1
|
Barzegar Behrooz A, Aghanoori MR, Nazari M, Latifi-Navid H, Vosoughian F, Anjomani M, Lotfi J, Ahmadiani A, Eliassi A, Nabavizadeh F, Soleimani E, Ghavami S, Khodagholi F, Fahanik-Babaei J. 40 Hz light preserves synaptic plasticity and mitochondrial function in Alzheimer's disease model. Sci Rep 2024; 14:26949. [PMID: 39506052 PMCID: PMC11541745 DOI: 10.1038/s41598-024-78528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia. Its causes are not fully understood, but it is now known that factors like mitochondrial dysfunction, oxidative stress, and compromised ion channels contribute to its onset and progression. Flickering light therapy has shown promise in AD treatment, though its mechanisms remain unclear. In this study, we used a rat model of streptozotocin (STZ)-induced AD to evaluate the effects of 40 Hz flickering light therapy. Rats received intracerebroventricular (ICV) STZ injections, and 7 days after, they were exposed to 40 Hz flickering light for 15 min daily over seven days. Cognitive and memory functions were assessed using Morris water maze, novel object recognition, and passive avoidance tests. STZ-induced AD rats exhibited cognitive decline, elevated reactive oxygen species, amyloid beta accumulation, decreased serotonin and dopamine levels, and impaired mitochondrial function. However, light therapy prevented these effects, preserving cognitive function and synaptic plasticity. Additionally, flickering light restored mitochondrial metabolites and normalized ATP-insensitive mitochondrial calcium-sensitive potassium (mitoBKCa) channel activity, which was otherwise downregulated in AD rats. Our findings suggest that 40 Hz flickering light therapy could be a promising treatment for neurodegenerative disorders like AD by preserving synaptic and mitochondrial function.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Mohamad-Reza Aghanoori
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary & Alberta Children's Hospital Research Institute, Calgary, AB, T2N 4N1, Canada
| | - Maryam Nazari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Latifi-Navid
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Fatemeh Vosoughian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Anjomani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jabar Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Eliassi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Soleimani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, 41-800, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wolpert DH, Korbel J, Lynn CW, Tasnim F, Grochow JA, Kardeş G, Aimone JB, Balasubramanian V, De Giuli E, Doty D, Freitas N, Marsili M, Ouldridge TE, Richa AW, Riechers P, Roldán É, Rubenstein B, Toroczkai Z, Paradiso J. Is stochastic thermodynamics the key to understanding the energy costs of computation? Proc Natl Acad Sci U S A 2024; 121:e2321112121. [PMID: 39471216 DOI: 10.1073/pnas.2321112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024] Open
Abstract
The relationship between the thermodynamic and computational properties of physical systems has been a major theoretical interest since at least the 19th century. It has also become of increasing practical importance over the last half-century as the energetic cost of digital devices has exploded. Importantly, real-world computers obey multiple physical constraints on how they work, which affects their thermodynamic properties. Moreover, many of these constraints apply to both naturally occurring computers, like brains or Eukaryotic cells, and digital systems. Most obviously, all such systems must finish their computation quickly, using as few degrees of freedom as possible. This means that they operate far from thermal equilibrium. Furthermore, many computers, both digital and biological, are modular, hierarchical systems with strong constraints on the connectivity among their subsystems. Yet another example is that to simplify their design, digital computers are required to be periodic processes governed by a global clock. None of these constraints were considered in 20th-century analyses of the thermodynamics of computation. The new field of stochastic thermodynamics provides formal tools for analyzing systems subject to all of these constraints. We argue here that these tools may help us understand at a far deeper level just how the fundamental thermodynamic properties of physical systems are related to the computation they perform.
Collapse
Affiliation(s)
- David H Wolpert
- Santa Fe Institute, Santa Fe, NM 87501
- Complexity Science Hub Vienna, Vienna 1080, Austria
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85287
- The Abdus Salam International Centre for Theoretical Physics, Trieste 34151, Italy
- Albert Einstein Institute for Advanced Study in the Life Sciences, New York, NY 10467
| | - Jan Korbel
- Complexity Science Hub Vienna, Vienna 1080, Austria
- Institute for the Science of Complex Systems, Center for Medical Data Science (CeDAS), Medical University of Vienna, Vienna 1090, Austria
| | - Christopher W Lynn
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544
- Center for the Physics of Biological Function, City University of New York, New York, NY 10017
- Department of Physics, Yale University, New Haven, CT 06520
| | | | - Joshua A Grochow
- Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309
| | - Gülce Kardeş
- Santa Fe Institute, Santa Fe, NM 87501
- Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309
| | | | - Vijay Balasubramanian
- Santa Fe Institute, Santa Fe, NM 87501
- David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, PA 19104
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3PU, Oxford, United Kingdom
| | - Eric De Giuli
- Department of Physics, Toronto Metropolitan University, M5B 2K3, Toronto, ON, Canada
| | - David Doty
- Department of Computer Science, University of California, 95616, Davis, CA
| | - Nahuel Freitas
- Department of Physics, University of Buenos Aires, C1053, Buenos Aires, Argentina
| | - Matteo Marsili
- The Abdus Salam International Centre for Theoretical Physics, Trieste 34151, Italy
| | - Thomas E Ouldridge
- Department of Bioengineering, Imperial College London, SW7 2AZ, London, United Kingdom
- Centre for Synthetic Biology, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Andréa W Richa
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85287
| | - Paul Riechers
- School of Physical and Mathematical Sciences, Nanyang Quantum Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Édgar Roldán
- The Abdus Salam International Centre for Theoretical Physics, Trieste 34151, Italy
| | | | - Zoltan Toroczkai
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556
| | - Joseph Paradiso
- Massachusetts Institute of Technology Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
3
|
Amaral-Silva L, Santin J. Neural Processing without O 2 and Glucose Delivery: Lessons from the Pond to the Clinic. Physiology (Bethesda) 2024; 39:0. [PMID: 38624246 DOI: 10.1152/physiol.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
Neuronal activity requires a large amount of ATP, leading to a rapid collapse of brain function when aerobic respiration fails. Here, we summarize how rhythmic motor circuits in the brain stem of adult frogs, which normally have high metabolic demands, transform to produce proper output during severe hypoxia associated with emergence from hibernation. We suggest that general principles underlying plasticity in brain bioenergetics may be uncovered by studying nonmammalian models that face extreme environments, yielding new insights to combat neurological disorders involving dysfunctional energy metabolism.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States
- Division of Biology, University of Missouri, Columbia, Missouri, United States
| | - Joseph Santin
- Division of Biology, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
4
|
Kappel D, Tetzlaff C. Synapses learn to utilize stochastic pre-synaptic release for the prediction of postsynaptic dynamics. PLoS Comput Biol 2024; 20:e1012531. [PMID: 39495714 PMCID: PMC11534197 DOI: 10.1371/journal.pcbi.1012531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/01/2024] [Indexed: 11/06/2024] Open
Abstract
Synapses in the brain are highly noisy, which leads to a large trial-by-trial variability. Given how costly synapses are in terms of energy consumption these high levels of noise are surprising. Here we propose that synapses use noise to represent uncertainties about the somatic activity of the postsynaptic neuron. To show this, we developed a mathematical framework, in which the synapse as a whole interacts with the soma of the postsynaptic neuron in a similar way to an agent that is situated and behaves in an uncertain, dynamic environment. This framework suggests that synapses use an implicit internal model of the somatic membrane dynamics that is being updated by a synaptic learning rule, which resembles experimentally well-established LTP/LTD mechanisms. In addition, this approach entails that a synapse utilizes its inherently noisy synaptic release to also encode its uncertainty about the state of the somatic potential. Although each synapse strives for predicting the somatic dynamics of its postsynaptic neuron, we show that the emergent dynamics of many synapses in a neuronal network resolve different learning problems such as pattern classification or closed-loop control in a dynamic environment. Hereby, synapses coordinate themselves to represent and utilize uncertainties on the network level in behaviorally ambiguous situations.
Collapse
Affiliation(s)
- David Kappel
- III. Physikalisches Institut – Biophysik, Georg-August Universität, Göttingen, Germany
- Institut für Neuroinformatik, Ruhr-Universität Bochum, Bochum, Germany
| | - Christian Tetzlaff
- III. Physikalisches Institut – Biophysik, Georg-August Universität, Göttingen, Germany
- Group of Computational Synaptic Physiology, Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Dhar KS, Townsend B, Montgomery AP, Danon JJ, Pagan JK, Kassiou M. Enhancing CNS mitophagy: drug development and disease-relevant models. Trends Pharmacol Sci 2024; 45:982-996. [PMID: 39419743 DOI: 10.1016/j.tips.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Mitophagy, the selective degradation of mitochondria, is impaired in many neurodegenerative diseases (NDs), resulting in an accumulation of dysfunctional mitochondria and neuronal damage. Although enhancing mitophagy shows promise as a therapeutic strategy, the clinical significance of mitophagy activators remains uncertain due to limited understanding and poor representation of mitophagy in the central nervous system (CNS). This review explores recent insights into which mitophagy pathways to target and the extent of modulation necessary to be therapeutic towards NDs. We also highlight the complexities of mitophagy in the CNS, highlighting the need for disease-relevant models. Last, we outline crucial aspects of in vitro models to consider during drug discovery, aiming to bridge the gap between preclinical research and clinical applications in treating NDs through mitophagy modulation.
Collapse
Affiliation(s)
- Krishayant S Dhar
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Brendan Townsend
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Andrew P Montgomery
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan J Danon
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Julia K Pagan
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
Howes O, Marcinkowska J, Turkheimer FE, Carr R. Synaptic changes in psychiatric and neurological disorders: state-of-the art of in vivo imaging. Neuropsychopharmacology 2024; 50:164-183. [PMID: 39134769 PMCID: PMC11525650 DOI: 10.1038/s41386-024-01943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 11/01/2024]
Abstract
Synapses are implicated in many neuropsychiatric illnesses. Here, we provide an overview of in vivo techniques to index synaptic markers in patients. Several positron emission tomography (PET) tracers for synaptic vesicle glycoprotein 2 A (SV2A) show good reliability and selectivity. We review over 50 clinical studies including over 1700 participants, and compare findings in healthy ageing and across disorders, including addiction, schizophrenia, depression, posttraumatic stress disorder, and neurodegenerative disorders, including tauopathies, Huntington's disease and α-synucleinopathies. These show lower SV2A measures in cortical brain regions across most of these disorders relative to healthy volunteers, with the most well-replicated findings in tauopathies, whilst changes in Huntington's chorea, Parkinson's disease, corticobasal degeneration and progressive supranuclear palsy are predominantly subcortical. SV2A PET measures are correlated with functional connectivity across brain networks, and a number of other measures of brain function, including glucose metabolism. However, the majority of studies found no relationship between grey matter volume measured with magnetic resonance imaging and SV2A PET measures. Cognitive dysfunction, in domains including working memory and executive function, show replicated inverse relationships with SV2A measures across diagnoses, and initial findings also suggest transdiagnostic relationships with mood and anxiety symptoms. This suggests that synaptic abnormalities could be a common pathophysiological substrate underlying cognitive and, potentially, affective symptoms. We consider limitations of evidence and future directions; highlighting the need to develop postsynaptic imaging markers and for longitudinal studies to test causal mechanisms.
Collapse
Affiliation(s)
- Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England.
- South London & the Maudsley NHS Trust, London, England.
