1
|
Cho HE, Lee S, Seo JH, Kang SW, Choi WA, Cho SR. In Vivo Reprogramming Using Yamanaka Factors in the CNS: A Scoping Review. Cells 2024; 13:343. [PMID: 38391956 PMCID: PMC10886652 DOI: 10.3390/cells13040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Central nervous system diseases, particularly neurodegenerative disorders, pose significant challenges in medicine. These conditions, characterized by progressive neuronal loss, have remained largely incurable, exacting a heavy toll on individuals and society. In recent years, in vivo reprogramming using Yamanaka factors has emerged as a promising approach for central nervous system regeneration. This technique involves introducing transcription factors, such as Oct4, Sox2, Klf4, and c-Myc, into adult cells to induce their conversion into neurons. This review summarizes the current state of in vivo reprogramming research in the central nervous system, focusing on the use of Yamanaka factors. In vivo reprogramming using Yamanaka factors has shown promising results in several animal models of central nervous system diseases. Studies have demonstrated that this approach can promote the generation of new neurons, improve functional outcomes, and reduce scar formation. However, there are still several challenges that need to be addressed before this approach can be translated into clinical practice. These challenges include optimizing the efficiency of reprogramming, understanding the cell of origin for each transcription factor, and developing methods for reprogramming in non-subventricular zone areas. Further research is needed to overcome the remaining challenges, but this approach has the potential to revolutionize the way we treat central nervous system disorders.
Collapse
Affiliation(s)
- Han Eol Cho
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (H.E.C.); (S.-W.K.)
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Seoul 06229, Republic of Korea
| | - Siwoo Lee
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jung Hwa Seo
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seong-Woong Kang
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (H.E.C.); (S.-W.K.)
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Seoul 06229, Republic of Korea
| | - Won Ah Choi
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (H.E.C.); (S.-W.K.)
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Seoul 06229, Republic of Korea
| | - Sung-Rae Cho
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (H.E.C.); (S.-W.K.)
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Harary PM, Jgamadze D, Kim J, Wolf JA, Song H, Ming GL, Cullen DK, Chen HI. Cell Replacement Therapy for Brain Repair: Recent Progress and Remaining Challenges for Treating Parkinson's Disease and Cortical Injury. Brain Sci 2023; 13:1654. [PMID: 38137103 PMCID: PMC10741697 DOI: 10.3390/brainsci13121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Neural transplantation represents a promising approach to repairing damaged brain circuitry. Cellular grafts have been shown to promote functional recovery through "bystander effects" and other indirect mechanisms. However, extensive brain lesions may require direct neuronal replacement to achieve meaningful restoration of function. While fetal cortical grafts have been shown to integrate with the host brain and appear to develop appropriate functional attributes, the significant ethical concerns and limited availability of this tissue severely hamper clinical translation. Induced pluripotent stem cell-derived cells and tissues represent a more readily scalable alternative. Significant progress has recently been made in developing protocols for generating a wide range of neural cell types in vitro. Here, we discuss recent progress in neural transplantation approaches for two conditions with distinct design needs: Parkinson's disease and cortical injury. We discuss the current status and future application of injections of dopaminergic cells for the treatment of Parkinson's disease as well as the use of structured grafts such as brain organoids for cortical repair.
Collapse
Affiliation(s)
- Paul M. Harary
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - Dennis Jgamadze
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - Jaeha Kim
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - John A. Wolf
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D. Kacy Cullen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - H. Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Panagiotou N, McGuinness D, Jaminon AMG, Mees B, Selman C, Schurgers L, Shiels PG. Microvesicle-Mediated Tissue Regeneration Mitigates the Effects of Cellular Ageing. Cells 2023; 12:1707. [PMID: 37443741 PMCID: PMC10340655 DOI: 10.3390/cells12131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Extracellular vesicles (EVs), comprising microvesicles (MVs) and exosomes (Exos), are membranous vesicles secreted by cells which mediate the repair of cellular and tissue damage via paracrine mechanisms. The action of EVs under normative and morbid conditions in the context of ageing remains largely unexplored. We demonstrate that MVs, but not Exos, from Pathfinder cells (PCs), a putative stem cell regulatory cell type, enhance the repair of human dermal fibroblast (HDF) and mesenchymal stem cell (MSC) co-cultures, following both mechanical and genotoxic stress. Critically, this effect was found to be both cellular age and stress specific. Notably, MV treatment was unable to repair mechanical injury in older co-cultures but remained therapeutic following genotoxic stress. These observations were further confirmed in human dermal fibroblast (HDF) and vascular smooth muscle cell (VSMC) co-cultures of increasing cellular age. In a model of comorbidity comprising co-cultures of HDFs and highly senescent abdominal aortic aneurysm (AAA) VSMCs, MV administration appeared to be senotherapeutic, following both mechanical and genotoxic stress. Our data provide insights into EVs and the specific roles they play during tissue repair and ageing. These data will potentiate the development of novel cell-free therapeutic interventions capable of attenuating age-associated morbidities and avoiding undesired effects.
Collapse
Affiliation(s)
- Nikolaos Panagiotou
- Davidson Building, School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (N.P.)
| | - Dagmara McGuinness
- School of Infection & Immunity, University of Glasgow, Glasgow G12 8QQ, UK; (D.M.)
| | - Armand M. G. Jaminon
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University,
Maastricht, 6229 ER Maastricht, NetherlandsThe Netherlands
| | - Barend Mees
- Department of Vascular Surgery, Maastricht University Medical Centre (MUMC),
Maastricht, The Netherlands;
| | - Colin Selman
- Graham Kerr Building, College of Medical, Veterinary & Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Leon Schurgers
- School of Infection & Immunity, University of Glasgow, Glasgow G12 8QQ, UK; (D.M.)
- Graham Kerr Building, College of Medical, Veterinary & Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Paul G. Shiels
- Davidson Building, School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (N.P.)
| |
Collapse
|
4
|
Rájová J, Davidsson M, Avallone M, Hartnor M, Aldrin-Kirk P, Cardoso T, Nolbrant S, Mollbrink A, Storm P, Heuer A, Parmar M, Björklund T. Deconvolution of spatial sequencing provides accurate characterization of hESC-derived DA transplants in vivo. Mol Ther Methods Clin Dev 2023; 29:381-394. [PMID: 37251982 PMCID: PMC10209706 DOI: 10.1016/j.omtm.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Cell therapy for Parkinson's disease has experienced substantial growth in the past decades with several ongoing clinical trials. Despite increasing refinement of differentiation protocols and standardization of the transplanted neural precursors, the transcriptomic analysis of cells in the transplant after its full maturation in vivo has not been thoroughly investigated. Here, we present spatial transcriptomics analysis of fully differentiated grafts in their host tissue. Unlike earlier transcriptomics analyses using single-cell technologies, we observe that cells derived from human embryonic stem cells (hESCs) in the grafts adopt mature dopaminergic signatures. We show that the presence of phenotypic dopaminergic genes, which were found to be differentially expressed in the transplants, is concentrated toward the edges of the grafts, in agreement with the immunohistochemical analyses. Deconvolution shows dopamine neurons being the dominating cell type in many features beneath the graft area. These findings further support the preferred environmental niche of TH-positive cells and confirm their dopaminergic phenotype through the presence of multiple dopaminergic markers.
Collapse
Affiliation(s)
- Jana Rájová
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Marcus Davidsson
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Martino Avallone
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Morgan Hartnor
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Patrick Aldrin-Kirk
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Tiago Cardoso
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Sara Nolbrant
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Annelie Mollbrink
- Science for Life Laboratory, Division of Gene Technology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Petter Storm
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
5
|
Wan Y, Ding Y. Strategies and mechanisms of neuronal reprogramming. Brain Res Bull 2023; 199:110661. [PMID: 37149266 DOI: 10.1016/j.brainresbull.2023.110661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Traumatic injury and neurodegenerative diseases of the central nervous system (CNS) are difficult to treat due to the poorly regenerative nature of neurons. Engrafting neural stem cells into the CNS is a classic approach for neuroregeneration. Despite great advances, stem cell therapy still faces the challenges of overcoming immunorejection and achieving functional integration. Neuronal reprogramming, a recent innovation, converts endogenous non-neuronal cells (e.g., glial cells) into mature neurons in the adult mammalian CNS. In this review, we summarize the progress of neuronal reprogramming research, mainly focusing on strategies and mechanisms of reprogramming. Furthermore, we highlight the advantages of neuronal reprogramming and outline related challenges. Although the significant development has been made in this field, several findings are controversial. Even so, neuronal reprogramming, especially in vivo reprogramming, is expected to become an effective treatment for CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Yue Wan
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Ding
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Zheng X, Han D, Liu W, Wang X, Pan N, Wang Y, Chen Z. Human iPSC-derived midbrain organoids functionally integrate into striatum circuits and restore motor function in a mouse model of Parkinson's disease. Theranostics 2023; 13:2673-2692. [PMID: 37215566 PMCID: PMC10196819 DOI: 10.7150/thno.80271] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/15/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: Parkinson's disease (PD) is a prevalent neurodegenerative disorder that is characterized by degeneration of dopaminergic neurons (DA) at the substantia nigra pas compacta (SNpc). Cell therapy has been proposed as a potential treatment option for PD, with the aim of replenishing the lost DA neurons and restoring motor function. Fetal ventral mesencephalon tissues (fVM) and stem cell-derived DA precursors cultured in 2-dimentional (2-D) culture conditions have shown promising therapeutic outcomes in animal models and clinical trials. Recently, human induced pluripotent stem cells (hiPSC)-derived human midbrain organoids (hMOs) cultured in 3-dimentional (3-D) culture conditions have emerged as a novel source of graft that combines the strengths of fVM tissues and 2-D DA cells. Methods: 3-D hMOs were induced from three distinct hiPSC lines. hMOs at various stages of differentiation were transplanted as tissue pieces into the striatum of naïve immunodeficient mouse brains, with the aim of identifying the most suitable stage of hMOs for cellular therapy. The hMOs at Day 15 were determined to be the most appropriate stage and were transplanted into a PD mouse model to assess cell survival, differentiation, and axonal innervation in vivo. Behavioral tests were conducted to evaluate functional restoration following hMO treatment and to compare the therapeutic effects between 2-D and 3-D cultures. Rabies virus were introduced to identify the host presynaptic input onto the transplanted cells. Results: hMOs showed a relatively homogeneous cell composition, mostly consisting of dopaminergic cells of midbrain lineage. Analysis conducted 12 weeks post-transplantation of day 15 hMOs revealed that 14.11% of the engrafted cells expressed TH+ and over 90% of these cells were co-labeled with GIRK2+, indicating the survival and maturation of A9 mDA neurons in the striatum of PD mice. Transplantation of hMOs led to a reversal of motor function and establishment of bidirectional connections with natural brain target regions, without any incidence of tumor formation or graft overgrowth. Conclusion: The findings of this study highlight the potential of hMOs as safe and efficacious donor graft sources for cell therapy to treat PD.
