1
|
Grimaud J, Dorrell W, Jayakumar S, Pehlevan C, Murthy V. Bilateral Alignment of Receptive Fields in the Olfactory Cortex. eNeuro 2024; 11:ENEURO.0155-24.2024. [PMID: 39433407 PMCID: PMC11540595 DOI: 10.1523/eneuro.0155-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/06/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Each olfactory cortical hemisphere receives ipsilateral odor information directly from the olfactory bulb and contralateral information indirectly from the other cortical hemisphere. Since neural projections to the olfactory cortex (OC) are disordered and nontopographic, spatial information cannot be used to align projections from the two sides like in the visual cortex. Therefore, how bilateral information is integrated in individual cortical neurons is unknown. We have found, in mice, that the odor responses of individual neurons to selective stimulation of each of the two nostrils are significantly correlated, such that odor identity decoding optimized with information arriving from one nostril transfers very well to the other side. Nevertheless, these aligned responses are asymmetric enough to allow decoding of stimulus laterality. Computational analysis shows that such matched odor tuning is incompatible with purely random connections but is explained readily by Hebbian plasticity structuring bilateral connectivity. Our data reveal that despite the distributed and fragmented sensory representation in the OC, odor information across the two hemispheres is highly coordinated.
Collapse
Affiliation(s)
- Julien Grimaud
- Molecules, Cells, and Organisms Graduate Program, Harvard University, Cambridge, Massachusetts 02138
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- Cell Engineering Laboratory (CellTechs), SupBiotech, 94800 Villejuif, France
| | - William Dorrell
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Siddharth Jayakumar
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Cengiz Pehlevan
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
- Kempner Institute for Natural and Artificial Intelligence, Harvard University, Cambridge, Massachusetts 02138
| | - Venkatesh Murthy
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- Kempner Institute for Natural and Artificial Intelligence, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
2
|
Wolf D, Oettl LL, Winkelmeier L, Linster C, Kelsch W. Anterior Olfactory Cortices Differentially Transform Bottom-Up Odor Signals to Produce Inverse Top-Down Outputs. J Neurosci 2024; 44:e0231242024. [PMID: 39266300 PMCID: PMC11529817 DOI: 10.1523/jneurosci.0231-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Odor information arrives first in the main olfactory bulb and is then broadcasted to the olfactory cortices and striatum. Downstream regions have unique cellular and connectivity architectures that may generate different coding patterns to the same odors. To reveal region-specific response features, tuning and decoding of single-unit populations, we recorded responses to the same odors under the same conditions across regions, namely, the main olfactory bulb (MOB), the anterior olfactory nucleus (AON), the anterior piriform cortex (aPC), and the olfactory tubercle of the ventral striatum (OT), of awake male mice. We focused on chemically closely related aldehydes that still create distinct percepts. The MOB had the highest decoding accuracy for aldehydes and was the only region encoding chemical similarity. The MOB had the highest fraction of inhibited responses and narrowly tuned odor-excited responses in terms of timing and odor selectivity. Downstream, the interconnected AON and aPC differed in their response patterns to the same stimuli. While odor-excited responses dominated the AON, the aPC had a comparably high fraction of odor-inhibited responses. Both cortices share a main output target that is the MOB. This prompted us to test if the two regions convey also different net outputs. Aldehydes activated AON terminals in the MOB as a bulk signal but inhibited those from the aPC. The differential cortical projection responses generalized to complex odors. In summary, olfactory regions reveal specialized features in their encoding with AON and aPC differing in their local computations, thereby generating inverse net centrifugal and intercortical outputs.
Collapse
Affiliation(s)
- David Wolf
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz 55131, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Lars-Lennart Oettl
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Laurens Winkelmeier
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz 55131, Germany
| | - Christiane Linster
- Computational Physiology Laboratory, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14850
| | - Wolfgang Kelsch
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz 55131, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| |
Collapse
|
3
|
Jing S, Geng C, Liu P, Wang D, Li Q, Li A. Serotonergic input from the dorsal raphe nucleus shapes learning-associated odor responses in the olfactory bulb. Acta Physiol (Oxf) 2024; 240:e14198. [PMID: 38958443 DOI: 10.1111/apha.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/29/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
AIM Neural activity in the olfactory bulb (OB) can represent odor information during different brain and behavioral states. For example, the odor responses of mitral/tufted (M/T) cells in the OB change during learning of odor-discrimination tasks and, at the network level, beta power increases and the high gamma (HG) power decreases during odor presentation in such tasks. However, the neural mechanisms underlying these observations remain poorly understood. Here, we investigate whether serotonergic modulation from the dorsal raphe nucleus (DRN) to the OB is involved in shaping activity during the learning process in a go/no-go task in mice. METHODS Fiber photometry was used to record the population activity of DRN serotonergic neurons during a go/no-go task. In vivo electrophysiology was used to record neural activity (single units and local field potentials) in the OB during the go/no-go task. Real-time place preference (RTPP) and intracranial light administration in a specific subarea (iClass) tests were used to assess the ability of mice to encoding reward information. RESULTS Odor-evoked population activity in serotonergic neurons in the DRN was shaped during the learning process in a go/no-go task. In the OB, neural activity from oscillations to single cells showed complex, learning-associated changes and ability to encode information during an odor discrimination task. However, these properties were not observed after ablation of DRN serotonergic neurons. CONCLUSION The activity of neural networks and single cells in the OB, and their ability to encode information about odor value, are shaped by serotonergic projections from the DRN.
Collapse
Affiliation(s)
- Siqi Jing
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Chi Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Qun Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Wolf D, Hartig R, Zhuo Y, Scheller MF, Articus M, Moor M, Grinevich V, Linster C, Russo E, Weber-Fahr W, Reinwald JR, Kelsch W. Oxytocin induces the formation of distinctive cortical representations and cognitions biased toward familiar mice. Nat Commun 2024; 15:6274. [PMID: 39054324 PMCID: PMC11272796 DOI: 10.1038/s41467-024-50113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Social recognition is essential for the formation of social structures. Many times, recognition comes with lesser exploration of familiar animals. This lesser exploration has led to the assumption that recognition may be a habituation memory. The underlying memory mechanisms and the thereby acquired cortical representations of familiar mice have remained largely unknown, however. Here, we introduce an approach directly examining the recognition process from volatile body odors among male mice. We show that volatile body odors emitted by mice are sufficient to identify individuals and that more salience is assigned to familiar mice. Familiarity is encoded by reinforced population responses in two olfactory cortex hubs and communicated to other brain regions. The underlying oxytocin-induced plasticity promotes the separation of the cortical representations of familiar from other mice. In summary, neuronal encoding of familiar animals is distinct and utilizes the cortical representational space more broadly, promoting storage of complex social relationships.
Collapse
Affiliation(s)
- David Wolf
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Renée Hartig
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Yi Zhuo
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Max F Scheller
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Mirko Articus
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Marcel Moor
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Christiane Linster
- Computational Physiology Laboratory, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, NY, 14850, USA
| | - Eleonora Russo
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - Wolfgang Weber-Fahr
- Department of Neuroimaging, Translational Imaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Jonathan R Reinwald
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Department of Neuroimaging, Translational Imaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Wolfgang Kelsch
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany.
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
5
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
6
|
Zak JD, Reddy G, Konanur V, Murthy VN. Distinct information conveyed to the olfactory bulb by feedforward input from the nose and feedback from the cortex. Nat Commun 2024; 15:3268. [PMID: 38627390 PMCID: PMC11021479 DOI: 10.1038/s41467-024-47366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Sensory systems are organized hierarchically, but feedback projections frequently disrupt this order. In the olfactory bulb (OB), cortical feedback projections numerically match sensory inputs. To unravel information carried by these two streams, we imaged the activity of olfactory sensory neurons (OSNs) and cortical axons in the mouse OB using calcium indicators, multiphoton microscopy, and diverse olfactory stimuli. Here, we show that odorant mixtures of increasing complexity evoke progressively denser OSN activity, yet cortical feedback activity is of similar sparsity for all stimuli. Also, representations of complex mixtures are similar in OSNs but are decorrelated in cortical axons. While OSN responses to increasing odorant concentrations exhibit a sigmoidal relationship, cortical axonal responses are complex and nonmonotonic, which can be explained by a model with activity-dependent feedback inhibition in the cortex. Our study indicates that early-stage olfactory circuits have access to local feedforward signals and global, efficiently formatted information about odor scenes through cortical feedback.
Collapse
Affiliation(s)
- Joseph D Zak
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA.
- Department of Psychology, University of Illinois Chicago, Chicago, IL, 60607, USA.
| | - Gautam Reddy
- Physics & Informatics Laboratories, NTT Research, Inc., Sunnyvale, CA, 94085, USA
- Department of Physics, Princeton University, Princeton, NJ, 08540, USA
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Vaibhav Konanur
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Venkatesh N Murthy
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Allston, 02134, USA
| |
Collapse
|
7
|
Bao S, Romero JM, Belfort BD, Arenkiel BR. Signaling mechanisms underlying activity-dependent integration of adult-born neurons in the mouse olfactory bulb. Genesis 2024; 62:e23595. [PMID: 38553878 PMCID: PMC10987073 DOI: 10.1002/dvg.23595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Adult neurogenesis has fascinated the field of neuroscience for decades given the prospects of harnessing mechanisms that facilitate the rewiring and/or replacement of adult brain tissue. The subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle are the two main areas in the brain that exhibit ongoing neurogenesis. Of these, adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and continued circuit integration within adult brain tissue. This review focuses on some of the recognized molecular and signaling mechanisms underlying activity-dependent adult-born neuron development. Notably, olfactory activity and behavioral states contribute to adult-born neuron plasticity through sensory and centrifugal inputs, in which calcium-dependent transcriptional programs, local translation, and neuropeptide signaling play important roles. This review also highlights areas of needed continued investigation to better understand the remarkable phenomenon of adult-born neuron integration.
