1
|
Ing-Esteves S, Lefebvre JL. Gamma-protocadherins regulate dendrite self-recognition and dynamics to drive self-avoidance. Curr Biol 2024; 34:4224-4239.e4. [PMID: 39214087 DOI: 10.1016/j.cub.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Neurons form cell-type-specific morphologies that are shaped by cell-surface molecules and their cellular events governing dendrite growth. One growth rule is dendrite self-avoidance, whereby dendrites distribute uniformly within a neuron's territory by avoiding sibling branches. In mammalian neurons, dendrite self-avoidance is regulated by a large family of cell-recognition molecules called the clustered protocadherins (cPcdhs). Genetic and molecular studies suggest that the cPcdhs mediate homophilic recognition and repulsion between self-dendrites. However, this model has not been tested through direct investigation of self-avoidance during development. Here, we performed live imaging and four-dimensional (4D) quantifications of dendrite morphogenesis to define the dynamics and cPcdh-dependent mechanisms of self-avoidance. We focused on the mouse retinal starburst amacrine cell (SAC), which requires the gamma-Pcdhs (Pcdhgs) and self/non-self-recognition to establish a stereotypic radial morphology while permitting dendritic interactions with neighboring SACs. Through morphogenesis, SACs extend dendritic protrusions that iteratively fill the growing arbor and contact and retract from nearby self-dendrites. Compared to non-self-contacting protrusions, self-contacting events have longer lifetimes, and a subset persists as loops. In the absence of the Pcdhgs, non-self-contacting dynamics are unaffected but self-contacting retractions are significantly diminished. Self-contacting bridges accumulate, leading to the bundling of dendritic processes and disruption to the arbor shape. By tracking dendrite self-avoidance in real time, our findings establish that the γ-Pcdhs mediate self-recognition and retraction between contacting sibling dendrites. Our results also illustrate how self-avoidance shapes stochastic and space-filling dendritic outgrowth for robust pattern formation in mammalian neurons.
Collapse
Affiliation(s)
- Samantha Ing-Esteves
- Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Julie L Lefebvre
- Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2
|
Song Y, Li L, Jiang Y, Peng B, Jiang H, Chao Z, Chang X. Multitrait Genetic Analysis Identifies Novel Pleiotropic Loci for Depression and Schizophrenia in East Asians. Schizophr Bull 2024:sbae145. [PMID: 39190819 DOI: 10.1093/schbul/sbae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
BACKGROUND AND HYPOTHESIS While genetic correlations, pleiotropic loci, and shared genetic mechanisms of psychiatric disorders have been extensively studied in European populations, the investigation of these factors in East Asian populations has been relatively limited. STUDY DESIGN To identify novel pleiotropic risk loci for depression and schizophrenia (SCZ) in East Asians. We utilized the most comprehensive dataset available for East Asians and quantified the genetic overlap between depression, SCZ, and their related traits via a multitrait genome-wide association study. Global and local genetic correlations were estimated by LDSC and ρ-HESS. Pleiotropic loci were identified by the multitrait analysis of GWAS (MTAG). STUDY RESULTS Besides the significant correlation between depression and SCZ, our analysis revealed genetic correlations between depression and obesity-related traits, such as weight, BMI, T2D, and HDL. In SCZ, significant correlations were detected with HDL, heart diseases and use of various medications. Conventional meta-analysis of depression and SCZ identified a novel locus at 1q25.2 in East Asians. Further multitrait analysis of depression, SCZ and related traits identified ten novel pleiotropic loci for depression, and four for SCZ. CONCLUSIONS Our findings demonstrate shared genetic underpinnings between depression and SCZ in East Asians, as well as their associated traits, providing novel candidate genes for the identification and prioritization of therapeutic targets specific to this population.
Collapse
Affiliation(s)
- Yingchao Song
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Shandong, China
| | - Linzehao Li
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Shandong, China
| | - Yue Jiang
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Shandong, China
| | - Bichen Peng
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Shandong, China
| | - Hengxuan Jiang
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Shandong, China
| | - Zhen Chao
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Shandong, China
| | - Xiao Chang
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Shandong, China
| |
Collapse
|
3
|
Chung WS, Baldwin KT, Allen NJ. Astrocyte Regulation of Synapse Formation, Maturation, and Elimination. Cold Spring Harb Perspect Biol 2024; 16:a041352. [PMID: 38346858 PMCID: PMC11293538 DOI: 10.1101/cshperspect.a041352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Astrocytes play an integral role in the development, maturation, and refinement of neuronal circuits. Astrocytes secrete proteins and lipids that instruct the formation of new synapses and induce the maturation of existing synapses. Through contact-mediated signaling, astrocytes can regulate the formation and state of synapses within their domain. Through phagocytosis, astrocytes participate in the elimination of excess synaptic connections. In this work, we will review key findings on the molecular mechanisms of astrocyte-synapse interaction with a focus on astrocyte-secreted factors, contact-mediated mechanisms, and synapse elimination. We will discuss this in the context of typical brain development and maintenance, as well as consider the consequences of dysfunction in these pathways in neurological disorders, highlighting a role for astrocytes in health and disease.
Collapse
Affiliation(s)
- Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, Korea
| | - Katherine T Baldwin
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
4
|
Theisen JG, Chorich LP, Xu H, Knight J, Kim HG, Layman LC. Identification of rare genetic variants in the PCDH genetic family in a cohort of transgender women. F&S SCIENCE 2024; 5:283-292. [PMID: 38942387 DOI: 10.1016/j.xfss.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVE To study the identification of rare genetic variants in the PCDH genetic family in a cohort of transgender women (TGW) and their potential role in gender identity. DESIGN Exome sequencing and functional ontology analysis. SETTING Outpatient gender health and reproductive endocrinology clinics. PATIENT(S) A total of 24 TGW and 22 cisgender men (CM). INTERVENTION(S) Exome sequencing followed by variant confirmation through Sanger sequencing and functional classification analysis using the Database for Annotation, Visualization, and Integrated Discovery tool. MAIN OUTCOME MEASURE(S) Identification of rare, functionally significant genetic variants in the PCDH gene family and their prevalence in TGW compared with CM. RESULT(S) Exome sequencing revealed 38,524 genetic variants, of which 2,441 were rare and predicted to be functionally significant. The Database for Annotation, Visualization, and Integrated Discovery analysis demonstrated a statistically enriched functional group, "homophilic cell adhesion via plasma membrane adhesion molecules," containing 55 genes, including 18 PCDH gene family members. A total of 37 rare variants in 21 PCDH genes were identified, with 36 confirmed using Sanger sequencing. A statistically significant increase in these variants was observed in TGW compared with CM (Z = 2.08905). CONCLUSION(S) Transgender women exhibited a greater than threefold increase in functionally significant PCDH gene variants compared with CM. These findings suggest that the PCDH family may play a role in the genetic pathways associated with gender identity in TGW.
Collapse
Affiliation(s)
- John G Theisen
- Section of Reproductive Endocrinology, Infertility, and Genetics, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| | - Lynn P Chorich
- Section of Reproductive Endocrinology, Infertility, and Genetics, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Hongyan Xu
- Section of Reproductive Endocrinology, Infertility, and Genetics, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - James Knight
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut; Yale Center for Genome Analysis, Yale University, New Haven, Connecticut
| | - Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Jersey, New Jersey
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, and Genetics, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
5
|
Wiseglass G, Boni N, Smorodinsky-Atias K, Rubinstein R. Clustered protocadherin cis-interactions are required for combinatorial cell-cell recognition underlying neuronal self-avoidance. Proc Natl Acad Sci U S A 2024; 121:e2319829121. [PMID: 38976736 PMCID: PMC11260096 DOI: 10.1073/pnas.2319829121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
In the developing human brain, only 53 stochastically expressed clustered protocadherin (cPcdh) isoforms enable neurites from individual neurons to recognize and self-avoid while simultaneously maintaining contact with neurites from other neurons. Cell assays have demonstrated that self-recognition occurs only when all cPcdh isoforms perfectly match across the cell boundary, with a single mismatch in the cPcdh expression profile interfering with recognition. It remains unclear, however, how a single mismatched isoform between neighboring cells is sufficient to block erroneous recognitions. Using systematic cell aggregation experiments, we show that abolishing cPcdh interactions on the same membrane (cis) results in a complete loss of specific combinatorial binding between cells (trans). Our computer simulations demonstrate that the organization of cPcdh in linear array oligomers, composed of cis and trans interactions, enhances self-recognition by increasing the concentration and stability of cPcdh trans complexes between the homotypic membranes. Importantly, we show that the presence of mismatched isoforms between cells drastically diminishes the concentration and stability of the trans complexes. Overall, we provide an explanation for the role of the cPcdh assembly arrangements in neuronal self/non-self-discrimination underlying neuronal self-avoidance.
Collapse
Affiliation(s)
- Gil Wiseglass
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| | - Nadir Boni
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| | - Karina Smorodinsky-Atias
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| | - Rotem Rubinstein
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv6997801, Israel
| |
Collapse
|
6
|
Hanes CM, Mah KM, Steffen DM, McLeod CM, Marcucci CG, Fuller LC, Burgess RW, Garrett AM, Weiner JA. A C-terminal motif containing a PKC phosphorylation site regulates γ-Protocadherin-mediated dendrite arborization in the cerebral cortex in vivo. Dev Neurobiol 2024; 84:217-235. [PMID: 38837880 PMCID: PMC11251855 DOI: 10.1002/dneu.22950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
The Pcdhg gene cluster encodes 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules that critically regulate multiple aspects of neural development, including neuronal survival, dendritic and axonal arborization, and synapse formation and maturation. Each γ-Pcdh isoform has unique protein domains-a homophilically interacting extracellular domain and a juxtamembrane cytoplasmic domain-as well as a C-terminal cytoplasmic domain shared by all isoforms. The extent to which isoform-specific versus shared domains regulate distinct γ-Pcdh functions remains incompletely understood. Our previous in vitro studies identified protein kinase C (PKC) phosphorylation of a serine residue within a shared C-terminal motif as a mechanism through which γ-Pcdh promotion of dendrite arborization via myristoylated alanine-rich C-kinase substrate (MARCKS) is abrogated. Here, we used CRISPR/Cas9 genome editing to generate two new mouse lines expressing only non-phosphorylatable γ-Pcdhs, due either to a serine-to-alanine mutation (PcdhgS/A) or to a 15-amino acid C-terminal deletion resulting from insertion of an early stop codon (PcdhgCTD). Both lines are viable and fertile, and the density and maturation of dendritic spines remain unchanged in both PcdhgS/A and PcdhgCTD cortex. Dendrite arborization of cortical pyramidal neurons, however, is significantly increased in both lines, as are levels of active MARCKS. Intriguingly, despite having significantly reduced levels of γ-Pcdh proteins, the PcdhgCTD mutation yields the strongest phenotype, with even heterozygous mutants exhibiting increased arborization. The present study confirms that phosphorylation of a shared C-terminal motif is a key γ-Pcdh negative regulation point and contributes to a converging understanding of γ-Pcdh family function in which distinct roles are played by both individual isoforms and discrete protein domains.
Collapse
Affiliation(s)
- Camille M. Hanes
- Department of Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Kar Men Mah
- Department of Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - David M. Steffen
- Department of Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Cathy M. McLeod
- Department of Pharmacology and Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Charles G. Marcucci
- Department of Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Leah C. Fuller
- Department of Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | | | - Andrew M. Garrett
- Department of Pharmacology and Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Joshua A. Weiner
- Department of Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Su M, Xuan E, Sun X, Pan G, Li D, Zheng H, Zhang YW, Li Y. Synaptic adhesion molecule protocadherin-γC5 mediates β-amyloid-induced neuronal hyperactivity and cognitive deficits in Alzheimer's disease. J Neurochem 2024; 168:1060-1079. [PMID: 38308496 DOI: 10.1111/jnc.16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Neuronal hyperactivity induced by β-amyloid (Aβ) is an early pathological feature in Alzheimer's disease (AD) and contributes to cognitive decline in AD progression. However, the underlying mechanisms are still unclear. Here, we revealed that Aβ increased the expression level of synaptic adhesion molecule protocadherin-γC5 (Pcdh-γC5) in a Ca2+-dependent manner, associated with aberrant elevation of synapses in both Aβ-treated neurons in vitro and the cortex of APP/PS1 mice in vivo. By using Pcdhgc5 gene knockout mice, we demonstrated the critical function of Pcdh-γC5 in regulating neuronal synapse formation, synaptic transmission, and cognition. To further investigate the role of Pcdh-γC5 in AD pathogenesis, the aberrantly enhanced expression of Pcdh-γC5 in the brain of APP/PS1 mice was knocked down by shRNA. Downregulation of Pcdh-γC5 efficiently rescued neuronal hyperactivity and impaired cognition in APP/PS1 mice. Our findings revealed the pathophysiological role of Pcdh-γC5 in mediating Aβ-induced neuronal hyperactivity and cognitive deficits in AD and identified a novel mechanism underlying AD pathogenesis.