Collapse
Affiliation(s)
- Xin Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Deqiang Han
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Weihua Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Xueyao Wang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Na Pan
- The Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yuping Wang
- The Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| |
Collapse
|
7
|
Hunt CPJ, Moriarty N, van Deursen CBJ, Gantner CW, Thompson LH, Parish CL. Understanding and modeling regional specification of the human ganglionic eminence. Stem Cell Reports 2023; 18:654-671. [PMID: 36801004 PMCID: PMC10031306 DOI: 10.1016/j.stemcr.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Inhibitory neurons originating from the ventral forebrain are associated with several neurological conditions. Distinct ventral forebrain subpopulations are generated from topographically defined zones; lateral-, medial- and caudal ganglionic eminences (LGE, MGE and CGE), yet key specification factors often span across developing zones contributing to difficulty in defining unique LGE, MGE or CGE profiles. Here we use human pluripotent stem cell (hPSC) reporter lines (NKX2.1-GFP and MEIS2-mCherry) and manipulation of morphogen gradients to gain greater insight into regional specification of these distinct zones. We identified Sonic hedgehog (SHH)-WNT crosstalk in regulating LGE and MGE fate and uncovered a role for retinoic acid signaling in CGE development. Unraveling the influence of these signaling pathways permitted development of fully defined protocols that favored generation of the three GE domains. These findings provide insight into the context-dependent role of morphogens in human GE specification and are of value for in vitro disease modeling and advancement of new therapies.
Collapse
Affiliation(s)
- Cameron P J Hunt
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Niamh Moriarty
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Coen B J van Deursen
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Carlos W Gantner
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
8
|
Ma Y, Zhao X, Chen J, Chen X, Fan W, Sun Y, Lin Z, Fu L, Zou H, Mou X. Umbilical cord mesenchymal‐stem‐cell‐derived nanovesicles as a novel strategy to promote wound healing in diabetes. NANO SELECT 2023. [DOI: 10.1002/nano.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Affiliation(s)
- Ying‐Yu Ma
- Center for Plastic & Reconstructive Surgery Department of Plastic and Reconstructive Surgery Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
| | - Xin Zhao
- Center for Plastic & Reconstructive Surgery Department of Plastic and Reconstructive Surgery Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province Clinical Research Institute Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
- College of Pharmacy Hangzhou Medical College Hangzhou China
| | - Jin‐Yang Chen
- Zhejiang Health future Biomedicine Co., Ltd Hangzhou China
| | - Xiao‐Yi Chen
- Center for Plastic & Reconstructive Surgery Department of Plastic and Reconstructive Surgery Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province Clinical Research Institute Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
| | - Wei‐Jiao Fan
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province Clinical Research Institute Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
| | - Yi Sun
- Center for Plastic & Reconstructive Surgery Department of Plastic and Reconstructive Surgery Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
| | - Zhi‐Wei Lin
- Zhejiang Health future Biomedicine Co., Ltd Hangzhou China
| | - Luo‐Qin Fu
- Center for Plastic & Reconstructive Surgery Department of Plastic and Reconstructive Surgery Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province Clinical Research Institute Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
| | - Hai Zou
- Department of Oncology Shanghai Medical College Fudan University Shanghai China
- Department of Critical Care Fudan University Shanghai Cancer Center Shanghai China
| | - Xiao‐Zhou Mou
- Center for Plastic & Reconstructive Surgery Department of Plastic and Reconstructive Surgery Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province Clinical Research Institute Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
- College of Pharmacy Hangzhou Medical College Hangzhou China
| |
Collapse
|
9
|
Zhang L, Zhang X, Ji R, Ji Y, Wu Y, Ding X, Shang Z, Liu X, Li W, Guo J, Wang J, Cheng X, Qin J, Tian M, Jin G, Zhang X. Lama2 And Samsn1 Mediate the Effects of Brn4 on Hippocampal Neural Stem Cell Proliferation and Differentiation. Stem Cells Int 2023; 2023:7284986. [PMID: 37091532 PMCID: PMC10118897 DOI: 10.1155/2023/7284986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/14/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
The transcription factor Brn4 exhibits vital roles in the embryonic development of the neural tube, inner ear, pancreas islet, and neural stem cell differentiation. Our previous studies have shown that Brn4 promotes neuronal differentiation of hippocampal neural stem cells (NSCs). However, its mechanism is still unclear. Here, starting from the overlapping genes between RNA-seq and ChIP-seq results, we explored the downstream target genes that mediate Brn4-induced hippocampal neurogenesis. There were 16 genes at the intersection of RNA-seq and ChIP-seq, among which the Lama2 and Samsn1 levels can be upregulated by Brn4, and the combination between their promoters and Brn4 was further determined using ChIP and dual luciferase reporter gene assays. EdU incorporation, cell cycle analysis, and CCK-8 assay indicated that Lama2 and Samsn1 mediated the inhibitory effect of Brn4 on the proliferation of hippocampal NSCs. Immunofluorescence staining, RT-qPCR, and Western blot suggested that Lama2 and Samsn1 mediated the promoting effect of Brn4 on the differentiation of hippocampal NSCs into neurons. In conclusion, our study demonstrates that Brn4 binds to the promoters of Lama2 and Samsn1, and they partially mediate the regulation of Brn4 on the proliferation inhibition and neuronal differentiation promotion of hippocampal NSCs.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xunrui Zhang
- Faculty of Medicine, Xinglin College, Nantong University, Nantong, China
| | - Ruijie Ji
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yaya Ji
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuhang Wu
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiuyu Ding
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhiying Shang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xueyuan Liu
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wen Li
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jingjing Guo
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jue Wang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiang Cheng
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianbing Qin
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Meiling Tian
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Guohua Jin
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xinhua Zhang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Central Lab, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng 224002, China
| |
Collapse
|
10
|
Carmichael ST, Llorente IL. The Ties That Bind: Glial Transplantation in White Matter Ischemia and Vascular Dementia. Neurotherapeutics 2023; 20:39-47. [PMID: 36357662 PMCID: PMC10119342 DOI: 10.1007/s13311-022-01322-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
White matter injury is a progressive vascular disease that leads to neurological deficits and vascular dementia. It comprises up to 30% of all diagnosed strokes, though up to ten times as many events go undiagnosed in early stages. There are several pathologies that can lead to white matter injury. While some studies suggest that white matter injury starts as small infarcts in deep penetrating blood vessels in the brain, others point to the breakdown of endothelial function or the blood-brain barrier as the primary cause of the disease. Whether due to local endothelial or BBB dysfunction, or to local small infarcts (or a combination), white matter injury progresses, accumulates, and expands from preexisting lesions into adjacent white matter to produce motor and cognitive deficits that present as vascular dementia in the elderly. Vascular dementia is the second leading cause of dementia, and white matter injury-attributed vascular dementia represents 40% of all diagnosed dementias and aggravates Alzheimer's pathology. Despite the advances in the last 15 years, there are few animal models of progressive subcortical white matter injury or vascular dementia. This review will discuss recent progress in animal modeling of white matter injury and the emerging principles to enhance glial function as a means of promoting repair and recovery.
Collapse
Affiliation(s)
- S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles E Young Drive South, NRB 407, Los Angeles, CA, 90095, USA
| | - Irene L Llorente
- Department of Neurosurgery, Stanford University, 3801 Miranda Ave, 94304, Palo alto, USA.
| |
Collapse
|
11
|
Cha Y, Park TY, Leblanc P, Kim KS. Current Status and Future Perspectives on Stem Cell-Based Therapies for Parkinson's Disease. J Mov Disord 2023; 16:22-41. [PMID: 36628428 PMCID: PMC9978267 DOI: 10.14802/jmd.22141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/29/2022] [Indexed: 01/12/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting 1%-2% of the population over the age of 65. As the population ages, it is anticipated that the burden on society will significantly escalate. Although symptom reduction by currently available pharmacological and/or surgical treatments improves the quality of life of many PD patients, there are no treatments that can slow down, halt, or reverse disease progression. Because the loss of a specific cell type, midbrain dopamine neurons in the substantia nigra, is the main cause of motor dysfunction in PD, it is considered a promising target for cell replacement therapy. Indeed, numerous preclinical and clinical studies using fetal cell transplantation have provided proof of concept that cell replacement therapy may be a viable therapeutic approach for PD. However, the use of human fetal cells remains fraught with controversy due to fundamental ethical, practical, and clinical limitations. Groundbreaking work on human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, coupled with extensive basic research in the stem cell field offers promising potential for hPSC-based cell replacement to become a realistic treatment regimen for PD once several major issues can be successfully addressed. In this review, we will discuss the prospects and challenges of hPSC-based cell therapy for PD.
Collapse
Affiliation(s)
- Young Cha
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Tae-Yoon Park
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Pierre Leblanc
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Kwang-Soo Kim
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
12
|
Conforti P, Bocchi VD, Campus I, Scaramuzza L, Galimberti M, Lischetti T, Talpo F, Pedrazzoli M, Murgia A, Ferrari I, Cordiglieri C, Fasciani A, Arenas E, Felsenfeld D, Biella G, Besusso D, Cattaneo E. In vitro-derived medium spiny neurons recapitulate human striatal development and complexity at single-cell resolution. CELL REPORTS METHODS 2022; 2:100367. [PMID: 36590694 PMCID: PMC9795363 DOI: 10.1016/j.crmeth.2022.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/06/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Stem cell engineering of striatal medium spiny neurons (MSNs) is a promising strategy to understand diseases affecting the striatum and for cell-replacement therapies in different neurological diseases. Protocols to generate cells from human pluripotent stem cells (PSCs) are scarce and how well they recapitulate the endogenous fetal cells remains poorly understood. We have developed a protocol that modulates cell seeding density and exposure to specific morphogens that generates authentic and functional D1- and D2-MSNs with a high degree of reproducibility in 25 days of differentiation. Single-cell RNA sequencing (scRNA-seq) shows that our cells can mimic the cell-fate acquisition steps observed in vivo in terms of cell type composition, gene expression, and signaling pathways. Finally, by modulating the midkine pathway we show that we can increase the yield of MSNs. We expect that this protocol will help decode pathogenesis factors in striatal diseases and eventually facilitate cell-replacement therapies for Huntington's disease (HD).