Collapse
Affiliation(s)
- Suyang Bao
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin D.W. Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
8
|
Lindeman S, Fu X, Reinert JK, Fukunaga I. Value-related learning in the olfactory bulb occurs through pathway-dependent perisomatic inhibition of mitral cells. PLoS Biol 2024; 22:e3002536. [PMID: 38427708 PMCID: PMC10936853 DOI: 10.1371/journal.pbio.3002536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/13/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024] Open
Abstract
Associating values to environmental cues is a critical aspect of learning from experiences, allowing animals to predict and maximise future rewards. Value-related signals in the brain were once considered a property of higher sensory regions, but their wide distribution across many brain regions is increasingly recognised. Here, we investigate how reward-related signals begin to be incorporated, mechanistically, at the earliest stage of olfactory processing, namely, in the olfactory bulb. In head-fixed mice performing Go/No-Go discrimination of closely related olfactory mixtures, rewarded odours evoke widespread inhibition in one class of output neurons, that is, in mitral cells but not tufted cells. The temporal characteristics of this reward-related inhibition suggest it is odour-driven, but it is also context-dependent since it is absent during pseudo-conditioning and pharmacological silencing of the piriform cortex. Further, the reward-related modulation is present in the somata but not in the apical dendritic tuft of mitral cells, suggesting an involvement of circuit components located deep in the olfactory bulb. Depth-resolved imaging from granule cell dendritic gemmules suggests that granule cells that target mitral cells receive a reward-related extrinsic drive. Thus, our study supports the notion that value-related modulation of olfactory signals is a characteristic of olfactory processing in the primary olfactory area and narrows down the possible underlying mechanisms to deeper circuit components that contact mitral cells perisomatically.
Collapse
Affiliation(s)
- Sander Lindeman
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Xiaochen Fu
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Janine Kristin Reinert
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Izumi Fukunaga
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
9
|
Mallick A, Dacks AM, Gaudry Q. Olfactory Critical Periods: How Odor Exposure Shapes the Developing Brain in Mice and Flies. BIOLOGY 2024; 13:94. [PMID: 38392312 PMCID: PMC10886215 DOI: 10.3390/biology13020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Neural networks have an extensive ability to change in response to environmental stimuli. This flexibility peaks during restricted windows of time early in life called critical periods. The ubiquitous occurrence of this form of plasticity across sensory modalities and phyla speaks to the importance of critical periods for proper neural development and function. Extensive investigation into visual critical periods has advanced our knowledge of the molecular events and key processes that underlie the impact of early-life experience on neuronal plasticity. However, despite the importance of olfaction for the overall survival of an organism, the cellular and molecular basis of olfactory critical periods have not garnered extensive study compared to visual critical periods. Recent work providing a comprehensive mapping of the highly organized olfactory neuropil and its development has in turn attracted a growing interest in how these circuits undergo plasticity during critical periods. Here, we perform a comparative review of olfactory critical periods in fruit flies and mice to provide novel insight into the importance of early odor exposure in shaping neural circuits and highlighting mechanisms found across sensory modalities.
Collapse
Affiliation(s)
- Ahana Mallick
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Quentin Gaudry
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
10
|
Cohen O, Kahan A, Steinberg I, Malinowski ST, Rokni D, Spehr M, Ben-Shaul Y. Stimulus-Induced Theta-Band LFP Oscillations Format Neuronal Representations of Social Chemosignals in the Mouse Accessory Olfactory Bulb. J Neurosci 2023; 43:8700-8722. [PMID: 37903594 PMCID: PMC10727196 DOI: 10.1523/jneurosci.1055-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
Social communication is crucial for the survival of many species. In most vertebrates, a dedicated chemosensory system, the vomeronasal system (VNS), evolved to process ethologically relevant chemosensory cues. The first central processing stage of the VNS is the accessory olfactory bulb (AOB), which sends information to downstream brain regions via AOB mitral cells (AMCs). Recent studies provided important insights about the functional properties of AMCs, but little is known about the principles that govern their coordinated activity. Here, we recorded local field potentials (LFPs) and single-unit activity in the AOB of adult male and female mice during presentation of natural stimuli. Our recordings reveal prominent LFP theta-band oscillatory episodes with a characteristic spatial pattern across the AOB. Throughout an experiment, the AOB network shows varying degrees of similarity to this pattern, in a manner that depends on the sensory stimulus. Analysis of LFP signal polarity and single-unit activity indicates that oscillatory episodes are generated locally within the AOB, likely representing a reciprocal interaction between AMCs and granule cells. Notably, spike times of many AMCs are constrained to the negative LFP oscillation phase in a manner that can drastically affect integration by downstream processing stages. Based on these observations, we propose that LFP oscillations may gate, bind, and organize outgoing signals from individual AOB neurons to downstream processing stages. Our findings suggest that, as in other neuronal systems and brain regions, population-level oscillations play a key role in organizing and enhancing transmission of socially relevant chemosensory information.SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is the first central stage of the vomeronasal system, a chemosensory system dedicated to processing cues from other organisms. Information from the AOB is conveyed to other brain regions via activity of its principal neurons, AOB mitral cells (AMCs). Here, we show that socially relevant sensory stimulation of the mouse vomeronasal system leads not only to changes in AMC activity, but also to distinct theta-band (∼5 Hz) oscillatory episodes in the local field potential. Notably AMCs favor the negative phase of these oscillatory events. Our findings suggest a novel mechanism for the temporal coordination of distributed patterns of neuronal activity, which can serve to efficiently activate downstream processing stages.
Collapse
Affiliation(s)
- Oksana Cohen
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Anat Kahan
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel
| | - Idan Steinberg
- Alpha Program, Future Scientist Center, The Hebrew University Youth Division, Jerusalem 9190401, Israel
| | - Sebastian T Malinowski
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52062 Aachen, Germany
| | - Dan Rokni
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52062 Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
11
|
Zavatone-Veth JA, Masset P, Tong WL, Zak JD, Murthy VN, Pehlevan C. Neural Circuits for Fast Poisson Compressed Sensing in the Olfactory Bulb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545947. [PMID: 37961548 PMCID: PMC10634677 DOI: 10.1101/2023.06.21.545947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Within a single sniff, the mammalian olfactory system can decode the identity and concentration of odorants wafted on turbulent plumes of air. Yet, it must do so given access only to the noisy, dimensionally-reduced representation of the odor world provided by olfactory receptor neurons. As a result, the olfactory system must solve a compressed sensing problem, relying on the fact that only a handful of the millions of possible odorants are present in a given scene. Inspired by this principle, past works have proposed normative compressed sensing models for olfactory decoding. However, these models have not captured the unique anatomy and physiology of the olfactory bulb, nor have they shown that sensing can be achieved within the 100-millisecond timescale of a single sniff. Here, we propose a rate-based Poisson compressed sensing circuit model for the olfactory bulb. This model maps onto the neuron classes of the olfactory bulb, and recapitulates salient features of their connectivity and physiology. For circuit sizes comparable to the human olfactory bulb, we show that this model can accurately detect tens of odors within the timescale of a single sniff. We also show that this model can perform Bayesian posterior sampling for accurate uncertainty estimation. Fast inference is possible only if the geometry of the neural code is chosen to match receptor properties, yielding a distributed neural code that is not axis-aligned to individual odor identities. Our results illustrate how normative modeling can help us map function onto specific neural circuits to generate new hypotheses.
Collapse
Affiliation(s)
- Jacob A Zavatone-Veth
- Center for Brain Science, Harvard University Cambridge, MA 02138
- Department of Physics, Harvard University Cambridge, MA 02138
| | - Paul Masset
- Center for Brain Science, Harvard University Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University Cambridge, MA 02138
| | - William L Tong
- Center for Brain Science, Harvard University Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge, MA 02138
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University Cambridge, MA 02138
| | - Joseph D Zak
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL 60607
| | - Venkatesh N Murthy
- Center for Brain Science, Harvard University Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University Cambridge, MA 02138
| | - Cengiz Pehlevan
- Center for Brain Science, Harvard University Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge, MA 02138
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University Cambridge, MA 02138
| |
Collapse
|
12
|
Srinivasan S, Daste S, Modi MN, Turner GC, Fleischmann A, Navlakha S. Effects of stochastic coding on olfactory discrimination in flies and mice. PLoS Biol 2023; 21:e3002206. [PMID: 37906721 PMCID: PMC10618007 DOI: 10.1371/journal.pbio.3002206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/21/2023] [Indexed: 11/02/2023] Open
Abstract
Sparse coding can improve discrimination of sensory stimuli by reducing overlap between their representations. Two factors, however, can offset sparse coding's benefits: similar sensory stimuli have significant overlap and responses vary across trials. To elucidate the effects of these 2 factors, we analyzed odor responses in the fly and mouse olfactory regions implicated in learning and discrimination-the mushroom body (MB) and the piriform cortex (PCx). We found that neuronal responses fall along a continuum from extremely reliable across trials to extremely variable or stochastic. Computationally, we show that the observed variability arises from noise within central circuits rather than sensory noise. We propose this coding scheme to be advantageous for coarse- and fine-odor discrimination. More reliable cells enable quick discrimination between dissimilar odors. For similar odors, however, these cells overlap and do not provide distinguishing information. By contrast, more unreliable cells are decorrelated for similar odors, providing distinguishing information, though these benefits only accrue with extended training with more trials. Overall, we have uncovered a conserved, stochastic coding scheme in vertebrates and invertebrates, and we identify a candidate mechanism, based on variability in a winner-take-all (WTA) inhibitory circuit, that improves discrimination with training.
