortex development. We collected a complete dataset in a physiological developmental context on two progenitor and two neuron populations, including relative proportions and absolute numbers. Our study reveals unexpected total numbers of Tbr2+ progenitors. In addition, we show that polyploid neurons are present throughout neocortex development.
Collapse
Affiliation(s)
- Thomas Jungas
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Mathieu Joseph
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
- Department of Molecular Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mohamad-Ali Fawal
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Alice Davy
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
49
|
SULT4A1 Modulates Synaptic Development and Function by Promoting the Formation of PSD-95/NMDAR Complex. J Neurosci 2020; 40:7013-7026. [PMID: 32801157 DOI: 10.1523/jneurosci.2194-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/27/2020] [Accepted: 05/13/2020] [Indexed: 11/21/2022] Open
Abstract
Sulfotransferase 4A1 (SULT4A1) is a cytosolic sulfotransferase that is highly conserved across species and extensively expressed in the brain. However, the biological function of SULT4A1 is unclear. SULT4A1 has been implicated in several neuropsychiatric disorders, such as Phelan-McDermid syndrome and schizophrenia. Here, we investigate the role of SULT4A1 within neuron development and function. Our data demonstrate that SULT4A1 modulates neuronal branching complexity and dendritic spines formation. Moreover, we show that SULT4A1, by negatively regulating the catalytic activity of Pin1 toward PSD-95, facilitates NMDAR synaptic expression and function. Finally, we demonstrate that the pharmacological inhibition of Pin1 reverses the pathologic phenotypes of neurons knocked down by SULT4A1 by specifically restoring dendritic spine density and rescuing NMDAR-mediated synaptic transmission. Together, these findings identify SULT4A1 as a novel player in neuron development and function by modulating dendritic morphology and synaptic activity.SIGNIFICANCE STATEMENT Sulfotransferase 4A1 (SULT4A1) is a brain-specific sulfotransferase highly expressed in neurons. Different evidence has suggested that SULT4A1 has an important role in neuronal function and that SULT4A1 altered expression might represent a contributing factor in multiple neurodevelopmental disorders. However, the function of SULT4A1 in the mammalian brain is still unclear. Here, we demonstrate that SULT4A1 is highly expressed at postsynaptic sites where it sequesters Pin1, preventing its negative action on synaptic transmission. This study reveals a novel role of SULT4A1 in the modulation of NMDA receptor activity and strongly contributes to explaining the neuronal dysfunction observed in patients carrying deletions of SULTA41 gene.
Collapse
|
50
|
Moroni RF, Regondi MC, de Curtis M, Frassoni C, Librizzi L. Kir4.1 RNA Interference by In Utero Electroporation Fails to Affect Ictogenesis and Reveals a Possible role of Kir4.1 in Corticogenesis. Neuroscience 2020; 441:65-76. [PMID: 32590038 DOI: 10.1016/j.neuroscience.2020.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
Abstract
Astrocyte dysfunction, and in particular impaired extracellular potassium spatial buffering, has been postulated to have a potential role in seizure susceptibility and ictogenesis. Inwardly rectifying potassium (Kir) channels, and specifically KIR4.1, have a predominant role in K+ homeostasis and their involvement in neuronal excitability control have been hypothesized. To avoid the severe side effects observed in Kir4.1 cKO, we studied the effects of Kir4.1 down-regulation in cortical astrocytes by using Kir4.1 RNA interference (RNAi) technique combined with in utero electroporation (IUE) at E16 and a piggyBac transposon system. Kir4.1 down-regulation was confirmed by immunohistochemistry and field fraction analysis. To investigate if Kir4.1 silencing affects 4AP-induced seizure threshold and extracellular potassium homeostasis, simultaneous in vitro field potential and extracellular K+ recordings were performed on somatosensory cortex slices obtained from rats electroporated with a piggyBac-Kir4.1-shRNA (Kir4.1-) and scrambled shRNA (Kir4.1Sc). Electrophysiological data revealed no significant differences in terms of seizure onset and seizure-induced extracellular K+ changes between Kir4.1- and Kir4.1Sc rats. Intriguingly, immunohistochemical analysis performed on slices studied with electrophysiology revealed a reduced number of neurons generated from radial glial cells in Kir4.1- rats. We conclude that focal down-regulation of Kir4.1 channel in cortical astrocytes by Kir4.1 RNAi technique combined with IUE is not effective in altering potassium homeostasis and seizure susceptibility. This technique revealed a possible role of Kir4.1 during corticogenesis.
Collapse
Affiliation(s)
- Ramona Frida Moroni
- Epilepsy Unit, Fondazione I.R.C.C.S. Istituto Neurologico "C. Besta", via Celoria 11, 20133 Milan, Italy.
| | - Maria Cristina Regondi
- Epilepsy Unit, Fondazione I.R.C.C.S. Istituto Neurologico "C. Besta", via Celoria 11, 20133 Milan, Italy.
| | - Marco de Curtis
- Epilepsy Unit, Fondazione I.R.C.C.S. Istituto Neurologico "C. Besta", via Celoria 11, 20133 Milan, Italy.
| | - Carolina Frassoni
- Epilepsy Unit, Fondazione I.R.C.C.S. Istituto Neurologico "C. Besta", via Celoria 11, 20133 Milan, Italy.
| | - Laura Librizzi
- Epilepsy Unit, Fondazione I.R.C.C.S. Istituto Neurologico "C. Besta", via Celoria 11, 20133 Milan, Italy.
| |
Collapse
|