Collapse
Affiliation(s)
- Paola Conforti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy
- Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Vittoria Dickinson Bocchi
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy
- Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Ilaria Campus
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy
- Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Linda Scaramuzza
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy
- Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Maura Galimberti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy
- Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Tiziana Lischetti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy
- Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Francesca Talpo
- Department of Biology and Biotechnologies, University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
| | - Matteo Pedrazzoli
- Department of Biology and Biotechnologies, University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
| | - Alessio Murgia
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy
- Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Ivan Ferrari
- Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Chiara Cordiglieri
- Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Alessandra Fasciani
- Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Ernest Arenas
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Solnavägen 9, 17177 Stockholm, Sweden
| | | | - Gerardo Biella
- Department of Biology and Biotechnologies, University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
| | - Dario Besusso
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy
- Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Elena Cattaneo
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy
- Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| |
Collapse
|
13
|
Koh YE, Choi EH, Kim JW, Kim KP. The Kleisin Subunits of Cohesin are Involved in the Fate Determination of Embryonic Stem Cells. Mol Cells 2022; 45:820-832. [PMID: 36172976 PMCID: PMC9676991 DOI: 10.14348/molcells.2022.2042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/20/2022] [Accepted: 07/24/2022] [Indexed: 11/27/2022] Open
Abstract
As a potential candidate to generate an everlasting cell source to treat various diseases, embryonic stem cells are regarded as a promising therapeutic tool in the regenerative medicine field. Cohesin, a multi-functional complex that controls various cellular activities, plays roles not only in organizing chromosome dynamics but also in controlling transcriptional activities related to self-renewal and differentiation of stem cells. Here, we report a novel role of the α-kleisin subunits of cohesin (RAD21 and REC8) in the maintenance of the balance between these two stem-cell processes. By knocking down REC8, RAD21, or the non-kleisin cohesin subunit SMC3 in mouse embryonic stem cells, we show that reduction in cohesin level impairs their self-renewal. Interestingly, the transcriptomic analysis revealed that knocking down each cohesin subunit enables the differentiation of embryonic stem cells into specific lineages. Specifically, embryonic stem cells in which cohesin subunit RAD21 were knocked down differentiated into cells expressing neural alongside germline lineage markers. Thus, we conclude that cohesin appears to control the fate determination of embryonic stem cells.
Collapse
Affiliation(s)
- Young Eun Koh
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- Genexine Inc., Bio Innovation Park, Seoul 07789, Korea
| | - Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Jung-Woong Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
14
|
Gomez Limia C, Baird M, Schwartz M, Saxena S, Meyer K, Wein N. Emerging Perspectives on Gene Therapy Delivery for Neurodegenerative and Neuromuscular Disorders. J Pers Med 2022; 12:1979. [PMID: 36556200 PMCID: PMC9788053 DOI: 10.3390/jpm12121979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD) and Parkinson's Disease (PD), are a group of heterogeneous diseases that mainly affect central nervous system (CNS) functions. A subset of NDDs exhibit CNS dysfunction and muscle degeneration, as observed in Gangliosidosis 1 (GM1) and late stages of PD. Neuromuscular disorders (NMDs) are a group of diseases in which patients show primary progressive muscle weaknesses, including Duchenne Muscular Dystrophy (DMD), Pompe disease, and Spinal Muscular Atrophy (SMA). NDDs and NMDs typically have a genetic component, which affects the physiological functioning of critical cellular processes, leading to pathogenesis. Currently, there is no cure or efficient treatment for most of these diseases. More than 200 clinical trials have been completed or are currently underway in order to establish safety, tolerability, and efficacy of promising gene therapy approaches. Thus, gene therapy-based therapeutics, including viral or non-viral delivery, are very appealing for the treatment of NDDs and NMDs. In particular, adeno-associated viral vectors (AAV) are an attractive option for gene therapy for NDDs and NMDs. However, limitations have been identified after systemic delivery, including the suboptimal capacity of these therapies to traverse the blood-brain barrier (BBB), degradation of the particles during the delivery, high reactivity of the patient's immune system during the treatment, and the potential need for redosing. To circumvent these limitations, several preclinical and clinical studies have suggested intrathecal (IT) delivery to target the CNS and peripheral organs via cerebrospinal fluid (CSF). CSF administration can vastly improve the delivery of small molecules and drugs to the brain and spinal cord as compared to systemic delivery. Here, we review AAV biology and vector design elements, different therapeutic routes of administration, and highlight CSF delivery as an attractive route of administration. We discuss the different aspects of neuromuscular and neurodegenerative diseases, such as pathogenesis, the landscape of mutations, and the biological processes associated with the disease. We also describe the hallmarks of NDDs and NMDs as well as discuss current therapeutic approaches and clinical progress in viral and non-viral gene therapy and enzyme replacement strategies for those diseases.
Collapse
Affiliation(s)
- Cintia Gomez Limia
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Megan Baird
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Maura Schwartz
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Smita Saxena
- Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - Kathrin Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
15
|
Salahi S, Mousavi MA, Azizi G, Hossein-Khannazer N, Vosough M. Stem Cell-based and Advanced Therapeutic Modalities for Parkinson's Disease: A Risk-effectiveness Patient-centered Analysis. Curr Neuropharmacol 2022; 20:2320-2345. [PMID: 35105291 PMCID: PMC9890289 DOI: 10.2174/1570159x20666220201100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/29/2022] Open
Abstract
Treatment of Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, is currently considered a challenging issue since it causes substantial disability, poor quality of life, and mortality. Despite remarkable progress in advanced conventional therapeutic interventions, the global burden of the disease has nearly doubled, prompting us to assess the riskeffectiveness of different treatment modalities. Each protocol could be considered as the best alternative treatment depending on the patient's situation. Prescription of levodopa, the most effective available medicine for this disorder, has been associated with many complications, i.e., multiple episodes of "off-time" and treatment resistance. Other medications, which are typically used in combination with levodopa, may have several adverse effects as well. As a result, the therapies that are more in line with human physiology and make the least interference with other pathways are worth investigating. On the other hand, remaining and persistent symptoms after therapy and the lack of effective response to the conventional approaches have raised expectations towards innovative alternative approaches, such as stem cell-based therapy. It is critical to not overlook the unexplored side effects of innovative approaches due to the limited number of research. In this review, we aimed to compare the efficacy and risk of advanced therapies with innovative cell-based and stemcell- based modalities in PD patients. This paper recapitulated the underlying factors/conditions, which could lead us to more practical and established therapeutic outcomes with more advantages and few complications. It could be an initial step to reconsider the therapeutic blueprint for patients with Parkinson's disease.
Collapse
Affiliation(s)
- Sarvenaz Salahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Alsadat Mousavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research, Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
16
|
Limone F, Klim JR, Mordes DA. Pluripotent stem cell strategies for rebuilding the human brain. Front Aging Neurosci 2022; 14:1017299. [PMID: 36408113 PMCID: PMC9667068 DOI: 10.3389/fnagi.2022.1017299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/27/2022] [Indexed: 01/03/2023] Open
Abstract
Neurodegenerative disorders have been extremely challenging to treat with traditional drug-based approaches and curative therapies are lacking. Given continued progress in stem cell technologies, cell replacement strategies have emerged as concrete and potentially viable therapeutic options. In this review, we cover advances in methods used to differentiate human pluripotent stem cells into several highly specialized types of neurons, including cholinergic, dopaminergic, and motor neurons, and the potential clinical applications of stem cell-derived neurons for common neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, ataxia, and amyotrophic lateral sclerosis. Additionally, we summarize cellular differentiation techniques for generating glial cell populations, including oligodendrocytes and microglia, and their conceivable translational roles in supporting neural function. Clinical trials of specific cell replacement therapies in the nervous system are already underway, and several attractive avenues in regenerative medicine warrant further investigation.
Collapse
Affiliation(s)
- Francesco Limone
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, United States
- Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Leiden University Medical Center, Leiden, Netherlands
| | | | - Daniel A. Mordes
- Institute for Neurodegenerative Diseases, Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
17
|
Zayed MA, Sultan S, Alsaab HO, Yousof SM, Alrefaei GI, Alsubhi NH, Alkarim S, Al Ghamdi KS, Bagabir SA, Jana A, Alghamdi BS, Atta HM, Ashraf GM. Stem-Cell-Based Therapy: The Celestial Weapon against Neurological Disorders. Cells 2022; 11:3476. [PMID: 36359871 PMCID: PMC9655836 DOI: 10.3390/cells11213476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Stem cells are a versatile source for cell therapy. Their use is particularly significant for the treatment of neurological disorders for which no definitive conventional medical treatment is available. Neurological disorders are of diverse etiology and pathogenesis. Alzheimer's disease (AD) is caused by abnormal protein deposits, leading to progressive dementia. Parkinson's disease (PD) is due to the specific degeneration of the dopaminergic neurons causing motor and sensory impairment. Huntington's disease (HD) includes a transmittable gene mutation, and any treatment should involve gene modulation of the transplanted cells. Multiple sclerosis (MS) is an autoimmune disorder affecting multiple neurons sporadically but induces progressive neuronal dysfunction. Amyotrophic lateral sclerosis (ALS) impacts upper and lower motor neurons, leading to progressive muscle degeneration. This shows the need to try to tailor different types of cells to repair the specific defect characteristic of each disease. In recent years, several types of stem cells were used in different animal models, including transgenic animals of various neurologic disorders. Based on some of the successful animal studies, some clinical trials were designed and approved. Some studies were successful, others were terminated and, still, a few are ongoing. In this manuscript, we aim to review the current information on both the experimental and clinical trials of stem cell therapy in neurological disorders of various disease mechanisms. The different types of cells used, their mode of transplantation and the molecular and physiologic effects are discussed. Recommendations for future use and hopes are highlighted.
Collapse
Affiliation(s)
- Mohamed A. Zayed
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Physiology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Samar Sultan
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Shimaa Mohammad Yousof
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Nouf H. Alsubhi
- Department of Biological Sciences, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Saleh Alkarim
- Embryonic and Cancer Stem Cell Research Group, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cells Research Unit, Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kholoud S. Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sali Abubaker Bagabir
- Genetic Unit, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hazem M. Atta
- Clinical Biochemistry Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
18
|
Liang L, Tian Y, Feng L, Wang C, Feng G, Stacey GN, Shyh-Chang N, Wu J, Hu B, Li W, Hao J, Wang L, Wang Y. Single-cell transcriptomics reveals the cell fate transitions of human dopaminergic progenitors derived from hESCs. Stem Cell Res Ther 2022; 13:412. [PMID: 35964138 PMCID: PMC9375405 DOI: 10.1186/s13287-022-03104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Midbrain dopaminergic (DA) progenitors derived from human pluripotent stem cells are considered to be a promising treatment for Parkinson’s disease (PD). However, the differentiation process produces undesired cell types, which influence the in vivo evaluation of DA cells. In this paper, we analyze the cell fate choice during differentiation and provide valuable information on cell preparation. Methods Human embryonic stem cells were differentiated into DA progenitors. We applied single-cell RNA sequencing (scRNA-seq) of the differentiation cells at different time points and investigated the gene expression profiles. Based on the differentially expressed genes between DA and non-DA cells, we investigated the impact of LGI1 (DA enriched) overexpression on DA differentiation and the enrichment effect of CD99 (non-DA enriched) sorting. Results Transcriptome analyses revealed the DA differentiation trajectory as well as non-DA populations and three key lineage branch points. Using genetic gain- and loss-of-function approaches, we found that overexpression of LGI1, which is specific to EN1+ early DA progenitors, can promote the generation of TH+ neurons. We also found that choroid plexus epithelial cells and DA progenitors are major components of the final product (day 25), and CD99 was a specific surface marker of choroid plexus epithelial cells. Sorting of CD99− cells eliminated major contaminant cells and improved the purity of DA progenitors. Conclusions Our study provides the single-cell transcriptional landscape of in vitro DA differentiation, which can guide future improvements in DA preparation and quality control for PD cell therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03104-7.