- London Institute of Medical Sciences, London, England.
| | - Julia Marcinkowska
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Richard Carr
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- South London & the Maudsley NHS Trust, London, England
- London Institute of Medical Sciences, London, England
| |
Collapse
|
7
|
Hazan Ben-Menachem R, Pines O, Saada A. Mitochondrial derived vesicles- Quo Vadis? FEBS J 2024; 291:4660-4669. [PMID: 38414203 DOI: 10.1111/febs.17103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Mitochondria are dynamic, intracellular organelles with a separate genome originating from prokaryotes. They perform numerous functions essential for cellular metabolism and energy production. Mitochondrial-derived vesicles (MDVs) are single or double membrane-enclosed vesicles, formed and released from the mitochondrial sub-compartments into the cytosol, in response to various triggers. MDVs interact with other organelles such as lysosomes and peroxisomes or may be incorporated and excreted via extracellular vesicles (EVs). MDVs selectively incorporate diverse protein and lipid cargoes and are involved in various functions such as mitochondrial quality control, immunomodulation, energy complementation, and compartmentalization and transport. This review aims to provide a summary of the current knowledge of MDVs biogenesis, release, cargoes, and roles.
Collapse
Affiliation(s)
- Reut Hazan Ben-Menachem
- Department of Molecular Genetics and Microbiology, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Ophry Pines
- Department of Molecular Genetics and Microbiology, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Israel
- Department of Medical Laboratory Sciences Hadassah Academic College, Jerusalem, Israel
| |
Collapse
|
8
|
Cicali KA, Tapia-Rojas C. Synaptic mitochondria: A crucial factor in the aged hippocampus. Ageing Res Rev 2024; 101:102524. [PMID: 39369797 DOI: 10.1016/j.arr.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Aging is a multifaceted biological process characterized by progressive molecular and cellular damage accumulation. The brain hippocampus undergoes functional deterioration with age, caused by cellular deficits, decreased synaptic communication, and neuronal death, ultimately leading to memory impairment. One of the factors contributing to this dysfunction is the loss of mitochondrial function. In neurons, mitochondria are categorized into synaptic and non-synaptic pools based on their location. Synaptic mitochondria, situated at the synapses, play a crucial role in maintaining neuronal function and synaptic plasticity, whereas non-synaptic mitochondria are distributed throughout other neuronal compartments, supporting overall cellular metabolism and energy supply. The proper function of synaptic mitochondria is essential for synaptic transmission as they provide the energy required and regulate calcium homeostasis at the communication sites between neurons. Maintaining the structure and functionality of synaptic mitochondria involves intricate processes, including mitochondrial dynamics such as fission, fusion, transport, and quality control mechanisms. These processes ensure that mitochondria remain functional, replace damaged organelles, and sustain cellular homeostasis at synapses. Notably, deficiencies in these mechanisms have been increasingly associated with aging and the onset of age-related neurodegenerative diseases. Synaptic mitochondria from the hippocampus are particularly vulnerable to age-related changes, including alterations in morphology and a decline in functionality, which significantly contribute to decreased synaptic activity during aging. This review comprehensively explores the critical roles that mitochondrial dynamics and quality control mechanisms play in preserving synaptic activity and neuronal function. It emphasizes the emerging evidence linking the deterioration of synaptic mitochondria to the aging process and the development of neurodegenerative diseases, highlighting the importance of these organelles from hippocampal neurons as potential therapeutic targets for mitigating cognitive decline and synaptic degeneration associated with aging. The novelty of this review lies in its focus on the unique vulnerability of hippocampal synaptic mitochondria to aging, underscoring their importance in maintaining brain function across the lifespan.
Collapse
Affiliation(s)
- Karina A Cicali
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile.
| |
Collapse
|
9
|
Kuznetsov AV. Effects of Time-Dependent Adenosine Triphosphate Consumption Caused by Neuron Firing on Adenosine Triphosphate Concentrations in Synaptic Boutons Containing and Lacking a Stationary Mitochondrion. J Biomech Eng 2024; 146:111002. [PMID: 38888293 DOI: 10.1115/1.4065743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The precise mechanism behind the supply of adenosine triphosphate (ATP) to approximately half of the presynaptic release sites in axons that lack a stationary mitochondrion is not fully understood. This paper presents a mathematical model designed to simulate the transient ATP concentration in presynaptic en passant boutons. The model is utilized to investigate how the ATP concentration responds to increased ATP demand during neuronal firing in boutons with a stationary mitochondrion and those without one. The analysis suggests that neuron firing may cause oscillations in the ATP concentrations, with peak-to-peak amplitudes ranging from 0.06% to 5% of their average values. However, this does not deplete boutons lacking a mitochondrion of ATP; for physiologically relevant values of model parameters, their concentration remains approximately 3.75 times higher than the minimum concentration required for synaptic activity. The variance in average ATP concentrations between boutons containing a stationary mitochondrion and those lacking one ranges from 0.3% to 0.8%, contingent on the distance between the boutons. The model indicates that diffusion-driven ATP transport is rapid enough to adequately supply ATP molecules to boutons lacking a stationary mitochondrion.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910
| |
Collapse
|
10
|
Guo B, Chen Y, Lin J, Huang B, Bai X, Guo C, Gao B, Gong Q, Bai X. Self-supervised learning for accurately modelling hierarchical evolutionary patterns of cerebrovasculature. Nat Commun 2024; 15:9235. [PMID: 39455566 PMCID: PMC11511858 DOI: 10.1038/s41467-024-53550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cerebrovascular abnormalities are critical indicators of stroke and neurodegenerative diseases like Alzheimer's disease (AD). Understanding the normal evolution of brain vessels is essential for detecting early deviations and enabling timely interventions. Here, for the first time, we proposed a pipeline exploring the joint evolution of cortical volumes (CVs) and arterial volumes (AVs) in a large cohort of 2841 individuals. Using advanced deep learning for vessel segmentation, we built normative models of CVs and AVs across spatially hierarchical brain regions. We found that while AVs generally decline with age, distinct trends appear in regions like the circle of Willis. Comparing healthy individuals with those affected by AD or stroke, we identified significant reductions in both CVs and AVs, wherein patients with AD showing the most severe impact. Our findings reveal gender-specific effects and provide critical insights into how these conditions alter brain structure, potentially guiding future clinical assessments and interventions.
Collapse
Affiliation(s)
- Bin Guo
- Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
- Image Processing Center, Beihang University, Beijing, China
| | - Ying Chen
- Image Processing Center, Beihang University, Beijing, China
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Jinping Lin
- Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Bin Huang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Xiangzhuo Bai
- Zhongxiang Hospital of Traditional Chinese Medicine, Hubei, China
| | | | - Bo Gao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Qiyong Gong
- Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| | - Xiangzhi Bai
- Image Processing Center, Beihang University, Beijing, China.
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China.
- Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.
| |
Collapse
|
11
|
Shichkova P, Coggan JS, Markram H, Keller D. Brain Metabolism in Health and Neurodegeneration: The Interplay Among Neurons and Astrocytes. Cells 2024; 13:1714. [PMID: 39451233 PMCID: PMC11506225 DOI: 10.3390/cells13201714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
The regulation of energy in the brain has garnered substantial attention in recent years due to its significant implications in various disorders and aging. The brain's energy metabolism is a dynamic and tightly regulated network that balances energy demand and supply by engaging complementary molecular pathways. The crosstalk among these pathways enables the system to switch its preferred fuel source based on substrate availability, activity levels, and cell state-related factors such as redox balance. Brain energy production relies on multi-cellular cooperation and is continuously supplied by fuel from the blood due to limited internal energy stores. Astrocytes, which interface with neurons and blood vessels, play a crucial role in coordinating the brain's metabolic activity, and their dysfunction can have detrimental effects on brain health. This review characterizes the major energy substrates (glucose, lactate, glycogen, ketones and lipids) in astrocyte metabolism and their role in brain health, focusing on recent developments in the field.
Collapse
Affiliation(s)
- Polina Shichkova
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| |
Collapse
|
12
|
Sarkar S, Sadhukhan R, Mohandas N, Ravi AK, Narayanan TN, Mondal J. Adenosine Triphosphate Inhibits Cold-Responsive Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21587-21599. [PMID: 39361827 DOI: 10.1021/acs.langmuir.4c02534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Adenosine triphosphate (ATP), ubiquitous in all living organisms, is conventionally recognized as a fundamental energy currency essential for a myriad of cellular processes. While its traditional role in energy metabolism requires only micromolar concentrations, the cellular content of ATP has been found to be significantly higher at the millimolar level. Recent studies have attempted to correlate this higher concentration of ATP with its nonenergetic role in maintaining protein homeostasis, leaving the investigation of ATP's nontrivial activities in biology an open question. Here, by coupling computer simulations and experiments, we uncover new insights into ATP's role as a cryoprotectant against cold-salt stress, highlighting the necessity for higher cellular ATP concentrations. We present direct evidence at charged silica interfaces, demonstrating ATP's ability to restore native intersurface interactions disrupted by combined cold-salt stress, thereby inhibiting cold-responsive aggregation in high-salt conditions. ATP desorbs salt cations from negatively charged surfaces through predominant interactions between ATP and the salt cations. Although the mode of ATP's action remains unchanged with temperature, the extent of interaction scales with temperature, requiring less ATP activity at lower temperatures, justifying the reason for reduction in cellular ATP content due to the cold effect, reported in previous experimental studies. The trend observed in inorganic nanostructures is recurrent and robustly transferable to charged protein interfaces. A thorough comparison of ATP's cryoprotective activity with traditionally known biological cryoprotectants (glycine and betaine) reveals ATP's greater efficiency. In retrospect, our findings highlight ATP's additional biological role in cryopreservation, expanding its potential biomedical applications by offering effective protection of cells from cryoinjuries and avoiding the significant challenges associated with the toxicity of organic cryoprotectants.
Collapse
Affiliation(s)
- Susmita Sarkar
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Rayantan Sadhukhan
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Nandita Mohandas
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Amogh K Ravi
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Tharangattu N Narayanan
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Jagannath Mondal
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| |
Collapse
|
13
|
Flores-Ponce X, Velasco I. Dopaminergic neuron metabolism: relevance for understanding Parkinson's disease. Metabolomics 2024; 20:116. [PMID: 39397188 PMCID: PMC11471710 DOI: 10.1007/s11306-024-02181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Dopaminergic neurons from the substantia nigra pars compacta (SNc) have a higher susceptibility to aging-related degeneration, compared to midbrain dopaminergic cells present in the ventral tegmental area (VTA); the death of dopamine neurons in the SNc results in Parkinson´s disease (PD). In addition to increased loss by aging, dopaminergic neurons from the SNc are more prone to cell death when exposed to genetic or environmental factors, that either interfere with mitochondrial function, or cause an increase of oxidative stress. The oxidation of dopamine is a contributing source of reactive oxygen species (ROS), but this production is not enough to explain the differences in susceptibility to degeneration between SNc and VTA neurons. AIM OF REVIEW In this review we aim to highlight the intrinsic differences between SNc and VTA dopamine neurons, in terms of gene expression, calcium oscillations, bioenergetics, and ROS responses. Also, to describe the changes in the pentose phosphate pathway and the induction of apoptosis in SNc neurons during aging, as related to the development of PD. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent work showed that neurons from the SNc possess intrinsic characteristics that result in metabolic differences, related to their intricate morphology, that render them more susceptible to degeneration. In particular, these neurons have an elevated basal energy metabolism, that is required to fulfill the demands of the constant firing of action potentials, but at the same time, is associated to higher ROS production, compared to VTA cells. Finally, we discuss how mutations related to PD affect metabolic pathways, and the related mechanisms, as revealed by metabolomics.