Collapse
Affiliation(s)
- Shyam Srinivasan
- Kavli Institute for Brain and Mind, University of California, San Diego, California, United States of America
- Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Simon Daste
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
| | - Mehrab N. Modi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Glenn C. Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
| | - Saket Navlakha
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
13
|
Trejo DH, Ciuparu A, da Silva PG, Velasquez CM, Rebouillat B, Gross MD, Davis MB, Muresan RC, Albeanu DF. Fast updating feedback from piriform cortex to the olfactory bulb relays multimodal reward contingency signals during rule-reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557267. [PMID: 37745564 PMCID: PMC10515864 DOI: 10.1101/2023.09.12.557267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
While animals readily adjust their behavior to adapt to relevant changes in the environment, the neural pathways enabling these changes remain largely unknown. Here, using multiphoton imaging, we investigated whether feedback from the piriform cortex to the olfactory bulb supports such behavioral flexibility. To this end, we engaged head-fixed mice in a multimodal rule-reversal task guided by olfactory and auditory cues. Both odor and, surprisingly, the sound cues triggered cortical bulbar feedback responses which preceded the behavioral report. Responses to the same sensory cue were strongly modulated upon changes in stimulus-reward contingency (rule reversals). The re-shaping of individual bouton responses occurred within seconds of the rule-reversal events and was correlated with changes in the behavior. Optogenetic perturbation of cortical feedback within the bulb disrupted the behavioral performance. Our results indicate that the piriform-to-olfactory bulb feedback carries reward contingency signals and is rapidly re-formatted according to changes in the behavioral context.
Collapse
Affiliation(s)
| | - Andrei Ciuparu
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Pedro Garcia da Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- current address – Champalimaud Neuroscience Program, Lisbon, Portugal
| | - Cristina M. Velasquez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- current address – University of Oxford, UK
| | - Benjamin Rebouillat
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- current address –École Normale Supérieure, Paris, France
| | | | | | - Raul C. Muresan
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Dinu F. Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- School for Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
14
|
Maier JX, Zhang Z. Early development of olfactory circuit function. Front Cell Neurosci 2023; 17:1225186. [PMID: 37565031 PMCID: PMC10410114 DOI: 10.3389/fncel.2023.1225186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023] Open
Abstract
During early development, brains undergo profound changes in structure at the molecular, synaptic, cellular and circuit level. At the same time, brains need to perform adaptive function. How do structurally immature brains process information? How do brains perform stable and reliable function despite massive changes in structure? The rodent olfactory system presents an ideal model for approaching these poorly understood questions. Rodents are born deaf and blind, and rely completely on their sense of smell to acquire resources essential for survival during the first 2 weeks of life, such as food and warmth. Here, we review decades of work mapping structural changes in olfactory circuits during early development, as well as more recent studies performing in vivo electrophysiological recordings to characterize functional activity patterns generated by these circuits. The findings demonstrate that neonatal olfactory processing relies on an interacting network of brain areas including the olfactory bulb and piriform cortex. Circuits in these brain regions exhibit varying degrees of structural maturity in neonatal animals. However, despite substantial ongoing structural maturation of circuit elements, the neonatal olfactory system produces dynamic network-level activity patterns that are highly stable over protracted periods during development. We discuss how these findings inform future work aimed at elucidating the circuit-level mechanisms underlying information processing in the neonatal olfactory system, how they support unique neonatal behaviors, and how they transition between developmental stages.
Collapse
Affiliation(s)
- Joost X. Maier
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | |
Collapse
|
15
|
Poplawsky AJ, Cover C, Reddy S, Chishti HB, Vazquez A, Fukuda M. Odor-evoked layer-specific fMRI activities in the awake mouse olfactory bulb. Neuroimage 2023; 274:120121. [PMID: 37080347 PMCID: PMC10240534 DOI: 10.1016/j.neuroimage.2023.120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Awake rodent fMRI is increasingly common over the use of anesthesia since it permits behavioral paradigms and does not confound normal brain function or neurovascular coupling. It is well established that adequate acclimation to the loud fMRI environment and head fixation reduces stress in the rodents and allows for whole brain imaging with little contamination from motion. However, it is unknown whether high-resolution fMRI with increased susceptibility to motion and lower sensitivity can measure small, but spatially discrete, activations in awake mice. To examine this, we used contrast-enhanced cerebral blood volume-weighted (CBVw) fMRI in the mouse olfactory bulb for its enhanced sensitivity and neural specificity. We determined that activation patterns in the glomerular layer to four different odors were spatially distinct and were consistent with previously established histological patterns. In addition, odor-evoked laminar activations were greatest in superficial layers that decreased with laminar depth, similar to previous observations. Interestingly, the fMRI response strengths in the granule cell layer were greater in awake mice than our previous anesthetized rat studies, suggesting that feedback neural activities were intact with wakefulness. We finally determined that fMRI signal changes to repeated odor exposure (i.e., olfactory adaptation) attenuated relatively more in the feedback granule cell layer compared to the input glomerular layer, which is consistent with prior observations. We, therefore, conclude that high-resolution CBVw fMRI can measure odor-specific activation patterns and distinguish changes in laminar activity of head and body restrained awake mice.
Collapse
Affiliation(s)
- Alexander John Poplawsky
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States.
| | - Christopher Cover
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sujatha Reddy
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| | - Harris B Chishti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto Vazquez
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| |
Collapse
|
16
|
Berners-Lee A, Shtrahman E, Grimaud J, Murthy VN. Experience-dependent evolution of odor mixture representations in piriform cortex. PLoS Biol 2023; 21:e3002086. [PMID: 37098044 PMCID: PMC10129003 DOI: 10.1371/journal.pbio.3002086] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/17/2023] [Indexed: 04/26/2023] Open
Abstract
Rodents can learn from exposure to rewarding odors to make better and quicker decisions. The piriform cortex is thought to be important for learning complex odor associations; however, it is not understood exactly how it learns to remember discriminations between many, sometimes overlapping, odor mixtures. We investigated how odor mixtures are represented in the posterior piriform cortex (pPC) of mice while they learn to discriminate a unique target odor mixture against hundreds of nontarget mixtures. We find that a significant proportion of pPC neurons discriminate between the target and all other nontarget odor mixtures. Neurons that prefer the target odor mixture tend to respond with brief increases in firing rate at odor onset compared to other neurons, which exhibit sustained and/or decreased firing. We allowed mice to continue training after they had reached high levels of performance and find that pPC neurons become more selective for target odor mixtures as well as for randomly chosen repeated nontarget odor mixtures that mice did not have to discriminate from other nontargets. These single unit changes during overtraining are accompanied by better categorization decoding at the population level, even though behavioral metrics of mice such as reward rate and latency to respond do not change. However, when difficult ambiguous trial types are introduced, the robustness of the target selectivity is correlated with better performance on the difficult trials. Taken together, these data reveal pPC as a dynamic and robust system that can optimize for both current and possible future task demands at once.
Collapse
Affiliation(s)
- Alice Berners-Lee
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Elizabeth Shtrahman
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Julien Grimaud
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
- Cell Engineering Laboratory (CellTechs), Sup'Biotech, Villejuif, France
| | - Venkatesh N Murthy
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
17
|
Organizational Principles of the Centrifugal Projections to the Olfactory Bulb. Int J Mol Sci 2023; 24:ijms24054579. [PMID: 36902010 PMCID: PMC10002860 DOI: 10.3390/ijms24054579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Centrifugal projections in the olfactory system are critical to both olfactory processing and behavior. The olfactory bulb (OB), the first relay station in odor processing, receives a substantial number of centrifugal inputs from the central brain regions. However, the anatomical organization of these centrifugal connections has not been fully elucidated, especially for the excitatory projection neurons of the OB, the mitral/tufted cells (M/TCs). Using rabies virus-mediated retrograde monosynaptic tracing in Thy1-Cre mice, we identified that the three most prominent inputs of the M/TCs came from the anterior olfactory nucleus (AON), the piriform cortex (PC), and the basal forebrain (BF), similar to the granule cells (GCs), the most abundant population of inhibitory interneurons in the OB. However, M/TCs received proportionally less input from the primary olfactory cortical areas, including the AON and PC, but more input from the BF and contralateral brain regions than GCs. Unlike organizationally distinct inputs from the primary olfactory cortical areas to these two types of OB neurons, inputs from the BF were organized similarly. Furthermore, individual BF cholinergic neurons innervated multiple layers of the OB, forming synapses on both M/TCs and GCs. Taken together, our results indicate that the centrifugal projections to different types of OB neurons may provide complementary and coordinated strategies in olfactory processing and behavior.
Collapse
|
18
|
Gonzalez J, Torterolo P, Tort ABL. Mechanisms and functions of respiration-driven gamma oscillations in the primary olfactory cortex. eLife 2023; 12:e83044. [PMID: 36806332 PMCID: PMC10069865 DOI: 10.7554/elife.83044] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Gamma oscillations are believed to underlie cognitive processes by shaping the formation of transient neuronal partnerships on a millisecond scale. These oscillations are coupled to the phase of breathing cycles in several brain areas, possibly reflecting local computations driven by sensory inputs sampled at each breath. Here, we investigated the mechanisms and functions of gamma oscillations in the piriform (olfactory) cortex of awake mice to understand their dependence on breathing and how they relate to local spiking activity. Mechanistically, we find that respiration drives gamma oscillations in the piriform cortex, which correlate with local feedback inhibition and result from recurrent connections between local excitatory and inhibitory neuronal populations. Moreover, respiration-driven gamma oscillations are triggered by the activation of mitral/tufted cells in the olfactory bulb and are abolished during ketamine/xylazine anesthesia. Functionally, we demonstrate that they locally segregate neuronal assemblies through a winner-take-all computation leading to sparse odor coding during each breathing cycle. Our results shed new light on the mechanisms of gamma oscillations, bridging computation, cognition, and physiology.