Collapse
Affiliation(s)
- Lingmin Liang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Yao Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Lin Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Chaoqun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Glyn Nigel Stacey
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China.,International Stem Cell Banking Initiative, Hertfordshire, UK
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China. .,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100864, China.
| | - Yukai Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China. .,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
19
|
Johnson HJ, Chakraborty S, Muckom RJ, Balsara NP, Schaffer DV. A scalable and tunable thermoreversible polymer for 3D human pluripotent stem cell biomanufacturing. iScience 2022; 25:104971. [PMID: 36147944 PMCID: PMC9485071 DOI: 10.1016/j.isci.2022.104971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/07/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are an exciting and promising source to enable cell replacement therapies for a variety of unmet medical needs. Though hPSCs can be successfully derived into numerous physiologically relevant cell types, effective translation to the clinic is limited by challenges in scalable production of high-quality cells, cellular immaturity following the differentiation process, and the use of animal-derived components in culture. To address these limitations, we have developed a fully defined, reproducible, and tunable thermoreversible polymer for high-quality, scalable 3D cell production. Our reproducible synthesis method enables precise control of gelation temperature (24°C–32°C), hydrogel stiffness (100–4000 Pa), and the prevention of any unintended covalent crosslinking. After material optimization, we demonstrated hPSC expansion, pluripotency maintenance, and differentiation into numerous lineages within the hydrogel. Overall, this 3D thermoreversible hydrogel platform has broad applications in scalable, high-quality cell production to overcome the biomanufacturing burden of stem cell therapy. Synthesis of a scalable, tunable, and reproducible thermoreversible hydrogel Optimization of hydrogel properties including stiffness, LCST, and viscosity Expansion and pluripotency maintenance of hESCs in the hydrogel platform Differentiation of neurons, cardiomyocytes, and hepatocytes in the hydrogel platform
Collapse
|
20
|
Modulating Microglia/Macrophage Activation by CDNF Promotes Transplantation of Fetal Ventral Mesencephalic Graft Survival and Function in a Hemiparkinsonian Rat Model. Biomedicines 2022; 10:biomedicines10061446. [PMID: 35740467 PMCID: PMC9221078 DOI: 10.3390/biomedicines10061446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons in substantia nigra pars compacta, which leads to the motor control deficits. Recently, cell transplantation is a cutting-edge technique for the therapy of PD. Nevertheless, one key bottleneck to realizing such potential is allogenic immune reaction of tissue grafts by recipients. Cerebral dopamine neurotrophic factor (CDNF) was shown to possess immune-modulatory properties that benefit neurodegenerative diseases. We hypothesized that co-administration of CDNF with fetal ventral mesencephalic (VM) tissue can improve the success of VM replacement therapies by attenuating immune responses. Hemiparkinsonian rats were generated by injecting 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle of Sprague Dawley (SD) rats. The rats were then intrastriatally transplanted with VM tissue from rats, with/without CDNF administration. Recovery of dopaminergic function and survival of the grafts were evaluated using the apomorphine-induced rotation test and small-animal positron emission tomography (PET) coupled with [18F] DOPA or [18F] FE-PE2I, respectively. In addition, transplantation-related inflammatory response was determined by uptake of [18F] FEPPA in the grafted side of striatum. Immunohistochemistry (IHC) examination was used to determine the survival of the grated dopaminergic neurons in the striatum and to investigate immune-modulatory effects of CDNF. The modulation of inflammatory responses caused by CDNF might involve enhancing M2 subset polarization and increasing fractal dimensions of 6-OHDA-treated BV2 microglial cell line. Analysis of CDNF-induced changes to gene expressions of 6-OHDA-stimulated BV2 cells implies that these alternations of the biomarkers and microglial morphology are implicated in the upregulation of protein kinase B signaling as well as regulation of catalytic, transferase, and protein serine/threonine kinase activity. The effects of CDNF on 6-OHDA-induced alternation of the canonical pathway in BV2 microglial cells is highly associated with PI3K-mediated phagosome formation. Our results are the first to show that CDNF administration enhances the survival of the grafted dopaminergic neurons and improves functional recovery in PD animal model. Modulation of the polarization, morphological characteristics, and transcriptional profiles of 6-OHDA-stimualted microglia by CDNF may possess these properties in transplantation-based regenerative therapies.
Collapse
|
21
|
Optimizing maturity and dose of iPSC-derived dopamine progenitor cell therapy for Parkinson's disease. NPJ Regen Med 2022; 7:24. [PMID: 35449132 PMCID: PMC9023503 DOI: 10.1038/s41536-022-00221-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/22/2022] [Indexed: 12/25/2022] Open
Abstract
In pursuit of treating Parkinson’s disease with cell replacement therapy, differentiated induced pluripotent stem cells (iPSC) are an ideal source of midbrain dopaminergic (mDA) cells. We previously established a protocol for differentiating iPSC-derived post-mitotic mDA neurons capable of reversing 6-hydroxydopamine-induced hemiparkinsonism in rats. In the present study, we transitioned the iPSC starting material and defined an adapted differentiation protocol for further translation into a clinical cell transplantation therapy. We examined the effects of cellular maturity on survival and efficacy of the transplants by engrafting mDA progenitors (cryopreserved at 17 days of differentiation, D17), immature neurons (D24), and post-mitotic neurons (D37) into immunocompromised hemiparkinsonian rats. We found that D17 progenitors were markedly superior to immature D24 or mature D37 neurons in terms of survival, fiber outgrowth and effects on motor deficits. Intranigral engraftment to the ventral midbrain demonstrated that D17 cells had a greater capacity than D24 cells to innervate over long distance to forebrain structures, including the striatum. When D17 cells were assessed across a wide dose range (7,500-450,000 injected cells per striatum), there was a clear dose response with regards to numbers of surviving neurons, innervation, and functional recovery. Importantly, although these grafts were derived from iPSCs, we did not observe teratoma formation or significant outgrowth of other cells in any animal. These data support the concept that human iPSC-derived D17 mDA progenitors are suitable for clinical development with the aim of transplantation trials in patients with Parkinson’s disease.
Collapse
|
22
|
Wei SW, Zou MM, Huan J, Li D, Zhang PF, Lu MH, Xiong J, Ma YX. Role of the hydrogen sulfide-releasing donor ADT-OH in the regulation of mammal neural precursor cells. J Cell Physiol 2022; 237:2877-2887. [PMID: 35342944 DOI: 10.1002/jcp.30726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 11/06/2022]
Abstract
Neural precursor cells (NPCs) generate new neurons to supplement neuronal loss as well as to repair damaged neural circuits. Therefore, NPCs have potential applications in a variety of neurological diseases, such as spinal cord injury, traumatic brain injury, and glaucoma. Specifically, improving NPCs proliferation and manipulating their differentiated cell types can be a beneficial therapy for a variety of these diseases. ADT-OH is a slow-releasing organic H2 S donor that produces a slow and continuous release of H2 S to maintain normal brain functions. In this study, we aimed to explore the effect of ADT-OH on NPCs. Our results demonstrated that ADT-OH promotes self-renewal and antiapoptosis ability of cultured NPCs. Additionally, it facilitates more NPCs to differentiate into neurons and oligodendrocytes, while inhibiting their differentiation into astrocytes. Furthermore, it enhances axonal growth. Moreover, we discovered that the mRNA and protein expression of β-catenin, TCF7L2, c-Myc, Ngn1, and Ngn2, which are key genes that regulate NPCs self-renewal and differentiation, were increased in the presence of ADT-OH. Altogether, these results indicate that ADT-OH may be a promising drug to regulate the neurogenesis of NPCs, and needs to be studied in the future for clinical application potential.
Collapse
Affiliation(s)
- Shan-Wen Wei
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, China
| | - Ming-Ming Zou
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jian Huan
- Department of Radiation Oncology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Di Li
- Department of Rehabilitation, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Peng-Fei Zhang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mei-Hong Lu
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Xiong
- Department of Rehabilitation, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Yan-Xia Ma
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Alghamdi BS. The Effect of Melatonin and Exercise on Social Isolation-Related Behavioral Changes in Aged Rats. Front Aging Neurosci 2022; 14:828965. [PMID: 35211007 PMCID: PMC8861461 DOI: 10.3389/fnagi.2022.828965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Social isolation (SI) is well established as an environmental factor that negatively influences different behavioral parameters, including cognitive function, anxiety, and social interaction, depending on the age of isolation. Aging is a physiological process that is associated with changes in cognitive function, locomotor activity, anxiety and emotional responses. Few studies have investigated the effect of SI in senescence, or possible interventions. In the current study, we investigated the possible complementary effects of melatonin (MLT) and exercise (Ex) in improving SI-related behavioral changes in aged rats. Forty aged Wistar rats (24 months old) were randomly divided into five groups (n = 8 per group): Control (group housing), SI (individual housing for 7 weeks), SI + MLT (SI rats treated with 0.4 mg MLT/ml in drinking water), SI + Ex (SI rats treated with 60 min of swimming), and SI + MLT + Ex (SI rats treated with both MLT and Ex). Different behavioral tasks were conducted in the following sequence: open field test, elevated plus maze test, sucrose preference test, Y maze test, and Morris water maze test. Locomotor activities measured by total distance moved and velocity revealed that SI + Ex (P = 0.0038; P = 0.0015) and SI + MLT + Ex (P = 0.0001; P = 0.0003) significantly improved the locomotor activity compared with SI rats but SI + MLT (P = 0.0599; P = 0.0627) rats showed no significant change. Anxiety index score was significantly improved in SI + MLT + Ex (P = 0.0256) compared with SI rats while SI + MLT (P > 0.9999) and SI + Ex (P = 0.2943) rats showed no significant change. Moreover, latency to reach the platform in Morris water maze was significantly reduced at day 5 in SI + MLT + Ex (P = 0.0457) compared with SI rats but no change was detected in SI + MLT (P = 0.7314) or SI + Ex (P = 0.1676) groups. In conclusion, this study supports the possible potential of MLT in combination with Ex in improving physical activity, anxiety, and cognitive functions in aging population.
