1
|
Ankeny SE, Bacci JR, Decourt B, Sabbagh MN, Mielke MM. Navigating the Landscape of Plasma Biomarkers in Alzheimer's Disease: Focus on Past, Present, and Future Clinical Applications. Neurol Ther 2024; 13:1541-1557. [PMID: 39244522 PMCID: PMC11541985 DOI: 10.1007/s40120-024-00658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
As the prevalence of Alzheimer's disease (AD) and its impact on healthcare systems increase, developing tools for accurate diagnosis and monitoring of disease progression is a priority. Recent technological advancements have allowed for the development of blood-based biomarkers (BBMs) to aid in the diagnosis of AD, but many questions remain regarding the clinical implementation of these BBMs. This review outlines the historical timeline of AD BBM development. It highlights key breakthroughs that have transformed the perspective of AD BBMs from theoretically ideal but unattainable markers, to clinically valid and reliable BBMs with potential for implementation in healthcare settings. Technological advancements like single-molecule detection and mass spectrometry methods have significantly improved assay sensitivity and accuracy. High-throughput, fully automated platforms have potential for clinical use. Despite these advancements, however, significant work is needed before AD BBMs can be implemented in widespread clinical practice. Cutpoints must be established, the influence of chronic conditions and medications on BBM levels must be better understood, and guidelines must be created for healthcare providers related to interpreting and communicating information obtained from AD BBMs. Additionally, the development of BBMs for synaptic dysfunction, inflammation, and cerebrovascular disease may provide better precision medicine approaches to treating AD and related dementia. Future research and collaboration between scientists and physicians are essential to addressing these challenges and further advancing AD BBMs, with the goal of integration in clinical practice.
Collapse
Affiliation(s)
- Sarrah E Ankeny
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Julia R Bacci
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Marwan N Sabbagh
- Alzheimer's and Memory Disorders Division, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
2
|
Sharma P, Giri A, Tripathi PN. Emerging Trends: Neurofilament Biomarkers in Precision Neurology. Neurochem Res 2024; 49:3208-3225. [PMID: 39347854 DOI: 10.1007/s11064-024-04244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Neurofilaments are structural proteins found in the cytoplasm of neurons, particularly in axons, providing structural support and stability to the axon. They consist of multiple subunits, including NF-H, NF-M, and NF-L, which form long filaments along the axon's length. Neurofilaments are crucial for maintaining the shape and integrity of neurons, promoting axonal transport, and regulating neuronal function. They are part of the intermediate filament (IF) family, which has approximately 70 tissue-specific genes. This diversity allows for a customizable cytoplasmic meshwork, adapting to the unique structural demands of different tissues and cell types. Neurofilament proteins show increased levels in both cerebrospinal fluid (CSF) and blood after neuroaxonal damage, indicating injury regardless of the underlying etiology. Precise measurement and long-term monitoring of damage are necessary for determining prognosis, assessing disease activity, tracking therapeutic responses, and creating treatments. These investigations contribute to our understanding of the importance of proper NF composition in fundamental neuronal processes and have implications for neurological disorders associated with NF abnormalities along with its alteration in different animal and human models. Here in this review, we have highlighted various neurological disorders such as Alzheimer's, Parkinson's, Huntington's, Dementia, and paved the way to use neurofilament as a marker in managing neurological disorders.
Collapse
Affiliation(s)
- Priti Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India
| | - Aditi Giri
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
3
|
Liu Y, Yang Q, Zhang M, Lin J. J-shaped relationship of serum neurofilament light chain with urinary albumin excretion in US adults: NHANES 2013-2014. Ren Fail 2024; 46:2391955. [PMID: 39165224 PMCID: PMC11340232 DOI: 10.1080/0886022x.2024.2391955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/13/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
INTRODUCTION This study focuses on investigating the relationship between serum neurofilament light chain (sNfL) and urinary albumin-to-creatinine ratio (uACR) among American adults aged 25-75. METHODS An analysis was conducted on information gathered from 1741 individuals aged between 25 and 75 who participated in the National Health and Nutrition Examination Survey (NHANES) during the years 2013-2014. Generalized linear models were utilized, and restricted cubic spline (RCS) analysis was conducted to assess a non-linear relationship. RESULTS Upon adjusting for multiple variables, a non-linear inverse J-shaped relationship was observed between sNfL and uACR. Compared with individuals in quartile 1 (Q1) of sNfL (2.8-8.3), those with quartile 4 (Q4) (≥19.1) had an adjusted β for uACR of 51.57. CONCLUSIONS The study found a J-shaped curve linking sNfL and uACR in American adults, with a turning point around log(sNfL) 2.928 pg/mL.