Collapse
Affiliation(s)
- Joaquin Gonzalez
- Departamento de Fisiología, Facultad de Medicina, Universidad de la RepúblicaMontevideoUruguay
- Brain Institute, Federal University of Rio Grande do NorteNatalBrazil
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la RepúblicaMontevideoUruguay
| | - Adriano BL Tort
- Brain Institute, Federal University of Rio Grande do NorteNatalBrazil
| |
Collapse
|
19
|
Robust odor identification in novel olfactory environments in mice. Nat Commun 2023; 14:673. [PMID: 36781878 PMCID: PMC9925783 DOI: 10.1038/s41467-023-36346-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Relevant odors signaling food, mates, or predators can be masked by unpredictable mixtures of less relevant background odors. Here, we developed a mouse behavioral paradigm to test the role played by the novelty of the background odors. During the task, mice identified target odors in previously learned background odors and were challenged by catch trials with novel background odors, a task similar to visual CAPTCHA. Female wild-type (WT) mice could accurately identify known targets in novel background odors. WT mice performance was higher than linear classifiers and the nearest neighbor classifier trained using olfactory bulb glomerular activation patterns. Performance was more consistent with an odor deconvolution method. We also used our task to investigate the performance of female Cntnap2-/- mice, which show some autism-like behaviors. Cntnap2-/- mice had glomerular activation patterns similar to WT mice and matched WT mice target detection for known background odors. However, Cntnap2-/- mice performance fell almost to chance levels in the presence of novel backgrounds. Our findings suggest that mice use a robust algorithm for detecting odors in novel environments and this computation is impaired in Cntnap2-/- mice.
Collapse
|
20
|
Sy SKH, Chan DCW, Chan RCH, Lyu J, Li Z, Wong KKY, Choi CHJ, Mok VCT, Lai HM, Randlett O, Hu Y, Ko H. An optofluidic platform for interrogating chemosensory behavior and brainwide neural representation in larval zebrafish. Nat Commun 2023; 14:227. [PMID: 36641479 PMCID: PMC9840631 DOI: 10.1038/s41467-023-35836-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Studying chemosensory processing desires precise chemical cue presentation, behavioral response monitoring, and large-scale neuronal activity recording. Here we present Fish-on-Chips, a set of optofluidic tools for highly-controlled chemical delivery while simultaneously imaging behavioral outputs and whole-brain neuronal activities at cellular resolution in larval zebrafish. These include a fluidics-based swimming arena and an integrated microfluidics-light sheet fluorescence microscopy (µfluidics-LSFM) system, both of which utilize laminar fluid flows to achieve spatiotemporally precise chemical cue presentation. To demonstrate the strengths of the platform, we used the navigation arena to reveal binasal input-dependent behavioral strategies that larval zebrafish adopt to evade cadaverine, a death-associated odor. The µfluidics-LSFM system enables sequential presentation of odor stimuli to individual or both nasal cavities separated by only ~100 µm. This allowed us to uncover brainwide neural representations of cadaverine sensing and binasal input summation in the vertebrate model. Fish-on-Chips is readily generalizable and will empower the investigation of neural coding in the chemical senses.
Collapse
Affiliation(s)
- Samuel K H Sy
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Danny C W Chan
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Roy C H Chan
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jing Lyu
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Zhongqi Li
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Kenneth K Y Wong
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hei-Ming Lai
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Owen Randlett
- Institut national de la santé et de la recherche médicale, Université Claude Bernard Lyon 1, Lyon, France
| | - Yu Hu
- Department of Mathematics and Division of Life Science, Faculty of Science, Hong Kong University of Science and Technology, Clear Water Bay, New Territories, Hong Kong SAR, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
21
|
Hu R, Shankar J, Dong GZ, Villar PS, Araneda RC. α 2-Adrenergic modulation of I h in adult-born granule cells in the olfactory bulb. Front Cell Neurosci 2023; 16:1055569. [PMID: 36687519 PMCID: PMC9853206 DOI: 10.3389/fncel.2022.1055569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 01/09/2023] Open
Abstract
In the olfactory bulb (OB), a large population of axon-less inhibitory interneurons, the granule cells (GCs), coordinate network activity and tune the output of principal neurons, the mitral and tufted cells (MCs), through dendrodendritic interactions. Furthermore, GCs undergo neurogenesis throughout life, providing a source of plasticity to the neural network of the OB. The function and integration of GCs in the OB are regulated by several afferent neuromodulatory signals, including noradrenaline (NA), a state-dependent neuromodulator that plays a crucial role in the regulation of cortical function and task-specific decision processes. However, the mechanisms by which NA regulates GC function are not fully understood. Here, we show that NA modulates hyperpolarization-activated currents (Ih) via the activation of α2-adrenergic receptors (ARs) in adult-born GCs (abGCs), thus directly acting on channels that play essential roles in regulating neuronal excitability and network oscillations in the brain. This modulation affects the dendrodendritic output of GCs leading to an enhancement of lateral inhibition onto the MCs. Furthermore, we show that NA modulates subthreshold resonance in GCs, which could affect the temporal integration of abGCs. Together, these results provide a novel mechanism by which a state-dependent neuromodulator acting on Ih can regulate GC function in the OB.
Collapse
|
22
|
Bolding KA, Franks KM. Electrophysiological Recordings from Identified Cell Types in the Olfactory Cortex of Awake Mice. Methods Mol Biol 2023; 2710:209-221. [PMID: 37688735 DOI: 10.1007/978-1-0716-3425-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Neural circuits consist of a myriad of distinct cell types, each with specific intrinsic properties and patterns of synaptic connectivity, which transform neural input and convey this information to downstream targets. Understanding how different features of an odor stimulus are encoded and relayed to their appropriate targets will require selective identification and manipulation of these different elements of the circuit. Here, we describe methods to obtain dense, extracellular electrophysiological recordings of odor-evoked activity in olfactory (piriform) cortex of awake, head-fixed mice, and optogenetic tools and procedures to identify genetically defined cell types within this circuit.
Collapse
Affiliation(s)
- Kevin A Bolding
- Department of Neurobiology, Duke University, Durham, NC, USA
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin M Franks
- Department of Neurobiology, Duke University, Durham, NC, USA.
| |
Collapse
|
23
|
Chae H, Banerjee A, Dussauze M, Albeanu DF. Long-range functional loops in the mouse olfactory system and their roles in computing odor identity. Neuron 2022; 110:3970-3985.e7. [PMID: 36174573 PMCID: PMC9742324 DOI: 10.1016/j.neuron.2022.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 07/12/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022]
Abstract
Elucidating the neural circuits supporting odor identification remains an open challenge. Here, we analyze the contribution of the two output cell types of the mouse olfactory bulb (mitral and tufted cells) to decode odor identity and concentration and its dependence on top-down feedback from their respective major cortical targets: piriform cortex versus anterior olfactory nucleus. We find that tufted cells substantially outperform mitral cells in decoding both odor identity and intensity. Cortical feedback selectively regulates the activity of its dominant bulb projection cell type and implements different computations. Piriform feedback specifically restructures mitral responses, whereas feedback from the anterior olfactory nucleus preferentially controls the gain of tufted representations without altering their odor tuning. Our results identify distinct functional loops involving the mitral and tufted cells and their cortical targets. We suggest that in addition to the canonical mitral-to-piriform pathway, tufted cells and their target regions are ideally positioned to compute odor identity.
Collapse
Affiliation(s)
- Honggoo Chae
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Arkarup Banerjee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA
| | - Marie Dussauze
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA
| | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA.
| |
Collapse
|
24
|
Mazo C, Nissant A, Saha S, Peroni E, Lledo PM, Lepousez G. Long-range GABAergic projections contribute to cortical feedback control of sensory processing. Nat Commun 2022; 13:6879. [PMID: 36371430 PMCID: PMC9653434 DOI: 10.1038/s41467-022-34513-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022] Open
Abstract
In the olfactory system, the olfactory cortex sends glutamatergic projections back to the first stage of olfactory processing, the olfactory bulb (OB). Such corticofugal excitatory circuits - a canonical circuit motif described in all sensory systems- dynamically adjust early sensory processing. Here, we uncover a corticofugal inhibitory feedback to OB, originating from a subpopulation of GABAergic neurons in the anterior olfactory cortex and innervating both local and output OB neurons. In vivo imaging and network modeling showed that optogenetic activation of cortical GABAergic projections drives a net subtractive inhibition of both spontaneous and odor-evoked activity in local as well as output neurons. In output neurons, stimulation of cortical GABAergic feedback enhances separation of population odor responses in tufted cells, but not mitral cells. Targeted pharmacogenetic silencing of cortical GABAergic axon terminals impaired discrimination of similar odor mixtures. Thus, corticofugal GABAergic projections represent an additional circuit motif in cortical feedback control of sensory processing.
Collapse
Affiliation(s)
- Camille Mazo
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France.