Collapse
Affiliation(s)
- Badrah Saeed Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Badrah Saeed Alghamdi, ; orcid.org/0000-0002-9411-3609
| |
Collapse
|
24
|
Rahman MM, Islam MR, Islam MT, Harun-Or-Rashid M, Islam M, Abdullah S, Uddin MB, Das S, Rahaman MS, Ahmed M, Alhumaydhi FA, Emran TB, Mohamed AAR, Faruque MRI, Khandaker MU, Mostafa-Hedeab G. Stem Cell Transplantation Therapy and Neurological Disorders: Current Status and Future Perspectives. BIOLOGY 2022; 11:147. [PMID: 35053145 PMCID: PMC8772847 DOI: 10.3390/biology11010147] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are a global health issue with inadequate therapeutic options and an inability to restore the damaged nervous system. With advances in technology, health scientists continue to identify new approaches to the treatment of neurodegenerative diseases. Lost or injured neurons and glial cells can lead to the development of several neurological diseases, including Parkinson's disease, stroke, and multiple sclerosis. In recent years, neurons and glial cells have successfully been generated from stem cells in the laboratory utilizing cell culture technologies, fueling efforts to develop stem cell-based transplantation therapies for human patients. When a stem cell divides, each new cell has the potential to either remain a stem cell or differentiate into a germ cell with specialized characteristics, such as muscle cells, red blood cells, or brain cells. Although several obstacles remain before stem cells can be used for clinical applications, including some potential disadvantages that must be overcome, this cellular development represents a potential pathway through which patients may eventually achieve the ability to live more normal lives. In this review, we summarize the stem cell-based therapies that have been explored for various neurological disorders, discuss the potential advantages and drawbacks of these therapies, and examine future directions for this field.
Collapse
Affiliation(s)
- Mohammad Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mahfuzul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sabirin Abdullah
- Space Science Center, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Mohammad Borhan Uddin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sumit Das
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | | | | | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Sciences Research Unit, Medical College, Jouf University, Sakaka 72446, Saudi Arabia;
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
25
|
Glycoconjugate journal special issue on: the glycobiology of Parkinson's disease. Glycoconj J 2021; 39:55-74. [PMID: 34757539 DOI: 10.1007/s10719-021-10024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects over 10 million aging people worldwide. This condition is characterized by the degeneration of dopaminergic neurons in the pars compacta region of the substantia nigra (SNpc) and by aggregation of proteins, commonly α-synuclein (SNCA). The formation of Lewy bodies that encapsulate aggregated proteins in lipid vesicles is a hallmark of PD. Glycosylation of proteins and neuroinflammation are involved in the pathogenesis. SNCA has many posttranslational modifications and interacts with components of membranes that affect aggregation. The large membrane lipid dolichol accumulates in the brain upon age and has a significant effect on membrane structure. The replacement of dopamine and dopaminergic neurons are at the forefront of therapeutic development. This review examines the role of membrane lipids, glycolipids, glycoproteins and dopamine in the aggregation of SNCA and development of PD. We discuss the SNCA-dopamine-neuromelanin-dolichol axis and the role of membranes in neuronal stem cells that could be a regenerative therapy for PD patients.
Collapse
|
26
|
Raes L, Pille M, Harizaj A, Goetgeluk G, Van Hoeck J, Stremersch S, Fraire JC, Brans T, de Jong OG, Maas-Bakker R, Mastrobattista E, Vader P, De Smedt SC, Vandekerckhove B, Raemdonck K, Braeckmans K. Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:696-707. [PMID: 34589287 PMCID: PMC8463438 DOI: 10.1016/j.omtn.2021.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/13/2021] [Indexed: 01/18/2023]
Abstract
The CRISPR-Cas9 technology represents a powerful tool for genome engineering in eukaryotic cells, advancing both fundamental research and therapeutic strategies. Despite the enormous potential of the technology, efficient and direct intracellular delivery of Cas9 ribonucleoprotein (RNP) complexes in target cells poses a significant hurdle, especially in refractive primary cells. In the present work, vapor nanobubble (VNB) photoporation was explored for Cas9 RNP transfection in a variety of cell types. Proof of concept was first demonstrated in H1299-EGFP cells, before proceeding to hard-to-transfect stem cells and T cells. Gene knock-out levels over 80% and up to 60% were obtained for H1299 cells and mesenchymal stem cells, respectively. In these cell types, the unique possibility of VNB photoporation to knock out genes according to user-defined spatial patterns was demonstrated as well. Next, effective targeting of the programmed cell death 1 receptor and Wiskott-Aldrich syndrome gene in primary human T cells was demonstrated, reaching gene knock-out levels of 25% and 34%, respectively. With a throughput of >200,000 T cells per second, VNB photoporation is a scalable and versatile intracellular delivery method that holds great promise for CRISPR-Cas9-mediated ex vivo engineering of cell therapy products.
Collapse
Affiliation(s)
- Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Melissa Pille
- Department of Diagnostic Sciences, Ghent University, University Hospital Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Aranit Harizaj
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Ghent University, University Hospital Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jelter Van Hoeck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stephan Stremersch
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Juan C. Fraire
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Toon Brans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Olivier Gerrit de Jong
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Roel Maas-Bakker
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Pieter Vader
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Stefaan C. De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, University Hospital Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Corresponding author: Kevin Braeckmans, Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.E-mail:
| |
Collapse
|
27
|
Lestrell E, O'Brien CM, Elnathan R, Voelcker NH. Vertically Aligned Nanostructured Topographies for Human Neural Stem Cell Differentiation and Neuronal Cell Interrogation. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Esther Lestrell
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
- CSIRO Manufacturing Clayton Victoria 3168 Australia
| | - Carmel M. O'Brien
- CSIRO Manufacturing Clayton Victoria 3168 Australia
- Australian Regenerative Medicine Institute Monash University Clayton Victoria 3168 Australia
| | - Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
| | - Nicolas H. Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
- CSIRO Manufacturing Clayton Victoria 3168 Australia
| |
Collapse
|
28
|
Abstract
Neurodegenerative diseases, characterized by progressive neural loss, have been some of the most challenging medical problems in aging societies. Treatment strategies such as symptom management have little impact on dis-ease progression, while intervention with specific disease mechanisms may only slow down disease progression. One therapeutic strategy that has the potential to reverse the disease phenotype is to replenish neurons and re-build the pathway lost to degeneration. Although it is generally believed that the central nervous system has lost the capability to regenerate, increasing evidence indicates that the brain is more plastic than previously thought, containing perhaps the biggest repertoire of cells with latent neurogenic programs in the body. This review focuses on key advances in generating new neurons through in situ neuronal reprogramming, which is tied to fun-damental questions regarding adult neurogenesis, cell source, and mecha-nisms for neuronal reprogramming, as well as the ability of new neurons to integrate into the existing circuitry. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hao Qian
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0651, USA;
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0651, USA;
| |
Collapse
|
29
|
Wang F, Cheng L, Zhang X. Reprogramming Glial Cells into Functional Neurons for Neuro-regeneration: Challenges and Promise. Neurosci Bull 2021; 37:1625-1636. [PMID: 34283396 DOI: 10.1007/s12264-021-00751-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/24/2021] [Indexed: 01/02/2023] Open
Abstract
The capacity for neurogenesis in the adult mammalian brain is extremely limited and highly restricted to a few regions, which greatly hampers neuronal regeneration and functional restoration after neuronal loss caused by injury or disease. Meanwhile, transplantation of exogenous neuronal stem cells into the brain encounters several serious issues including immune rejection and the risk of tumorigenesis. Recent discoveries of direct reprogramming of endogenous glial cells into functional neurons have provided new opportunities for adult neuro-regeneration. Here, we extensively review the experimental findings of the direct conversion of glial cells to neurons in vitro and in vivo and discuss the remaining issues and challenges related to the glial subtypes and the specificity and efficiency of direct cell-reprograming, as well as the influence of the microenvironment. Although in situ glial cell reprogramming offers great potential for neuronal repair in the injured or diseased brain, it still needs a large amount of research to pave the way to therapeutic application.
Collapse
Affiliation(s)
- Fengchao Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Leping Cheng
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, and Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China. .,Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China. .,Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, Guangxi Medical University, Nanning, 530021, China.
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
30
|
Llorente IL, Hatanaka EA, Meadow ME, Xie Y, Lowry WE, Carmichael ST. Reliable generation of glial enriched progenitors from human fibroblast-derived iPSCs. Stem Cell Res 2021; 55:102458. [PMID: 34274773 PMCID: PMC8444576 DOI: 10.1016/j.scr.2021.102458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/06/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
White matter stroke (WMS) occurs as small infarcts in deep penetrating blood vessels in the brain and affects the regions of the brain that carry connections, termed the subcortical white matter. WMS progresses over years and has devastating clinical consequences. Unlike large grey matter strokes, WMS disrupts the axonal architecture of the brain and depletes astrocytes, oligodendrocyte lineage cells, axons and myelinating cells, resulting in abnormalities of gait and executive function. An astrocytic cell-based therapy is positioned as a strong therapeutic candidate after WMS. In this study we report, the reliable generation of a novel stem cell-based therapeutic product, glial enriched progenitors (GEPs) derived from human induced pluripotent stem cells (hiPSCs). By transient treatment of hiPSC derived neural progenitors (hiPSC-NPCs) with the small molecule deferoxamine, a prolyl hydroxylase inhibitor, for three days hiPSC-NPCs become permanently biased towards an astrocytic fate, producing hiPSC-GEPs. In preparation for clinical application, we have developed qualification assays to ensure identity, safety, purity, and viability of the cells prior to manufacture. Using tailored q-RT-PCR-based assays, we have demonstrated the lack of pluripotency in our final therapeutic candidate cells (hiPSC-GEPs) and we have identified the unique genetic profile of hiPSC-GEPs that is clearly distinct from the parent lines, hiPSCs and iPSC-NPCs. After completion of the viability assay, we have stablished the therapeutic window of use for hiPSC-GEPs in future clinical applications (7 h). Lastly, we were able to reliably and consistently produce a safe therapeutic final product negative for contamination by any human or murine viral pathogens, selected bacteria, common laboratory mycoplasmas, growth of any aerobes, anaerobes, yeast, or fungi and 100 times less endotoxin levels than the maximum acceptable value. This study demonstrates the reliable and safe generation of patient derived hiPSC-GEPs that are clinically ready as a cell-based therapeutic approach for WMS.