Collapse
Affiliation(s)
- Yanting Liu
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
| | - Qian Yang
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
| | - Meiyun Zhang
- Department of Neurology, Tianjin Union Medical Center, Tianjin, China
| | - Jingna Lin
- Department of Endocrinology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
4
|
Milos T, Vuic B, Balic N, Farkas V, Nedic Erjavec G, Svob Strac D, Nikolac Perkovic M, Pivac N. Cerebrospinal fluid in the differential diagnosis of Alzheimer's disease: an update of the literature. Expert Rev Neurother 2024; 24:1063-1079. [PMID: 39233323 DOI: 10.1080/14737175.2024.2400683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION The importance of cerebrospinal fluid (CSF) biomarkers in Alzheimer's disease (AD) diagnosis is rapidly increasing, and there is a growing interest in the use of CSF biomarkers in monitoring the response to therapy, especially in the light of newly available approaches to the therapy of neurodegenerative diseases. AREAS COVERED In this review we discuss the most relevant measures of neurodegeneration that are being used to distinguish patients with AD from healthy controls and individuals with mild cognitive impairment, in order to provide an overview of the latest information available in the scientific literature. We focus on markers related to amyloid processing, markers associated with neurofibrillary tangles, neuroinflammation, neuroaxonal injury and degeneration, synaptic loss and dysfunction, and markers of α-synuclein pathology. EXPERT OPINION In addition to neuropsychological evaluation, core CSF biomarkers (Aβ42, t-tau, and p-tau181) have been recommended for improvement of timely, accurate and differential diagnosis of AD, as well as to assess the risk and rate of disease progression. In addition to the core CSF biomarkers, various other markers related to synaptic dysfunction, neuroinflammation, and glial activation (neurogranin, SNAP-25, Nfl, YKL-40, TREM2) are now investigated and have yet to be validated for future potential clinical use in AD diagnosis.
Collapse
Affiliation(s)
- Tina Milos
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Barbara Vuic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Nikola Balic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Vladimir Farkas
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | | | | | | | - Nela Pivac
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia
| |
Collapse
|
5
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
6
|
Tsourmas KI, Butler CA, Kwang NE, Sloane ZR, Dykman KJG, Maloof GO, Prekopa CA, Krattli RP, El-Khatib SM, Swarup V, Acharya MM, Hohsfield LA, Green KN. Myeloid-derived β-hexosaminidase is essential for neuronal health and lysosome function: implications for Sandhoff disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619538. [PMID: 39484433 PMCID: PMC11526954 DOI: 10.1101/2024.10.21.619538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Lysosomal storage disorders (LSDs) are a large disease class involving lysosomal dysfunction, often resulting in neurodegeneration. Sandhoff disease (SD) is an LSD caused by a deficiency in the β subunit of the β-hexosaminidase enzyme (Hexb). Although Hexb expression in the brain is specific to microglia, SD primarily affects neurons. To understand how a microglial gene is involved in maintaining neuronal homeostasis, we demonstrated that β-hexosaminidase is secreted by microglia and integrated into the neuronal lysosomal compartment. To assess therapeutic relevance, we treated SD mice with bone marrow transplant and colony stimulating factor 1 receptor inhibition, which broadly replaced Hexb -/- microglia with Hexb-sufficient cells. This intervention reversed apoptotic gene signatures, improved behavior, restored enzymatic activity and Hexb expression, ameliorated substrate accumulation, and normalized neuronal lysosomal phenotypes. These results underscore the critical role of myeloid-derived β-hexosaminidase in neuronal lysosomal function and establish microglial replacement as a potential LSD therapy.