- Champalimaud Foundation, Lisbon, Portugal.
| | - Antoine Nissant
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Soham Saha
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Enzo Peroni
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France.
| | - Gabriel Lepousez
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France.
| |
Collapse
|
25
|
Han JJ, Noh TS, Suh MW, Kim SH, Kim DH, Kim SJ, Oh SH. Synaptic Remodeling of the Auditory Cortex Following Bilateral Blindness: Evidence of Cross-modal Plasticity. Exp Neurobiol 2022; 31:299-306. [PMID: 36351840 PMCID: PMC9659489 DOI: 10.5607/en22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
We aimed to evaluate structural dynamic changes of neurons in the auditory cortex after visual deprivation. We longitudinally tracked dendritic spines for 3 weeks after visual deprivation in vivo using a two-photon microscope. GFP-labeled dendritic spines in the auditory cortex were serially followed after bilateral enucleation. The turnover rate, density, and size of the spines in the dendrites were evaluated 1, 2, and 3 weeks after visual deprivation. The turnover rate of the dendritic spines in the auditory cortex increased at 1 week (20.1±7.3%) after bilateral enucleation compared to baseline (12.5±7.9%); the increase persisted for up to 3 weeks (20.9±11.0%). The spine loss rate was slightly higher than the spine gain rate. The average spine density (number of spines per 1 μm of dendrite) was significantly lower at 2 weeks (2W; 0.22±0.06 1/μm) and 3 W (0.22±0.08 1/μm) post-nucleation compared to baseline (0.026±0.09 1/μm). We evaluated the change of synaptic strength in the stable spines at each time point. The normalized spine size in the auditory cortex was significantly increased after bilateral blindness at 1 W postoperatively (1.36±0.92), 2 W postoperatively (1.40±1.18), and 3 W postoperatively (1.36±0.88) compared to baseline. Sensory deprivation resulted in remodeling of the neural circuitry in the spared cortex, via cross-modal plasticity in the direction of partial breakdown of synapses, and enhanced strength of the remaining synapses.
Collapse
Affiliation(s)
- Jae Joon Han
- Department of Otorhinolaryngology–Head and Neck Surgery, Soonchunhyang University College of Medicine, Seoul Hospital, Seoul 04401, Korea
| | - Tae-Soo Noh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seung Ha Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Doo Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuroscience Research Institute, Seoul National University College of Natural Sciences, Seoul 03080, Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
26
|
Chen Y, Chen X, Baserdem B, Zhan H, Li Y, Davis MB, Kebschull JM, Zador AM, Koulakov AA, Albeanu DF. High-throughput sequencing of single neuron projections reveals spatial organization in the olfactory cortex. Cell 2022; 185:4117-4134.e28. [PMID: 36306734 PMCID: PMC9681627 DOI: 10.1016/j.cell.2022.09.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
In most sensory modalities, neuronal connectivity reflects behaviorally relevant stimulus features, such as spatial location, orientation, and sound frequency. By contrast, the prevailing view in the olfactory cortex, based on the reconstruction of dozens of neurons, is that connectivity is random. Here, we used high-throughput sequencing-based neuroanatomical techniques to analyze the projections of 5,309 mouse olfactory bulb and 30,433 piriform cortex output neurons at single-cell resolution. Surprisingly, statistical analysis of this much larger dataset revealed that the olfactory cortex connectivity is spatially structured. Single olfactory bulb neurons targeting a particular location along the anterior-posterior axis of piriform cortex also project to matched, functionally distinct, extra-piriform targets. Moreover, single neurons from the targeted piriform locus also project to the same matched extra-piriform targets, forming triadic circuit motifs. Thus, as in other sensory modalities, olfactory information is routed at early stages of processing to functionally diverse targets in a coordinated manner.
Collapse
Affiliation(s)
- Yushu Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiaoyin Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Huiqing Zhan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yan Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Martin B Davis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Anthony M Zador
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | | | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
27
|
Ngo FY, Li H, Zhang H, Lau CYG. Acute Fasting Modulates Food-Seeking Behavior and Neural Signaling in the Piriform Cortex. Nutrients 2022; 14:nu14194156. [PMID: 36235808 PMCID: PMC9572926 DOI: 10.3390/nu14194156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
It is well known that the state of hunger can modulate hormones and hypothalamic neural circuits to drive food-seeking behavior and consumption. However, the role the sensory cortex plays in regulating foraging is much less explored. Here, we investigated whether acute fasting in mice can alter an odor-guided foraging behavior and how it can alter neurons and synapses in the (olfactory) piriform cortex (PC). Acute hunger enhances the motivation of a mouse to search for food pellets and increases food intake. The foraging behavior strongly activates the PC, as revealed by c-Fos immunostaining. The activation of PC is accompanied by an increase in excitation-inhibition ratio of synaptic density. Fasting also enhances the phosphorylation of AMP kinase, a biochemical energy regulator. Taken together, our results uncover a new regulatory brain region and implicate the PC in controlling foraging behavior.
Collapse
Affiliation(s)
- Fung-Yin Ngo
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Huanhuan Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Huiqi Zhang
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Chun-Yue Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Correspondence: ; Tel.: +852-3442-4345
| |
Collapse
|
28
|
Guo A, Lau CG. TNF-α Orchestrates Experience-Dependent Plasticity of Excitatory and Inhibitory Synapses in the Anterior Piriform Cortex. Front Neurosci 2022; 16:824454. [PMID: 35557610 PMCID: PMC9086849 DOI: 10.3389/fnins.2022.824454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Homeostatic synaptic plasticity, which induces compensatory modulation of synapses, plays a critical role in maintaining neuronal circuit function in response to changing activity patterns. Activity in the anterior piriform cortex (APC) is largely driven by ipsilateral neural activity from the olfactory bulb and is a suitable system for examining the effects of sensory experience on cortical circuits. Pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) can modulate excitatory and inhibitory synapses, but its role in APC is unexplored. Here we examined the role of TNF-α in adjusting synapses in the mouse APC after experience deprivation via unilateral naris occlusion. Immunofluorescent staining revealed that activity deprivation increased excitatory, and decreased inhibitory, synaptic density in wild-type mice, consistent with homeostatic regulation. Quantitative RT-PCR showed that naris occlusion increased the expression of Tnf mRNA in APC. Critically, occlusion-induced plasticity of excitatory and inhibitory synapses was completely blocked in the Tnf knockout mouse. Together, these results show that TNF-α is an important orchestrator of experience-dependent plasticity in the APC.
Collapse
Affiliation(s)
- Anni Guo
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Chunyue Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
29
|
Chen Z, Padmanabhan K. Top-down feedback enables flexible coding strategies in the olfactory cortex. Cell Rep 2022; 38:110545. [PMID: 35320723 DOI: 10.1016/j.celrep.2022.110545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 11/03/2022] Open
Abstract
In chemical sensation, multiple models have been proposed to explain how odors are represented in the olfactory cortex. One hypothesis is that the combinatorial identity of active neurons within sniff-related time windows is critical, whereas another model proposes that it is the temporal structure of neural activity that is essential for encoding odor information. We find that top-down feedback to the main olfactory bulb dictates the information transmitted to the piriform cortex and switches between these coding strategies. Using a detailed network model, we demonstrate that feedback control of inhibition influences the excitation-inhibition balance in mitral cells, restructuring the dynamics of piriform cortical cells. This results in performance improvement in odor discrimination tasks. These findings present a framework for early olfactory computation, where top-down feedback to the bulb flexibly shapes the temporal structure of neural activity in the piriform cortex, allowing the early olfactory system to dynamically switch between two distinct coding models.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Krishnan Padmanabhan
- Department of Neuroscience, Neuroscience Graduate Program, Del Monte Institute for Neuroscience, Center for Visual Sciences, Intellectual and Developmental Disability Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
30
|
Hiratani N, Latham PE. Developmental and evolutionary constraints on olfactory circuit selection. Proc Natl Acad Sci U S A 2022; 119:e2100600119. [PMID: 35263217 PMCID: PMC8931209 DOI: 10.1073/pnas.2100600119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/14/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceIn this work, we explore the hypothesis that biological neural networks optimize their architecture, through evolution, for learning. We study early olfactory circuits of mammals and insects, which have relatively similar structure but a huge diversity in size. We approximate these circuits as three-layer networks and estimate, analytically, the scaling of the optimal hidden-layer size with input-layer size. We find that both longevity and information in the genome constrain the hidden-layer size, so a range of allometric scalings is possible. However, the experimentally observed allometric scalings in mammals and insects are consistent with biologically plausible values. This analysis should pave the way for a deeper understanding of both biological and artificial networks.
Collapse
Affiliation(s)
- Naoki Hiratani
- Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, United Kingdom
| | - Peter E. Latham
- Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, United Kingdom
| |
Collapse
|
31
|
Adefuin AM, Lindeman S, Reinert JK, Fukunaga I. State-dependent representations of mixtures by the olfactory bulb. eLife 2022; 11:76882. [PMID: 35254262 PMCID: PMC8937304 DOI: 10.7554/elife.76882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/05/2022] [Indexed: 12/02/2022] Open
Abstract
Sensory systems are often tasked to analyse complex signals from the environment, separating relevant from irrelevant parts. This process of decomposing signals is challenging when a mixture of signals does not equal the sum of its parts, leading to an unpredictable corruption of signal patterns. In olfaction, nonlinear summation is prevalent at various stages of sensory processing. Here, we investigate how the olfactory system deals with binary mixtures of odours under different brain states by two-photon imaging of olfactory bulb (OB) output neurons. Unlike previous studies using anaesthetised animals, we found that mixture summation is more linear in the early phase of evoked responses in awake, head-fixed mice performing an odour detection task, due to dampened responses. Despite smaller and more variable responses, decoding analyses indicated that the data from behaving mice was well discriminable. Curiously, the time course of decoding accuracy did not correlate strictly with the linearity of summation. Further, a comparison with naïve mice indicated that learning to accurately perform the mixture detection task is not accompanied by more linear mixture summation. Finally, using a simulation, we demonstrate that, while saturating sublinearity tends to degrade the discriminability, the extent of the impairment may depend on other factors, including pattern decorrelation. Altogether, our results demonstrate that the mixture representation in the primary olfactory area is state-dependent, but the analytical perception may not strictly correlate with linearity in summation.