Collapse
Affiliation(s)
- Xóchitl Flores-Ponce
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.
| |
Collapse
|
14
|
Salis Torres A, Lee JE, Caporali A, Semple RK, Horrocks MH, MacRae VE. Mitochondrial Dysfunction as a Potential Mechanism Mediating Cardiac Comorbidities in Parkinson's Disease. Int J Mol Sci 2024; 25:10973. [PMID: 39456761 PMCID: PMC11507255 DOI: 10.3390/ijms252010973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Individuals diagnosed with Parkinson's disease (PD) often exhibit heightened susceptibility to cardiac dysfunction, reflecting a complex interaction between these conditions. The involvement of mitochondrial dysfunction in the development and progression of cardiac dysfunction and PD suggests a plausible commonality in some aspects of their molecular pathogenesis, potentially contributing to the prevalence of cardiac issues in PD. Mitochondria, crucial organelles responsible for energy production and cellular regulation, play important roles in tissues with high energetic demands, such as neurons and cardiac cells. Mitochondrial dysfunction can occur in different and non-mutually exclusive ways; however, some mechanisms include alterations in mitochondrial dynamics, compromised bioenergetics, biogenesis deficits, oxidative stress, impaired mitophagy, and disrupted calcium balance. It is plausible that these factors contribute to the increased prevalence of cardiac dysfunction in PD, suggesting mitochondrial health as a potential target for therapeutic intervention. This review provides an overview of the physiological mechanisms underlying mitochondrial quality control systems. It summarises the diverse roles of mitochondria in brain and heart function, highlighting shared pathways potentially exhibiting dysfunction and driving cardiac comorbidities in PD. By highlighting strategies to mitigate dysfunction associated with mitochondrial impairment in cardiac and neural tissues, our review aims to provide new perspectives on therapeutic approaches.
Collapse
Affiliation(s)
- Agustina Salis Torres
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
| | - Ji-Eun Lee
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrea Caporali
- Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (A.C.); (R.K.S.)
| | - Robert K. Semple
- Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (A.C.); (R.K.S.)
| | - Mathew H. Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Vicky E. MacRae
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
| |
Collapse
|
15
|
Parisi B, Esposito A, Castroflorio E, Bramini M, Pepe S, Marte A, Guarnieri FC, Valtorta F, Baldelli P, Benfenati F, Fassio A, Giovedì S. Apache is a neuronal player in autophagy required for retrograde axonal transport of autophagosomes. Cell Mol Life Sci 2024; 81:416. [PMID: 39367928 PMCID: PMC11455771 DOI: 10.1007/s00018-024-05441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 10/07/2024]
Abstract
Neurons are dependent on efficient quality control mechanisms to maintain cellular homeostasis and function due to their polarization and long-life span. Autophagy is a lysosomal degradative pathway that provides nutrients during starvation and recycles damaged and/or aged proteins and organelles. In neurons, autophagosomes constitutively form in distal axons and at synapses and are trafficked retrogradely to the cell soma to fuse with lysosomes for cargo degradation. How the neuronal autophagy pathway is organized and controlled remains poorly understood. Several presynaptic endocytic proteins have been shown to regulate both synaptic vesicle recycling and autophagy. Here, by combining electron, fluorescence, and live imaging microscopy with biochemical analysis, we show that the neuron-specific protein APache, a presynaptic AP-2 interactor, functions in neurons as an important player in the autophagy process, regulating the retrograde transport of autophagosomes. We found that APache colocalizes and co-traffics with autophagosomes in primary cortical neurons and that induction of autophagy by mTOR inhibition increases LC3 and APache protein levels at synaptic boutons. APache silencing causes a blockade of autophagic flux preventing the clearance of p62/SQSTM1, leading to a severe accumulation of autophagosomes and amphisomes at synaptic terminals and along neurites due to defective retrograde transport of TrkB-containing signaling amphisomes along the axons. Together, our data identify APache as a regulator of the autophagic cycle, potentially in cooperation with AP-2, and hypothesize that its dysfunctions contribute to the early synaptic impairments in neurodegenerative conditions associated with impaired autophagy.
Collapse
Affiliation(s)
- Barbara Parisi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- Present Affiliation: Department of Cell Biology, Universidad de Granada, Granada, Spain
| | - Alessandro Esposito
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCSS, Ospedale Policlinico San Martino, Viale Benedetto XV, 3, Genova, 16122, Italy
| | - Enrico Castroflorio
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Mattia Bramini
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
- Present Affiliation: Institute of Neuroscience, National Research Council (CNR), Vedano al Lambro, Italy
| | - Sara Pepe
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Antonella Marte
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Fabrizia C Guarnieri
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- IRCSS, Ospedale Policlinico San Martino, Viale Benedetto XV, 3, Genova, 16122, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Baldelli
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Anna Fassio
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Silvia Giovedì
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia.
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia.
- Department of Experimental Medicine, University of Genoa, Viale Benedetto XV, 3, Genova, 16122, Italy.
| |
Collapse
|
16
|
Usmanova DR, Plata G, Vitkup D. Functional Optimization in Distinct Tissues and Conditions Constrains the Rate of Protein Evolution. Mol Biol Evol 2024; 41:msae200. [PMID: 39431545 PMCID: PMC11523136 DOI: 10.1093/molbev/msae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 10/22/2024] Open
Abstract
Understanding the main determinants of protein evolution is a fundamental challenge in biology. Despite many decades of active research, the molecular and cellular mechanisms underlying the substantial variability of evolutionary rates across cellular proteins are not currently well understood. It also remains unclear how protein molecular function is optimized in the context of multicellular species and why many proteins, such as enzymes, are only moderately efficient on average. Our analysis of genomics and functional datasets reveals in multiple organisms a strong inverse relationship between the optimality of protein molecular function and the rate of protein evolution. Furthermore, we find that highly expressed proteins tend to be substantially more functionally optimized. These results suggest that cellular expression costs lead to more pronounced functional optimization of abundant proteins and that the purifying selection to maintain high levels of functional optimality significantly slows protein evolution. We observe that in multicellular species both the rate of protein evolution and the degree of protein functional efficiency are primarily affected by expression in several distinct cell types and tissues, specifically, in developed neurons with upregulated synaptic processes in animals and in young and fast-growing tissues in plants. Overall, our analysis reveals how various constraints from the molecular, cellular, and species' levels of biological organization jointly affect the rate of protein evolution and the level of protein functional adaptation.
Collapse
Affiliation(s)
- Dinara R Usmanova
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Germán Plata
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- BiomEdit, Fishers, IN 46037, USA
| | - Dennis Vitkup
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
17
|
Sarnyai Z, Ben-Shachar D. Schizophrenia, a disease of impaired dynamic metabolic flexibility: A new mechanistic framework. Psychiatry Res 2024; 342:116220. [PMID: 39369460 DOI: 10.1016/j.psychres.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Schizophrenia is a chronic, neurodevelopmental disorder with unknown aetiology and pathophysiology that emphasises the role of neurotransmitter imbalance and abnormalities in synaptic plasticity. The currently used pharmacological approach, the antipsychotic drugs, which have limited efficacy and an array of side-effects, have been developed based on the neurotransmitter hypothesis. Recent research has uncovered systemic and brain abnormalities in glucose and energy metabolism, focusing on altered glycolysis and mitochondrial oxidative phosphorylation. These findings call for a re-conceptualisation of schizophrenia pathophysiology as a progressing bioenergetics failure. In this review, we provide an overview of the fundamentals of brain bioenergetics and the changes identified in schizophrenia. We then propose a new explanatory framework positing that schizophrenia is a disease of impaired dynamic metabolic flexibility, which also reconciles findings of abnormal glucose and energy metabolism in the periphery and in the brain along the course of the disease. This evidence-based framework and testable hypothesis has the potential to transform the way we conceptualise this debilitating condition and to develop novel treatment approaches.
Collapse
Affiliation(s)
- Zoltán Sarnyai
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel; Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel.
| |
Collapse
|
18
|
van Rossum MCW, Pache A. Competitive plasticity to reduce the energetic costs of learning. PLoS Comput Biol 2024; 20:e1012553. [PMID: 39466853 PMCID: PMC11542811 DOI: 10.1371/journal.pcbi.1012553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
The brain is not only constrained by energy needed to fuel computation, but it is also constrained by energy needed to form memories. Experiments have shown that learning simple conditioning tasks which might require only a few synaptic updates, already carries a significant metabolic cost. Yet, learning a task like MNIST to 95% accuracy appears to require at least 108 synaptic updates. Therefore the brain has likely evolved to be able to learn using as little energy as possible. We explored the energy required for learning in feedforward neural networks. Based on a parsimonious energy model, we propose two plasticity restricting algorithms that save energy: 1) only modify synapses with large updates, and 2) restrict plasticity to subsets of synapses that form a path through the network. In biology networks are often much larger than the task requires, yet vanilla backprop prescribes to update all synapses. In particular in this case, large savings can be achieved while only incurring a slightly worse learning time. Thus competitively restricting plasticity helps to save metabolic energy associated to synaptic plasticity. The results might lead to a better understanding of biological plasticity and a better match between artificial and biological learning. Moreover, the algorithms might benefit hardware because also electronic memory storage is energetically costly.
Collapse
Affiliation(s)
- Mark C. W. van Rossum
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Aaron Pache
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
19
|
Méndez-Flores OG, Hernández-Kelly LC, Olivares-Bañuelos TN, López-Ramírez G, Ortega A. Brain energetics and glucose transport in metabolic diseases: role in neurodegeneration. Nutr Neurosci 2024; 27:1199-1210. [PMID: 38294500 DOI: 10.1080/1028415x.2024.2306427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
OBJECTIVES Neurons and glial cells are the main functional and structural elements of the brain, and the former depends on the latter for their nutritional, functional and structural organization, as well as for their energy maintenance. METHODS Glucose is the main metabolic source that fulfills energetic demands, either by direct anaplerosis or through its conversion to metabolic intermediates. Development of some neurodegenerative diseases have been related with modifications in the expression and/or function of glial glucose transporters, which might cause physiological and/or pathological disturbances of brain metabolism. In the present contribution, we summarized the experimental findings that describe the exquisite adjustment in expression and function of glial glucose transporters from physiologic to pathologic metabolism, and its relevance to neurodegenerative diseases. RESULTS A exhaustive literature review was done in order to gain insight into the role of brain energetics in neurodegenerative disease. This study made evident a critical involvement of glucose transporters and thus brain energetics in the development of neurodegenerative diseases. DISCUSSION An exquisite adjustment in the expression and function of glial glucose transporters from physiologic to pathologic metabolism is a biochemical signature of neurodegenerative diseases.