Collapse
Affiliation(s)
- Irene L Llorente
- Department of Neurology, David Geffen School of Medicine at UCLA, USA
| | - Emily A Hatanaka
- Department of Molecular, Cell and Developmental Biology, UCLA, USA
| | - Michael E Meadow
- Department of Molecular, Cell and Developmental Biology, UCLA, USA
| | - Yuan Xie
- Department of Biochemistry and Molecular Biology, University of Chicago, USA
| | - William E Lowry
- Department of Molecular, Cell and Developmental Biology, UCLA, USA
| | | |
Collapse
|
31
|
Wang R, Chu C, Wei Z, Chen L, Xu J, Liang Y, Janowski M, Stevens RD, Walczak P. Traumatic brain injury does not disrupt costimulatory blockade-induced immunological tolerance to glial-restricted progenitor allografts. J Neuroinflammation 2021; 18:104. [PMID: 33931070 PMCID: PMC8088005 DOI: 10.1186/s12974-021-02152-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell transplantation-based treatments for neurological disease are promising, yet graft rejection remains a major barrier to successful regenerative therapies. Our group and others have shown that long-lasting tolerance of transplanted stem cells can be achieved in the brain with systemic application of monoclonal antibodies blocking co-stimulation signaling. However, it is unknown if subsequent injury and the blood-brain barrier breach could expose the transplanted cells to systemic immune system spurring fulminant rejection and fatal encephalitis. Therefore, we investigated whether delayed traumatic brain injury (TBI) could trigger graft rejection. METHODS Glial-restricted precursor cells (GRPs) were intracerebroventricularly transplanted in immunocompetent neonatal mice and co-stimulation blockade (CoB) was applied 0, 2, 4, and 6 days post-grafting. Bioluminescence imaging (BLI) was performed to monitor the grafted cell survival. Mice were subjected to TBI 12 weeks post-transplantation. MRI and open-field test were performed to assess the brain damage and behavioral change, respectively. The animals were decapitated at week 16 post-transplantation, and the brains were harvested. The survival and distribution of grafted cells were verified from brain sections. Hematoxylin and eosin staining (HE) was performed to observe TBI-induced brain legion, and neuroinflammation was evaluated immunohistochemically. RESULTS BLI showed that grafted GRPs were rejected within 4 weeks after transplantation without CoB, while CoB administration resulted in long-term survival of allografts. BLI signal had a steep rise following TBI and subsequently declined but remained higher than the preinjury level. Open-field test showed TBI-induced anxiety for all animals but neither CoB nor GRP transplantation intensified the symptom. HE and MRI demonstrated a reduction in TBI-induced lesion volume in GRP-transplanted mice compared with non-transplanted mice. Brain sections further validated the survival of grafted GRPs and showed more GRPs surrounding the injured tissue. Furthermore, the brains of post-TBI shiverer mice had increased activation of microglia and astrocytes compared to post-TBI wildtype mice, but infiltration of CD45+ leukocytes remained low. CONCLUSIONS CoB induces sustained immunological tolerance towards allografted cerebral GRPs which is not disrupted following TBI, and unexpectedly TBI may enhance GRPs engraftment and contribute to post-injury brain tissue repair.
Collapse
Affiliation(s)
- Rui Wang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21205, USA.,Departments of Anesthesiology and Critical Care Medicine, Neurology, Neurosurgery, Johns Hopkins University, Baltimore, MD, 21287, USA.,Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110006, Liaoning, China
| | - Chengyan Chu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21205, USA.,Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, 670 W. Baltimore St., HSF III rm 1176, Baltimore, MD, 21201, USA
| | - Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21205, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institution, Baltimore, MD, 21205, USA
| | - Lin Chen
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21205, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institution, Baltimore, MD, 21205, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21205, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institution, Baltimore, MD, 21205, USA
| | - Yajie Liang
- Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, 670 W. Baltimore St., HSF III rm 1176, Baltimore, MD, 21201, USA
| | - Miroslaw Janowski
- Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, 670 W. Baltimore St., HSF III rm 1176, Baltimore, MD, 21201, USA
| | - Robert D Stevens
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21205, USA.,Departments of Anesthesiology and Critical Care Medicine, Neurology, Neurosurgery, Johns Hopkins University, Baltimore, MD, 21287, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institution, Baltimore, MD, 21205, USA
| | - Piotr Walczak
- Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, 670 W. Baltimore St., HSF III rm 1176, Baltimore, MD, 21201, USA.
| |
Collapse
|
32
|
Carvalho IC, Mansur HS, Leonel AG, Mansur AAP, Lobato ZIP. Soft matter polysaccharide-based hydrogels as versatile bioengineered platforms for brain tissue repair and regeneration. Int J Biol Macromol 2021; 182:1091-1111. [PMID: 33892028 DOI: 10.1016/j.ijbiomac.2021.04.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Acute or chronic brain injuries promote deaths and the life-long debilitating neurological status where, despite advances in therapeutic strategies, clinical outcome hardly achieves total patient recovery. In recent decades, brain tissue engineering emerged as an encouraging area of research for helping in damaged central nervous system (CNS) recovery. Polysaccharides are abundant naturally occurring biomacromolecules with a great potential enhancement of advanced technologies in brain tissue repair and regeneration (BTRR). Besides carrying rich biological information, polysaccharides can interact and communicate with biomolecules, including glycosaminoglycans present in cell membranes and many signaling moieties, growth factors, chemokines, and axon guidance molecules. This review includes a comprehensive investigation of the current progress on designing and developing polysaccharide-based soft matter biomaterials for BTRR. Although few interesting reviews concerning BTRR have been reported, this is the first report specifically focusing on covering multiple polysaccharides and polysaccharide-based functionalized biomacromolecules in this emerging and intriguing field of multidisciplinary knowledge. This review aims to cover the state of art challenges and prospects of this fascinating field while presenting the richness of possibilities of using these natural biomacromolecules for advanced biomaterials in prospective neural tissue engineering applications.
Collapse
Affiliation(s)
- Isadora C Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil.
| | - Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Zelia I P Lobato
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil
| |
Collapse
|
33
|
Palma-Tortosa S, Coll-San Martin B, Kokaia Z, Tornero D. Neuronal Replacement in Stem Cell Therapy for Stroke: Filling the Gap. Front Cell Dev Biol 2021; 9:662636. [PMID: 33889578 PMCID: PMC8056014 DOI: 10.3389/fcell.2021.662636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
Stem cell therapy using human skin-derived neural precursors holds much promise for the treatment of stroke patients. Two main mechanisms have been proposed to give rise to the improved recovery in animal models of stroke after transplantation of these cells. First, the so called by-stander effect, which could modulate the environment during early phases after brain tissue damage, resulting in moderate improvements in the outcome of the insult. Second, the neuronal replacement and functional integration of grafted cells into the impaired brain circuitry, which will result in optimum long-term structural and functional repair. Recently developed sophisticated research tools like optogenetic control of neuronal activity and rabies virus monosynaptic tracing, among others, have made it possible to provide solid evidence about the functional integration of grafted cells and its contribution to improved recovery in animal models of brain damage. Moreover, previous clinical trials in patients with Parkinson’s Disease represent a proof of principle that stem cell-based neuronal replacement could work in humans. Our studies with in vivo and ex vivo transplantation of human skin-derived cells neurons in animal model of stroke and organotypic cultures of adult human cortex, respectively, also support the hypothesis that human somatic cells reprogrammed into neurons can get integrated in the human lesioned neuronal circuitry. In the present short review, we summarized our data and recent studies from other groups supporting the above hypothesis and opening new avenues for development of the future clinical applications.
Collapse
Affiliation(s)
- Sara Palma-Tortosa
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Berta Coll-San Martin
- Department of Biomedical Sciences, Institute of Neuroscience and Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, Barcelona, Spain.,August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Daniel Tornero
- Department of Biomedical Sciences, Institute of Neuroscience and Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, Barcelona, Spain.,August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
34
|
Virdi JK, Pethe P. Biomaterials Regulate Mechanosensors YAP/TAZ in Stem Cell Growth and Differentiation. Tissue Eng Regen Med 2021; 18:199-215. [PMID: 33230800 PMCID: PMC8012461 DOI: 10.1007/s13770-020-00301-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/15/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue-resident stem cells are surrounded by a microenvironment known as 'stem cell niche' which is specific for each stem cell type. This niche comprises of cell-intrinsic and -extrinsic factors like biochemical and biophysical signals, which regulate stem cell characteristics and differentiation. Biochemical signals have been thoroughly studied however, the effect of biophysical signals on stem cell regulation is yet to be completely understood. Biomaterials have aided in addressing this issue since they can provide a defined and tuneable microenvironment resembling in vivo conditions. We review various biomaterials used in many studies which have shown a connection between biomaterial-generated mechanical signals and alteration in stem cell behaviour. Researchers probed to understand the mechanism of mechanotransduction and reported that the signals from the extracellular matrix regulate a transcription factor yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ), which is a downstream-regulator of the Hippo pathway and it transduces the mechanical signals inside the nucleus. We highlight the role of the YAP/TAZ as mechanotransducers in stem cell self-renewal and differentiation in response to substrate stiffness, also the possibility of mechanobiology as the emerging field of regenerative medicines and three-dimensional tissue printing.
Collapse
Affiliation(s)
- Jasmeet Kaur Virdi
- Department of Biological Science, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to-be) University, Mumbai, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Lavale, Mulshi, Pune, 412115, India.
| |
Collapse
|
35
|
Mouilleau V, Vaslin C, Robert R, Gribaudo S, Nicolas N, Jarrige M, Terray A, Lesueur L, Mathis MW, Croft G, Daynac M, Rouiller-Fabre V, Wichterle H, Ribes V, Martinat C, Nedelec S. Dynamic extrinsic pacing of the HOX clock in human axial progenitors controls motor neuron subtype specification. Development 2021; 148:148/6/dev194514. [PMID: 33782043 DOI: 10.1242/dev.194514] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
Rostro-caudal patterning of vertebrates depends on the temporally progressive activation of HOX genes within axial stem cells that fuel axial embryo elongation. Whether the pace of sequential activation of HOX genes, the 'HOX clock', is controlled by intrinsic chromatin-based timing mechanisms or by temporal changes in extrinsic cues remains unclear. Here, we studied HOX clock pacing in human pluripotent stem cell-derived axial progenitors differentiating into diverse spinal cord motor neuron subtypes. We show that the progressive activation of caudal HOX genes is controlled by a dynamic increase in FGF signaling. Blocking the FGF pathway stalled induction of HOX genes, while a precocious increase of FGF, alone or with GDF11 ligand, accelerated the HOX clock. Cells differentiated under accelerated HOX induction generated appropriate posterior motor neuron subtypes found along the human embryonic spinal cord. The pacing of the HOX clock is thus dynamically regulated by exposure to secreted cues. Its manipulation by extrinsic factors provides synchronized access to multiple human neuronal subtypes of distinct rostro-caudal identities for basic and translational applications.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Vincent Mouilleau
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France.,I-STEM, UMR 861, Inserm, UEPS, 91100 Corbeil-Essonnes, France
| | - Célia Vaslin
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Rémi Robert
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Simona Gribaudo
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Nour Nicolas
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, Université Paris-Saclay, Fontenay aux Roses F-92265, France
| | - Margot Jarrige
- I-STEM, UMR 861, Inserm, UEPS, 91100 Corbeil-Essonnes, France
| | - Angélique Terray
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Léa Lesueur
- I-STEM, UMR 861, Inserm, UEPS, 91100 Corbeil-Essonnes, France
| | - Mackenzie W Mathis
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - Gist Croft
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - Mathieu Daynac
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Virginie Rouiller-Fabre
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, Université Paris-Saclay, Fontenay aux Roses F-92265, France
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - Vanessa Ribes
- Université de Paris, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, 75013 Paris, France
| | - Cécile Martinat
- I-STEM, UMR 861, Inserm, UEPS, 91100 Corbeil-Essonnes, France
| | - Stéphane Nedelec
- Institut du Fer à Moulin, 75005 Paris, France .,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| |
Collapse
|
36
|
Hou Y, Li J, Guan S, Witte F. The therapeutic potential of MSC-EVs as a bioactive material for wound healing. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2021.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
37
|
Feng L, Chao J, Tian E, Li L, Ye P, Zhang M, Chen X, Cui Q, Sun G, Zhou T, Felix G, Qin Y, Li W, Meza ED, Klein J, Ghoda L, Hu W, Luo Y, Dang W, Hsu D, Gold J, Goldman SA, Matalon R, Shi Y. Cell-Based Therapy for Canavan Disease Using Human iPSC-Derived NPCs and OPCs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002155. [PMID: 33304759 PMCID: PMC7709977 DOI: 10.1002/advs.202002155] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/22/2020] [Indexed: 06/12/2023]
Abstract
Canavan disease (CD) is a fatal leukodystrophy caused by mutation of the aspartoacylase (ASPA) gene, which leads to deficiency in ASPA activity, accumulation of the substrate N-acetyl-L-aspartate (NAA), demyelination, and spongy degeneration of the brain. There is neither a cure nor a standard treatment for this disease. In this study, human induced pluripotent stem cell (iPSC)-based cell therapy is developed for CD. A functional ASPA gene is introduced into patient iPSC-derived neural progenitor cells (iNPCs) or oligodendrocyte progenitor cells (iOPCs) via lentiviral transduction or TALEN-mediated genetic engineering to generate ASPA iNPC or ASPA iOPC. After stereotactic transplantation into a CD (Nur7) mouse model, the engrafted cells are able to rescue major pathological features of CD, including deficient ASPA activity, elevated NAA levels, extensive vacuolation, defective myelination, and motor function deficits, in a robust and sustainable manner. Moreover, the transplanted mice exhibit much prolonged survival. These genetically engineered patient iPSC-derived cellular products are promising cell therapies for CD. This study has the potential to bring effective cell therapies, for the first time, to Canavan disease children who have no treatment options. The approach established in this study can also benefit many other children who have deadly genetic diseases that have no cure.