Collapse
Affiliation(s)
- Kate I. Tsourmas
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Claire A. Butler
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Nellie E. Kwang
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Zachary R. Sloane
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Koby J. G. Dykman
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Ghassan O. Maloof
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Christiana A. Prekopa
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Robert P. Krattli
- Department of Anatomy and Neurobiology; University of California; Irvine, CA 92697; USA
| | - Sanad M. El-Khatib
- Department of Anatomy and Neurobiology; University of California; Irvine, CA 92697; USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Munjal M. Acharya
- Department of Anatomy and Neurobiology; University of California; Irvine, CA 92697; USA
- Department of Radiation Oncology; University of California; Irvine, CA 92697; USA
| | - Lindsay A. Hohsfield
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Kim N. Green
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| |
Collapse
|
7
|
Götze K, Vrillon A, Dumurgier J, Indart S, Sanchez-Ortiz M, Slimi H, Raynaud-Simon A, Cognat E, Martinet M, Zetterberg H, Blennow K, Hourrègue C, Bouaziz-Amar E, Paquet C, Lilamand M. Plasma neurofilament light chain as prognostic marker of cognitive decline in neurodegenerative diseases, a clinical setting study. Alzheimers Res Ther 2024; 16:231. [PMID: 39427171 PMCID: PMC11490051 DOI: 10.1186/s13195-024-01593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Analysis of selected research cohorts has highlighted an association between plasma neurofilament light (NfL) protein and cross-sectional cognitive impairment as well as longitudinal cognitive decline. However, the findings have yielded inconsistent results regarding its possible application in clinical practice. Despite its potential prognostic significance, the role of plasma NfL in daily clinical practice with unselected patients suffering from cognitive impairment remains largely unexplored. METHODS This retrospective, cross-sectional and longitudinal monocentric study enrolled 320 patients with Alzheimer's disease ([AD], n = 158), dementia with Lewy body ([DLB], n = 30), frontotemporal dementia ([FTD], n = 32), non-neurodegenerative diseases ([NND], n = 59) or subjective cognitive decline ([SCD], n = 41). Plasma NfL levels were measured at baseline on the Simoa platform. AD, DLB, and FTD patients were also analyzed altogether as a 'degenerative conditions' subgroup, whereas SCD and NND were grouped as a 'non-degenerative conditions' subgroup. We assessed the relationship between plasma NfL levels and cross-sectional cognitive performance, including global cognition and six specific cognitive domains. A subset of 239 patients had follow-up mini-mental state examinations (MMSE) up to 60 months. Models were adjusted on age, education level, glomerular filtration rate and body mass index. RESULTS In 320 patients, baseline plasma NfL levels were negatively associated with global cognition (β=-1.28 (-1.81 ; -0.75) P < 0.001), memory (β=-1.48 (-2.38 ; -0.59), P = 0.001), language (β=-1.72(-2.49 ; -0.95) P < 0.001), praxis (β=-2.02 (-2.91 ; -1.13) P < 0.001) and executive functions (β=-0.81, P < 0.001). Across diagnosis, plasma NfL levels were negatively associated with cross-sectional global cognition in all but the SCD subgroup, specifically with executive functions and memory in AD (respectively β=-0.71(-1.21 ; -0.211), P = 0.005 and β=-1.29 (-2.17 ; -0.42), P = 0.004), and with attention in LBD (β=-0.81(-1.16 ; -0.002), P = 0.03). Linear mixed-effects models showed that plasma NfL predicted MMSE decline in the global population (βPlasmaNfLxTime=-0.15 (-0.26 ; -0.04), P = 0.006), as in the neurodegenerative condition subgroup (βPlasmaNfLxTime=-0.21 (-0.37 ; - 0.06), P = 0.007), but not in non-neurodegenerative condition subgroup. CONCLUSION In our clinical cohort, plasma NfL was associated with faster cognitive decline in neurodegenerative dementia, which corroborates data obtained in research cohorts. Yet, plasma NfL was not predictive of accelerated cognitive decline in individuals without neurodegeneration, suggesting its use as a neurodegeneration-specific predictive biomarker.
Collapse
Affiliation(s)
- Karl Götze
- Department of Geriatrics, Bichat Hospital (GHU AP-HP.Nord, Paris), Université Paris-Cité, 75018, Paris, France.