Collapse
Affiliation(s)
- Orquídea G Méndez-Flores
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, México
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Gabriel López-Ramírez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
20
|
Siems SB, Gargareta VI, Schadt LC, Daguano Gastaldi V, Jung RB, Piepkorn L, Casaccia P, Sun T, Jahn O, Werner HB. Developmental maturation and regional heterogeneity but no sexual dimorphism of the murine CNS myelin proteome. Glia 2024. [PMID: 39344832 DOI: 10.1002/glia.24614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
The molecules that constitute myelin are critical for the integrity of axon/myelin-units and thus speed and precision of impulse propagation. In the CNS, the protein composition of oligodendrocyte-derived myelin has evolutionarily diverged and differs from that in the PNS. Here, we hypothesized that the CNS myelin proteome also displays variations within the same species. We thus used quantitative mass spectrometry to compare myelin purified from mouse brains at three developmental timepoints, from brains of male and female mice, and from four CNS regions. We find that most structural myelin proteins are of approximately similar abundance across all tested conditions. However, the abundance of multiple other proteins differs markedly over time, implying that the myelin proteome matures between P18 and P75 and then remains relatively constant until at least 6 months of age. Myelin maturation involves a decrease of cytoskeleton-associated proteins involved in sheath growth and wrapping, along with an increase of all subunits of the septin filament that stabilizes mature myelin, and of multiple other proteins which potentially exert protective functions. Among the latter, quinoid dihydropteridine reductase (QDPR) emerges as a highly specific marker for mature oligodendrocytes and myelin. Conversely, female and male mice display essentially similar myelin proteomes. Across the four CNS regions analyzed, we note that spinal cord myelin exhibits a comparatively high abundance of HCN2-channels, required for particularly long sheaths. These findings show that CNS myelination involves developmental maturation of myelin protein composition, and regional differences, but absence of evidence for sexual dimorphism.
Collapse
Affiliation(s)
- Sophie B Siems
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vasiliki-Ilya Gargareta
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Leonie C Schadt
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lars Piepkorn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York, New York, New York, USA
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Gonzalez DE, Forbes SC, Zapp A, Jagim A, Luedke J, Dickerson BL, Root A, Gil A, Johnson SE, Coles M, Brager A, Sowinski RJ, Candow DG, Kreider RB. Fueling the Firefighter and Tactical Athlete with Creatine: A Narrative Review of a Key Nutrient for Public Safety. Nutrients 2024; 16:3285. [PMID: 39408252 PMCID: PMC11478539 DOI: 10.3390/nu16193285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Firefighters, tactical police officers, and warriors often engage in periodic, intermittent, high-intensity physical work in austere environmental conditions and have a heightened risk of premature mortality. In addition, tough decision-making challenges, routine sleep deprivation, and trauma exacerbate this risk. Therefore, identifying strategies to bolster these personnel's health and occupational performance is critical. Creatine monohydrate (CrM) supplementation may offer several benefits to firefighters and tactical athletes (e.g., police, security, and soldiers) due to its efficacy regarding physical performance, muscle, cardiovascular health, mental health, and cognitive performance. Methods: We conducted a narrative review of the literature with a focus on the benefits and application of creatine monohydrate among firefighters. Results: Recent evidence demonstrates that CrM can improve anaerobic exercise capacity and muscular fitness performance outcomes and aid in thermoregulation, decision-making, sleep, recovery from traumatic brain injuries (TBIs), and mental health. Emerging evidence also suggests that CrM may confer an antioxidant/anti-inflammatory effect, which may be particularly important for firefighters and those performing tactical occupations exposed to oxidative and physiological stress, which can elicit systemic inflammation and increase the risk of chronic diseases. Conclusions: This narrative review highlights the potential applications of CrM for related tactical occupations, with a particular focus on firefighters, and calls for further research into these populations.
Collapse
Affiliation(s)
- Drew E. Gonzalez
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Scott C. Forbes
- Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, MB R7A 6A9, Canada;
| | | | - Andrew Jagim
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI 54601, USA;
| | - Joel Luedke
- Olmsted Medical Center-Sports Medicine, La Crosse, WI 54601, USA;
| | - Broderick L. Dickerson
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| | | | - Adriana Gil
- College of Medicine, University of Houston, Houston, TX 77021, USA;
| | - Sarah E. Johnson
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Macilynn Coles
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Allison Brager
- U.S. Army John F. Kennedy Special Warfare Center and School, Fort Liberty, NC 48397, USA;
| | - Ryan J. Sowinski
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Richard B. Kreider
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| |
Collapse
|
22
|
Rajendrakumar AL, Ukraintseva S, Bagley O, Duan M, Yashin AI, Arbeev KG. Elevated blood glucose levels are associated with the progression of brain hypometabolism, and HDL-C and APOE4 add to this association. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.20.24314082. [PMID: 39399037 PMCID: PMC11469353 DOI: 10.1101/2024.09.20.24314082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background Brain glucose hypometabolism has consistently been found in neurodegenerative disorders, including Alzheimer's disease (AD). High blood glucose and HDL cholesterol (HDL-C) levels have also been linked to neurodegeneration and AD. However, there is limited understanding of the relationships between dementia-related risk factors in the brain and blood. Methods A linear mixed model was used to examine the relationship between blood glucose and HDL-C levels and the progression of brain hypometabolism, adjusting for APOE4 and other clinical covariates. The hypometabolic convergence index (HCI) was measured by fluorodeoxyglucose-18 (FDG) positron emission tomography (PET) in participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Data visualizations were generated to understand the joint effects of plasma glucose, HDL-C, and APOE4 on HCI. Results There were 336 individuals (781 observations), of whom 22.62% had AD. The majority were male (63.98%) and of white race, and 48.51% were carriers of APOE4. Over time, high blood glucose level was associated with the progression of brain glucose hypometabolism (β=0.33, 95% CI: 0.02, 0.64, p<0.05). A high plasma HDL-C level (β=1.22, 95% CI: 0.09, 2.35, p<0.05), more study visits (β=1.67, 95% CI: 1.37, 1.98, p<0.001), and being an APOE4 allele carrier (β=1.29, 95% CI: 0.15, 2.42, p<0.05) were also significant predictors of brain hypometabolism progression. APOE4 carrier status and number of visits account for the largest proportion of the variance from the fixed effects model. Random effects due to participant characteristics and fixed effects together accounted for 95.2% of the model variance. Subgroup analysis revealed that these effects were observed only in those without AD. Conclusion High plasma glucose levels facilitated the progression of brain hypometabolism. The effect was more prominent in the APOE4 double-carriers with elevated HDL-C. Elevated blood glucose may reflect systemic insulin resistance, which could impair brain glucose uptake, resulting in brain hypometabolism. Controlling blood glucose and HDL-C levels in APOE4 carriers may improve brain metabolism, potentially delaying the onset of dementia.
Collapse
Affiliation(s)
- Aravind Lathika Rajendrakumar
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | - Matt Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | - Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | | |
Collapse
|
23
|
Zaninello M, Baptista P, Duarte FV. Mitochondrial Dynamics and mRNA Translation: A Local Synaptic Tale. BIOLOGY 2024; 13:746. [PMID: 39336173 PMCID: PMC11428642 DOI: 10.3390/biology13090746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Mitochondria are dynamic organelles that can adjust and respond to different stimuli within a cell. This plastic ability allows them to effectively coordinate several cellular functions in cells and becomes particularly relevant in highly complex cells such as neurons. An imbalance in mitochondrial dynamics can disrupt mitochondrial function, leading to abnormal cellular function and ultimately to a range of diseases, including neurodegenerative disorders. Regulation of mRNA transport and local translation inside neurons is crucial for maintaining the proteome of distal mitochondria, which is vital for energy production and synaptic function. A significant portion of the axonal transcriptome is dedicated to mRNAs for mitochondrial proteins, emphasizing the importance of local translation in sustaining mitochondrial function in areas far from the cell body. In neurons, local translation and the regulation of mRNAs encoding mitochondrial-shaping proteins could be essential for synaptic plasticity and neuronal health. The dynamics of these mRNAs, including their transport and local translation, may influence the morphology and function of mitochondria, thereby affecting the overall energy status and responsiveness of synapses. Comprehending the mitochondria-related mRNA regulation and local translation, as well as its influence on mitochondrial morphology near the synapses will help to better understand neuronal physiology and neurological diseases where mitochondrial dysfunction and impaired synaptic plasticity play a central role.
Collapse
Affiliation(s)
- Marta Zaninello
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Pedro Baptista
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Filipe V Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
24
|
Santucci L, Bernardi S, Vivarelli R, Santorelli FM, Marchese M. Glucose metabolism impairment as a hallmark of progressive myoclonus epilepsies: a focus on neuronal ceroid lipofuscinoses. Front Cell Neurosci 2024; 18:1445003. [PMID: 39364042 PMCID: PMC11447523 DOI: 10.3389/fncel.2024.1445003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 10/05/2024] Open
Abstract
Glucose is the brain's main fuel source, used in both energy and molecular production. Impaired glucose metabolism is associated with adult and pediatric neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), GLUT1 deficiency syndrome, and progressive myoclonus epilepsies (PMEs). PMEs, a group of neurological disorders typical of childhood and adolescence, account for 1% of all epileptic diseases in this population worldwide. Diffuse glucose hypometabolism is observed in the brains of patients affected by PMEs such as Lafora disease (LD), dentatorubral-pallidoluysian (DRPLA) atrophy, Unverricht-Lundborg disease (ULD), and myoclonus epilepsy with ragged red fibers (MERRFs). PMEs also include neuronal ceroid lipofuscinoses (NCLs), a subgroup in which lysosomal and autophagy dysfunction leads to progressive loss of vision, brain atrophy, and cognitive decline. We examine the role of impaired glucose metabolism in neurodegenerative diseases, particularly in the NCLs. Our literature review, which includes findings from case reports and animal studies, reveals that glucose hypometabolism is still poorly characterized both in vitro and in vivo in the different NCLs. Better identification of the glucose metabolism pathway impaired in the NCLs may open new avenues for evaluating the therapeutic potential of anti-diabetic agents in this population and thus raise the prospect of a therapeutic approach able to delay or even halt disease progression.
Collapse
Affiliation(s)
- Lorenzo Santucci
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | - Sara Bernardi
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Rachele Vivarelli
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | | | - Maria Marchese
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| |
Collapse
|
25
|
Glausier JR, Bouchet-Marquis C, Maier M, Banks-Tibbs T, Wu K, Ning J, Melchitzky D, Lewis DA, Freyberg Z. Volume electron microscopy reveals 3D synaptic nanoarchitecture in postmortem human prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582174. [PMID: 38463986 PMCID: PMC10925168 DOI: 10.1101/2024.02.26.582174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Synaptic function is directly reflected in quantifiable ultrastructural features using electron microscopy (EM) approaches. This coupling of synaptic function and ultrastructure suggests that in vivo synaptic function can be inferred from EM analysis of ex vivo human brain tissue. To investigate this, we employed focused ion beam-scanning electron microscopy (FIB-SEM), a volume EM (VEM) approach, to generate ultrafine-resolution, three-dimensional (3D) micrographic datasets of postmortem human dorsolateral prefrontal cortex (DLPFC), a region with cytoarchitectonic characteristics distinct to human brain. Synaptic, sub-synaptic, and organelle measures were highly consistent with findings from experimental models that are free from antemortem or postmortem effects. Further, 3D neuropil reconstruction revealed a unique, ultrastructurally-complex, spiny dendritic shaft that exhibited features characteristic of heightened synaptic communication, integration, and plasticity. Altogether, our findings provide critical proof-of-concept data demonstrating that ex vivo VEM analysis is an effective approach to infer in vivo synaptic functioning in human brain.