Collapse
Affiliation(s)
- Min Su
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Erying Xuan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiangyi Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Gaojie Pan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Dandan Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yanfang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Schmithorst V, Bais A, Badaly D, Williams K, Gabriel G, Ceschin R, Wallace J, Lee V, Lopez O, Cohen A, Martin LJ, Lo C, Panigrahy A. Complex Regulation of Protocadherin Epigenetics on Aging-Related Brain Health. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.21.24306143. [PMID: 38712165 PMCID: PMC11071558 DOI: 10.1101/2024.04.21.24306143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Life expectancy continues to increase in the high-income world due to advances in medical care; however, quality of life declines with increasing age due to normal aging processes. Current research suggests that various aspects of aging are genetically modulated and thus may be slowed via genetic modification. Here, we show evidence for epigenetic modulation of the aging process in the brain from over 1800 individuals as part of the Framingham Heart Study. We investigated the methylation of genes in the protocadherin (PCDH) clusters, including the alpha (PCHDA), beta (PCDHB), and gamma (PCDHG) clusters. Reduced PCDHG, elevated PCDHA, and elevated PCDHB methylation levels were associated with substantial reductions in the rate of decline of regional white matter volume as well as certain cognitive skills, independent of overall accelerated or retarded aging as estimated by a DNA clock. These results are likely due to the different effects of the expression of genes in the alpha, beta, and gamma PCHD clusters and suggest that experience-based aging processes related to a decline in regional brain volume and select cognitive skills may be slowed via targeted epigenetic modifications.
Collapse
Affiliation(s)
- Vanessa Schmithorst
- UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Department of Radiology
| | - Abha Bais
- University of Pittsburgh Department of Developmental Biology
| | | | | | | | - Rafael Ceschin
- UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Department of Radiology
| | - Julia Wallace
- UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Department of Radiology
| | - Vince Lee
- UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Department of Radiology
| | - Oscar Lopez
- University of Pittsburgh Department of Neurology
| | - Annie Cohen
- University of Pittsburgh Department of Psychiatry
| | - Lisa J. Martin
- Department of Pediatrics Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine
| | - Cecilia Lo
- University of Pittsburgh Integrative Systems Biology
| | - Ashok Panigrahy
- UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Department of Radiology
| |
Collapse
|
9
|
Banazadeh M, Abiri A, Poortaheri MM, Asnaashari L, Langarizadeh MA, Forootanfar H. Unexplored power of CRISPR-Cas9 in neuroscience, a multi-OMICs review. Int J Biol Macromol 2024; 263:130413. [PMID: 38408576 DOI: 10.1016/j.ijbiomac.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/27/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The neuroscience and neurobiology of gene editing to enhance learning and memory is of paramount interest to the scientific community. The advancements of CRISPR system have created avenues to treat neurological disorders by means of versatile modalities varying from expression to suppression of genes and proteins. Neurodegenerative disorders have also been attributed to non-canonical DNA secondary structures by affecting neuron activity through controlling gene expression, nucleosome shape, transcription, translation, replication, and recombination. Changing DNA regulatory elements which could contribute to the fate and function of neurons are thoroughly discussed in this review. This study presents the ability of CRISPR system to boost learning power and memory, treat or cure genetically-based neurological disorders, and alleviate psychiatric diseases by altering the activity and the irritability of the neurons at the synaptic cleft through DNA manipulation, and also, epigenetic modifications using Cas9. We explore and examine how each different OMIC techniques can come useful when altering DNA sequences. Such insight into the underlying relationship between OMICs and cellular behaviors leads us to better neurological and psychiatric therapeutics by intelligently designing and utilizing the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | | | - Lida Asnaashari
- Student Research Committee, Kerman Universiy of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
10
|
Zhu YJ, Deng CY, Fan L, Wang YQ, Zhou H, Xu HT. Combinatorial expression of γ-protocadherins regulates synaptic connectivity in the mouse neocortex. eLife 2024; 12:RP89532. [PMID: 38470230 DOI: 10.7554/elife.89532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
In the process of synaptic formation, neurons must not only adhere to specific principles when selecting synaptic partners but also possess mechanisms to avoid undesirable connections. Yet, the strategies employed to prevent unwarranted associations have remained largely unknown. In our study, we have identified the pivotal role of combinatorial clustered protocadherin gamma (γ-PCDH) expression in orchestrating synaptic connectivity in the mouse neocortex. Through 5' end single-cell sequencing, we unveiled the intricate combinatorial expression patterns of γ-PCDH variable isoforms within neocortical neurons. Furthermore, our whole-cell patch-clamp recordings demonstrated that as the similarity in this combinatorial pattern among neurons increased, their synaptic connectivity decreased. Our findings elucidate a sophisticated molecular mechanism governing the construction of neural networks in the mouse neocortex.
Collapse
Affiliation(s)
- Yi-Jun Zhu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Yun Deng
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Liu Fan
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Ya-Qian Wang
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Hui Zhou
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Hua-Tai Xu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
11
|
Zhong J, Wang C, Zhang D, Yao X, Zhao Q, Huang X, Lin F, Xue C, Wang Y, He R, Li XY, Li Q, Wang M, Zhao S, Afridi SK, Zhou W, Wang Z, Xu Y, Xu Z. PCDHA9 as a candidate gene for amyotrophic lateral sclerosis. Nat Commun 2024; 15:2189. [PMID: 38467605 PMCID: PMC10928119 DOI: 10.1038/s41467-024-46333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. To identify additional genetic factors, we analyzed exome sequences in a large cohort of Chinese ALS patients and found a homozygous variant (p.L700P) in PCDHA9 in three unrelated patients. We generated Pcdhα9 mutant mice harboring either orthologous point mutation or deletion mutation. These mice develop progressive spinal motor loss, muscle atrophy, and structural/functional abnormalities of the neuromuscular junction, leading to paralysis and early lethality. TDP-43 pathology is detected in the spinal motor neurons of aged mutant mice. Mechanistically, we demonstrate that Pcdha9 mutation causes aberrant activation of FAK and PYK2 in aging spinal cord, and dramatically reduced NKA-α1 expression in motor neurons. Our single nucleus multi-omics analysis reveals disturbed signaling involved in cell adhesion, ion transport, synapse organization, and neuronal survival in aged mutant mice. Together, our results present PCDHA9 as a potential ALS gene and provide insights into its pathogenesis.
Collapse
Affiliation(s)
- Jie Zhong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disease, Beijing, 100053, China.
| | - Dan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Quanzhen Zhao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xusheng Huang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Feng Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Chun Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruojie He
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xu-Ying Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disease, Beijing, 100053, China
| | - Qibin Li
- Shenzhen Clabee Biotechnology Incorporation, Shenzhen, 518057, China
| | - Mingbang Wang
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, 201102, China
| | - Shaoli Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shabbir Khan Afridi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenhao Zhou
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, 201102, China
| | - Zhanjun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disease, Beijing, 100053, China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
12
|
Leon WRM, Steffen DM, Dale-Huang FR, Rakela B, Breevoort A, Romero-Rodriguez R, Hasenstaub AR, Stryker MP, Weiner JA, Alvarez-Buylla A. The clustered gamma protocadherin PcdhγC4 isoform regulates cortical interneuron programmed cell death in the mouse cortex. Proc Natl Acad Sci U S A 2024; 121:e2313596120. [PMID: 38285948 PMCID: PMC10861877 DOI: 10.1073/pnas.2313596120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/16/2023] [Indexed: 01/31/2024] Open
Abstract
Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into the cortex where they make connections with locally produced excitatory glutamatergic neurons. Cortical function critically depends on the number of cINs, which is also key to establishing the appropriate inhibitory/excitatory balance. The final number of cINs is determined during a postnatal period of programmed cell death (PCD) when ~40% of the young cINs are eliminated. Previous work shows that the loss of clustered gamma protocadherins (Pcdhgs), but not of genes in the Pcdha or Pcdhb clusters, dramatically increased BAX-dependent cIN PCD. Here, we show that PcdhγC4 is highly expressed in cINs of the mouse cortex and that this expression increases during PCD. The sole deletion of the PcdhγC4 isoform, but not of the other 21 isoforms in the Pcdhg gene cluster, increased cIN PCD. Viral expression of the PcdhγC4, in cIN lacking the function of the entire Pcdhg cluster, rescued most of these cells from cell death. We conclude that PcdhγC4 plays a critical role in regulating the survival of cINs during their normal period of PCD. This highlights how a single isoform of the Pcdhg cluster, which has been linked to human neurodevelopmental disorders, is essential to adjust cIN cell numbers during cortical development.
Collapse
Affiliation(s)
- Walter R. Mancia Leon
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA94143
| | - David M. Steffen
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA94143
- Department of Biology, The University of Iowa, Iowa City, IA52242
| | - Fiona R. Dale-Huang
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA94143
| | - Benjamin Rakela
- Department of Physiology, University of California, San Francisco, San Francisco, CA94143
| | - Arnar Breevoort
- Department of Physiology, University of California, San Francisco, San Francisco, CA94143
| | - Ricardo Romero-Rodriguez
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA94143
| | - Andrea R. Hasenstaub
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA94143
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA94143
| | - Michael P. Stryker
- Department of Physiology, University of California, San Francisco, San Francisco, CA94143
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA94143
| | - Joshua A. Weiner
- Department of Biology, The University of Iowa, Iowa City, IA52242
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA94143
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA94143
| |
Collapse
|
13
|
Hanes CM, Mah KM, Steffen DM, Marcucci CG, Fuller LC, Burgess RW, Garrett AM, Weiner JA. A C-terminal motif containing a PKC phosphorylation site regulates γ-Protocadherin-mediated dendrite arborization in the cerebral cortex in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577214. [PMID: 38328061 PMCID: PMC10849722 DOI: 10.1101/2024.01.25.577214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The Pcdhg gene cluster encodes 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules that critically regulate multiple aspects of neural development, including neuronal survival, dendritic and axonal arborization, and synapse formation and maturation. Each γ-Pcdh isoform has unique protein domains-a homophilically-interacting extracellular domain and a juxtamembrane cytoplasmic domain-as well as a C-terminal cytoplasmic domain shared by all isoforms. The extent to which isoform-specific vs. shared domains regulate distinct γ-Pcdh functions remains incompletely understood. Our previous in vitro studies identified PKC phosphorylation of a serine residue within a shared C-terminal motif as a mechanism through which γ-Pcdh promotion of dendrite arborization via MARCKS is abrogated. Here, we used CRISPR/Cas9 genome editing to generate two new mouse lines expressing only non-phosphorylatable γ-Pcdhs, due either to a serine-to-alanine mutation (PcdhgS/A) or to a 15-amino acid C-terminal deletion resulting from insertion of an early stop codon (PcdhgCTD). Both lines are viable and fertile, and the density and maturation of dendritic spines remains unchanged in both PcdhgS/A and PcdhgCTD cortex. Dendrite arborization of cortical pyramidal neurons, however, is significantly increased in both lines, as are levels of active MARCKS. Intriguingly, despite having significantly reduced levels of γ-Pcdh proteins, the PcdhgCTD mutation yields the strongest phenotype, with even heterozygous mutants exhibiting increased arborization. The present study confirms that phosphorylation of a shared C-terminal motif is a key γ-Pcdh negative regulation point, and contributes to a converging understanding of γ-Pcdh family function in which distinct roles are played by both individual isoforms and discrete protein domains.