Collapse
Affiliation(s)
- Aliya Mari Adefuin
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sander Lindeman
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Janine K Reinert
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Izumi Fukunaga
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
32
|
Schreck MR, Zhuang L, Janke E, Moberly AH, Bhattarai JP, Gottfried JA, Wesson DW, Ma M. State-dependent olfactory processing in freely behaving mice. Cell Rep 2022; 38:110450. [PMID: 35235805 PMCID: PMC8958632 DOI: 10.1016/j.celrep.2022.110450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/07/2021] [Accepted: 02/07/2022] [Indexed: 11/06/2022] Open
Abstract
Decreased responsiveness to sensory stimuli during sleep is presumably mediated via thalamic gating. Without an obligatory thalamic relay in the olfactory system, the anterior piriform cortex (APC) is suggested to be a gate in anesthetized states. However, olfactory processing in natural sleep states remains undetermined. Here, we simultaneously record local field potentials (LFPs) in hierarchical olfactory regions (olfactory bulb [OB], APC, and orbitofrontal cortex) while optogenetically activating olfactory sensory neurons, ensuring consistent peripheral inputs across states in behaving mice. Surprisingly, evoked LFPs in sleep states (both non-rapid eye movement [NREM] and rapid eye movement [REM]) are larger and contain greater gamma-band power and cross-region coherence (compared to wakefulness) throughout the olfactory pathway, suggesting the lack of a central gate. Single-unit recordings from the OB and APC reveal a higher percentage of responsive neurons during sleep with a higher incidence of suppressed firing. Additionally, nasal breathing is slower and shallower during sleep, suggesting a partial peripheral gating mechanism. Schreck et al. examine how the olfactory system responds to the same peripheral stimulus during natural sleep and wake in mice. Larger responses along the pathway during sleep suggest the lack of a central gate, but slower and shallower breathing may act as a partial peripheral gate to reduce olfactory input.
Collapse
Affiliation(s)
- Mary R Schreck
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Liujing Zhuang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Emma Janke
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew H Moberly
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jay A Gottfried
- Department of Psychology, University of Pennsylvania, School of Arts and Sciences; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Kersen DEC, Tavoni G, Balasubramanian V. Connectivity and dynamics in the olfactory bulb. PLoS Comput Biol 2022; 18:e1009856. [PMID: 35130267 PMCID: PMC8853646 DOI: 10.1371/journal.pcbi.1009856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/17/2022] [Accepted: 01/22/2022] [Indexed: 12/22/2022] Open
Abstract
Dendrodendritic interactions between excitatory mitral cells and inhibitory granule cells in the olfactory bulb create a dense interaction network, reorganizing sensory representations of odors and, consequently, perception. Large-scale computational models are needed for revealing how the collective behavior of this network emerges from its global architecture. We propose an approach where we summarize anatomical information through dendritic geometry and density distributions which we use to calculate the connection probability between mitral and granule cells, while capturing activity patterns of each cell type in the neural dynamical systems theory of Izhikevich. In this way, we generate an efficient, anatomically and physiologically realistic large-scale model of the olfactory bulb network. Our model reproduces known connectivity between sister vs. non-sister mitral cells; measured patterns of lateral inhibition; and theta, beta, and gamma oscillations. The model in turn predicts testable relationships between network structure and several functional properties, including lateral inhibition, odor pattern decorrelation, and LFP oscillation frequency. We use the model to explore the influence of cortex on the olfactory bulb, demonstrating possible mechanisms by which cortical feedback to mitral cells or granule cells can influence bulbar activity, as well as how neurogenesis can improve bulbar decorrelation without requiring cell death. Our methodology provides a tractable tool for other researchers.
Collapse
Affiliation(s)
- David E. Chen Kersen
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gaia Tavoni
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Vijay Balasubramanian
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
34
|
Abstract
Measures of behavioral sensitivity provide an important guide for choosing the stimulus concentrations used in functional experiments. This information is particularly valuable in the olfactory system as the neural representation of an odorant changes with concentration. This study focuses on acetate esters because they are commonly used to survey neural activity in a variety of olfactory regions, probe the behavioral limits of odor discrimination, and assess odor structure–activity relationships in mice. Despite their frequent use, the relative sensitivity of these odorants in mice is not available. Thus, we assayed the ability of C57BL/6J mice to detect seven different acetates (propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, octyl acetate, isobutyl acetate, and isoamyl acetate) using a head-fixed Go/No-Go operant conditioning assay combined with highly reproducible stimulus delivery. To aid in the accessibility and applicability of our data, we have estimated the vapor-phase concentrations of these odorants in five different solvents using a photoionization detector-based approach. The resulting liquid-/vapor-phase equilibrium equations successfully corrected for behavioral sensitivity differences observed in animals tested with the same odorant in different solvents. We found that mice are most sensitive to isobutyl acetate and least sensitive to propyl acetate. These updated measures of sensitivity will hopefully guide experimenters in choosing appropriate stimulus concentrations for experiments using these odorants.
Collapse
Affiliation(s)
- Liam Jennings
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Ellie Williams
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Marta Avlas
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Adam Dewan
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
35
|
Yan Y, Aierken A, Wang C, Song D, Ni J, Wang Z, Quan Z, Qing H. A potential biomarker of preclinical Alzheimer's disease: The olfactory dysfunction and its pathogenesis-based neural circuitry impairments. Neurosci Biobehav Rev 2021; 132:857-869. [PMID: 34810025 DOI: 10.1016/j.neubiorev.2021.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/26/2021] [Accepted: 11/07/2021] [Indexed: 01/24/2023]
Abstract
The olfactory dysfunction can signal and act as a potential biomarker of preclinical AD. However, the precise regulatory mechanism of olfactory function on the neural pathogenesis of AD is still unclear. The impairment of neural networks in olfaction system has been shown to be tightly associated with AD. As key brain regions of the olfactory system, the olfactory bulb (OB) and the piriform cortex (PCx) have a profound influence on the olfactory function. Therefore, this review will explore the mechanism of olfactory dysfunction in preclinical AD in the perspective of abnormal neural networks in the OB and PCx and their associated brain regions, especially from two aspects of aberrant oscillations and synaptic plasticity damages, which help better understand the underlying mechanism of olfactory neural network damages related to AD.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ailikemu Aierken
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhe Wang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
36
|
Capsoni S, Fogli Iseppe A, Casciano F, Pignatelli A. Unraveling the Role of Dopaminergic and Calretinin Interneurons in the Olfactory Bulb. Front Neural Circuits 2021; 15:718221. [PMID: 34690707 PMCID: PMC8531203 DOI: 10.3389/fncir.2021.718221] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/31/2021] [Indexed: 11/27/2022] Open
Abstract
The perception and discriminating of odors are sensory activities that are an integral part of our daily life. The first brain region where odors are processed is the olfactory bulb (OB). Among the different cell populations that make up this brain area, interneurons play an essential role in this sensory activity. Moreover, probably because of their activity, they represent an exception compared to other parts of the brain, since OB interneurons are continuously generated in the postnatal and adult period. In this review, we will focus on periglomerular (PG) cells which are a class of interneurons found in the glomerular layer of the OB. These interneurons can be classified into distinct subtypes based on their neurochemical nature, based on the neurotransmitter and calcium-binding proteins expressed by these cells. Dopaminergic (DA) periglomerular cells and calretinin (CR) cells are among the newly generated interneurons and play an important role in the physiology of OB. In the OB, DA cells are involved in the processing of odors and the adaptation of the bulbar network to external conditions. The main role of DA cells in OB appears to be the inhibition of glutamate release from olfactory sensory fibers. Calretinin cells are probably the best morphologically characterized interneurons among PG cells in OB, but little is known about their function except for their inhibitory effect on noisy random excitatory signals arriving at the main neurons. In this review, we will mainly describe the electrophysiological properties related to the excitability profiles of DA and CR cells, with a particular view on the differences that characterize DA mature interneurons from cells in different stages of adult neurogenesis.
Collapse
Affiliation(s)
- Simona Capsoni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Alex Fogli Iseppe
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- Interdepartmental Research Centre for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, Ferrara, Italy
| | - Angela Pignatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
37
|
Tavoni G, Kersen DEC, Balasubramanian V. Cortical feedback and gating in odor discrimination and generalization. PLoS Comput Biol 2021; 17:e1009479. [PMID: 34634035 PMCID: PMC8530364 DOI: 10.1371/journal.pcbi.1009479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/21/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
A central question in neuroscience is how context changes perception. In the olfactory system, for example, experiments show that task demands can drive divergence and convergence of cortical odor responses, likely underpinning olfactory discrimination and generalization. Here, we propose a simple statistical mechanism for this effect based on unstructured feedback from the central brain to the olfactory bulb, which represents the context associated with an odor, and sufficiently selective cortical gating of sensory inputs. Strikingly, the model predicts that both convergence and divergence of cortical odor patterns should increase when odors are initially more similar, an effect reported in recent experiments. The theory in turn predicts reversals of these trends following experimental manipulations and in neurological conditions that increase cortical excitability.
Collapse
Affiliation(s)
- Gaia Tavoni
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David E. Chen Kersen
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vijay Balasubramanian
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
38
|
Jiang HH, Guo A, Chiu A, Li H, Lai CSW, Lau CG. Target-specific control of piriform cortical output via distinct inhibitory circuits. FASEB J 2021; 35:e21944. [PMID: 34569087 DOI: 10.1096/fj.202100757r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
Information represented by principal neurons in anterior piriform cortex (APC) is regulated by local, recurrent excitation and inhibition, but the circuit mechanisms remain elusive. Two types of layer 2 (L2) principal neurons, semilunar (SL), and superficial pyramidal (SP) cells, are parallel output channels, and the control of their activity gates the output of APC. Here, we examined the hypothesis that recurrent inhibition differentially regulates SL and SP cells. Patterned optogenetic stimulation revealed that the strength of recurrent inhibition is target- and layer-specific: L1 > L3 for SL cells, but L3 > L1 for SP cells. This target- and layer-specific inhibition was largely attributable to the parvalbumin (PV), but not somatostatin, interneurons. Intriguingly, olfactory experience selectively modulated the PV to SP microcircuit while maintaining the overall target and laminar specificity of inhibition. Together, these results indicate the importance of target-specific inhibitory wiring for odor processing, implicating these mechanisms in gating the output of piriform cortex.