Collapse
Affiliation(s)
- Jill R. Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | - Matthew Maier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Tabitha Banks-Tibbs
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA
- College of Medicine, The Ohio State University, Columbus, OH
| | - Ken Wu
- Materials and Structural Analysis, Thermo Fisher Scientific, Hillsboro, OR
| | - Jiying Ning
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
26
|
Tarasiuk O, Invernizzi C, Alberti P. In vitro neurotoxicity testing: lessons from chemotherapy-induced peripheral neurotoxicity. Expert Opin Drug Metab Toxicol 2024:1-16. [PMID: 39246127 DOI: 10.1080/17425255.2024.2401584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION Chemotherapy induced peripheral neurotoxicity (CIPN) is a long-lasting, or even permanent, late toxicity caused by largely used anticancer drugs. CIPN affects a growing population of cancer survivors and diminishes their quality of life since there is no curative/preventive treatment. Among several reasons for this unmet clinical need, there is an incomplete knowledge on mechanisms leading to CIPN. Therefore, bench side research is still greatly needed: in vitro studies are pivotal to both evaluate neurotoxicity mechanisms and potential neuroprotection strategies. AREAS COVERED Advantages and disadvantages of in vitro approaches are addressed with respect to their applicability to the CIPN field. Different cell cultures and techniques to assess neurotoxicity/neuroprotection are described. PubMed search-string: (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (in vitro) AND (((((model) OR SH-SY5Y) OR PC12) OR iPSC) OR DRG neurons); (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (model) AND (((neurite elongation) OR cell viability) OR morphology). No articles published before 1990 were selected. EXPERT OPINION CIPN is an ideal experimental setting to test axonal damage and, in general, peripheral nervous system mechanisms of disease and neuroprotection. Therefore, starting from robust preclinical data in this field, potentially, relevant biological rationale can be transferred to other human spontaneous diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- Olga Tarasiuk
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Chiara Invernizzi
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- Neuroscience, School of Medicine and Surgery, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
27
|
Barros LF, Schirmeier S, Weber B. The Astrocyte: Metabolic Hub of the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041355. [PMID: 38438188 PMCID: PMC11368191 DOI: 10.1101/cshperspect.a041355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Astrocytic metabolism has taken center stage. Interposed between the neuron and the vasculature, astrocytes exert control over the fluxes of energy and building blocks required for neuronal activity and plasticity. They are also key to local detoxification and waste recycling. Whereas neurons are metabolically rigid, astrocytes can switch between different metabolic profiles according to local demand and the nutritional state of the organism. Their metabolic state even seems to be instructive for peripheral nutrient mobilization and has been implicated in information processing and behavior. Here, we summarize recent progress in our understanding of astrocytic metabolism and its effects on metabolic homeostasis and cognition.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos, Valdivia 5110465, Chile
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Valdivia 5110693, Chile
| | - Stefanie Schirmeier
- Technische Universität Dresden, Department of Biology, 01217 Dresden, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland
| |
Collapse
|
28
|
Khaliulin I, Hamoudi W, Amal H. The multifaceted role of mitochondria in autism spectrum disorder. Mol Psychiatry 2024:10.1038/s41380-024-02725-z. [PMID: 39223276 DOI: 10.1038/s41380-024-02725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Normal brain functioning relies on high aerobic energy production provided by mitochondria. Failure to supply a sufficient amount of energy, seen in different brain disorders, including autism spectrum disorder (ASD), may have a significant negative impact on brain development and support of different brain functions. Mitochondrial dysfunction, manifested in the abnormal activities of the electron transport chain and impaired energy metabolism, greatly contributes to ASD. The aberrant functioning of this organelle is of such high importance that ASD has been proposed as a mitochondrial disease. It should be noted that aerobic energy production is not the only function of the mitochondria. In particular, these organelles are involved in the regulation of Ca2+ homeostasis, different mechanisms of programmed cell death, autophagy, and reactive oxygen and nitrogen species (ROS and RNS) production. Several syndromes originated from mitochondria-related mutations display ASD phenotype. Abnormalities in Ca2+ handling and ATP production in the brain mitochondria affect synaptic transmission, plasticity, and synaptic development, contributing to ASD. ROS and Ca2+ regulate the activity of the mitochondrial permeability transition pore (mPTP). The prolonged opening of this pore affects the redox state of the mitochondria, impairs oxidative phosphorylation, and activates apoptosis, ultimately leading to cell death. A dysregulation between the enhanced mitochondria-related processes of apoptosis and the inhibited autophagy leads to the accumulation of toxic products in the brains of individuals with ASD. Although many mitochondria-related mechanisms still have to be investigated, and whether they are the cause or consequence of this disorder is still unknown, the accumulating data show that the breakdown of any of the mitochondrial functions may contribute to abnormal brain development leading to ASD. In this review, we discuss the multifaceted role of mitochondria in ASD from the various aspects of neuroscience.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wajeha Hamoudi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
29
|
Karl MT, Kim YD, Rajendran K, Manger PR, Sherwood CC. Invariance of Mitochondria and Synapses in the Primary Visual Cortex of Mammals Provides Insight Into Energetics and Function. J Comp Neurol 2024; 532:e25669. [PMID: 39291629 PMCID: PMC11412485 DOI: 10.1002/cne.25669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
The cerebral cortex accounts for substantial energy expenditure, primarily driven by the metabolic demands of synaptic signaling. Mitochondria, the organelles responsible for generating cellular energy, play a crucial role in this process. We investigated ultrastructural characteristics of the primary visual cortex in 18 phylogenetically diverse mammals, spanning a broad range of brain sizes from mouse to elephant. Our findings reveal remarkable uniformity in synapse density, postsynaptic density (PSD) length, and mitochondria density, indicating functional and metabolic constraints that maintain these fundamental features. Notably, we observed an average of 1.9 mitochondria per synapse across mammalian species. When considered together with the trend of decreasing neuron density with larger brain size, we find that brain enlargement in mammals is characterized by increasing proportions of synapses and mitochondria per cortical neuron. These results shed light on the adaptive mechanisms and metabolic dynamics that govern cortical ultrastructure across mammals.
Collapse
Affiliation(s)
- Molly T Karl
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Young Do Kim
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Kavita Rajendran
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
30
|
Aamand R, Rasmussen PM, Andersen KS, de Paoli S, Weitzberg E, Christiansen M, Lund TE, Østergaard L. Cerebral microvascular changes in healthy carriers of the APOE-ɛ4 Alzheimer's disease risk gene. PNAS NEXUS 2024; 3:pgae369. [PMID: 39253395 PMCID: PMC11382292 DOI: 10.1093/pnasnexus/pgae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
APOE-ɛ4 is a genetic risk factor for Alzheimer's disease (AD). AD is associated with reduced cerebral blood flow (CBF) and with microvascular changes that limit the transport of oxygen from blood into brain tissue: reduced microvascular cerebral blood volume and high relative transit time heterogeneity (RTH). Healthy APOE-ɛ4 carriers reveal brain regions with elevated CBF compared with carriers of the common ɛ3 allele. Such asymptomatic hyperemia may reflect microvascular dysfunction: a vascular disease entity characterized by suboptimal tissue oxygen uptake, rather than limited blood flow per se. Here, we used perfusion MRI to show that elevated regional CBF is accompanied by reduced capillary blood volume in healthy APOE-ɛ4 carriers (carriers) aged 30-70 years compared with similarly aged APOE-ɛ3 carriers (noncarriers). Younger carriers have elevated hippocampal RTH and more extreme RTH values throughout both white matter (WM) and cortical gray matter (GM) compared with noncarriers. Older carriers have reduced WM CBF and more extreme GM RTH values than noncarriers. Across all groups, lower WM and hippocampal RTH correlate with higher educational attainment, which is associated with lower AD risk. Three days of dietary nitrate supplementation increased carriers' WM CBF but caused older carriers to score worse on two of six aggregate neuropsychological scores. The intervention improved late recall in younger carriers and in noncarriers. The APOE-ɛ4 gene is associated with microvascular changes that may impair tissue oxygen extraction. We speculate that vascular risk factor control is particularly important for APOE-ɛ4 carriers' healthy aging.
Collapse
Affiliation(s)
- Rasmus Aamand
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, 8000 Aarhus, Denmark
| | - Peter M Rasmussen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, 8000 Aarhus, Denmark
| | - Katrine Schilling Andersen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, 8000 Aarhus, Denmark
| | - Stine de Paoli
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, 8000 Aarhus, Denmark
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Torben E Lund
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, 8000 Aarhus, Denmark
| | - Leif Østergaard
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, 8000 Aarhus, Denmark
- Department of Neuroradiology, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
31
|
Omholt SW, Lejneva R, Donate MJL, Caponio D, Fang EF, Kobro-Flatmoen A. Bnip3 expression is strongly associated with reelin-positive entorhinal cortex layer II neurons. Brain Struct Funct 2024; 229:1617-1629. [PMID: 38916724 PMCID: PMC11374853 DOI: 10.1007/s00429-024-02816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
In layer II of the entorhinal cortex, the principal neurons that project to the dentate gyrus and the CA3/2 hippocampal fields markedly express the large glycoprotein reelin (Re + ECLII neurons). In rodents, neurons located at the dorsal extreme of the EC, which border the rhinal fissure, express the highest levels, and the expression gradually decreases at levels successively further away from the rhinal fissure. Here, we test two predictions deducible from the hypothesis that reelin expression is strongly correlated with neuronal metabolic rate. Since the mitochondrial turnover rate serves as a proxy for energy expenditure, the mitophagy rate arguably also qualifies as such. Because messenger RNA of the canonical promitophagic BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (Bnip3) is known to be highly expressed in the EC, we predicted that Bnip3 would be upregulated in Re + ECLII neurons, and that the degree of upregulation would strongly correlate with the expression level of reelin in these neurons. We confirm both predictions, supporting that the energy requirement of Re + ECLII neurons is generally high and that there is a systematic increase in metabolic rate as one moves successively closer to the rhinal fissure. Intriguingly, the systematic variation in energy requirement of the neurons that manifest the observed reelin gradient appears to be consonant with the level of spatial and temporal detail by which they encode information about the external environment.
Collapse
Affiliation(s)
- Stig W Omholt
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Raissa Lejneva
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- K. G. Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Maria Jose Lagartos Donate
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Domenica Caponio
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
- K. G. Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| |
Collapse
|
32
|
Longhitano C, Finlay S, Peachey I, Swift JL, Fayet-Moore F, Bartle T, Vos G, Rudd D, Shareef O, Gordon S, Azghadi MR, Campbell I, Sethi S, Palmer C, Sarnyai Z. The effects of ketogenic metabolic therapy on mental health and metabolic outcomes in schizophrenia and bipolar disorder: a randomized controlled clinical trial protocol. Front Nutr 2024; 11:1444483. [PMID: 39234289 PMCID: PMC11371693 DOI: 10.3389/fnut.2024.1444483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
Background Schizophrenia, schizoaffective disorder, and bipolar affective disorder are debilitating psychiatric conditions characterized by a chronic pattern of emotional, behavioral, and cognitive disturbances. Shared psychopathology includes the pre-eminence of altered affective states, disorders of thoughts, and behavioral control. Additionally, those conditions share epidemiological traits, including significant cardiovascular, metabolic, infectious, and respiratory co-morbidities, resulting in reduced life expectancy of up to 25 years. Nutritional ketosis has been successfully used to treat a range of neurological disorders and preclinical data have convincingly shown potential for its use in animal models of psychotic disorders. More recent data from open clinical trials have pointed toward a dramatic reduction in psychotic, affective, and metabolic symptoms in both schizophrenia and bipolar affective disorder. Objectives to investigate the effects of nutritional ketosis via a modified ketogenic diet (MKD) over 14 weeks in stable community patients with bipolar disorder, schizoaffective disorder, or schizophrenia. Design A randomized placebo-controlled clinical trial of 100 non-hospitalized adult participants with a diagnosis of bipolar disorder, schizoaffective disorder, or schizophrenia who are capable of consenting and willing to change their diets. Intervention Dietitian-led and medically supervised ketogenic diet compared to a diet following the Australian Guide to Healthy Eating for 14 weeks. Outcomes The primary outcomes include psychiatric and cognitive measures, reported as symptom improvement and functional changes in the Positive and Negative Symptoms Scale (PANSS), Young Mania Rating Scale (YMS), Beck Depression Inventory (BDI), WHO Disability Schedule, Affect Lability Scale and the Cambridge Cognitive Battery. The secondary metabolic outcomes include changes in body weight, blood pressure, liver and kidney function tests, lipid profiles, and markers of insulin resistance. Ketone and glucose levels will be used to study the correlation between primary and secondary outcomes. Optional hair cortisol analysis will assess long-term stress and variations in fecal microbiome composition. Autonomic nervous system activity will be measured via wearable devices (OURA ring and EMBRACE wristband) in the form of skin conductance, oximetry, continuous pulse monitoring, respiratory rate, movement tracking, and sleep quality. Based on the encouraging results from established preclinical research, clinical data from other neurodevelopment disorders, and open trials in bipolar disorder and schizophrenia, we predict that the ketogenic metabolic therapy will be well tolerated and result in improved psychiatric and metabolic outcomes as well as global measures of social and community functioning. We additionally predict that a correlation may exist between the level of ketosis achieved and the metabolic, cognitive, and psychiatric outcomes in the intervention group.