Collapse
Affiliation(s)
- Camille M. Hanes
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| | - Kar Men Mah
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| | - David M. Steffen
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| | - Charles G. Marcucci
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| | - Leah C. Fuller
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| | | | - Andrew M. Garrett
- Department of Pharmacology and Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48202
| | - Joshua A. Weiner
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
14
|
Hamad MIK, Emerald BS, Kumar KK, Ibrahim MF, Ali BR, Bataineh MF. Extracellular molecular signals shaping dendrite architecture during brain development. Front Cell Dev Biol 2023; 11:1254589. [PMID: 38155836 PMCID: PMC10754048 DOI: 10.3389/fcell.2023.1254589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Proper growth and branching of dendrites are crucial for adequate central nervous system (CNS) functioning. The neuronal dendritic geometry determines the mode and quality of information processing. Any defects in dendrite development will disrupt neuronal circuit formation, affecting brain function. Besides cell-intrinsic programmes, extrinsic factors regulate various aspects of dendritic development. Among these extrinsic factors are extracellular molecular signals which can shape the dendrite architecture during early development. This review will focus on extrinsic factors regulating dendritic growth during early neuronal development, including neurotransmitters, neurotrophins, extracellular matrix proteins, contact-mediated ligands, and secreted and diffusible cues. How these extracellular molecular signals contribute to dendritic growth has been investigated in developing nervous systems using different species, different areas within the CNS, and different neuronal types. The response of the dendritic tree to these extracellular molecular signals can result in growth-promoting or growth-limiting effects, and it depends on the receptor subtype, receptor quantity, receptor efficiency, the animal model used, the developmental time windows, and finally, the targeted signal cascade. This article reviews our current understanding of the role of various extracellular signals in the establishment of the architecture of the dendrites.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kukkala K. Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marwa F. Ibrahim
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mo’ath F. Bataineh
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
15
|
Long RM, Ong H, Wang WX, Komirishetty P, Areti A, Chandrasekhar A, Larouche M, Lefebvre JL, Zochodne DW. The Role of Protocadherin γ in Adult Sensory Neurons and Skin Reinnervation. J Neurosci 2023; 43:8348-8366. [PMID: 37821230 PMCID: PMC10711737 DOI: 10.1523/jneurosci.1940-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
The clustered protocadherins (cPcdhs) play a critical role in the patterning of several CNS axon and dendritic arbors, through regulation of homophilic self and neighboring interactions. While not explored, primary peripheral sensory afferents that innervate the epidermis may require similar constraints to convey spatial signals with appropriate fidelity. Here, we show that members of the γ-Pcdh (Pcdhγ) family are expressed in both adult sensory neuron axons and in neighboring keratinocytes that have close interactions during skin reinnervation. Adult mice of both sexes were studied. Pcdhγ knock-down either through small interfering RNA (siRNA) transduction or AAV-Cre recombinase transfection of adult mouse primary sensory neurons from floxed Pcdhγ mice was associated with a remarkable rise in neurite outgrowth and branching. Rises in outgrowth were abrogated by Rac1 inhibition. Moreover, AAV-Cre knock-down in Pcdhγ floxed neurons generated a rise in neurite self-intersections, and a robust rise in neighbor intersections or tiling, suggesting a role in sensory axon repulsion. Interestingly, preconditioned (3-d axotomy) neurons with enhanced growth had temporary declines in Pcdhγ and lessened outgrowth from Pcdhγ siRNA. In vivo, mice with local hindpaw skin Pcdhγ knock-down by siRNA had accelerated reinnervation by new epidermal axons with greater terminal branching and reduced intra-axonal spacing. Pcdhγ knock-down also had reciprocal impacts on keratinocyte density and nuclear size. Taken together, this work provides evidence for a role of Pcdhγ in attenuating outgrowth of sensory axons and their interactions, with implications in how new reinnervating axons following injury fare amid skin keratinocytes that also express Pcdhγ.SIGNIFICANCE STATEMENT The molecular mechanisms and potential constraints that govern skin reinnervation and patterning by sensory axons are largely unexplored. Here, we show that γ-protocadherins (Pcdhγ) may help to dictate interaction not only among axons but also between axons and keratinocytes as the former re-enter the skin during reinnervation. Pcdhγ neuronal knock-down enhances outgrowth in peripheral sensory neurons, involving the growth cone protein Rac1 whereas skin Pcdhγ knock-down generates rises in terminal epidermal axon growth and branching during re-innervation. Manipulation of sensory axon regrowth within the epidermis offers an opportunity to influence regenerative outcomes following nerve injury.
Collapse
Affiliation(s)
- Rebecca M Long
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Honyi Ong
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Wendy Xueyi Wang
- Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5R 0A3, Canada
| | - Prashanth Komirishetty
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Aparna Areti
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Ambika Chandrasekhar
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Matt Larouche
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Julie L Lefebvre
- Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5R 0A3, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
16
|
Kawamura N, Osuka T, Kaneko R, Kishi E, Higuchi R, Yoshimura Y, Hirabayashi T, Yagi T, Tarusawa E. Reciprocal Connections between Parvalbumin-Expressing Cells and Adjacent Pyramidal Cells Are Regulated by Clustered Protocadherin γ. eNeuro 2023; 10:ENEURO.0250-23.2023. [PMID: 37890993 PMCID: PMC10614112 DOI: 10.1523/eneuro.0250-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Functional neural circuits in the cerebral cortex are established through specific neural connections between excitatory and various inhibitory cell types. However, the molecular mechanisms underlying synaptic partner recognition remain unclear. In this study, we examined the impact of clustered protocadherin-γ (cPcdhγ) gene deletion in parvalbumin-positive (PV+) cells on intralaminar and translaminar neural circuits formed between PV+ and pyramidal (Pyr) cells in the primary visual cortex (V1) of male and female mice. First, we used whole-cell recordings and laser-scan photostimulation with caged glutamate to map excitatory inputs from layer 2/3 to layer 6. We found that cPcdhγ-deficient PV+ cells in layer 2/3 received normal translaminar inputs from Pyr cells through layers 2/3-6. Second, to further elucidate the effect on PV+-Pyr microcircuits within intralaminar layer 2/3, we conducted multiple whole-cell recordings. While the overall connection probability of PV+-Pyr cells remained largely unchanged, the connectivity of PV+-Pyr was significantly different between control and PV+-specific cPcdhγ-conditional knock-out (PV-cKO) mice. In control mice, the number of reciprocally connected PV+ cells was significantly higher than PV+ cells connected one way to Pyr cells, a difference that was not significant in PV-cKO mice. Interestingly, the proportion of highly reciprocally connected PV+ cells to Pyr cells with large unitary IPSC (uIPSC) amplitudes was reduced in PV-cKO mice. Conversely, the proportion of middle reciprocally connected PV+ cells to Pyr cells with large uIPSC amplitudes increased compared with control mice. This study demonstrated that cPcdhγ in PV+ cells modulates their reciprocity with Pyr cells in the cortex.
Collapse
Affiliation(s)
- Nanami Kawamura
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoki Osuka
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryosuke Kaneko
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Eri Kishi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryuon Higuchi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yumiko Yoshimura
- Section of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| | - Takahiro Hirabayashi
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, Totsuka-ku, Yokohama 244-0806, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Etsuko Tarusawa
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Ptashnik A, LaMassa N, Mambetalieva A, Schnall E, Bucaro M, Phillips GR. Ubiquitination of the protocadherin-γA3 variable cytoplasmic domain modulates cell-cell interaction. Front Cell Dev Biol 2023; 11:1261048. [PMID: 37791076 PMCID: PMC10544333 DOI: 10.3389/fcell.2023.1261048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
The family of ∼60 clustered protocadherins (Pcdhs) are cell adhesion molecules encoded by a genomic locus that regulates expression of distinct combinations of isoforms in individual neurons resulting in what is thought to be a neural surface "barcode" which mediates same-cell interactions of dendrites, as well as interactions with other cells in the environment. Pcdh mediated same-cell dendrite interactions were shown to result in avoidance while interactions between different cells through Pcdhs, such as between neurons and astrocytes, appear to be stable. The cell biological mechanism of the consequences of Pcdh based adhesion is not well understood although various signaling pathways have been recently uncovered. A still unidentified cytoplasmic regulatory mechanism might contribute to a "switch" between avoidance and adhesion. We have proposed that endocytosis and intracellular trafficking could be part of such a switch. Here we use "stub" constructs consisting of the proximal cytoplasmic domain (lacking the constant carboxy-terminal domain spliced to all Pcdh-γs) of one Pcdh, Pcdh-γA3, to study trafficking. We found that the stub construct traffics primarily to Rab7 positive endosomes very similarly to the full length molecule and deletion of a substantial portion of the carboxy-terminus of the stub eliminates this trafficking. The intact stub was found to be ubiquitinated while the deletion was not and this ubiquitination was found to be at non-lysine sites. Further deletion mapping of the residues required for ubiquitination identified potential serine phosphorylation sites, conserved among Pcdh-γAs, that can reduce ubiquitination when pseudophosphorylated and increase surface expression. These results suggest Pcdh-γA ubiquitination can influence surface expression which may modulate adhesive activity during neural development.
Collapse
Affiliation(s)
- Albert Ptashnik
- Department of Biology, College of Staten Island, City University of New York, New York, NY, United States
- PhD Program in Biology, Subprogram in Neuroscience, CUNY Graduate Center, New York, NY, United States
| | - Nicole LaMassa
- Department of Biology, College of Staten Island, City University of New York, New York, NY, United States
- PhD Program in Biology, Subprogram in Neuroscience, CUNY Graduate Center, New York, NY, United States
| | - Aliya Mambetalieva
- Department of Biology, College of Staten Island, City University of New York, New York, NY, United States
| | - Emily Schnall
- Department of Biology, College of Staten Island, City University of New York, New York, NY, United States
| | - Mike Bucaro
- Department of Biology, College of Staten Island, City University of New York, New York, NY, United States
| | - Greg R. Phillips
- Department of Biology, College of Staten Island, City University of New York, New York, NY, United States
- PhD Program in Biology, Subprogram in Neuroscience, CUNY Graduate Center, New York, NY, United States
- Center for Developmental Neuroscience, College of Staten Island, City University of New York, New York, NY, United States
| |
Collapse
|
18
|
Kanadome T, Hoshino N, Nagai T, Yagi T, Matsuda T. Visualization of trans-interactions of a protocadherin-α between processes originating from single neurons. iScience 2023; 26:107238. [PMID: 37534169 PMCID: PMC10392085 DOI: 10.1016/j.isci.2023.107238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Clustered protocadherin (Pcdh), a cell adhesion protein, is involved in the self-recognition and non-self-discrimination of neurons by conferring diversity on the cell surface. Although the roles of Pcdh in neurons have been elucidated, it has been challenging to visualize its adhesion activity in neurons, which is a molecular function of Pcdh. Here, we present fluorescent indicators, named IPADs, which visualize the interaction of protocadherin-α4 isoform (α4). IPADs successfully visualize not only homophilic α4 trans-interactions, but also combinatorial homophilic interactions between cells. The reversible nature of IPADs overcomes a drawback of the split-GFP technique and allows for monitoring the dissociation of α4 trans-interactions. Specially designed IPADs for self-recognition are able to monitor the formation and disruption of α4 trans-interactions between processes originating from the same neurons. We expect that IPADs will be useful tools for obtaining spatiotemporal information on Pcdh interactions in neuronal self-recognition and non-self-discrimination processes.
Collapse
Affiliation(s)
- Takashi Kanadome
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Natsumi Hoshino
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Tomoki Matsuda
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| |
Collapse
|
19
|
Meltzer S, Boulanger KC, Chirila AM, Osei-Asante E, DeLisle M, Zhang Q, Kalish BT, Tasnim A, Huey EL, Fuller LC, Flaherty EK, Maniatis T, Garrett AM, Weiner JA, Ginty DD. γ-Protocadherins control synapse formation and peripheral branching of touch sensory neurons. Neuron 2023; 111:1776-1794.e10. [PMID: 37028432 PMCID: PMC10365546 DOI: 10.1016/j.neuron.2023.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/09/2023]
Abstract
Light touch sensation begins with activation of low-threshold mechanoreceptor (LTMR) endings in the skin and propagation of their signals to the spinal cord and brainstem. We found that the clustered protocadherin gamma (Pcdhg) gene locus, which encodes 22 cell-surface homophilic binding proteins, is required in somatosensory neurons for normal behavioral reactivity to a range of tactile stimuli. Developmentally, distinct Pcdhg isoforms mediate LTMR synapse formation through neuron-neuron interactions and peripheral axonal branching through neuron-glia interactions. The Pcdhgc3 isoform mediates homophilic interactions between sensory axons and spinal cord neurons to promote synapse formation in vivo and is sufficient to induce postsynaptic specializations in vitro. Moreover, loss of Pcdhgs and somatosensory synaptic inputs to the dorsal horn leads to fewer corticospinal synapses on dorsal horn neurons. These findings reveal essential roles for Pcdhg isoform diversity in somatosensory neuron synapse formation, peripheral axonal branching, and stepwise assembly of central mechanosensory circuitry.