- Inserm Unit UMR S-1144, Paris, France.
- Cognitive Neurology Center, Lariboisière Hospital (GHU AP-HP.Nord, Paris), 200 rue du Faubourg Saint-Denis, 75010, Paris, France.
| | - Agathe Vrillon
- Inserm Unit UMR S-1144, Paris, France
- Cognitive Neurology Center, Lariboisière Hospital (GHU AP-HP.Nord, Paris), 200 rue du Faubourg Saint-Denis, 75010, Paris, France
| | - Julien Dumurgier
- Cognitive Neurology Center, Lariboisière Hospital (GHU AP-HP.Nord, Paris), 200 rue du Faubourg Saint-Denis, 75010, Paris, France
| | - Sandrine Indart
- Cognitive Neurology Center, Lariboisière Hospital (GHU AP-HP.Nord, Paris), 200 rue du Faubourg Saint-Denis, 75010, Paris, France
| | - Marta Sanchez-Ortiz
- Cognitive Neurology Center, Lariboisière Hospital (GHU AP-HP.Nord, Paris), 200 rue du Faubourg Saint-Denis, 75010, Paris, France
| | - Hela Slimi
- Cognitive Neurology Center, Lariboisière Hospital (GHU AP-HP.Nord, Paris), 200 rue du Faubourg Saint-Denis, 75010, Paris, France
| | - Agathe Raynaud-Simon
- Department of Geriatrics, Bichat Hospital (GHU AP-HP.Nord, Paris), Université Paris-Cité, 75018, Paris, France
| | - Emmanuel Cognat
- Inserm Unit UMR S-1144, Paris, France
- Cognitive Neurology Center, Lariboisière Hospital (GHU AP-HP.Nord, Paris), 200 rue du Faubourg Saint-Denis, 75010, Paris, France
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, WC1N 3BG, London, UK
- UK Dementia Research Institute at UCL, WC1N 3BG, London, UK
- Hong Kong Center for Neurodegenerative Diseases, 1501-1502, 1512-1518, Units, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, 53792, Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Pitié-Salpêtrière Hospital, Paris Brain Institute, ICM, Sorbonne University, 75013, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Claire Hourrègue
- Cognitive Neurology Center, Lariboisière Hospital (GHU AP-HP.Nord, Paris), 200 rue du Faubourg Saint-Denis, 75010, Paris, France
| | - Elodie Bouaziz-Amar
- Inserm Unit UMR S-1144, Paris, France
- Biochemistry Department, Lariboisière Hospital (GHU AP-HP.Nord, Paris), 75010, Paris, France
| | - Claire Paquet
- Inserm Unit UMR S-1144, Paris, France
- Cognitive Neurology Center, Lariboisière Hospital (GHU AP-HP.Nord, Paris), 200 rue du Faubourg Saint-Denis, 75010, Paris, France
| | - Matthieu Lilamand
- Inserm Unit UMR S-1144, Paris, France
- Cognitive Neurology Center, Lariboisière Hospital (GHU AP-HP.Nord, Paris), 200 rue du Faubourg Saint-Denis, 75010, Paris, France
| |
Collapse
|
8
|
Paesmans I, Van Kolen K, Vandermeeren M, Shih PY, Wuyts D, Boone F, Garcia Sanchez S, Grauwen K, Van Hauwermeiren F, Van Opdenbosch N, Lamkanfi M, van Loo G, Bottelbergs A. NLRP3 inflammasome activation and pyroptosis are dispensable for tau pathology. Front Aging Neurosci 2024; 16:1459134. [PMID: 39381137 PMCID: PMC11458539 DOI: 10.3389/fnagi.2024.1459134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Background Neuroinflammation is widely recognized as a key factor in the pathogenesis of Alzheimer's disease (AD), alongside ß-amyloid deposition and the formation of neurofibrillary tangles. The NLR family pyrin domain containing 3 (NLRP3) inflammasome, part of the innate immune system, has been implicated in the neuropathology of both preclinical amyloid and tau transgenic models. Activation of the NLRP3 pathway involves an initial priming step, which increases the expression of Nlrp3 and interleukin (IL)-1β, followed by the assembly of the NLRP3 inflammasome complex, comprising NLRP3, ASC, and caspase-1. This assembly leads to the proteolytic maturation of the pro-inflammatory cytokines IL-1β and IL-18. Additionally, the NLRP3 inflammasome induces Gasdermin D (GSDMD) cleavage, forming membrane pores through which IL-1β and IL-18 are secreted. Inhibition of NLRP3 has been shown to enhance plaque clearance by modulating microglial activation. Furthermore, blocking NLRP3 in tau transgenic mice has been found to reduce tau phosphorylation by affecting the activity of certain tau kinases and phosphatases. Methods In this study, organotypic brain slice cultures from P301S transgenic mice were treated with lipopolysaccharide (LPS) plus nigericin as a positive control or exposed to tau seeds (K18) to evaluate NLRP3 inflammasome activation. The effect of tau seeding on NLRP3 activity was further examined using Meso Scale Discovery (MSD) assays to measure IL1β secretion levels in the presence and absence of NLRP3 inhibitors. The role of NLRP3 activity