Collapse
Affiliation(s)
- Lizhao Feng
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Jianfei Chao
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - E Tian
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Li Li
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Peng Ye
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Mi Zhang
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Xianwei Chen
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Qi Cui
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Guihua Sun
- Diabetes and Metabolism Research Institute at City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Tao Zhou
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Gerardo Felix
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Yue Qin
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Wendong Li
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Edward David Meza
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Jeremy Klein
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Lucy Ghoda
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Weidong Hu
- Department of Molecular Imaging and TherapyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Yonglun Luo
- Department of BiomedicineAarhus UniversityAarhus8000Denmark
| | - Wei Dang
- Center for Biomedicine and GeneticsBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - David Hsu
- Center for Biomedicine and GeneticsBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Joseph Gold
- Center for Biomedicine and GeneticsBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Steven A. Goldman
- Center for Translational NeuromedicineUniversity of Rochester Medical CenterRochesterNY14642USA
- Center for Translational NeuromedicineFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDK‐2200Denmark
| | - Reuben Matalon
- Department of Pediatricsthe University of Texas Medical Branch at Galveston301 University BlvdGalvestonTX77555‐0359USA
| | - Yanhong Shi
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| |
Collapse
|
38
|
Resveratrol promotes the survival and neuronal differentiation of hypoxia-conditioned neuronal progenitor cells in rats with cerebral ischemia. Front Med 2020; 15:472-485. [PMID: 33263836 DOI: 10.1007/s11684-021-0832-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Hypoxia conditioning could increase the survival of transplanted neuronal progenitor cells (NPCs) in rats with cerebral ischemia but could also hinder neuronal differentiation partly by suppressing mitochondrial metabolism. In this work, the mitochondrial metabolism of hypoxia-conditioned NPCs (hcNPCs) was upregulated via the additional administration of resveratrol, an herbal compound, to resolve the limitation of hypoxia conditioning on neuronal differentiation. Resveratrol was first applied during the in vitro neuronal differentiation of hcNPCs and concurrently promoted the differentiation, synaptogenesis, and functional development of neurons derived from hcNPCs and restored the mitochondrial metabolism. Furthermore, this herbal compound was used as an adjuvant during hcNPC transplantation in a photothrombotic stroke rat model. Resveratrol promoted neuronal differentiation and increased the long-term survival of transplanted hcNPCs. 18-fluorine fluorodeoxyglucose positron emission tomography and rotarod test showed that resveratrol and hcNPC transplantation synergistically improved the neurological and metabolic recovery of stroke rats. In conclusion, resveratrol promoted the neuronal differentiation and therapeutic efficiency of hcNPCs in stroke rats via restoring mitochondrial metabolism. This work suggested a novel approach to promote the clinical translation of NPC transplantation therapy.
Collapse
|
39
|
Ahmadi M, Rezaie J. Ageing and mesenchymal stem cells derived exosomes: Molecular insight and challenges. Cell Biochem Funct 2020; 39:60-66. [PMID: 33164248 DOI: 10.1002/cbf.3602] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Ageing induces a great risk factor that participates in progressing various degenerative diseases morbidities. The main characteristic of ageing is the failure in maintaining homeostasis in the organs with a cellular senescence. Senescence is characterized by reduced cell growth, evade cellular death, and acquiring a senescence-associated secretory phenotype (SASP). Mesenchymal stem cells (MSCs) are advantageous cells in regenerative medicine, exerting pleiotropic functions by producing soluble factors, such as exosomes. MSCs and their exosomes (MSCs-Exo) kinetic are affected by ageing and other aged exosomes. Exosomes biogenesis from aged MSCs is accelerated and their exosomal cargoes, such as miRNAs, vary as compared to those of normal cells. Besides, exosomes from aged MSCs loss their regenerative potential and may negatively influence the function of recipient cells. MSCs-Exo can improve ageing and age-related diseases; however, the detailed mechanisms remain yet elusive. Although exosomes-therapy may serve as a new approach to combat ageing, the translation of preclinical results to clinic needs more extensive investigation on exosomes both on their biology and related techniques. Overall, scrutiny on the effect of ageing on MSCs and vice versa is vital for designing novel therapy using MSCs with focus on the management of older individuals.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Tuberculosis and lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
40
|
Jang SE, Qiu L, Chan LL, Tan EK, Zeng L. Current Status of Stem Cell-Derived Therapies for Parkinson's Disease: From Cell Assessment and Imaging Modalities to Clinical Trials. Front Neurosci 2020; 14:558532. [PMID: 33177975 PMCID: PMC7596695 DOI: 10.3389/fnins.2020.558532] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022] Open
Abstract
Curative therapies or treatments reversing the progression of Parkinson’s disease (PD) have attracted considerable interest in the last few decades. PD is characterized by the gradual loss of dopaminergic (DA) neurons and decreased striatal dopamine levels. Current challenges include optimizing neuroprotective strategies, developing personalized drug therapy, and minimizing side effects from the long-term prescription of pharmacological drugs used to relieve short-term motor symptoms. Transplantation of DA cells into PD patients’ brains to replace degenerated DA has the potential to change the treatment paradigm. Herein, we provide updates on current progress in stem cell-derived DA neuron transplantation as a therapeutic alternative for PD. We briefly highlight cell sources for transplantation and focus on cell assessment methods such as identification of genetic markers, single-cell sequencing, and imaging modalities used to access cell survival and function. More importantly, we summarize clinical reports of patients who have undergone cell-derived transplantation in PD to better perceive lessons that can be drawn from past and present clinical outcomes. Modifying factors include (1) source of the stem cells, (2) quality of the stem cells, (3) age of the patient, (4) stage of disease progression at the time of cell therapy, (5) surgical technique/practices, and (6) the use of immunosuppression. We await the outcomes of joint efforts in clinical trials around the world such as NYSTEM and CiRA to further guide us in the selection of the most suitable parameters for cell-based neurotransplantation in PD.
Collapse
Affiliation(s)
- Se Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Lifeng Qiu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Ling Ling Chan
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore.,Neuroscience & Behavioral Disorders Program, Duke University and National University of Singapore (DUKE-NUS), Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Neuroscience & Behavioral Disorders Program, Duke University and National University of Singapore (DUKE-NUS), Graduate Medical School, Singapore, Singapore.,Department of Neurology, National Neuroscience Institute, Singapore General Hospital Campus, Singapore, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore.,Neuroscience & Behavioral Disorders Program, Duke University and National University of Singapore (DUKE-NUS), Graduate Medical School, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, Singapore, Singapore
| |
Collapse
|
41
|
Luo F, Luo S, Qian W, Zhang L, Chen C, Xu M, Wang G, Wang Z, Wang J, Wang W. Developmental deficits and early signs of neurodegeneration revealed by PD patient derived dopamine neurons. Stem Cell Res 2020; 49:102027. [PMID: 33059129 DOI: 10.1016/j.scr.2020.102027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/07/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease affecting millions of elder people due to the degeneration of dopamine neurons in the striatum and substantia nigra. The clinical manifestations of PD include tremor, rigidity, bradykinesia and postural instability. Studying PD is challenging due to two obstacles: 1) disease models such as primary neurons or animal models usually couldn't recapitulate the disease phenotype, and 2) accessibility of human autopsied brain samples is very limited if not impossible. Induced pluripotent stem cells (iPSCs)-derived neuronal cells from patients emerge as an ideal in vitro model for disease modeling and drug development. Here we describe a cell density-dependent method for preparing functional hiPSC-derived dopamine neurons (iDAs) with ~90% purity (TH-positive cells). iDAs derived from PD patient exhibit the disease-related phenotypes, for example, slowed morphogenesis, reduced dopamine release, impaired mitochondrial function, and α-synuclein accumulation as early as 35 days after induction. Furthermore, we found that the effects of cell density are different between iDA development stages, whereas high cell density increases stress for early neural progenitor cells (NPCs), but are neural-protective for mature iDAs, high density also favors morphogenesis. Hence, using stage and density-dependent strategies we can obtain high quality iDAs, which are critical for disease modeling, drug development and cell replacement therapy.
Collapse
Affiliation(s)
- Fang Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Sushan Luo
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenjing Qian
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Meimei Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guangling Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhongfeng Wang
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Jian Wang
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Wenyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
42
|
Xiong M, Tao Y, Gao Q, Feng B, Yan W, Zhou Y, Kotsonis TA, Yuan T, You Z, Wu Z, Xi J, Haberman A, Graham J, Block J, Zhou W, Chen Y, Zhang SC. Human Stem Cell-Derived Neurons Repair Circuits and Restore Neural Function. Cell Stem Cell 2020; 28:112-126.e6. [PMID: 32966778 DOI: 10.1016/j.stem.2020.08.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/11/2020] [Accepted: 08/21/2020] [Indexed: 02/02/2023]
Abstract
Although cell transplantation can rescue motor defects in Parkinson's disease (PD) models, whether and how grafts functionally repair damaged neural circuitry in the adult brain is not known. We transplanted hESC-derived midbrain dopamine (mDA) or cortical glutamate neurons into the substantia nigra or striatum of a mouse PD model and found extensive graft integration with host circuitry. Axonal pathfinding toward the dorsal striatum was determined by the identity of the grafted neurons, and anatomical presynaptic inputs were largely dependent on graft location, whereas inhibitory versus excitatory input was dictated by the identity of grafted neurons. hESC-derived mDA neurons display A9 characteristics and restore functionality of the reconstructed nigrostriatal circuit to mediate improvements in motor function. These results indicate similarity in cell-type-specific pre- and post-synaptic integration between transplant-reconstructed circuit and endogenous neural networks, highlighting the capacity of hPSC-derived neuron subtypes for specific circuit repair and functional restoration in the adult brain.