Collapse
Affiliation(s)
- Shan Meltzer
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Katelyn C Boulanger
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Anda M Chirila
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Emmanuella Osei-Asante
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michelle DeLisle
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Qiyu Zhang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Brian T Kalish
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Aniqa Tasnim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Erica L Huey
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Leah C Fuller
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA 52242, USA
| | - Erin K Flaherty
- Department of Biochemistry and Molecular Biophysics, Zuckerman Institute of Mind Brain and Behavior, Columbia University, New York, NY 10032, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Zuckerman Institute of Mind Brain and Behavior, Columbia University, New York, NY 10032, USA
| | - Andrew M Garrett
- Department of Pharmacology and Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield St. 7322 Scott Hall, Detroit, MI 48201, USA
| | - Joshua A Weiner
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA 52242, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Jin J, Ralls S, Wu E, Wolf G, Sun MA, Springer DA, Cosby RL, Senft AD, Macfarlan TS. CTCF barrier breaking by ZFP661 promotes protocadherin diversity in mammalian brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539838. [PMID: 39185186 PMCID: PMC11343191 DOI: 10.1101/2023.05.08.539838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Mammalian brains are larger and more densely packed with neurons than reptiles, but the genetic mechanisms underlying the increased connection complexity amongst neurons are unclear. The expression diversity of clustered protocadherins (Pcdhs), which is controlled by CTCF and cohesin, is crucial for proper dendritic arborization and cortical connectivity in vertebrates. Here, we identify a highly-conserved and mammalian-restricted protein, ZFP661, that binds antagonistically at CTCF barriers at the Pcdh locus, preventing CTCF from trapping cohesin. ZFP661 balances the usage of Pcdh isoforms and increases Pcdh expression diversity. Loss of Zfp661 causes cortical dendritic arborization defects and autism-like social deficits in mice. Our study reveals both a novel mechanism that regulates the trapping of cohesin by CTCF and a mammalian adaptation that promoted Pcdh expression diversity to accompany the expanded mammalian brain.
Collapse
Affiliation(s)
- Jinpu Jin
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sherry Ralls
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elaine Wu
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gernot Wolf
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming-An Sun
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Danielle A. Springer
- The National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rachel L. Cosby
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna D. Senft
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Todd S. Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Wen J, Zellner A, Braun NC, Bajaj T, Gassen NC, Peitz M, Brüstle O. Loss of function of FIP200 in human pluripotent stem cell-derived neurons leads to axonal pathology and hyperactivity. Transl Psychiatry 2023; 13:143. [PMID: 37137886 PMCID: PMC10156752 DOI: 10.1038/s41398-023-02432-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
FIP200 plays important roles in homeostatic processes such as autophagy and signaling pathways such as focal adhesion kinase (FAK) signaling. Furthermore, genetic studies suggest an association of FIP200 mutations with psychiatric disorders. However, its potential connections to psychiatric disorders and specific roles in human neurons are not clear. We set out to establish a human-specific model to study the functional consequences of neuronal FIP200 deficiency. To this end, we generated two independent sets of isogenic human pluripotent stem cell lines with homozygous FIP200KO alleles, which were then used for the derivation of glutamatergic neurons via forced expression of NGN2. FIP200KO neurons exhibited pathological axonal swellings, showed autophagy deficiency, and subsequently elevated p62 protein levels. Moreover, monitoring the electrophysiological activity of neuronal cultures on multi-electrode arrays revealed that FIP200KO resulted in a hyperactive network. This hyperactivity could be abolished by glutamatergic receptor antagonist CNQX, suggesting a strengthened glutamatergic synaptic activation in FIP200KO neurons. Furthermore, cell surface proteomic analysis revealed metabolic dysregulation and abnormal cell adhesion-related processes in FIP200KO neurons. Interestingly, an ULK1/2-specific autophagy inhibitor could recapitulate axonal swellings and hyperactivity in wild-type neurons, whereas inhibition of FAK signaling was able to normalize the hyperactivity of FIP200KO neurons. These results suggest that impaired autophagy and presumably also disinhibition of FAK can contribute to the hyperactivity of FIP200KO neuronal networks, whereas pathological axonal swellings are primarily due to autophagy deficiency. Taken together, our study reveals the consequences of FIP200 deficiency in induced human glutamatergic neurons, which might, in the end, help to understand cellular pathomechanisms contributing to neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jianbin Wen
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andreas Zellner
- Research Group Neurohomeostasis, Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Nils Christian Braun
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Nils Christian Gassen
- Research Group Neurohomeostasis, Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany.
- Cell Programming Core Facility, University of Bonn Medical Faculty, Bonn, Germany.
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
22
|
Steffen DM, Hanes CM, Mah KM, Valiño Ramos P, Bosch PJ, Hinz DC, Radley JJ, Burgess RW, Garrett AM, Weiner JA. A Unique Role for Protocadherin γC3 in Promoting Dendrite Arborization through an Axin1-Dependent Mechanism. J Neurosci 2023; 43:918-935. [PMID: 36604170 PMCID: PMC9908324 DOI: 10.1523/jneurosci.0729-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/30/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
The establishment of a functional cerebral cortex depends on the proper execution of multiple developmental steps, culminating in dendritic and axonal outgrowth and the formation and maturation of synaptic connections. Dysregulation of these processes can result in improper neuronal connectivity, including that associated with various neurodevelopmental disorders. The γ-Protocadherins (γ-Pcdhs), a family of 22 distinct cell adhesion molecules that share a C-terminal cytoplasmic domain, are involved in multiple aspects of neurodevelopment including neuronal survival, dendrite arborization, and synapse development. The extent to which individual γ-Pcdh family members play unique versus common roles remains unclear. We demonstrated previously that the γ-Pcdh-C3 isoform (γC3), via its unique "variable" cytoplasmic domain (VCD), interacts in cultured cells with Axin1, a Wnt-pathway scaffold protein that regulates the differentiation and morphology of neurons. Here, we confirm that γC3 and Axin1 interact in the cortex in vivo and show that both male and female mice specifically lacking γC3 exhibit disrupted Axin1 localization to synaptic fractions, without obvious changes in dendritic spine density or morphology. However, both male and female γC3 knock-out mice exhibit severely decreased dendritic complexity of cortical pyramidal neurons that is not observed in mouse lines lacking several other γ-Pcdh isoforms. Combining knock-out with rescue constructs in cultured cortical neurons pooled from both male and female mice, we show that γC3 promotes dendritic arborization through an Axin1-dependent mechanism mediated through its VCD. Together, these data identify a novel mechanism through which γC3 uniquely regulates the formation of cortical circuitry.SIGNIFICANCE STATEMENT The complexity of a neuron's dendritic arbor is critical for its function. We showed previously that the γ-Protocadherin (γ-Pcdh) family of 22 cell adhesion molecules promotes arborization during development; it remained unclear whether individual family members played unique roles. Here, we show that one γ-Pcdh isoform, γC3, interacts in the brain with Axin1, a scaffolding protein known to influence dendrite development. A CRISPR/Cas9-generated mutant mouse line lacking γC3 (but not lines lacking other γ-Pcdhs) exhibits severely reduced dendritic complexity of cerebral cortex neurons. Using cultured γC3 knock-out neurons and a variety of rescue constructs, we confirm that the γC3 cytoplasmic domain promotes arborization through an Axin1-dependent mechanism. Thus, γ-Pcdh isoforms are not interchangeable, but rather can play unique neurodevelopmental roles.
Collapse
Affiliation(s)
- David M Steffen
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Camille M Hanes
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Paula Valiño Ramos
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Peter J Bosch
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Dalton C Hinz
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Jason J Radley
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | | | - Andrew M Garrett
- Department of Pharmacology and Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, Michigan 48202
| | - Joshua A Weiner
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
23
|
Leon WRM, Steffen DM, Dale-Huang F, Rakela B, Breevoort A, Romero-Rodriguez R, Hasenstaub AR, Stryker MP, Weiner JA, Alvarez-Buylla A. The Clustered Gamma Protocadherin Pcdhγc4 Isoform Regulates Cortical Interneuron Programmed Cell Death in the Mouse Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526887. [PMID: 36778455 PMCID: PMC9915683 DOI: 10.1101/2023.02.03.526887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cortical function critically depends on inhibitory/excitatory balance. Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into cortex, where their numbers are adjusted by programmed cell death. Previously, we showed that loss of clustered gamma protocadherins (Pcdhγ), but not of genes in the alpha or beta clusters, increased dramatically cIN BAX-dependent cell death in mice. Here we show that the sole deletion of the Pcdhγc4 isoform, but not of the other 21 isoforms in the Pcdhγ gene cluster, increased cIN cell death in mice during the normal period of programmed cell death. Viral expression of the Pcdhγc4 isoform rescued transplanted cINs lacking Pcdhγ from cell death. We conclude that Pcdhγ, specifically Pcdhγc4, plays a critical role in regulating the survival of cINs during their normal period of cell death. This demonstrates a novel specificity in the role of Pcdhγ isoforms in cortical development.
Collapse
Affiliation(s)
- Walter R Mancia Leon
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - David M Steffen
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
- Department of Biology, The University of Iowa, Iowa City IA 52242
| | - Fiona Dale-Huang
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Benjamin Rakela
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Arnar Breevoort
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Ricardo Romero-Rodriguez
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Andrea R Hasenstaub
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Michael P Stryker
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Joshua A Weiner
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
- Department of Biology, The University of Iowa, Iowa City IA 52242
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
24
|
Kobayashi H, Takemoto K, Sanbo M, Hirabayashi M, Hirabayashi T, Hirayama T, Kiyonari H, Abe T, Yagi T. Isoform requirement of clustered protocadherin for preventing neuronal apoptosis and neonatal lethality. iScience 2023; 26:105766. [PMID: 36582829 PMCID: PMC9793319 DOI: 10.1016/j.isci.2022.105766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/24/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Clustered protocadherin is a family of cell-surface recognition molecules implicated in neuronal connectivity that has a diverse isoform repertoire and homophilic binding specificity. Mice have 58 isoforms, encoded by Pcdhα, β, and γ gene clusters, and mutant mice lacking all isoforms died after birth, displaying massive neuronal apoptosis and synapse loss. The current hypothesis is that the three specific γC-type isoforms, especially γC4, are essential for the phenotype, raising the question about the necessity of isoform diversity. We generated TC mutant mice that expressed the three γC-type isoforms but lacked all the other 55 isoforms. The TC mutants died immediately after birth, showing massive neuronal death, and γC3 or γC4 expression did not prevent apoptosis. Restoring the α- and β-clusters with the three γC alleles rescued the phenotype, suggesting that along with the three γC-type isoforms, other isoforms are also required for the survival of neurons and individual mice.
Collapse
Affiliation(s)
- Hiroaki Kobayashi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Division of Biophysical Engineering, Department of Systems Science, School of Engineering Science, Osaka University, Toyonaka 565-8531, Japan
| | - Kenji Takemoto
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Takahiro Hirabayashi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Teruyoshi Hirayama
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Department of Anatomy and Developmental Neurobiology, Tokushima University, Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 6500047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 6500047, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Division of Biophysical Engineering, Department of Systems Science, School of Engineering Science, Osaka University, Toyonaka 565-8531, Japan
| |
Collapse
|
25
|
Burek M, Kaupp V, Blecharz-Lang K, Dilling C, Meybohm P. Protocadherin gamma C3: a new player in regulating vascular barrier function. Neural Regen Res 2023. [PMID: 35799511 PMCID: PMC9241426 DOI: 10.4103/1673-5374.343896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Defects in the endothelial cell barrier accompany diverse malfunctions of the central nervous system such as neurodegenerative diseases, stroke, traumatic brain injury, and systemic diseases such as sepsis, viral and bacterial infections, and cancer. Compromised endothelial sealing leads to leaking blood vessels, followed by vasogenic edema. Brain edema as the most common complication caused by stroke and traumatic brain injury is the leading cause of death. Brain microvascular endothelial cells, together with astrocytes, pericytes, microglia, and neurons form a selective barrier, the so-called blood-brain barrier, which regulates the movement of molecules inside and outside of the brain. Mechanisms that regulate blood-brain barrier permeability in health and disease are complex and not fully understood. Several newly discovered molecules that are involved in the regulation of cellular processes in brain microvascular endothelial cells have been described in the literature in recent years. One of these molecules that are highly expressed in brain microvascular endothelial cells is protocadherin gamma C3. In this review, we discuss recent evidence that protocadherin gamma C3 is a newly identified key player involved in the regulation of vascular barrier function.