Collapse
Affiliation(s)
- Calogero Longhitano
- Townsville University Hospital and Health Service, Mental Health Service Group, Queensland Health, Townsville, QLD, Australia
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Sabine Finlay
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Isabella Peachey
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Jaymee-Leigh Swift
- Mater Hospital, Aurora Healthcare and James Cook University, Townsville, QLD, Australia
| | - Flavia Fayet-Moore
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- FoodiQ Global, Sydney, NSW, Australia
| | - Toby Bartle
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Gideon Vos
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- Electrical and Electronics Engineering, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Donna Rudd
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Omer Shareef
- Townsville University Hospital and Health Service, Mental Health Service Group, Queensland Health, Townsville, QLD, Australia
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
| | - Shaileigh Gordon
- Townsville University Hospital and Health Service, Mental Health Service Group, Queensland Health, Townsville, QLD, Australia
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
| | - Mostafa Rahimi Azghadi
- Electrical and Electronics Engineering, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Iain Campbell
- Centre for Clinical Brain Sciences, Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Shebani Sethi
- Metabolic Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Zoltan Sarnyai
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
33
|
Ünsal E, Duygun R, Yemeniciler İ, Bingöl E, Ceran Ö, Güntekin B. From Infancy to Childhood: A Comprehensive Review of Event- and Task-Related Brain Oscillations. Brain Sci 2024; 14:837. [PMID: 39199528 PMCID: PMC11352659 DOI: 10.3390/brainsci14080837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Brain development from infancy through childhood involves complex structural and functional changes influenced by both internal and external factors. This review provides a comprehensive analysis of event and task-related brain oscillations, focusing on developmental changes across different frequency bands, including delta, theta, alpha, beta, and gamma. Electroencephalography (EEG) studies highlight that these oscillations serve as functional building blocks for sensory and cognitive processes, with significant variations observed across different developmental stages. Delta oscillations, primarily associated with deep sleep and early cognitive demands, gradually diminish as children age. Theta rhythms, crucial for attention and memory, display a distinct pattern in early childhood, evolving with cognitive maturation. Alpha oscillations, reflecting thalamocortical interactions and cognitive performance, increase in complexity with age. Beta rhythms, linked to active thinking and problem-solving, show developmental differences in motor and cognitive tasks. Gamma oscillations, associated with higher cognitive functions, exhibit notable changes in response to sensory stimuli and cognitive tasks. This review underscores the importance of understanding oscillatory dynamics to elucidate brain development and its implications for sensory and cognitive processing in childhood. The findings provide a foundation for future research on developmental neuroscience and potential clinical applications.
Collapse
Affiliation(s)
- Esra Ünsal
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Rümeysa Duygun
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
| | - İrem Yemeniciler
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Elifnur Bingöl
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Ömer Ceran
- Department of Pediatrics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey;
| | - Bahar Güntekin
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| |
Collapse
|
34
|
Calì C, Cantando I, Veloz Castillo MF, Gonzalez L, Bezzi P. Metabolic Reprogramming of Astrocytes in Pathological Conditions: Implications for Neurodegenerative Diseases. Int J Mol Sci 2024; 25:8922. [PMID: 39201607 PMCID: PMC11354244 DOI: 10.3390/ijms25168922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Astrocytes play a pivotal role in maintaining brain energy homeostasis, supporting neuronal function through glycolysis and lipid metabolism. This review explores the metabolic intricacies of astrocytes in both physiological and pathological conditions, highlighting their adaptive plasticity and diverse functions. Under normal conditions, astrocytes modulate synaptic activity, recycle neurotransmitters, and maintain the blood-brain barrier, ensuring a balanced energy supply and protection against oxidative stress. However, in response to central nervous system pathologies such as neurotrauma, stroke, infections, and neurodegenerative diseases like Alzheimer's and Huntington's disease, astrocytes undergo significant morphological, molecular, and metabolic changes. Reactive astrocytes upregulate glycolysis and fatty acid oxidation to meet increased energy demands, which can be protective in acute settings but may exacerbate chronic inflammation and disease progression. This review emphasizes the need for advanced molecular, genetic, and physiological tools to further understand astrocyte heterogeneity and their metabolic reprogramming in disease states.
Collapse
Affiliation(s)
- Corrado Calì
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, 10143 Orbassano, Italy
| | - Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
| | - Maria Fernanda Veloz Castillo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, 10143 Orbassano, Italy
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Laurine Gonzalez
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy
| |
Collapse
|
35
|
Hahn A, Hung GCC, Ahier A, Dai CY, Kirmes I, Forde BM, Campbell D, Lee RSY, Sucic J, Onraet T, Zuryn S. Misregulation of mitochondrial 6mA promotes the propagation of mutant mtDNA and causes aging in C. elegans. Cell Metab 2024:S1550-4131(24)00291-2. [PMID: 39173633 DOI: 10.1016/j.cmet.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
In virtually all eukaryotes, the mitochondrial DNA (mtDNA) encodes proteins necessary for oxidative phosphorylation (OXPHOS) and RNAs required for their synthesis. The mechanisms of regulation of mtDNA copy number and expression are not completely understood but crucially ensure the correct stoichiometric assembly of OXPHOS complexes from nuclear- and mtDNA-encoded subunits. Here, we detect adenosine N6-methylation (6mA) on the mtDNA of diverse animal and plant species. This modification is regulated in C. elegans by the DNA methyltransferase DAMT-1 and demethylase ALKB-1. Misregulation of mtDNA 6mA through targeted modulation of these activities inappropriately alters mtDNA copy number and transcript levels, impairing OXPHOS function, elevating oxidative stress, and shortening lifespan. Compounding these defects, mtDNA 6mA hypomethylation promotes the cross-generational propagation of a deleterious mtDNA. Together, these results reveal that mtDNA 6mA is highly conserved among eukaryotes and regulates lifespan by influencing mtDNA copy number, expression, and heritable mutation levels in vivo.
Collapse
Affiliation(s)
- Anne Hahn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Grace Ching Ching Hung
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Arnaud Ahier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chuan-Yang Dai
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ina Kirmes
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brian M Forde
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rachel Shin Yie Lee
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Josiah Sucic
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
36
|
Raynes Y, Santiago JC, Lemieux FA, Darwin L, Rand DM. Sex, tissue, and mitochondrial interactions modify the transcriptional response to rapamycin in Drosophila. BMC Genomics 2024; 25:766. [PMID: 39107687 PMCID: PMC11304892 DOI: 10.1186/s12864-024-10647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Many common diseases exhibit uncontrolled mTOR signaling, prompting considerable interest in the therapeutic potential of mTOR inhibitors, such as rapamycin, to treat a range of conditions, including cancer, aging-related pathologies, and neurological disorders. Despite encouraging preclinical results, the success of mTOR interventions in the clinic has been limited by off-target side effects and dose-limiting toxicities. Improving clinical efficacy and mitigating side effects require a better understanding of the influence of key clinical factors, such as sex, tissue, and genomic background, on the outcomes of mTOR-targeting therapies. RESULTS We assayed gene expression with and without rapamycin exposure across three distinct body parts (head, thorax, abdomen) of D. melanogaster flies, bearing either their native melanogaster mitochondrial genome or the mitochondrial genome from a related species, D. simulans. The fully factorial RNA-seq study design revealed a large number of genes that responded to the rapamycin treatment in a sex-dependent and tissue-dependent manner, and relatively few genes with the transcriptional response to rapamycin affected by the mitochondrial background. Reanalysis of an earlier study confirmed that mitochondria can have a temporal influence on rapamycin response. CONCLUSIONS We found significant and wide-ranging effects of sex and body part, alongside a subtle, potentially time-dependent, influence of mitochondria on the transcriptional response to rapamycin. Our findings suggest a number of pathways that could be crucial for predicting potential side effects of mTOR inhibition in a particular sex or tissue. Further studies of the temporal response to rapamycin are necessary to elucidate the effects of the mitochondrial background on mTOR and its inhibition.
Collapse
Affiliation(s)
- Yevgeniy Raynes
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, 02912, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA.
| | - John C Santiago
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Faye A Lemieux
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, 02912, USA
| | - Leah Darwin
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, 02912, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA
| | - David M Rand
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, 02912, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
37
|
Althaus O, ter Jung N, Stahlke S, Theiss C, Herzog-Niescery J, Vogelsang H, Weber T, Gude P, Matschke V. Region-specific protective effects of monomethyl fumarate in cerebellar and hippocampal organotypic slice cultures following oxygen-glucose deprivation. PLoS One 2024; 19:e0308635. [PMID: 39110748 PMCID: PMC11305562 DOI: 10.1371/journal.pone.0308635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
To date, apart from moderate hypothermia, there are almost no adequate interventions available for neuroprotection in cases of brain damage due to cardiac arrest. Affected persons often have severe limitations in their quality of life. The aim of this study was to investigate protective properties of the active compound of dimethyl fumarate, monomethyl fumarate (MMF), on distinct regions of the central nervous system after ischemic events. Dimethyl fumarate is an already established drug in neurology with known anti-inflammatory and antioxidant properties. In this study, we chose organotypic slice cultures of rat cerebellum and hippocampus as an ex vivo model. To simulate cardiac arrest and return of spontaneous circulation we performed oxygen-glucose-deprivation (OGD) followed by treatments with different concentrations of MMF (1-30 μM in cerebellum and 5-30 μM in hippocampus). Immunofluorescence staining with propidium iodide (PI) and 4',6-diamidine-2-phenylindole (DAPI) was performed to analyze PI/DAPI ratio after imaging with a spinning disc confocal microscope. In the statistical analysis, the relative cell death of the different groups was compared. In both, the cerebellum and hippocampus, the MMF-treated group showed a significantly lower PI/DAPI ratio compared to the non-treated group after OGD. Thus, we showed for the first time that both cerebellar and hippocampal slice cultures treated with MMF after OGD are significantly less affected by cell death.