Collapse
Affiliation(s)
- He-Hai Jiang
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Anni Guo
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Arthur Chiu
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Huanhuan Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chunyue Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
39
|
Ly C, Barreiro AK, Gautam SH, Shew WL. Odor-evoked increases in olfactory bulb mitral cell spiking variability. iScience 2021; 24:102946. [PMID: 34485855 PMCID: PMC8397902 DOI: 10.1016/j.isci.2021.102946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023] Open
Abstract
The spiking variability of neural networks has important implications for how information is encoded to higher brain regions. It has been well documented by numerous labs in many cortical and motor regions that spiking variability decreases with stimulus onset, yet whether this principle holds in the OB has not been tested. In stark contrast to this common view, we demonstrate that the onset of sensory input can cause an increase in the variability of neural activity in the mammalian OB. We show this in both anesthetized and awake rodents. Furthermore, we use computational models to describe the mechanisms of this phenomenon. Our findings establish sensory evoked increases in spiking variability as a viable alternative coding strategy.
Collapse
Affiliation(s)
- Cheng Ly
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Andrea K. Barreiro
- Department of Mathematics, Southern Methodist University, Dallas, TX 75275, USA
| | - Shree Hari Gautam
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Woodrow L. Shew
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
40
|
Craft MF, Barreiro AK, Gautam SH, Shew WL, Ly C. Differences in olfactory bulb mitral cell spiking with ortho- and retronasal stimulation revealed by data-driven models. PLoS Comput Biol 2021; 17:e1009169. [PMID: 34543261 PMCID: PMC8483419 DOI: 10.1371/journal.pcbi.1009169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/30/2021] [Accepted: 09/01/2021] [Indexed: 12/02/2022] Open
Abstract
The majority of olfaction studies focus on orthonasal stimulation where odors enter via the front nasal cavity, while retronasal olfaction, where odors enter the rear of the nasal cavity during feeding, is understudied. The coding of retronasal odors via coordinated spiking of neurons in the olfactory bulb (OB) is largely unknown despite evidence that higher level processing is different than orthonasal. To this end, we use multi-electrode array in vivo recordings of rat OB mitral cells (MC) in response to a food odor with both modes of stimulation, and find significant differences in evoked firing rates and spike count covariances (i.e., noise correlations). Differences in spiking activity often have implications for sensory coding, thus we develop a single-compartment biophysical OB model that is able to reproduce key properties of important OB cell types. Prior experiments in olfactory receptor neurons (ORN) showed retro stimulation yields slower and spatially smaller ORN inputs than with ortho, yet whether this is consequential for OB activity remains unknown. Indeed with these specifications for ORN inputs, our OB model captures the salient trends in our OB data. We also analyze how first and second order ORN input statistics dynamically transfer to MC spiking statistics with a phenomenological linear-nonlinear filter model, and find that retro inputs result in larger linear filters than ortho inputs. Finally, our models show that the temporal profile of ORN is crucial for capturing our data and is thus a distinguishing feature between ortho and retro stimulation, even at the OB. Using data-driven modeling, we detail how ORN inputs result in differences in OB dynamics and MC spiking statistics. These differences may ultimately shape how ortho and retro odors are coded. Olfaction is a key sense for many cognitive and behavioral tasks, and is particularly unique because odors can naturally enter the nasal cavity from the front or rear, i.e., ortho- and retro-nasal, respectively. Yet little is known about the differences in coordinated spiking in the olfactory bulb with ortho versus retro stimulation, let alone how these different modes of olfaction may alter coding of odors. We simultaneously record many cells in rat olfactory bulb to assess the differences in spiking statistics, and develop a biophysical olfactory bulb network model to study the reasons for these differences. Using theoretical and computational methods, we find that the olfactory bulb transfers input statistics differently for retro stimulation relative to ortho stimulation. Furthermore, our models show that the temporal profile of inputs is crucial for capturing our data and is thus a distinguishing feature between ortho and retro stimulation, even at the olfactory bulb. Understanding the spiking dynamics of the olfactory bulb with both ortho and retro stimulation is a key step for ultimately understanding how the brain codes odors with different modes of olfaction.
Collapse
Affiliation(s)
- Michelle F. Craft
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Andrea K. Barreiro
- Department of Mathematics, Southern Methodist University, Dallas, Texas, United States of America
| | - Shree Hari Gautam
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Woodrow L. Shew
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Cheng Ly
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
41
|
Olfactory Optogenetics: Light Illuminates the Chemical Sensing Mechanisms of Biological Olfactory Systems. BIOSENSORS-BASEL 2021; 11:bios11090309. [PMID: 34562900 PMCID: PMC8470751 DOI: 10.3390/bios11090309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 01/26/2023]
Abstract
The mammalian olfactory system has an amazing ability to distinguish thousands of odorant molecules at the trace level. Scientists have made great achievements on revealing the olfactory sensing mechanisms in decades; even though many issues need addressing. Optogenetics provides a novel technical approach to solve this dilemma by utilizing light to illuminate specific part of the olfactory system; which can be used in all corners of the olfactory system for revealing the olfactory mechanism. This article reviews the most recent advances in olfactory optogenetics devoted to elucidate the mechanisms of chemical sensing. It thus attempts to introduce olfactory optogenetics according to the structure of the olfactory system. It mainly includes the following aspects: the sensory input from the olfactory epithelium to the olfactory bulb; the influences of the olfactory bulb (OB) neuron activity patterns on olfactory perception; the regulation between the olfactory cortex and the olfactory bulb; and the neuromodulation participating in odor coding by dominating the olfactory bulb. Finally; current challenges and future development trends of olfactory optogenetics are proposed and discussed.
Collapse
|
42
|
Abstract
Olfaction is fundamentally distinct from other sensory modalities. Natural odor stimuli are complex mixtures of volatile chemicals that interact in the nose with a receptor array that, in rodents, is built from more than 1,000 unique receptors. These interactions dictate a peripheral olfactory code, which in the brain is transformed and reformatted as it is broadcast across a set of highly interconnected olfactory regions. Here we discuss the problems of characterizing peripheral population codes for olfactory stimuli, of inferring the specific functions of different higher olfactory areas given their extensive recurrence, and of ultimately understanding how odor representations are linked to perception and action. We argue that, despite the differences between olfaction and other sensory modalities, addressing these specific questions will reveal general principles underlying brain function.
Collapse
Affiliation(s)
- David H Brann
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Sandeep Robert Datta
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
43
|
Broussard GJ, Petreanu L. Eavesdropping wires: Recording activity in axons using genetically encoded calcium indicators. J Neurosci Methods 2021; 360:109251. [PMID: 34119572 PMCID: PMC8363211 DOI: 10.1016/j.jneumeth.2021.109251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 12/23/2022]
Abstract
Neurons broadcast electrical signals to distal brain regions through extensive axonal arbors. Genetically encoded calcium sensors permit the direct observation of action potential activity at axonal terminals, providing unique insights on the organization and function of neural projections. Here, we consider what information can be gleaned from axonal recordings made at scales ranging from the summed activity extracted from multi-cell axon projections to single boutons. In particular, we discuss the application of different recently developed multi photon and fiber photometry methods for recording neural activity in axons of rodents. We define experimental difficulties associated with imaging approaches in the axonal compartment and highlight the latest methodological advances for addressing these issues. Finally, we reflect on ways in which new technologies can be used in conjunction with axon calcium imaging to address current questions in neurobiology.
Collapse
Affiliation(s)
| | - Leopoldo Petreanu
- Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal.
| |
Collapse
|
44
|
Koldaeva A, Zhang C, Huang YP, Reinert JK, Mizuno S, Sugiyama F, Takahashi S, Soliman T, Matsunami H, Fukunaga I. Generation and Characterization of a Cell Type-Specific, Inducible Cre-Driver Line to Study Olfactory Processing. J Neurosci 2021; 41:6449-6467. [PMID: 34099512 PMCID: PMC8318078 DOI: 10.1523/jneurosci.3076-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
In sensory systems of the brain, mechanisms exist to extract distinct features from stimuli to generate a variety of behavioral repertoires. These often correspond to different cell types at various stages in sensory processing. In the mammalian olfactory system, complex information processing starts in the olfactory bulb, whose output is conveyed by mitral cells (MCs) and tufted cells (TCs). Despite many differences between them, and despite the crucial position they occupy in the information hierarchy, Cre-driver lines that distinguish them do not yet exist. Here, we sought to identify genes that are differentially expressed between MCs and TCs of the mouse, with an ultimate goal to generate a cell type-specific Cre-driver line, starting from a transcriptome analysis using a large and publicly available single-cell RNA-seq dataset (Zeisel et al., 2018). Many genes were differentially expressed, but only a few showed consistent expressions in MCs and at the specificity required. After further validating these putative markers using ISH, two genes (i.e., Pkib and Lbdh2) remained as promising candidates. Using CRISPR/Cas9-mediated gene editing, we generated Cre-driver lines and analyzed the resulting recombination patterns. This indicated that our new inducible Cre-driver line, Lbhd2-CreERT2, can be used to genetically label MCs in a tamoxifen dose-dependent manner, both in male and female mice, as assessed by soma locations, projection patterns, and sensory-evoked responses in vivo Hence, this is a promising tool for investigating cell type-specific contributions to olfactory processing and demonstrates the power of publicly accessible data in accelerating science.SIGNIFICANCE STATEMENT In the brain, distinct cell types play unique roles. It is therefore important to have tools for studying unique cell types specifically. For the sense of smell in mammals, information is processed first by circuits of the olfactory bulb, where two types of cells, mitral cells and tufted cells, output different information. We generated a transgenic mouse line that enables mitral cells to be specifically labeled or manipulated. This was achieved by looking for genes that are specific to mitral cells using a large and public gene expression dataset, and creating a transgenic mouse using the gene editing technique, CRISPR/Cas9. This will allow scientists to better investigate parallel information processing underlying the sense of smell.