Collapse
|
26
|
McFalls AJ, Imperio CG, Woodward E, Krikorian C, Stoltsfus B, Wronowski B, Grigson PS, Freeman WM, Vrana KE. An RNA-seq study of the mPFC of rats with different addiction phenotypes. Brain Res Bull 2022; 191:107-120. [DOI: 10.1016/j.brainresbull.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022]
|
27
|
Lv X, Li S, Li J, Yu XY, Ge X, Li B, Hu S, Lin Y, Zhang S, Yang J, Zhang X, Yan J, Joyner AL, Shi H, Wu Q, Shi SH. Patterned cPCDH expression regulates the fine organization of the neocortex. Nature 2022; 612:503-511. [PMID: 36477535 PMCID: PMC10249668 DOI: 10.1038/s41586-022-05495-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022]
Abstract
The neocortex consists of a vast number of diverse neurons that form distinct layers and intricate circuits at the single-cell resolution to support complex brain functions1. Diverse cell-surface molecules are thought to be key for defining neuronal identity, and they mediate interneuronal interactions for structural and functional organization2-6. However, the precise mechanisms that control the fine neuronal organization of the neocortex remain largely unclear. Here, by integrating in-depth single-cell RNA-sequencing analysis, progenitor lineage labelling and mosaic functional analysis, we report that the diverse yet patterned expression of clustered protocadherins (cPCDHs)-the largest subgroup of the cadherin superfamily of cell-adhesion molecules7-regulates the precise spatial arrangement and synaptic connectivity of excitatory neurons in the mouse neocortex. The expression of cPcdh genes in individual neocortical excitatory neurons is diverse yet exhibits distinct composition patterns linked to their developmental origin and spatial positioning. A reduction in functional cPCDH expression causes a lateral clustering of clonally related excitatory neurons originating from the same neural progenitor and a significant increase in synaptic connectivity. By contrast, overexpression of a single cPCDH isoform leads to a lateral dispersion of clonally related excitatory neurons and a considerable decrease in synaptic connectivity. These results suggest that patterned cPCDH expression biases fine spatial and functional organization of individual neocortical excitatory neurons in the mammalian brain.
Collapse
Affiliation(s)
- Xiaohui Lv
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Shuo Li
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Centre for Life Sciences, Tsinghua University, Beijing, China
| | - Jingwei Li
- Centre for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang-Yu Yu
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Centre for Life Sciences, Tsinghua University, Beijing, China
| | - Xiao Ge
- Centre for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Li
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuhan Hu
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yang Lin
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Centre for Life Sciences, Tsinghua University, Beijing, China
| | - Songbo Zhang
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Centre for Life Sciences, Tsinghua University, Beijing, China
| | - Jiajun Yang
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Centre for Life Sciences, Tsinghua University, Beijing, China
| | - Xiuli Zhang
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Yan
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Hang Shi
- School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Centre of Biological Structure, Beijing Advanced Innovation Centre for Structural Biology, Tsinghua University, Beijing, China
| | - Qiang Wu
- Centre for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Song-Hai Shi
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Joint Centre for Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Centre of Biological Structure, Beijing Advanced Innovation Centre for Structural Biology, Tsinghua University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
28
|
Liu D, Zinski A, Mishra A, Noh H, Park GH, Qin Y, Olorife O, Park JM, Abani CP, Park JS, Fung J, Sawaqed F, Coyle JT, Stahl E, Bendl J, Fullard JF, Roussos P, Zhang X, Stanton PK, Yin C, Huang W, Kim HY, Won H, Cho JH, Chung S. Impact of schizophrenia GWAS loci converge onto distinct pathways in cortical interneurons vs glutamatergic neurons during development. Mol Psychiatry 2022; 27:4218-4233. [PMID: 35701597 DOI: 10.1038/s41380-022-01654-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Remarkable advances have been made in schizophrenia (SCZ) GWAS, but gleaning biological insight from these loci is challenging. Genetic influences on gene expression (e.g., eQTLs) are cell type-specific, but most studies that attempt to clarify GWAS loci's influence on gene expression have employed tissues with mixed cell compositions that can obscure cell-specific effects. Furthermore, enriched SCZ heritability in the fetal brain underscores the need to study the impact of SCZ risk loci in specific developing neurons. MGE-derived cortical interneurons (cINs) are consistently affected in SCZ brains and show enriched SCZ heritability in human fetal brains. We identified SCZ GWAS risk genes that are dysregulated in iPSC-derived homogeneous populations of developing SCZ cINs. These SCZ GWAS loci differential expression (DE) genes converge on the PKC pathway. Their disruption results in PKC hyperactivity in developing cINs, leading to arborization deficits. We show that the fine-mapped GWAS locus in the ATP2A2 gene of the PKC pathway harbors enhancer marks by ATACseq and ChIPseq, and regulates ATP2A2 expression. We also generated developing glutamatergic neurons (GNs), another population with enriched SCZ heritability, and confirmed their functionality after transplantation into the mouse brain. Then, we identified SCZ GWAS risk genes that are dysregulated in developing SCZ GNs. GN-specific SCZ GWAS loci DE genes converge on the ion transporter pathway, distinct from those for cINs. Disruption of the pathway gene CACNA1D resulted in deficits of Ca2+ currents in developing GNs, suggesting compromised neuronal function by GWAS loci pathway deficits during development. This study allows us to identify cell type-specific and developmental stage-specific mechanisms of SCZ risk gene function, and may aid in identifying mechanism-based novel therapeutic targets.
Collapse
Affiliation(s)
- Dongxin Liu
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.
| | - Amy Zinski
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Akanksha Mishra
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Haneul Noh
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Gun-Hoo Park
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Yiren Qin
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Oshoname Olorife
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - James M Park
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Chiderah P Abani
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Joy S Park
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Janice Fung
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Farah Sawaqed
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Joseph T Coyle
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Eli Stahl
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Jaroslav Bendl
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - John F Fullard
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Xiaolei Zhang
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Patric K Stanton
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Changhong Yin
- Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | - Weihua Huang
- Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | - Hae-Young Kim
- Department of Public Health, New York Medical College, Valhalla, NY, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jun-Hyeong Cho
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Sangmi Chung
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
29
|
Hou S, Li G, Xu B, Dong H, Zhang S, Fu Y, Shi J, Li L, Fu J, Shi F, Meng Y, Jin Y. Trans-splicing facilitated by RNA pairing greatly expands sDscam isoform diversity but not homophilic binding specificity. SCIENCE ADVANCES 2022; 8:eabn9458. [PMID: 35857463 PMCID: PMC9258826 DOI: 10.1126/sciadv.abn9458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The Down syndrome cell adhesion molecule 1 (Dscam1) gene can generate tens of thousands of isoforms via alternative splicing, which is essential for nervous and immune functions. Chelicerates generate approximately 50 to 100 shortened Dscam (sDscam) isoforms by alternative promoters, similar to mammalian protocadherins. Here, we reveal that trans-splicing markedly increases the repository of sDscamβ isoforms in Tetranychus urticae. Unexpectedly, every variable exon cassette engages in trans-splicing with constant exons from another cluster. Moreover, we provide evidence that competing RNA pairing not only governs alternative cis-splicing but also facilitates trans-splicing. Trans-spliced sDscam isoforms mediate cell adhesion ability but exhibit the same homophilic binding specificity as their cis-spliced counterparts. Thus, we reveal a single sDscam locus that generates diverse adhesion molecules through cis- and trans-splicing coupled with alternative promoters. These findings expand understanding of the mechanism underlying molecular diversity and have implications for the molecular control of neuronal and/or immune specificity.
Collapse
Affiliation(s)
- Shouqing Hou
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Guo Li
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Haiyang Dong
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Shixin Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Ying Fu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Jilong Shi
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Lei Li
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Jiayan Fu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Feng Shi
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang ZJ310018, P. R. China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| |
Collapse
|
30
|
McLeod CM, Garrett AM. Mouse models for the study of clustered protocadherins. Curr Top Dev Biol 2022; 148:115-137. [PMID: 35461562 PMCID: PMC9152800 DOI: 10.1016/bs.ctdb.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Since their first description, the clustered protocadherins (cPcdhs) have sparked interest for their potential to generate diverse cell-surface recognition cues and their widespread expression in the nervous system. Through the use of mouse models, we have learned a great deal about the functions served by cPcdhs, and how their molecular diversity is regulated. cPcdhs are essential contributors to a host of processes during neural circuit formation, including neuronal survival, dendritic and axonal branching, self-avoidance and targeting, and synapse formation. Their expression is controlled by the interplay of epigenetic marks with proximal and distal elements involving high order DNA looping, regulating transcription factor binding. Here, we will review various mouse models targeting the cPcdh locus and how they have been instructive in uncovering the regulation and function of the cPcdhs.
Collapse
Affiliation(s)
- Cathy M. McLeod
- Department of Pharmacology, Wayne State University School of Medicine
| | - Andrew M. Garrett
- Department of Pharmacology, Wayne State University School of Medicine,Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine
| |
Collapse
|
31
|
Development of FRET-based indicators for visualizing homophilic trans interaction of a clustered protocadherin. Sci Rep 2021; 11:22237. [PMID: 34782670 PMCID: PMC8593154 DOI: 10.1038/s41598-021-01481-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022] Open
Abstract
Clustered protocadherins (Pcdhs), which are cell adhesion molecules, play a fundamental role in self-recognition and non-self-discrimination by conferring diversity on the cell surface. Although systematic cell-based aggregation assays provide information regarding the binding properties of Pcdhs, direct visualization of Pcdh trans interactions across cells remains challenging. Here, we present Förster resonance energy transfer (FRET)-based indicators for directly visualizing Pcdh trans interactions. We developed the indicators by individually inserting FRET donor and acceptor fluorescent proteins (FPs) into the ectodomain of Pcdh molecules. They enabled successful visualization of specific trans interactions of Pcdh and revealed that the Pcdh trans interaction is highly sensitive to changes in extracellular Ca2+ levels. We expect that FRET-based indicators for visualizing Pcdh trans interactions will provide a new approach for investigating the roles of Pcdh in self-recognition and non-self-discrimination processes.
Collapse
|
32
|
Iqbal M, Maroofian R, Çavdarlı B, Riccardi F, Field M, Banka S, Bubshait DK, Li Y, Hertecant J, Baig SM, Dyment D, Efthymiou S, Abdullah U, Makhdoom EUH, Ali Z, Scherf de Almeida T, Molinari F, Mignon-Ravix C, Chabrol B, Antony J, Ades L, Pagnamenta AT, Jackson A, Douzgou S, Beetz C, Karageorgou V, Vona B, Rad A, Baig JM, Sultan T, Alvi JR, Maqbool S, Rahman F, Toosi MB, Ashrafzadeh F, Imannezhad S, Karimiani EG, Sarwar Y, Khan S, Jameel M, Noegel AA, Budde B, Altmüller J, Motameny S, Höhne W, Houlden H, Nürnberg P, Wollnik B, Villard L, Alkuraya FS, Osmond M, Hussain MS, Yigit G. Biallelic variants in PCDHGC4 cause a novel neurodevelopmental syndrome with progressive microcephaly, seizures, and joint anomalies. Genet Med 2021; 23:2138-2149. [PMID: 34244665 PMCID: PMC8553613 DOI: 10.1038/s41436-021-01260-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE We aimed to define a novel autosomal recessive neurodevelopmental disorder, characterize its clinical features, and identify the underlying genetic cause for this condition. METHODS We performed a detailed clinical characterization of 19 individuals from nine unrelated, consanguineous families with a neurodevelopmental disorder. We used genome/exome sequencing approaches, linkage and cosegregation analyses to identify disease-causing variants, and we performed three-dimensional molecular in silico analysis to predict causality of variants where applicable. RESULTS In all affected individuals who presented with a neurodevelopmental syndrome with progressive microcephaly, seizures, and intellectual disability we identified biallelic disease-causing variants in Protocadherin-gamma-C4 (PCDHGC4). Five variants were predicted to induce premature protein truncation leading to a loss of PCDHGC4 function. The three detected missense variants were located in extracellular cadherin (EC) domains EC5 and EC6 of PCDHGC4, and in silico analysis of the affected residues showed that two of these substitutions were predicted to influence the Ca2+-binding affinity, which is essential for multimerization of the protein, whereas the third missense variant directly influenced the cis-dimerization interface of PCDHGC4. CONCLUSION We show that biallelic variants in PCDHGC4 are causing a novel autosomal recessive neurodevelopmental disorder and link PCDHGC4 as a member of the clustered PCDH family to a Mendelian disorder in humans.