Collapse
Affiliation(s)
- Man Xiong
- Institute of Pediatrics, Children's Hospital, Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Yezheng Tao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore
| | - Qinqin Gao
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ban Feng
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Yan
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Zhou
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Thomas A Kotsonis
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tingli Yuan
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiwen You
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyan Wu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajie Xi
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Julia Graham
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jasper Block
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wenhao Zhou
- Institute of Pediatrics, Children's Hospital, Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Yuejun Chen
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore
| |
Collapse
|
43
|
Kim TW, Koo SY, Studer L. Pluripotent Stem Cell Therapies for Parkinson Disease: Present Challenges and Future Opportunities. Front Cell Dev Biol 2020; 8:729. [PMID: 32903681 PMCID: PMC7438741 DOI: 10.3389/fcell.2020.00729] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
In Parkinson's disease (PD), there are currently no effective therapies to prevent or slow down disease progression. Cell replacement therapy using human pluripotent stem cell (hPSC)-derived dopamine neurons holds considerable promise. It presents a novel, regenerative strategy, building on the extensive history of fetal tissue grafts and capturing the potential of hPSCs to serve as a scalable and standardized cell source. Progress in establishing protocols for the direct differentiation to midbrain dopamine (mDA) neurons from hPSC have catalyzed the development of cell-based therapies for PD. Consequently, several groups have derived clinical-grade mDA neuron precursors under clinical good manufacture practice condition, which are progressing toward clinical testing in PD patients. Here we will review the current status of the field, discuss the remaining key challenges, and highlight future areas for further improvements of hPSC-based technologies in the clinical translation to PD.
Collapse
Affiliation(s)
- Tae Wan Kim
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, United States.,Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, United States
| | - So Yeon Koo
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, United States.,Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, United States.,Neuroscience Graduate Program of Weill Cornell Graduate School of Biomedical Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, United States.,Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, United States
| |
Collapse
|
44
|
|
45
|
De Gioia R, Biella F, Citterio G, Rizzo F, Abati E, Nizzardo M, Bresolin N, Comi GP, Corti S. Neural Stem Cell Transplantation for Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E3103. [PMID: 32354178 PMCID: PMC7247151 DOI: 10.3390/ijms21093103] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases are disabling and fatal neurological disorders that currently lack effective treatment. Neural stem cell (NSC) transplantation has been studied as a potential therapeutic approach and appears to exert a beneficial effect against neurodegeneration via different mechanisms, such as the production of neurotrophic factors, decreased neuroinflammation, enhanced neuronal plasticity and cell replacement. Thus, NSC transplantation may represent an effective therapeutic strategy. To exploit NSCs' potential, some of their essential biological characteristics must be thoroughly investigated, including the specific markers for NSC subpopulations, to allow profiling and selection. Another key feature is their secretome, which is responsible for the regulation of intercellular communication, neuroprotection, and immunomodulation. In addition, NSCs must properly migrate into the central nervous system (CNS) and integrate into host neuronal circuits, enhancing neuroplasticity. Understanding and modulating these aspects can allow us to further exploit the therapeutic potential of NSCs. Recent progress in gene editing and cellular engineering techniques has opened up the possibility of modifying NSCs to express select candidate molecules to further enhance their therapeutic effects. This review summarizes current knowledge regarding these aspects, promoting the development of stem cell therapies that could be applied safely and effectively in clinical settings.
Collapse
Affiliation(s)
- Roberta De Gioia
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Fabio Biella
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Gaia Citterio
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Federica Rizzo
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Elena Abati
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Monica Nizzardo
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Nereo Bresolin
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefania Corti
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| |
Collapse
|
46
|
Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci 2020; 21:103-115. [DOI: 10.1038/s41583-019-0257-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
|
47
|
Fernandez-Serra R, Gallego R, Lozano P, González-Nieto D. Hydrogels for neuroprotection and functional rewiring: a new era for brain engineering. Neural Regen Res 2020; 15:783-789. [PMID: 31719237 PMCID: PMC6990788 DOI: 10.4103/1673-5374.268891] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The neurological devastation of neurodegenerative and cerebrovascular diseases reinforces our perseverance to find advanced treatments to deal with these fatal pathologies. High-performance preclinical results have failed at clinical level, as it has been the case for a wide variety of neuroprotective agents and cell-based therapies employed to treat high prevalent brain pathologies such as stroke, Alzheimer’s and Parkinson’s diseases. An unquestionable reality is the current absence of effective therapies to neuroprotect the brain, to arrest neurodegeneration and rewire the impaired brain circuits. Part of the problem might arise from the lack of adequate in vitro and in vivo models and that most of the underlying pathophysiological mechanisms are not yet clarified. Another contributing factor is the lack of efficient systems to sustain drug release at therapeutic concentrations and enhance the survival and function of grafted cells in transplantation procedures. For medical applications the use of biomaterials of different compositions and formats has experienced a boom in the last decades. Although the greater complexity of central nervous system has probably conditioned their extensive use with respect to other organs, the number of biomaterials-based applications to treat the injured brain or in the process of being damaged has grown exponentially. Hydrogel-based biomaterials have constituted a turning point in the treatment of cerebral disorders using a new form of advanced therapy. Hydrogels show mechanical properties in the range of cerebral tissue resulting very suitable for local implantation of drugs and cells. It is also possible to fabricate three-dimensional hydrogel constructs with adaptable mesh size to facilitate axonal guidance and elongation. Along this article, we review the current trends in this area highlighting the positive impact of hydrogel-based biomaterials over the exhaustive control of drug delivery, cell engraftment and axonal reinnervation in brain pathologies.
Collapse
Affiliation(s)
| | - Rebeca Gallego
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Paloma Lozano
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology; Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid; Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
48
|
Song Z, Zhang JH. Recent Advances in Stem Cell Research in Subarachnoid Hemorrhage. Stem Cells Dev 2019; 29:178-186. [PMID: 31752600 DOI: 10.1089/scd.2019.0219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with significant morbidity and mortality, and it often leads to poor clinical outcome. Although great efforts have been made toward animal and clinical studies, optimal therapy of SAH remains a challenge for scientists and clinicians. Increasing evidence suggests that stem-cell-based therapies may provide innovative approaches for treatment of SAH-related disability. In this review, we summarized the recent advances in stem cell research in SAH. Neuroregeneration after SAH could be conducted by the activation of endogenous neural stem cells (NSCs), transplantation of external stem cells, or reprogramming non-neuronal cell to neurons. The potential mechanism and signaling pathways, as well as the efficiency and safety of these stem cell treatments, were discussed in detail. Although lots of challenges remain for translating the laboratory findings and technologies into clinical therapies, these research studies provided the foundation and guidance for using different resources of stem cells as a brain repair strategy after SAH.
Collapse
Affiliation(s)
- Zhijun Song
- Department of Neurosurgery, Xingtai Third Hospital, Xingtai, China.,Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, California
| | - John H Zhang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurosurgery, Loma Linda University, Loma Linda, California.,Department of Anesthesiology, Loma Linda University, Loma Linda, California
| |
Collapse
|
49
|
Henriques D, Moreira R, Schwamborn J, Pereira de Almeida L, Mendonça LS. Successes and Hurdles in Stem Cells Application and Production for Brain Transplantation. Front Neurosci 2019; 13:1194. [PMID: 31802998 PMCID: PMC6877657 DOI: 10.3389/fnins.2019.01194] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Brain regenerative strategies through the transplantation of stem cells hold the potential to promote functional rescue of brain lesions caused either by trauma or neurodegenerative diseases. Most of the positive modulations fostered by stem cells are fueled by bystander effects, namely increase of neurotrophic factors levels and reduction of neuroinflammation. Nevertheless, the ultimate goal of cell therapies is to promote cell replacement. Therefore, the ability of stem cells to migrate and differentiate into neurons that later become integrated into the host neuronal network replacing the lost neurons has also been largely explored. However, as most of the preclinical studies demonstrate, there is a small functional integration of graft-derived neurons into host neuronal circuits. Thus, it is mandatory to better study the whole brain cell therapy approach in order to understand what should be better comprehended concerning graft-derived neuronal and glial cells migration and integration before we can expect these therapies to be ready as a viable solution for brain disorder treatment. Therefore, this review discusses the positive mechanisms triggered by cell transplantation into the brain, the limitations of adult brain plasticity that might interfere with the neuroregeneration process, as well as some strategies tested to overcome some of these limitations. It also considers the efforts that have been made by the regulatory authorities to lead to better standardization of preclinical and clinical studies in this field in order to reduce the heterogeneity of the obtained results.
Collapse
Affiliation(s)
- Daniel Henriques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ricardo Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Jens Schwamborn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Liliana S Mendonça
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
50
|
Leitner D, Ramamoorthy M, Dejosez M, Zwaka TP. Immature mDA neurons ameliorate motor deficits in a 6-OHDA Parkinson's disease mouse model and are functional after cryopreservation. Stem Cell Res 2019; 41:101617. [PMID: 31731178 DOI: 10.1016/j.scr.2019.101617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/05/2019] [Accepted: 10/10/2019] [Indexed: 01/12/2023] Open
Abstract
Parkinson's disease is associated with the loss of dopaminergic neurons in the midbrain. Clinical studies investigating replacement of these neurons with in vitro-generated neurons are currently underway. However, this approach has been limited by difficulties in scaling up on-demand production of midbrain dopaminergic (mDA) neurons from pluripotent stem cells. Cryo-preservation may offer a solution, as it allows for banking of quality controlled mDA neurons. In this study, we tested different freezing conditions and found that optimal cryopreservation of immature human mDA neurons at an early differentiation time point was achieved in STEM-CELLBANKER medium using a controlled freezing program.
Collapse
Affiliation(s)
- Dominique Leitner
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai Icahn School of Medicine, New York, NY 10029, United States; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Huffington Foundation Center for Cell-Based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mahesh Ramamoorthy
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai Icahn School of Medicine, New York, NY 10029, United States; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Huffington Foundation Center for Cell-Based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Marion Dejosez
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai Icahn School of Medicine, New York, NY 10029, United States; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Huffington Foundation Center for Cell-Based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Thomas P Zwaka
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai Icahn School of Medicine, New York, NY 10029, United States; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Huffington Foundation Center for Cell-Based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|