was investigated in full-body Nlrp3 knockout mice crossbred with the tau transgenic P301S model. Additionally, full-body and microglia-selective Gsdmd knockout mice were crossbred with P301S mice, and tau pathology and neurodegeneration were evaluated at early and late stages of the disease using immunohistochemistry and biochemical assays. Results Activation of the NLRP3 pathway was observed in the mouse organotypic slice culture (OSC) model following stimulation with LPS and nigericin or exposure to tau seeds. However, Nlrp3 deficiency did not mitigate tauopathy or neurodegeneration in P301S mice in vivo, showing only a minor effect on plasma neurofilament (NF-L) levels. Consistently, Gsdmd deficiency did not alter tau pathology in P301S mice. Furthermore, neither full-body nor microglia-selective Gsdmd deletion had an impact on neuronal pathology or the release of pro-inflammatory cytokines. Conclusion The absence of key components of the NLRP3 inflammasome pathway did not yield a beneficial effect on tau pathology or neurodegeneration in the preclinical Tau-P301S mouse model of AD. Nonetheless, organotypic slice cultures could serve as a valuable ex vivo mechanistic model for evaluating NLRP3 pathway activation and pharmacological inhibitors.
Collapse
Affiliation(s)
- Ine Paesmans
- Janssen Research and Development, Janssen Pharmaceutica NV, Johnson & Johnson Company, Beerse, Belgium
| | - Kristof Van Kolen
- Neuroscience Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Marc Vandermeeren
- Neuroscience Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Pei-Yu Shih
- Neuroscience Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Dirk Wuyts
- Neuroscience Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Fleur Boone
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sergio Garcia Sanchez
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Karolien Grauwen
- Janssen Research and Development, Janssen Pharmaceutica NV, Johnson & Johnson Company, Beerse, Belgium
| | - Filip Van Hauwermeiren
- Janssen Research and Development, Janssen Pharmaceutica NV, Johnson & Johnson Company, Beerse, Belgium
| | - Nina Van Opdenbosch
- Janssen Research and Development, Janssen Pharmaceutica NV, Johnson & Johnson Company, Beerse, Belgium
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Astrid Bottelbergs
- Janssen Research and Development, Janssen Pharmaceutica NV, Johnson & Johnson Company, Beerse, Belgium
| |
Collapse
|
9
|
Breznik L, Daurer M, Rabl R, Loeffler T, Etxeberria-Rekalde E, Neddens J, Flunkert S, Prokesch M. Motor deficits and brain pathology in the Parkinson's disease mouse model hA53Ttg. Front Neurosci 2024; 18:1462041. [PMID: 39371610 PMCID: PMC11450652 DOI: 10.3389/fnins.2024.1462041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Background Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons and the accumulation of α-synuclein (α-syn) aggregates. The A53T missense point mutation occurs in autosomal dominant familial PD and has been found to promote the aggregation of α-syn. To investigate the role of the A53T mutation in PD, researchers have developed various mouse models with this mutation. Objective We therefore conducted a comprehensive characterization of the tg(THY1-SNCA*A53T)M53Sud mouse model (hA53Ttg mice) for its motor and pathological features. Methods hA53Ttg mice were tested for motor impairments in a series of motor tests at 2, 4 or 6 months of age. Human α-syn and α-syn pSer129, as well as GFAP and Iba1 signal were labeled and quantified in the cortex, hippocampus, and brainstem. Neurofilament light chain (NF-L) levels were measured in the cerebrospinal fluid (CSF) and plasma. Ex vivo analyses were performed at the age of 2, 4, 6, and 10 months. Results Behavioral tests revealed early muscle weakness and motor impairments that progressed with age. Immunohistochemical analyses demonstrated elevated levels of human α-syn and α-syn pSer129 in all evaluated brain regions. α-syn pSer129 labeling further revealed fiber-like structures in the cortex of older animals. Neuroinflammation was observed in an age-dependent manner. Biochemical evaluation revealed elevated NF-L levels in the plasma and CSF. Overall, our findings highlight the value of hA53Ttg mice in modeling PD-associated pathologies that closely resemble those observed in PD patients. Conclusion Our results thus suggest that hA53Ttg mice are a useful tool for studying the underlying mechanisms of PD.