Collapse
Affiliation(s)
- Maria Iqbal
- Cologne Center for Genomics (CCG), University of Cologne and University Hospital Cologne, Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, Faisalabad, Pakistan
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London, UK
| | - Büşranur Çavdarlı
- Department of Medical Genetics, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Florence Riccardi
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Hôpital La Timone Enfants, Département de Génétique Médicale, Marseille, France
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Dalal K Bubshait
- Department of Pediatrics, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Jozef Hertecant
- Paediatric Genetic and Metabolic Service, Tawam Hospital, Al Ain, United Arab Emirates
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, Faisalabad, Pakistan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
- Pakistan Science Foundation (PSF), Islamabad, Pakistan
| | - David Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London, UK
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Ehtisham Ul Haq Makhdoom
- Cologne Center for Genomics (CCG), University of Cologne and University Hospital Cologne, Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, Faisalabad, Pakistan
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Zafar Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | | | | | | | - Brigitte Chabrol
- Assistance Publique-Hôpitaux de Marseille, APHM, Hôpital Timone Enfants, Service de Neurologie Pédiatrique, Marseille, France
| | - Jayne Antony
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Sydney, Australia
| | - Lesley Ades
- Specialty of Child and Adolescent Health and Discipline of Genomic Medicine, The Children's Hospital at Westmead Clinical School, University of Sydney, Sydney, Australia
- Department of Clinical Genetics, The Children's Hospital at Westmead, Sydney, Australia
| | - Alistair T Pagnamenta
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Adam Jackson
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | | | - Barbara Vona
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Aboulfazl Rad
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jamshaid Mahmood Baig
- Department of Bioinformatics & Biotechnology, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Tipu Sultan
- Department of Pediatric Neurology, Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Javeria Raza Alvi
- Department of Pediatric Neurology, Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Shazia Maqbool
- Development and Behavioural Pediatrics Department, Institute of Child Health and The Children Hospital, Lahore, Pakistan
| | - Fatima Rahman
- Development and Behavioural Pediatrics Department, Institute of Child Health and The Children Hospital, Lahore, Pakistan
| | - Mehran Beiraghi Toosi
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farah Ashrafzadeh
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Imannezhad
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, UK
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Yasra Sarwar
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, Faisalabad, Pakistan
| | - Sheraz Khan
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, Faisalabad, Pakistan
| | - Muhammad Jameel
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, Faisalabad, Pakistan
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Birgit Budde
- Cologne Center for Genomics (CCG), University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Susanne Motameny
- Cologne Center for Genomics (CCG), University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Wolfgang Höhne
- Cologne Center for Genomics (CCG), University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London, UK
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Laurent Villard
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Hôpital La Timone Enfants, Département de Génétique Médicale, Marseille, France
| | - Fowzan Sami Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Muhammad Sajid Hussain
- Cologne Center for Genomics (CCG), University of Cologne and University Hospital Cologne, Cologne, Germany.
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
33
|
Zheng J, Suo L, Zhou Y, Jia L, Li J, Kuang Y, Cui D, Zhang X, Wu Q. Pyk2 suppresses contextual fear memory in an autophosphorylation-independent manner. J Mol Cell Biol 2021; 13:808-821. [PMID: 34529077 PMCID: PMC8782590 DOI: 10.1093/jmcb/mjab057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Clustered protocadherins (Pcdhs) are a large family of cadherin-like cell adhesion proteins that are central for neurite self-avoidance and neuronal connectivity in the brain. Their downstream non-receptor tyrosine kinase Pyk2 (proline-rich tyrosine kinase 2, also known as Ptk2b, Cakb, Raftk, Fak2, and Cadtk) is predominantly expressed in the hippocampus. We constructed Pyk2 null mouse lines and found that these mutant mice showed enhancement in contextual fear memory, without any change in auditory-cued and spatial-referenced learning and memory. In addition, by preparing Y402F mutant mice, we observed that Pyk2 suppressed contextual fear memory in an autophosphorylation-independent manner. Moreover, using high-throughput RNA sequencing, we found that immediate early genes, such as Npas4, cFos, Zif268/Egr1, Arc, and Nr4a1, were enhanced in Pyk2 null mice. We further showed that Pyk2 disruption affected pyramidal neuronal complexity and spine dynamics. Thus, we demonstrated that Pyk2 is a novel fear memory suppressor molecule and Pyk2 null mice provide a model for understanding fear-related disorders. These findings have interesting implications regarding dysregulation of the Pcdh‒Pyk2 axis in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jin Zheng
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| | - Lun Suo
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuxiao Zhou
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| | - Liling Jia
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| | - Jingwei Li
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xuehong Zhang
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Wu
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| |
Collapse
|
34
|
Zhang G, Lai Z, Gu L, Xu K, Wang Z, Duan Y, Chen H, Zhang M, Zhang J, Zhao Z, Wang S. Delta Opioid Receptor Activation with Delta Opioid Peptide [d-Ala2, d-Leu5] Enkephalin Contributes to Synaptic Improvement in Rat Hippocampus against Global Ischemia. Cell Transplant 2021; 30:9636897211041585. [PMID: 34470528 PMCID: PMC8419564 DOI: 10.1177/09636897211041585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Global cerebral ischemia induced by cardiac arrest usually leads to poor neurological outcomes. Numerous studies have focused on ways to prevent ischemic damage in the brain, however clinical therapies are still limited. Our previous studies revealed that delta opioid receptor (DOR) activation with [d-Ala2, d-Leu5] enkephalin (DADLE), a DOR agonist, not only significantly promotes neuronal survival on day 3, but also improves spatial memory deficits on days 5-9 after ischemia. However, the neurological mechanism underlying DADLE-induced cognitive recovery remains unclear. This study first examined the changes in neuronal survival in the CA1 region at the advanced time point (day 7) after ischemia/reperfusion (I/R) injury and found a significant amelioration of damaged CA1 neurons in the rats treated with DADLE (2.5 nmol) when administered at the onset of reperfusion. The structure and function of CA1 neurons on days 3 and 7 post-ischemia showed significant improvements in both the density of the injured dendritic spines and the basic transmission of the impaired CA3-CA1 synapses following DADLE treatment. The molecular changes involved in DADLE-mediated synaptic modulation on days 3 and 7 post-ischemia implied the time-related differential regulation of PKCα-MARCKS on the dendritic spine structure and of BDNF- ERK1/2-synapsin I on synaptic function, in response to ischemic/reperfusion injury as well as to DADLE treatment. Importantly, all the beneficial effects of DADLE on ischemia-induced cellular, synaptic, and molecular deficits were eliminated by the DOR inhibitor naltrindole (2.5 nmol). Taken together, this study suggested that DOR activation-induced protective signaling pathways of PKCα-MARCKS involved in the synaptic morphology and BDNF-ERK-synapsin I in synaptic transmission may be engaged in the cognitive recovery in rats suffering from advanced cerebral ischemia.
Collapse
Affiliation(s)
- Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Zelin Lai
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Lingling Gu
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Kejia Xu
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Zhenlu Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Yale Duan
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Huifen Chen
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital
| | - Min Zhang
- Tongji University School of Medicine, Shanghai 201204, China
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital.,Tongji University School of Medicine, Shanghai 201204, China
| | - Zheng Zhao
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Shuyan Wang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
35
|
Hoang TT, Qi C, Paul KC, Lee M, White JD, Richards M, Auerbach SS, Long S, Shrestha S, Wang T, Beane Freeman LE, Hofmann JN, Parks C, Xu CJ, Ritz B, Koppelman GH, London SJ. Epigenome-Wide DNA Methylation and Pesticide Use in the Agricultural Lung Health Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97008. [PMID: 34516295 PMCID: PMC8437246 DOI: 10.1289/ehp8928] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Pesticide exposure is associated with many long-term health outcomes; the potential underlying mechanisms are not well established for most associations. Epigenetic modifications, such as DNA methylation, may contribute. Individual pesticides may be associated with specific DNA methylation patterns but no epigenome-wide association study (EWAS) has evaluated methylation in relation to individual pesticides. OBJECTIVES We conducted an EWAS of DNA methylation in relation to several pesticide active ingredients. METHODS The Agricultural Lung Health Study is a case-control study of asthma, nested within the Agricultural Health Study. We analyzed blood DNA methylation measured using Illumina's EPIC array in 1,170 male farmers of European ancestry. For pesticides still on the market at blood collection (2009-2013), we evaluated nine active ingredients for which at least 30 participants reported past and current (within the last 12 months) use, as well as seven banned organochlorines with at least 30 participants reporting past use. We used robust linear regression to compare methylation at individual C-phosphate-G sites (CpGs) among users of a specific pesticide to never users. RESULTS Using family-wise error rate (p<9×10-8) or false-discovery rate (FDR<0.05), we identified 162 differentially methylated CpGs across 8 of 9 currently marketed active ingredients (acetochlor, atrazine, dicamba, glyphosate, malathion, metolachlor, mesotrione, and picloram) and one banned organochlorine (heptachlor). Differentially methylated CpGs were unique to each active ingredient, and a dose-response relationship with lifetime days of use was observed for most. Significant CpGs were enriched for transcription motifs and 28% of CpGs were associated with whole blood cis-gene expression, supporting functional effects of findings. We corroborated a previously reported association between dichlorodiphenyltrichloroethane (banned in the United States in 1972) and epigenetic age acceleration. DISCUSSION We identified differential methylation for several active ingredients in male farmers of European ancestry. These may serve as biomarkers of chronic exposure and could inform mechanisms of long-term health outcomes from pesticide exposure. https://doi.org/10.1289/EHP8928.
Collapse
Affiliation(s)
- Thanh T. Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children’s Hospital, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kimberly C. Paul
- Department of Epidemiology, University of California, Los Angeles Fielding School of Public Health, Los Angeles, California, USA
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Julie D. White
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Scott S. Auerbach
- Biomolecular Screening Branch, National Toxicology Program, NIEHS, NIH, DHHS, Morrisville, North Carolina, USA
| | | | - Srishti Shrestha
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Laura E. Beane Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Jonathan N. Hofmann
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Christine Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Cheng-Jian Xu
- Research Group of Bioinformatics and Computational Genomics, CiiM, Centre for individualized infection medicine, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Beate Ritz
- Department of Epidemiology, University of California, Los Angeles Fielding School of Public Health, Los Angeles, California, USA
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children’s Hospital, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
36
|
Shirvani-Farsani Z, Maloum Z, Bagheri-Hosseinabadi Z, Vilor-Tejedor N, Sadeghi I. DNA methylation signature as a biomarker of major neuropsychiatric disorders. J Psychiatr Res 2021; 141:34-49. [PMID: 34171761 DOI: 10.1016/j.jpsychires.2021.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation is a broadly-investigated epigenetic modification that has been considered as a heritable and reversible change. Previous findings have indicated that DNA methylation regulates gene expression in the central nervous system (CNS). Also, disturbance of DNA methylation patterns has been associated with destructive consequences that lead to human brain diseases such as neuropsychiatric disorders (NPDs). In this review, we comprehensively discuss the mechanism and function of DNA methylation and its most recent associations with the pathology of NPDs-including major depressive disorder (MDD), schizophrenia (SZ), autism spectrum disorder (ASD), bipolar disorder (BD), and attention/deficit hyperactivity disorder (ADHD). We also discuss how heterogeneous findings demand further investigations. Finally, based on the recent studies we conclude that DNA methylation status may have implications in clinical diagnostics and therapeutics as a potential epigenetic biomarker of NPDs.