Collapse
Affiliation(s)
- Oliver Althaus
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Nico ter Jung
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Herzog-Niescery
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Heike Vogelsang
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Thomas Weber
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Philipp Gude
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
38
|
Malkin J, O'Donnell C, Houghton CJ, Aitchison L. Signatures of Bayesian inference emerge from energy-efficient synapses. eLife 2024; 12:RP92595. [PMID: 39106188 PMCID: PMC11302983 DOI: 10.7554/elife.92595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
Abstract
Biological synaptic transmission is unreliable, and this unreliability likely degrades neural circuit performance. While there are biophysical mechanisms that can increase reliability, for instance by increasing vesicle release probability, these mechanisms cost energy. We examined four such mechanisms along with the associated scaling of the energetic costs. We then embedded these energetic costs for reliability in artificial neural networks (ANNs) with trainable stochastic synapses, and trained these networks on standard image classification tasks. The resulting networks revealed a tradeoff between circuit performance and the energetic cost of synaptic reliability. Additionally, the optimised networks exhibited two testable predictions consistent with pre-existing experimental data. Specifically, synapses with lower variability tended to have (1) higher input firing rates and (2) lower learning rates. Surprisingly, these predictions also arise when synapse statistics are inferred through Bayesian inference. Indeed, we were able to find a formal, theoretical link between the performance-reliability cost tradeoff and Bayesian inference. This connection suggests two incompatible possibilities: evolution may have chanced upon a scheme for implementing Bayesian inference by optimising energy efficiency, or alternatively, energy-efficient synapses may display signatures of Bayesian inference without actually using Bayes to reason about uncertainty.
Collapse
Affiliation(s)
- James Malkin
- Faculty of Engineering, University of BristolBristolUnited Kingdom
| | - Cian O'Donnell
- Faculty of Engineering, University of BristolBristolUnited Kingdom
- Intelligent Systems Research Centre, School of Computing, Engineering, and Intelligent Systems, Ulster UniversityDerry/LondonderryUnited Kingdom
| | - Conor J Houghton
- Faculty of Engineering, University of BristolBristolUnited Kingdom
| | | |
Collapse
|
39
|
Jackson MB, Chiang CW, Cheng J. Fusion pore flux controls the rise-times of quantal synaptic responses. J Gen Physiol 2024; 156:e202313484. [PMID: 38860965 PMCID: PMC11167452 DOI: 10.1085/jgp.202313484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/18/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
The release of neurotransmitter from a single synaptic vesicle generates a quantal response, which at excitatory synapses in voltage-clamped neurons is referred to as a miniature excitatory postsynaptic current (mEPSC). We analyzed mEPSCs in cultured mouse hippocampal neurons and in HEK cells expressing postsynaptic proteins enabling them to receive synaptic inputs from cocultured neurons. mEPSC amplitudes and rise-times varied widely within and between cells. In neurons, mEPSCs with larger amplitudes had longer rise-times, and this correlation was stronger in neurons with longer mean rise-times. In HEK cells, this correlation was weak and unclear. Standard mechanisms thought to govern mEPSCs cannot account for these results. We therefore developed models to simulate mEPSCs and assess their dependence on different factors. Modeling indicated that longer diffusion times for transmitters released by larger vesicles to reach more distal receptors cannot account for the correlation between rise-time and amplitude. By contrast, incorporating the vesicle size dependence of fusion pore expulsion time recapitulated experimental results well. Larger vesicles produce mEPSCs with larger amplitudes and also take more time to lose their content. Thus, fusion pore flux directly contributes to mEPSC rise-time. Variations in fusion pores account for differences among neurons, between neurons and HEK cells, and the correlation between rise-time and the slope of rise-time versus amplitude plots. Plots of mEPSC amplitude versus rise-time are sensitive to otherwise inaccessible properties of a synapse and offer investigators a means of assessing the role of fusion pores in synaptic release.
Collapse
Affiliation(s)
- Meyer B. Jackson
- Department of Neuroscience, University of Wisconsin—Madison, Madison, WI, USA
| | - Chung-Wei Chiang
- Department of Neuroscience, University of Wisconsin—Madison, Madison, WI, USA
| | - Jinbo Cheng
- Department of Neuroscience, University of Wisconsin—Madison, Madison, WI, USA
| |
Collapse
|
40
|
Giniatullin AR, Mukhutdinova KA, Petrov AM. Mechanism of Purinergic Regulation of Neurotransmission in Mouse Neuromuscular Junction: The Role of Redox Signaling and Lipid Rafts. Neurochem Res 2024; 49:2021-2037. [PMID: 38814360 DOI: 10.1007/s11064-024-04153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Acetylcholine is the main neurotransmitter at the vertebrate neuromuscular junctions (NMJs). ACh exocytosis is precisely modulated by co-transmitter ATP and its metabolites. It is assumed that ATP/ADP effects on ACh release rely on activation of presynaptic Gi protein-coupled P2Y13 receptors. However, downstream signaling mechanism of ATP/ADP-mediated modulation of neuromuscular transmission remains elusive. Using microelectrode recording and fluorescent indicators, the mechanism underlying purinergic regulation was studied in the mouse diaphragm NMJs. Pharmacological stimulation of purinoceptors with ADP decreased synaptic vesicle exocytosis evoked by both low and higher frequency stimulation. This inhibitory action was suppressed by antagonists of P2Y13 receptors (MRS 2211), Ca2+ mobilization (TMB8), protein kinase C (chelerythrine) and NADPH oxidase (VAS2870) as well as antioxidants. This suggests the participation of Ca2+ and reactive oxygen species (ROS) in the ADP-triggered signaling. Indeed, ADP caused an increase in cytosolic Ca2+ with subsequent elevation of ROS levels. The elevation of [Ca2+]in was blocked by MRS 2211 and TMB8, whereas upregulation of ROS was prevented by pertussis toxin (inhibitor of Gi protein) and VAS2870. Targeting the main components of lipid rafts, cholesterol and sphingomyelin, suppressed P2Y13 receptor-dependent attenuation of exocytosis and ADP-induced enhancement of ROS production. Inhibition of P2Y13 receptors decreased ROS production and increased the rate of exocytosis during intense activity. Thus, suppression of neuromuscular transmission by exogenous ADP or endogenous ATP can rely on P2Y13 receptor/Gi protein/Ca2+/protein kinase C/NADPH oxidase/ROS signaling, which is coordinated in a lipid raft-dependent manner.
Collapse
Affiliation(s)
| | - Kamilla A Mukhutdinova
- Kazan State Medical University, 49 Butlerova St., Kazan, RT, Russia, 420012
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, RT, Russia, 420111
| | - Alexey M Petrov
- Kazan State Medical University, 49 Butlerova St., Kazan, RT, Russia, 420012.
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, RT, Russia, 420111.
- Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420008.
| |
Collapse
|
41
|
Lu Y, Jiang Y, Wang F, Wu H, Hua Y. Electron Microscopic Mapping of Mitochondrial Morphology in the Cochlear Nerve Fibers. J Assoc Res Otolaryngol 2024; 25:341-354. [PMID: 38937328 PMCID: PMC11349726 DOI: 10.1007/s10162-024-00957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
To enable nervous system function, neurons are powered in a use-dependent manner by mitochondria undergoing morphological-functional adaptation. In a well-studied model system-the mammalian cochlea, auditory nerve fibers (ANFs) display distinct electrophysiological properties, which is essential for collectively sampling acoustic information of a large dynamic range. How exactly the associated mitochondrial networks are deployed in functionally differentiated ANFs remains scarcely interrogated. Here, we leverage volume electron microscopy and machine-learning-assisted image analysis to phenotype mitochondrial morphology and distribution along ANFs of full-length in the mouse cochlea inner spiral bundle. This reveals greater variance in mitochondrial size with increased ANF habenula to terminal path length. Particularly, we analyzed the ANF terminal-residing mitochondria, which are critical for local calcium uptake during sustained afferent activities. Our results suggest that terminal-specific enrichment of mitochondria, in addition to terminal size and overall mitochondrial abundance of the ANF, correlates with heterogenous mitochondrial contents of the terminal.
Collapse
Affiliation(s)
- Yan Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Jiang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfang Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunfeng Hua
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
42
|
Liang Y, Li Y, Jiao Q, Wei M, Wang Y, Cui A, Li Z, Li G. Axonal mitophagy in retinal ganglion cells. Cell Commun Signal 2024; 22:382. [PMID: 39075570 PMCID: PMC11285280 DOI: 10.1186/s12964-024-01761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Neurons, exhibiting unique polarized structures, rely primarily on the mitochondrial production of ATP to maintain their hypermetabolic energy requirements. To maintain a normal energy supply, mitochondria are transported to the distal end of the axon. When mitochondria within the axon are critically damaged beyond their compensatory capacity, they are cleared via autophagosomal phagocytosis, and the degradation products are recycled to replenish energy. When the mitochondria are dysfunctional or their transport processes are blocked, axons become susceptible to degeneration triggered by energy depletion, resulting in neurodegenerative diseases. As the final checkpoint for mitochondrial quality control, axonal mitophagy is vital for neuronal growth, development, injury, and regeneration. Furthermore, abnormal axonal mitophagy is crucial in the pathogenesis of optic nerve-related diseases such as glaucoma. We review recent studies on axonal mitophagy and summarize the progress of research on axonal mitophagy in optic nerve-related diseases to provide insights into diseases associated with axonal damage in optic ganglion cells.
Collapse
Affiliation(s)
- Yang Liang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Yulin Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Qing Jiao
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Muyang Wei
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Yan Wang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Aoteng Cui
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihui Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Guangyu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
43
|
Li S, Gao L, Liu C, Guo H, Yu J. Biomimetic Neuromorphic Sensory System via Electrolyte Gated Transistors. SENSORS (BASEL, SWITZERLAND) 2024; 24:4915. [PMID: 39123962 PMCID: PMC11314768 DOI: 10.3390/s24154915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Biomimetic neuromorphic sensing systems, inspired by the structure and function of biological neural networks, represent a major advancement in the field of sensing technology and artificial intelligence. This review paper focuses on the development and application of electrolyte gated transistors (EGTs) as the core components (synapses and neuros) of these neuromorphic systems. EGTs offer unique advantages, including low operating voltage, high transconductance, and biocompatibility, making them ideal for integrating with sensors, interfacing with biological tissues, and mimicking neural processes. Major advances in the use of EGTs for neuromorphic sensory applications such as tactile sensors, visual neuromorphic systems, chemical neuromorphic systems, and multimode neuromorphic systems are carefully discussed. Furthermore, the challenges and future directions of the field are explored, highlighting the potential of EGT-based biomimetic systems to revolutionize neuromorphic prosthetics, robotics, and human-machine interfaces. Through a comprehensive analysis of the latest research, this review is intended to provide a detailed understanding of the current status and future prospects of biomimetic neuromorphic sensory systems via EGT sensing and integrated technologies.
Collapse
Affiliation(s)
| | | | | | | | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| |
Collapse
|
44
|
Klug S, Murgaš M, Godbersen GM, Hacker M, Lanzenberger R, Hahn A. Synaptic signaling modeled by functional connectivity predicts metabolic demands of the human brain. Neuroimage 2024; 295:120658. [PMID: 38810891 DOI: 10.1016/j.neuroimage.2024.120658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE The human brain is characterized by interacting large-scale functional networks fueled by glucose metabolism. Since former studies could not sufficiently clarify how these functional connections shape glucose metabolism, we aimed to provide a neurophysiologically-based approach. METHODS 51 healthy volunteers underwent simultaneous PET/MRI to obtain BOLD functional connectivity and [18F]FDG glucose metabolism. These multimodal imaging proxies of fMRI and PET were combined in a whole-brain extension of metabolic connectivity mapping. Specifically, functional connectivity of all brain regions were used as input to explain glucose metabolism of a given target region. This enabled the modeling of postsynaptic energy demands by incoming signals from distinct brain regions. RESULTS Functional connectivity input explained a substantial part of metabolic demands but with pronounced regional variations (34 - 76%). During cognitive task performance this multimodal association revealed a shift to higher network integration compared to resting state. In healthy aging, a dedifferentiation (decreased segregated/modular structure of the brain) of brain networks during rest was observed. Furthermore, by including data from mRNA maps, [11C]UCB-J synaptic density and aerobic glycolysis (oxygen-to-glucose index from PET data), we show that whole-brain functional input reflects non-oxidative, on-demand metabolism of synaptic signaling. The metabolically-derived directionality of functional inputs further marked them as top-down predictions. In addition, the approach uncovered formerly hidden networks with superior efficiency through metabolically informed network partitioning. CONCLUSIONS Applying multimodal imaging, we decipher a crucial part of the metabolic and neurophysiological basis of functional connections in the brain as interregional on-demand synaptic signaling fueled by anaerobic metabolism. The observed task- and age-related effects indicate promising future applications to characterize human brain function and clinical alterations.