Collapse
|
10
|
Luo J, Lin S. Dietary vitamin K intake is associated with decreased neurofilament light chain among middle-aged and older adults from the NHANES. Front Nutr 2024; 11:1396707. [PMID: 39346641 PMCID: PMC11428379 DOI: 10.3389/fnut.2024.1396707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Neurofilament-light chain (NfL) is associated with neurodegenerative diseases, which are increasingly prevalent with aging. Vitamin K has been shown a neuroprotective effect. Therefore, we aimed to explore the potential relationship between dietary vitamin K intake and serum NfL. Methods This study was conducted on the 2013-2014 cycles of the National Health and Nutrition Examination Survey, a multi-site population-based study of the US general population. Serum NfL level was measured using a highly sensitive immunoassay. Dietary vitamin K intake was estimated from two-day dietary recall interviews, and its relationship with NfL was determined using linear regression models. Results The study included a total of 1,533 participants with a median age of 46 years, comprising 801 women (52.2%) and 732 men (47.8%). The median dietary intake of vitamin K was 81.6 μg/d, and the median serum NfL was 12 pg./mL. After adjusting for potential confounding factors in the full model, individuals with higher dietary vitamin K intake had lower serum NfL levels (Q4 vs. Q1, β = -4.92, 95%CI: -7.66, -2.19, p = 0.002). A non-linear negative dose-response association is found between dietary vitamin K intake and serum NfL levels (P for non-linearity = 0.008); this association reaches a plateau when the dietary vitamin K intake is higher than 200 μg/d. According to the results of stratified analysis, the relationship between dietary vitamin K intake and serum NfL levels was stronger in the population of middle-aged and older adults. Conclusion The present study suggested a negative association between dietary vitamin K intake and serum NfL levels in the general US population, especially in middle-aged and older adults. This study might offer a novel nutritional idea for the primary prevention and mechanism exploration of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jing Luo
- School of Rehabilitation, Jiangsu College of Nursing, Huai'an, Jiangsu, China
| | - Song Lin
- Department of Clinical Nutrition, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
11
|
Ahmad S, Imtiaz MA, Mishra A, Wang R, Herrera-Rivero M, Bis JC, Fornage M, Roshchupkin G, Hofer E, Logue M, Longstreth WT, Xia R, Bouteloup V, Mosley T, Launer LJ, Khalil M, Kuhle J, Rissman RA, Chene G, Dufouil C, Djoussé L, Lyons MJ, Mukamal KJ, Kremen WS, Franz CE, Schmidt R, Debette S, Breteler MMB, Berger K, Yang Q, Seshadri S, Aziz NA, Ghanbari M, Ikram MA. Genome-wide association study meta-analysis of neurofilament light (NfL) levels in blood reveals novel loci related to neurodegeneration. Commun Biol 2024; 7:1103. [PMID: 39251807 PMCID: PMC11385583 DOI: 10.1038/s42003-024-06804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Neurofilament light chain (NfL) levels in circulation have been established as a sensitive biomarker of neuro-axonal damage across a range of neurodegenerative disorders. Elucidation of the genetic architecture of blood NfL levels could provide new insights into molecular mechanisms underlying neurodegenerative disorders. In this meta-analysis of genome-wide association studies (GWAS) of blood NfL levels from eleven cohorts of European ancestry, we identify two genome-wide significant loci at 16p12 (UMOD) and 17q24 (SLC39A11). We observe association of three loci at 1q43 (FMN2), 12q14, and 12q21 with blood NfL levels in the meta-analysis of African-American ancestry. In the trans-ethnic meta-analysis, we identify three additional genome-wide significant loci at 1p32 (FGGY), 6q14 (TBX18), and 4q21. In the post-GWAS analyses, we observe the association of higher NfL polygenic risk score with increased plasma levels of total-tau, Aβ-40, Aβ-42, and higher incidence of Alzheimer's disease in the Rotterdam Study. Furthermore, Mendelian randomization analysis results suggest that a lower kidney function could cause higher blood NfL levels. This study uncovers multiple genetic loci of blood NfL levels, highlighting the genes related to molecular mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