Collapse
Affiliation(s)
- Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, IR, Iran.
| | - Zahra Maloum
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, IR, Iran.
| | - Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Natalia Vilor-Tejedor
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Carrer Wellington 30, 08005, Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain; Erasmus University Medical Center, Department of Clinical Genetics, Rotterdam, the Netherlands; Pompeu Fabra University, Barcelona, Spain.
| | - Iman Sadeghi
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Carrer Wellington 30, 08005, Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.
| |
Collapse
|
37
|
Connecting the Neurobiology of Developmental Brain Injury: Neuronal Arborisation as a Regulator of Dysfunction and Potential Therapeutic Target. Int J Mol Sci 2021; 22:ijms22158220. [PMID: 34360985 PMCID: PMC8348801 DOI: 10.3390/ijms22158220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodevelopmental disorders can derive from a complex combination of genetic variation and environmental pressures on key developmental processes. Despite this complex aetiology, and the equally complex array of syndromes and conditions diagnosed under the heading of neurodevelopmental disorder, there are parallels in the neuropathology of these conditions that suggest overlapping mechanisms of cellular injury and dysfunction. Neuronal arborisation is a process of dendrite and axon extension that is essential for the connectivity between neurons that underlies normal brain function. Disrupted arborisation and synapse formation are commonly reported in neurodevelopmental disorders. Here, we summarise the evidence for disrupted neuronal arborisation in these conditions, focusing primarily on the cortex and hippocampus. In addition, we explore the developmentally specific mechanisms by which neuronal arborisation is regulated. Finally, we discuss key regulators of neuronal arborisation that could link to neurodevelopmental disease and the potential for pharmacological modification of arborisation and the formation of synaptic connections that may provide therapeutic benefit in the future.
Collapse
|
38
|
LaMassa N, Sverdlov H, Mambetalieva A, Shapiro S, Bucaro M, Fernandez-Monreal M, Phillips GR. Gamma-protocadherin localization at the synapse is associated with parameters of synaptic maturation. J Comp Neurol 2021; 529:2407-2417. [PMID: 33381867 DOI: 10.1002/cne.25102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 11/07/2022]
Abstract
Clustered protocadherins (Pcdhs) are a family of ~60 cadherin-like proteins (divided into subclasses α, β, and γ) that regulate dendrite morphology and neural connectivity. Their expression is controlled through epigenetic regulation at a gene cluster encoding the molecules. During neural development, Pcdhs mediate dendrite self-avoidance in some neuronal types through an uncharacterized anti-adhesive mechanism. Pcdhs are also important for dendritic complexity in cortical neurons likely through a pro-adhesive mechanism. Pcdhs have also been postulated to participate in synaptogenesis and connectivity. Some synaptic defects were noted in knockout animals, including synaptic number and physiology, but the role of these molecules in synaptic development is not understood. The effect of Pcdh knockout on dendritic patterning may present a confound to studying synaptogenesis. We showed previously that Pcdh-γs are highly enriched in intracellular compartments in dendrites and spines with localization at only a few synaptic clefts. To gain insight into how Pcdh-γs might affect synapses, we compared synapses that harbored Pcdh-γs versus those that did not for parameters of synaptic maturation including pre- and postsynaptic size, postsynaptic perforations, and spine morphology by light microscopy in cultured hippocampal neurons and by serial section immuno-electron microscopy in hippocampal CA1. In mature neurons, synapses immunopositive for Pcdh-γs were larger in diameter with more frequent perforations. Analysis of spines in cultured neurons revealed that mushroom spines were more frequently immunopositive for Pcdh-γs at their tips than thin spines. These results suggest that Pcdh-γ function at the synapse may be related to promotion of synaptic maturation and stabilization.
Collapse
Affiliation(s)
- Nicole LaMassa
- Program in Biology, Neuroscience Subprogram, CUNY Graduate Center, New York, New York, USA.,Department of Biology, College of Staten Island, CUNY, New York, New York, USA
| | - Hanna Sverdlov
- Department of Biology, College of Staten Island, CUNY, New York, New York, USA
| | - Aliya Mambetalieva
- Department of Biology, College of Staten Island, CUNY, New York, New York, USA
| | - Stacy Shapiro
- Department of Biology, College of Staten Island, CUNY, New York, New York, USA
| | - Michael Bucaro
- Department of Biology, College of Staten Island, CUNY, New York, New York, USA
| | - Monica Fernandez-Monreal
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, F-33000 Bordeaux, France
| | - Greg R Phillips
- Program in Biology, Neuroscience Subprogram, CUNY Graduate Center, New York, New York, USA.,Department of Biology, College of Staten Island, CUNY, New York, New York, USA.,Center for Developmental Neuroscience, College of Staten Island, CUNY, New York, New York, USA
| |
Collapse
|
39
|
Molina-Holgado E, Paniagua-Torija B, Arevalo-Martin A, Moreno-Luna R, Esteban PF, Le MQU, Del Cerro MDM, Garcia-Ovejero D. Cannabinoid Receptor 1 associates to different molecular complexes during GABAergic neuron maturation. J Neurochem 2021; 158:640-656. [PMID: 33942314 DOI: 10.1111/jnc.15381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023]
Abstract
CB1 cannabinoid receptor is widely expressed in the central nervous system of animals from late prenatal development to adulthood. Appropriate activation and signaling of CB1 cannabinoid receptors in cortical interneurons are crucial during perinatal/postnatal ages and adolescence, when long-lasting changes in brain activity may elicit subsequent appearance of disorders in the adult brain. Here we used an optimized immunoprecipitation protocol based on specific antibodies followed by shot-gun proteomics to find CB1 interacting partners in postnatal rat GABAergic cortical neurons in vitro at two different stages of maturation. Besides describing new proteins associated with CB1 like dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex (DLAT), fatty acid synthase (FASN), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ), voltage-dependent anion channel 1 (VDAC1), myosin phosphatase Rho-interacting protein (MPRIP) or usher syndrome type-1C protein-binding protein 1 (USHBP1), we show that the signaling complex of CB1 is different between maturational stages. Interestingly, the CB1 signaling complex is enriched at the more immature stage in mitochondrial associated proteins and metabolic molecular functions, whereas at more mature stage, CB1 complex is increased in maturation and synaptic-associated proteins. We describe also interacting partners specifically immunoprecipitated with either N-terminal or C-terminal CB1 directed antibodies. Our results highlight new players that may be affected by altered cannabinoid signaling at this critical window of postnatal cortical development.
Collapse
Affiliation(s)
- Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | | | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Minh Quynh Uyen Le
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | | | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| |
Collapse
|
40
|
Steffen DM, Ferri SL, Marcucci CG, Blocklinger KL, Molumby MJ, Abel T, Weiner JA. The γ-Protocadherins Interact Physically and Functionally with Neuroligin-2 to Negatively Regulate Inhibitory Synapse Density and Are Required for Normal Social Interaction. Mol Neurobiol 2021; 58:2574-2589. [PMID: 33471287 PMCID: PMC8137559 DOI: 10.1007/s12035-020-02263-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022]
Abstract
Cell adhesion molecules (CAMs) are key players in the formation of neural circuits during development. The γ-protocadherins (γ-Pcdhs), a family of 22 CAMs encoded by the Pcdhg gene cluster, are known to play important roles in dendrite arborization, axon targeting, and synapse development. We showed previously that multiple γ-Pcdhs interact physically with the autism-associated CAM neuroligin-1, and inhibit the latter's ability to promote excitatory synapse maturation. Here, we show that γ-Pcdhs can also interact physically with the related neuroligin-2, and inhibit this CAM's ability to promote inhibitory synapse development. In an artificial synapse assay, γ-Pcdhs co-expressed with neuroligin-2 in non-neuronal cells reduce inhibitory presynaptic maturation in contacting hippocampal axons. Mice lacking the γ-Pcdhs from the forebrain (including the cortex, the hippocampus, and portions of the amygdala) exhibit increased inhibitory synapse density and increased co-localization of neuroligin-2 with inhibitory postsynaptic markers in vivo. These Pcdhg mutants also exhibit defective social affiliation and an anxiety-like phenotype in behavioral assays. Together, these results suggest that γ-Pcdhs negatively regulate neuroligins to limit synapse density in a manner that is important for normal behavior.
Collapse
Affiliation(s)
- David M Steffen
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
- Department of Biology, The University of Iowa, Iowa City, IA, 52242, USA
| | - Sarah L Ferri
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Charles G Marcucci
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
- Department of Biology, The University of Iowa, Iowa City, IA, 52242, USA
| | - Kelsey L Blocklinger
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Michael J Molumby
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
- Department of Biology, The University of Iowa, Iowa City, IA, 52242, USA
| | - Ted Abel
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Joshua A Weiner
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA.
- Department of Biology, The University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
41
|
Liu J, Chen SJ, Hsu SW, Zhang J, Li JM, Yang DC, Gu S, Pinkerton KE, Chen CH. MARCKS cooperates with NKAP to activate NF-kB signaling in smoke-related lung cancer. Am J Cancer Res 2021; 11:4122-4136. [PMID: 33754052 PMCID: PMC7977464 DOI: 10.7150/thno.53558] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Rationale: Cigarette smoking is a major risk factor for lung cancer development and progression; however, the mechanism of how cigarette smoke activates signaling pathways in promoting cancer malignancy remains to be established. Herein, we aimed to determine the contribution of a signaling protein, myristoylated alanine-rich C kinase substrate (MARCKS), in smoke-mediated lung cancer. Methods: We firstly examined the levels of phosphorylated MARCKS (phospho-MARCKS) in smoke-exposed human lung cancer cells and specimens as well as non-human primate airway epithelium. Next, the MARCKS-interactome and its gene networks were identified. We also used genetic and pharmacological approaches to verify the functionality and molecular mechanism of smoke-induced phospho-MARCKS. Results: We observed that MARCKS becomes activated in airway epithelium and lung cancer cells in response to cigarette smoke. Functional proteomics revealed MARCKS protein directly binds to NF-κB-activating protein (NKAP). Following MARCKS phosphorylation at ser159 and ser163, the MARCKS-NKAP interaction was inhibited, leading to the activation of NF-κB signaling. In a screen of two cohorts of lung cancer patients, we confirmed that phospho-MARCKS is positively correlated with phospho-NF-κB (phospho-p65), and poor survival. Surprisingly, smoke-induced phospho-MARCKS upregulated the expression of pro-inflammatory cytokines, epithelial-mesenchymal transition, and stem-like properties. Conversely, targeting of MARCKS phosphorylation with MPS peptide, a specific MARCKS phosphorylation inhibitor, suppressed smoke-mediated NF-κB signaling activity, pro-inflammatory cytokines expression, aggressiveness and stemness of lung cancer cells. Conclusion: Our results suggest that phospho-MARCKS is a novel NF-kB activator in smoke-mediated lung cancer progression and provide a promising molecular model for developing new anticancer strategies.
Collapse
|
42
|
Abstract
Neurons develop dendritic morphologies that bear cell type-specific features in dendritic field size and geometry, branch placement and density, and the types and distributions of synaptic contacts. Dendritic patterns influence the types and numbers of inputs a neuron receives, and the ways in which neural information is processed and transmitted in the circuitry. Even subtle alterations in dendritic structures can have profound consequences on neuronal function and are implicated in neurodevelopmental disorders. In this chapter, I review how growing dendrites acquire their exquisite patterns by drawing examples from diverse neuronal cell types in vertebrate and invertebrate model systems. Dendrite morphogenesis is shaped by intrinsic and extrinsic factors such as transcriptional regulators, guidance and adhesion molecules, neighboring cells and synaptic partners. I discuss molecular mechanisms that regulate dendrite morphogenesis with a focus on five aspects of dendrite patterning: (1) Dendritic cytoskeleton and cellular machineries that build the arbor; (2) Gene regulatory mechanisms; (3) Afferent cues that regulate dendritic arbor growth; (4) Space-filling strategies that optimize dendritic coverage; and (5) Molecular cues that specify dendrite wiring. Cell type-specific implementation of these patterning mechanisms produces the diversity of dendrite morphologies that wire the nervous system.