Collapse
Affiliation(s)
- Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria.
| |
Collapse
|
45
|
Xia L, Chen J, Huang J, Lin X, Jiang J, Liu T, Huang N, Luo Y. The role of AMPKα subunit in Alzheimer's disease: In-depth analysis and future prospects. Heliyon 2024; 10:e34254. [PMID: 39071620 PMCID: PMC11279802 DOI: 10.1016/j.heliyon.2024.e34254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
The AMP-activated protein kinase α (AMPKα) subunit is the catalytic subunit in the AMPK complex, playing a crucial role in AMPK activation. It has two isoforms: AMPKα1 and AMPKα2. Emerging evidence suggests that the AMPKα subunit exhibits subtype-specific effects in Alzheimer's disease (AD). This review discusses the role of the AMPKα subunit in the pathogenesis of AD, including its impact on β-amyloid (Aβ) pathology, Tau pathology, metabolic disorders, inflammation, mitochondrial dysfunction, inflammasome and pyroptosis. Additionally, it reviews the distinct roles of its isoforms, AMPKα1 and AMPKα2, in AD, which may provide more precise targets for future drug development in AD.
Collapse
Affiliation(s)
- Lingqiong Xia
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Jianhua Chen
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Juan Huang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Xianmei Lin
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jingyu Jiang
- Department of Gastroenterology, Guizhou Aerospace Hospital, Zunyi, Guizhou, China
| | - Tingting Liu
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yong Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| |
Collapse
|
46
|
Kedia S, Awal NM, Seddon J, Marder E. Sulfonylurea receptor coupled conductances alter the performace of two central pattern generating circuits in Cancer borealis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602760. [PMID: 39026863 PMCID: PMC11257524 DOI: 10.1101/2024.07.09.602760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Neuronal activity and energy supply must maintain a fine balance for neuronal fitness. Various channels of communication between the two could impact network output in different ways. Sulfonylurea receptors (SURs) are a modification of ATP-binding cassette proteins (ABCs) that confer ATP-dependent gating on their associated ion channels. They are widely expressed and link metabolic states directly to neuronal activity. The role they play varies in different circuits, both enabling bursting and inhibiting activity in pathological conditions. The crab, Cancer borealis, has central patterns generators (CPGs) that fire in rhythmic bursts nearly constantly and it is unknown how energy availability influences these networks. The pyloric network of the stomatogastric ganglion (STG) and cardiac ganglion (GC) control rhythmic contractions of the foregut and heart respectively. Pharmacological manipulation of SURs results in opposite effects in the two CPGs. Neuronal firing completely stops in the STG when SUR-associated channels are open, and firing increases when the channels are closed. This results from a decrease in the excitability of pyloric dilator (PD) neurons, which are a part of the pacemaker kernel. The neurons of the CG, paradoxically, increase firing within bursts when SUR-associated channels are opened, and bursting slows when SUR-associated channels are closed. The channel permeability and sensitivities analyses present novel SUR-conductance biophysics, which nevertheless change activity in ways reminiscent of the predominantly studied mammalian receptor/channels. We suggest that SUR-associated conductances allow different neurons to respond to energy states in different ways through a common mechanism.
Collapse
Affiliation(s)
- Sonal Kedia
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454
| | - Naziru M Awal
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454
| | - Jackie Seddon
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454
| | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454
| |
Collapse
|
47
|
Padamsey Z, Katsanevaki D, Maeso P, Rizzi M, Osterweil EE, Rochefort NL. Sex-specific resilience of neocortex to food restriction. eLife 2024; 12:RP93052. [PMID: 38976495 PMCID: PMC11230624 DOI: 10.7554/elife.93052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Mammals have evolved sex-specific adaptations to reduce energy usage in times of food scarcity. These adaptations are well described for peripheral tissue, though much less is known about how the energy-expensive brain adapts to food restriction, and how such adaptations differ across the sexes. Here, we examined how food restriction impacts energy usage and function in the primary visual cortex (V1) of adult male and female mice. Molecular analysis and RNA sequencing in V1 revealed that in males, but not in females, food restriction significantly modulated canonical, energy-regulating pathways, including pathways associated waith AMP-activated protein kinase, peroxisome proliferator-activated receptor alpha, mammalian target of rapamycin, and oxidative phosphorylation. Moreover, we found that in contrast to males, food restriction in females did not significantly affect V1 ATP usage or visual coding precision (assessed by orientation selectivity). Decreased serum leptin is known to be necessary for triggering energy-saving changes in V1 during food restriction. Consistent with this, we found significantly decreased serum leptin in food-restricted males but no significant change in food-restricted females. Collectively, our findings demonstrate that cortical function and energy usage in female mice are more resilient to food restriction than in males. The neocortex, therefore, contributes to sex-specific, energy-saving adaptations in response to food restriction.
Collapse
Affiliation(s)
- Zahid Padamsey
- Wellcome-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Danai Katsanevaki
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| | - Patricia Maeso
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Manuela Rizzi
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Emily E Osterweil
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Center, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
48
|
Lagacé M, Tam EWY. Neonatal dysglycemia: a review of dysglycemia in relation to brain health and neurodevelopmental outcomes. Pediatr Res 2024:10.1038/s41390-024-03411-0. [PMID: 38972961 DOI: 10.1038/s41390-024-03411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024]
Abstract
Neonatal dysglycemia has been a longstanding interest of research in neonatology. Adverse outcomes from hypoglycemia were recognized early but are still being characterized. Premature infants additionally introduced and led the reflection on the importance of neonatal hyperglycemia. Cohorts of infants following neonatal encephalopathy provided further information about the impacts of hypoglycemia and, more recently, highlighted hyperglycemia as a central concern for this population. Innovative studies exposed the challenges of management of neonatal glycemic levels with a "u-shape" relationship between dysglycemia and adverse neurological outcomes. Lately, glycemic lability has been recognized as a key factor in adverse neurodevelopmental outcomes. Research and new technologies, such as MRI and continuous glucose monitoring, offered novel insight into neonatal dysglycemia. Combining clinical, physiological, and epidemiological data allowed the foundation of safe operational definitions, including initiation of treatment, to delineate neonatal hypoglycemia as ≤47 mg/dL, and >150-180 mg/dL for neonatal hyperglycemia. However, questions remain about the appropriate management of neonatal dysglycemia to optimize neurodevelopmental outcomes. Research collaborations and clinical trials with long-term follow-up and advanced use of evolving technologies will be necessary to continue to progress the fascinating world of neonatal dysglycemia and neurodevelopment outcomes. IMPACT STATEMENT: Safe operational definitions guide the initiation of treatment of neonatal hypoglycemia and hyperglycemia. Innovative studies exposed the challenges of neonatal glycemia management with a "u-shaped" relationship between dysglycemia and adverse neurological outcomes. The importance of glycemic lability is also being recognized. However, questions remain about the optimal management of neonatal dysglycemia to optimize neurodevelopmental outcomes. Research collaborations and clinical trials with long-term follow-up and advanced use of evolving technologies will be necessary to progress the fascinating world of neonatal dysglycemia and neurodevelopment outcomes.
Collapse
Affiliation(s)
- Micheline Lagacé
- Faculty of Medicine, Clinician Investigator Program, University of British Columbia, Vancouver, BC, Canada
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Emily W Y Tam
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada.
| |
Collapse
|
49
|
Li C, Jiang M, Chen Z, Hu Q, Liu Z, Wang J, Yin X, Wang J, Wu M. The neuroprotective effects of normobaric oxygen therapy after stroke. CNS Neurosci Ther 2024; 30:e14858. [PMID: 39009510 PMCID: PMC11250159 DOI: 10.1111/cns.14858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Stroke, including ischemic and hemorrhagic stroke, is a severe and prevalent acute cerebrovascular disease. The development of hypoxia following stroke can trigger a cascade of pathological events, including mitochondrial dysfunction, energy deficiency, oxidative stress, neuroinflammation, and excitotoxicity, all of which are often associated with unfavorable prognosis. Nonetheless, a noninvasive intervention, referred to as normobaric hyperoxia (NBO), is known to have neuroprotective effects against stroke. RESULTS NBO can exert neuroprotective effects through various mechanisms, such as the rescue of hypoxic tissues, preservation of the blood-brain barrier, reduction of brain edema, alleviation of neuroinflammation, improvement of mitochondrial function, mitigation of oxidative stress, reduction of excitotoxicity, and inhibition of apoptosis. These mechanisms may help improve the prognosis of stroke patients. CONCLUSIONS This review summarizes the mechanism by which hypoxia causes brain injury and how NBO can act as a neuroprotective therapy to treat stroke. We conclude that NBO has significant potential for treating stroke and may represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Chuan Li
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Zhiying Chen
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Qiongqiong Hu
- Department of NeurologyZhengzhou Central Hospital, Zhengzhou UniversityZhengzhouHenanChina
| | - Ziying Liu
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Junmin Wang
- Department of Human AnatomySchool of Basic Medical Sciences, Zhengzhou UniversityZhengzhouHenanChina
| | - Xiaoping Yin
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Jian Wang
- Department of Human AnatomySchool of Basic Medical Sciences, Zhengzhou UniversityZhengzhouHenanChina
| | - Moxin Wu
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| |
Collapse
|
50
|
Scott KL, Halfmann CT, Hoefakker AD, Purkayastha P, Wang TC, Lele TP, Roux KJ. Nucleocytoplasmic transport rates are regulated by cellular processes that modulate GTP availability. J Cell Biol 2024; 223:e202308152. [PMID: 38683248 PMCID: PMC11059771 DOI: 10.1083/jcb.202308152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Nucleocytoplasmic transport (NCT), the facilitated diffusion of cargo molecules between the nucleus and cytoplasm through nuclear pore complexes (NPCs), enables numerous fundamental eukaryotic cellular processes. Ran GTPase uses cellular energy in the direct form of GTP to create a gradient across the nuclear envelope (NE) that drives the majority of NCT. We report here that changes in GTP availability resulting from altered cellular physiology modulate the rate of NCT, as monitored using synthetic and natural cargo, and the dynamics of Ran itself. Cell migration, cell spreading, and/or modulation of the cytoskeleton or its connection to the nucleus alter GTP availability and thus rates of NCT, regulating RNA export and protein synthesis. These findings support a model in which changes in cellular physiology that alter GTP availability can regulate the rate of NCT, impacting fundamental cellular processes that extensively utilize NCT.
Collapse
Affiliation(s)
- Kelsey L. Scott
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Allison D. Hoefakker
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Purboja Purkayastha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Ting Ching Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Tanmay P. Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| | - Kyle J. Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|