Collapse
Affiliation(s)
- Anzhelika Koldaeva
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, 904-0495
| | - Cary Zhang
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, 904-0495
| | - Yu-Pei Huang
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, 904-0495
| | - Janine Kristin Reinert
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, 904-0495
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Tsukuba University, Ibaraki, Japan, 305-8577
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Tsukuba University, Ibaraki, Japan, 305-8577
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Tsukuba University, Ibaraki, Japan, 305-8577
| | - Taha Soliman
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, 904-0495
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology and Department of Neurobiology, Duke University, Durham, North Carolina, 27710
| | - Izumi Fukunaga
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, 904-0495
| |
Collapse
|
45
|
Zeppilli S, Ackels T, Attey R, Klimpert N, Ritola KD, Boeing S, Crombach A, Schaefer AT, Fleischmann A. Molecular characterization of projection neuron subtypes in the mouse olfactory bulb. eLife 2021; 10:e65445. [PMID: 34292150 PMCID: PMC8352594 DOI: 10.7554/elife.65445] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Projection neurons (PNs) in the mammalian olfactory bulb (OB) receive input from the nose and project to diverse cortical and subcortical areas. Morphological and physiological studies have highlighted functional heterogeneity, yet no molecular markers have been described that delineate PN subtypes. Here, we used viral injections into olfactory cortex and fluorescent nucleus sorting to enrich PNs for high-throughput single nucleus and bulk RNA deep sequencing. Transcriptome analysis and RNA in situ hybridization identified distinct mitral and tufted cell populations with characteristic transcription factor network topology, cell adhesion, and excitability-related gene expression. Finally, we describe a new computational approach for integrating bulk and snRNA-seq data and provide evidence that different mitral cell populations preferentially project to different target regions. Together, we have identified potential molecular and gene regulatory mechanisms underlying PN diversity and provide new molecular entry points into studying the diverse functional roles of mitral and tufted cell subtypes.
Collapse
Affiliation(s)
- Sara Zeppilli
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, and CNRS UMR 7241 and INSERM U1050ParisFrance
| | - Tobias Ackels
- The Francis Crick Institute, Sensory Circuits and Neurotechnology LaboratoryLondonUnited Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Robin Attey
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Nell Klimpert
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Kimberly D Ritola
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Stefan Boeing
- The Francis Crick Institute, Bioinformatics and BiostatisticsLondonUnited Kingdom
- The Francis Crick Institute, Scientific Computing - Digital Development TeamLondonUnited Kingdom
| | - Anton Crombach
- Inria Antenne Lyon La DouaVilleurbanneFrance
- Université de Lyon, INSA-Lyon, LIRIS, UMR 5205VilleurbanneFrance
| | - Andreas T Schaefer
- The Francis Crick Institute, Sensory Circuits and Neurotechnology LaboratoryLondonUnited Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, and CNRS UMR 7241 and INSERM U1050ParisFrance
| |
Collapse
|
46
|
Villar PS, Hu R, Araneda RC. Long-Range GABAergic Inhibition Modulates Spatiotemporal Dynamics of the Output Neurons in the Olfactory Bulb. J Neurosci 2021; 41:3610-3621. [PMID: 33687961 PMCID: PMC8055075 DOI: 10.1523/jneurosci.1498-20.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/21/2022] Open
Abstract
Local interneurons of the olfactory bulb (OB) are densely innervated by long-range GABAergic neurons from the basal forebrain (BF), suggesting that this top-down inhibition regulates early processing in the olfactory system. However, how GABAergic inputs modulate the OB output neurons, the mitral/tufted cells, is unknown. Here, in male and female mice acute brain slices, we show that optogenetic activation of BF GABAergic inputs produced distinct local circuit effects that can influence the activity of mitral/tufted cells in the spatiotemporal domains. Activation of the GABAergic axons produced a fast disinhibition of mitral/tufted cells consistent with a rapid and synchronous release of GABA onto local interneurons in the glomerular and inframitral circuits of the OB, which also reduced the spike precision of mitral/tufted cells in response to simulated stimuli. In addition, BF GABAergic inhibition modulated local oscillations in a layer-specific manner. The intensity of locally evoked θ oscillations was decreased on activation of top-down inhibition in the glomerular circuit, while evoked γ oscillations were reduced by inhibition of granule cells. Furthermore, BF GABAergic input reduced dendrodendritic inhibition in mitral/tufted cells. Together, these results suggest that long-range GABAergic neurons from the BF are well suited to influence temporal and spatial aspects of processing by OB circuits.SIGNIFICANCE STATEMENT Disruption of GABAergic inhibition from the basal forebrain (BF) to the olfactory bulb (OB) impairs the discrimination of similar odors, yet how this centrifugal inhibition influences neuronal circuits in the OB remains unclear. Here, we show that the BF GABAergic neurons exclusively target local inhibitory neurons in the OB, having a functional disinhibitory effect on the output neurons, the mitral cells. Phasic inhibition by BF GABAergic neurons reduces spike precision of mitral cells and lowers the intensity of oscillatory activity in the OB, while directly modulating the extent of dendrodendritic inhibition. These circuit-level effects of this centrifugal inhibition can influence the temporal and spatial dynamics of odor coding in the OB.
Collapse
Affiliation(s)
- Pablo S Villar
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Ruilong Hu
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Ricardo C Araneda
- Department of Biology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
47
|
Schreck M, Ma M. Sensory neuroscience: Early value-based odor categorization. Curr Biol 2021; 31:R396-R398. [PMID: 33905700 DOI: 10.1016/j.cub.2021.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
How the brain categorizes external stimuli in an experience-dependent, behaviorally relevant manner is a fundamental question. A new study reveals that mitral cells in the olfactory bulb of mice dynamically represent value- and category-related odor information in learned behavioral tasks.
Collapse
Affiliation(s)
- Mary Schreck
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Kudryavitskaya E, Marom E, Shani-Narkiss H, Pash D, Mizrahi A. Flexible categorization in the mouse olfactory bulb. Curr Biol 2021; 31:1616-1631.e4. [DOI: 10.1016/j.cub.2021.01.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/11/2020] [Accepted: 01/19/2021] [Indexed: 11/30/2022]
|
49
|
Brunert D, Rothermel M. Extrinsic neuromodulation in the rodent olfactory bulb. Cell Tissue Res 2021; 383:507-524. [PMID: 33355709 PMCID: PMC7873007 DOI: 10.1007/s00441-020-03365-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Evolutionarily, olfaction is one of the oldest senses and pivotal for an individual's health and survival. The olfactory bulb (OB), as the first olfactory relay station in the brain, is known to heavily process sensory information. To adapt to an animal's needs, OB activity can be influenced by many factors either from within (intrinsic neuromodulation) or outside (extrinsic neuromodulation) the OB which include neurotransmitters, neuromodulators, hormones, and neuropeptides. Extrinsic sources seem to be of special importance as the OB receives massive efferent input from numerous brain centers even outweighing the sensory input from the nose. Here, we review neuromodulatory processes in the rodent OB from such extrinsic sources. We will discuss extrinsic neuromodulation according to points of origin, receptors involved, affected circuits, and changes in behavior. In the end, we give a brief outlook on potential future directions in research on neuromodulation in the OB.
Collapse
Affiliation(s)
- Daniela Brunert
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
50
|
Cousens GA. Characterization of odor-evoked neural activity in the olfactory peduncle. IBRO Rep 2020; 9:157-163. [PMID: 32793841 PMCID: PMC7412720 DOI: 10.1016/j.ibror.2020.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/20/2020] [Indexed: 12/02/2022] Open
Abstract
The tenia tecta is extensively interconnected with the main olfactory bulb and olfactory cortical areas and is well positioned to contribute to olfactory processing. However, little is known about odor representation within its dorsal (DTT) and ventral (VTT) components. To address this need, spontaneous and odor-evoked activity of DTT and VTT neurons was recorded from urethane anesthetized mice and compared to activity recorded from adjacent areas within adjacent caudomedial aspects of the anterior olfactory nucleus (AON). Neurons recorded from DTT, VTT, and AON exhibited odor-selective alterations in firing rate in response to a diverse set of monomolecular odorants. While DTT and AON neurons exhibited similar tuning breadth, selectivity, and response topography, the proportion of odor-selective neurons was substantially higher in the DTT. These findings provide evidence that the tenia tecta may contribute to the encoding of specific stimulus attributes. Further work is needed to fully characterize functional organization of the tenia tecta and its contribution to sensory representation and utilization.
Collapse
Key Words
- AON, Anterior olfactory nucleus
- CV, Coefficient of variation
- CoA, Cortical amygdala
- DPC, Dorsal peduncular cortex
- DTT, Dorsal tenia tecta
- EC, Entorhinal cortex
- ISI, Interspike interval
- OB, Main olfactory bulb
- OT, Olfactory tubercle
- Olfaction
- PC, Piriform cortex
- TT, Tenia tecta
- VTT, Ventral tenia tecta
- anterior olfactory nucleus
- olfactory peduncle
- sensory tuning
- tenia tecta
Collapse
Affiliation(s)
- Graham A. Cousens
- Department of Psychology and Neuroscience Program, Drew University, 36 Madison Avenue, Madison, NJ, 07940, USA
| |
Collapse
|