Collapse
|
43
|
De Novo Transcriptome Profiling of Brain Tissue from the Annual Killifish Nothobranchius guentheri. Life (Basel) 2021; 11:life11020137. [PMID: 33670176 PMCID: PMC7916979 DOI: 10.3390/life11020137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Nothobranchius is a genus of small annual killifish found in Africa. Due to the relatively short lifespan, as well as easy breeding and care, Nothobranchius fish are becoming widely used as a vertebrate model system. Studying the genome and transcriptome of these fish is essential for advancing the field. In this study, we performed de novo transcriptome assembly of brain tissues from Nothobranchius guentheri using Trinity. Annotation of 104,271 potential genes (with transcripts longer than 500 bp) was carried out; for 24,967 genes (53,654 transcripts), in which at least one GO annotation was derived. We also analyzed the effect of a long-term food supplement with Torin 2, second-generation ATP-competitive inhibitor of mTOR, on the gene expression changes in brain tissue of adult N. guentheri. Overall, 1491 genes in females and 249 genes in males were differently expressed under Torin 2-supplemented diet. According to the Gene Set Enrichment Analysis (GSEA), the majority of identified genes were predominantly involved in the regulation of metabolic process, dendritic spine maintenance, circadian rhythms, retrotransposition, and immune response. Thus, we have provided the first transcriptome assembly and assessed the differential gene expression in response to exposure to Torin 2, which allow a better understanding of molecular changes in the brain tissues of adult fish in the mTOR pathway inhibition.
Collapse
|
44
|
Right Place at the Right Time: How Changes in Protocadherins Affect Synaptic Connections Contributing to the Etiology of Neurodevelopmental Disorders. Cells 2020; 9:cells9122711. [PMID: 33352832 PMCID: PMC7766791 DOI: 10.3390/cells9122711] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
During brain development, neurons need to form the correct connections with one another in order to give rise to a functional neuronal circuitry. Mistakes during this process, leading to the formation of improper neuronal connectivity, can result in a number of brain abnormalities and impairments collectively referred to as neurodevelopmental disorders. Cell adhesion molecules (CAMs), present on the cell surface, take part in the neurodevelopmental process regulating migration and recognition of specific cells to form functional neuronal assemblies. Among CAMs, the members of the protocadherin (PCDH) group stand out because they are involved in cell adhesion, neurite initiation and outgrowth, axon pathfinding and fasciculation, and synapse formation and stabilization. Given the critical role of these macromolecules in the major neurodevelopmental processes, it is not surprising that clinical and basic research in the past two decades has identified several PCDH genes as responsible for a large fraction of neurodevelopmental disorders. In the present article, we review these findings with a focus on the non-clustered PCDH sub-group, discussing the proteins implicated in the main neurodevelopmental disorders.
Collapse
|
45
|
Gabbert L, Dilling C, Meybohm P, Burek M. Deletion of Protocadherin Gamma C3 Induces Phenotypic and Functional Changes in Brain Microvascular Endothelial Cells In Vitro. Front Pharmacol 2020; 11:590144. [PMID: 33390965 PMCID: PMC7774295 DOI: 10.3389/fphar.2020.590144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/09/2020] [Indexed: 01/25/2023] Open
Abstract
Inflammation of the central nervous system (CNS) is associated with diseases such as multiple sclerosis, stroke and neurodegenerative diseases. Compromised integrity of the blood-brain barrier (BBB) and increased migration of immune cells into the CNS are the main characteristics of brain inflammation. Clustered protocadherins (Pcdhs) belong to a large family of cadherin-related molecules. Pcdhs are highly expressed in the CNS in neurons, astrocytes, pericytes and epithelial cells of the choroid plexus and, as we have recently demonstrated, in brain microvascular endothelial cells (BMECs). Knockout of a member of the Pcdh subfamily, PcdhgC3, resulted in significant changes in the barrier integrity of BMECs. Here we characterized the endothelial PcdhgC3 knockout (KO) cells using paracellular permeability measurements, proliferation assay, wound healing assay, inhibition of signaling pathways, oxygen/glucose deprivation (OGD) and a pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) treatment. PcdhgC3 KO showed an increased paracellular permeability, a faster proliferation rate, an altered expression of efflux pumps, transporters, cellular receptors, signaling and inflammatory molecules. Serum starvation led to significantly higher phosphorylation of extracellular signal-regulated kinases (Erk) in KO cells, while no changes in phosphorylated Akt kinase levels were found. PcdhgC3 KO cells migrated faster in the wound healing assay and this migration was significantly inhibited by respective inhibitors of the MAPK-, β-catenin/Wnt-, mTOR- signaling pathways (SL327, XAV939, or Torin 2). PcdhgC3 KO cells responded stronger to OGD and TNFα by significantly higher induction of interleukin 6 mRNA than wild type cells. These results suggest that PcdhgC3 is involved in the regulation of major signaling pathways and the inflammatory response of BMECs.
Collapse
Affiliation(s)
- Lydia Gabbert
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Christina Dilling
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Patrick Meybohm
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| |
Collapse
|
46
|
Jia Z, Wu Q. Clustered Protocadherins Emerge as Novel Susceptibility Loci for Mental Disorders. Front Neurosci 2020; 14:587819. [PMID: 33262685 PMCID: PMC7688460 DOI: 10.3389/fnins.2020.587819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
The clustered protocadherins (cPcdhs) are a subfamily of type I single-pass transmembrane cell adhesion molecules predominantly expressed in the brain. Their stochastic and combinatorial expression patterns encode highly diverse neural identity codes which are central for neuronal self-avoidance and non-self discrimination in brain circuit formation. In this review, we first briefly outline mechanisms for generating a tremendous diversity of cPcdh cell-surface assemblies. We then summarize the biological functions of cPcdhs in a wide variety of neurodevelopmental processes, such as neuronal migration and survival, dendritic arborization and self-avoidance, axonal tiling and even spacing, and synaptogenesis. We focus on genetic, epigenetic, and 3D genomic dysregulations of cPcdhs that are associated with various neuropsychiatric and neurodevelopmental diseases. A deeper understanding of regulatory mechanisms and physiological functions of cPcdhs should provide significant insights into the pathogenesis of mental disorders and facilitate development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Qiang Wu
- Center for Comparative Biomedicine, MOE Key Laboratory of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, School of Life Sciences and Biotechnology, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
The γ-Protocadherins Regulate the Survival of GABAergic Interneurons during Developmental Cell Death. J Neurosci 2020; 40:8652-8668. [PMID: 33060174 DOI: 10.1523/jneurosci.1636-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the neocortex, inhibitory network formation occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The cell surface molecules that select interneurons to survive or die are unknown. Here, we report that members of the clustered Protocadherins (cPCDHs) control GABAergic interneuron survival during developmentally-regulated cell death. Conditional deletion of the gene cluster encoding the γ-Protocadherins (Pcdhgs) from developing GABAergic neurons in mice of either sex causes a severe loss of inhibitory populations in multiple brain regions and results in neurologic deficits such as seizures. By focusing on the neocortex and the cerebellar cortex, we demonstrate that reductions of inhibitory interneurons result from elevated apoptosis during the critical postnatal period of programmed cell death (PCD). By contrast, cortical interneuron (cIN) populations are not affected by removal of Pcdhgs from pyramidal neurons or glial cells. Interneuron loss correlates with reduced AKT signaling in Pcdhg mutant interneurons, and is rescued by genetic blockade of the pro-apoptotic factor BAX. Together, these findings identify the PCDHGs as pro-survival transmembrane proteins that select inhibitory interneurons for survival and modulate the extent of PCD. We propose that the PCDHGs contribute to the formation of balanced inhibitory networks by controlling the size of GABAergic interneuron populations in the developing brain.SIGNIFICANCE STATEMENT A pivotal step for establishing appropriate excitatory-inhibitory ratios is adjustment of neuronal populations by cell death. In the mouse neocortex, a third of GABAergic interneurons are eliminated by BAX-dependent apoptosis during the first postnatal week. Interneuron cell death is modulated by neural activity and pro-survival pathways but the cell-surface molecules that select interneurons for survival or death are unknown. We demonstrate that members of the cadherin superfamily, the clustered γ-Protocadherins (PCDHGs), regulate the survival of inhibitory interneurons and the balance of cell death. Deletion of the Pcdhgs in mice causes inhibitory interneuron loss in the cortex and cerebellum, and leads to motor deficits and seizures. Our findings provide a molecular basis for controlling inhibitory interneuron population size during circuit formation.
Collapse
|
48
|
Wu Q, Jia Z. Wiring the Brain by Clustered Protocadherin Neural Codes. Neurosci Bull 2020; 37:117-131. [PMID: 32939695 PMCID: PMC7811963 DOI: 10.1007/s12264-020-00578-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/02/2020] [Indexed: 12/18/2022] Open
Abstract
There are more than a thousand trillion specific synaptic connections in the human brain and over a million new specific connections are formed every second during the early years of life. The assembly of these staggeringly complex neuronal circuits requires specific cell-surface molecular tags to endow each neuron with a unique identity code to discriminate self from non-self. The clustered protocadherin (Pcdh) genes, which encode a tremendous diversity of cell-surface assemblies, are candidates for neuronal identity tags. We describe the adaptive evolution, genomic structure, and regulation of expression of the clustered Pcdhs. We specifically focus on the emerging 3-D architectural and biophysical mechanisms that generate an enormous number of diverse cell-surface Pcdhs as neural codes in the brain.
Collapse
Affiliation(s)
- Qiang Wu
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, Xinhua Hospital, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhilian Jia
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, Xinhua Hospital, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
49
|
Wu Q, Liu P, Wang L. Many facades of CTCF unified by its coding for three-dimensional genome architecture. J Genet Genomics 2020; 47:407-424. [PMID: 33187878 DOI: 10.1016/j.jgg.2020.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/15/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
CCCTC-binding factor (CTCF) is a multifunctional zinc finger protein that is conserved in metazoan species. CTCF is consistently found to play an important role in many diverse biological processes. CTCF/cohesin-mediated active chromatin 'loop extrusion' architects three-dimensional (3D) genome folding. The 3D architectural role of CTCF underlies its multifarious functions, including developmental regulation of gene expression, protocadherin (Pcdh) promoter choice in the nervous system, immunoglobulin (Ig) and T-cell receptor (Tcr) V(D)J recombination in the immune system, homeobox (Hox) gene control during limb development, as well as many other aspects of biology. Here, we review the pleiotropic functions of CTCF from the perspective of its essential role in 3D genome architecture and topological promoter/enhancer selection. We envision the 3D genome as an enormous complex architecture, with tens of thousands of CTCF sites as connecting nodes and CTCF proteins as mysterious bonds that glue together genomic building parts with distinct articulation joints. In particular, we focus on the internal mechanisms by which CTCF controls higher order chromatin structures that manifest its many façades of physiological and pathological functions. We also discuss the dichotomic role of CTCF sites as intriguing 3D genome nodes for seemingly contradictory 'looping bridges' and 'topological insulators' to frame a beautiful magnificent house for a cell's nuclear home.
Collapse
Affiliation(s)
- Qiang Wu
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China.
| | - Peifeng Liu
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Leyang Wang
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| |
Collapse
|
50
|
Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 2020; 13:117. [PMID: 32694982 PMCID: PMC7339444 DOI: 10.3389/fnmol.2020.00117] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Protocadherins (Pcdhs) are cell adhesion molecules that belong to the cadherin superfamily, and are subdivided into clustered (cPcdhs) and non-clustered Pcdhs (ncPcdhs) in vertebrates. In this review, we summarize their discovery, expression mechanisms, and roles in neuronal development and cancer, thereby highlighting the context-dependent nature of their actions. We furthermore provide an extensive overview of current structural knowledge, and its implications concerning extracellular interactions between cPcdhs, ncPcdhs, and classical cadherins. Next, we survey the known molecular action mechanisms of Pcdhs, emphasizing the regulatory functions of proteolytic processing and domain shedding. In addition, we outline the importance of Pcdh intracellular domains in the regulation of downstream signaling cascades, and we describe putative Pcdh interactions with intracellular molecules including components of the WAVE complex, the Wnt pathway, and apoptotic cascades. Our overview combines molecular interaction data from different contexts, such as neural development and cancer. This comprehensive approach reveals potential common Pcdh signaling hubs, and points out future directions for research. Functional studies of such key factors within the context of neural development might yield innovative insights into the molecular etiology of Pcdh-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anna Pancho
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D Mitsogiannis
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|