- Oxford-GSK Institute of Computational and Molecular Medicine (IMCM), Centre for Human Genetics, Nuffield Department of Medicine (NDM), University of Oxford, Oxford, OX3 7BN, UK
| | - Mohammad Aslam Imtiaz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Aniket Mishra
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - Ruiqi Wang
- Boston University, Boston, MA, 02215, USA
| | - Marisol Herrera-Rivero
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave #1360, Seattle, WA, 98101, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 1825 Pressler Street Houston, Houston, 77030, TX, USA
| | - Gennady Roshchupkin
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, Fifth Floor, Graz, 8036, Austria
| | - Mark Logue
- National Center for PTSD, Behavioral Sciences Division at VA Boston Healthcare System, Boston, 150 South Huntington Avenue, Boston, MA, 02130, USA
- Department of Psychiatry and Biomedical Genetics, Boston University School of Medicine, Boston, 72 East Concord Street E200, Boston, MA, 02118, USA
| | - W T Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, 3980 15th Ave NE Seattle, Seattle, WA, 98195, USA
| | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 1825 Pressler Street Houston, Houston, 77030, TX, USA
| | - Vincent Bouteloup
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - Thomas Mosley
- MIND Center, University of Mississippi Medical Center, Jackson, 2500 North State Street, Jackson, MS, 39216, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, NIA Intramural Research Program, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
| | - Jens Kuhle
- Research Center for Clinical Neuroimmunology and Neuroscience University Hospital, Spitalstrasse 2, CH-4031, Basel, Switzerland
| | - Robert A Rissman
- Department of Physiology and Neuroscience, Alzheimer's Therapeutic Research Institute, Keck School of Medicine of the University of Southern California, California, USA
| | - Genevieve Chene
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - Carole Dufouil
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - Luc Djoussé
- Brigham and Women's Hospital, Harvard Medical School, Boston, 75 FRANCIS STREET, BOSTON MA 02115, MA, Boston, USA
| | - Michael J Lyons
- Department of Psychological & Brain Sciences, Boston University, Boston, 64 Cummington Mall # 149, Boston, MA, 02215, USA
| | - Kenneth J Mukamal
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 330 Brookline Avenue Boston, MA, 02215, USA
| | - William S Kremen
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Carol E Franz
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
- CHU de Bordeaux, Department of Neurology, Institute for Neurodegenerative Diseases, F-33000, Bordeaux, France
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Institut für Epidemiologie und Sozialmedizin Albert-Schweitzer-Campus 1, Gebäude D3 48149, Münster, Germany
| | - Qiong Yang
- Boston University, Boston, MA, 02215, USA
| | - Sudha Seshadri
- Boston University, Boston, MA, 02215, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, 53127, Bonn, Germany
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000, CA, Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Luo J, Lin S. Association between cadmium exposure and serum neurofilament light chain levels: A nationwide population-based survey. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116771. [PMID: 39047369 DOI: 10.1016/j.ecoenv.2024.116771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Although cadmium exposure had been demonstrated to be toxic to the nervous system, little was known about the link between cadmium exposure and axonal injury. Therefore, the present study aimed to reveal whether there was any correlation between blood cadmium and serum neurofilament light chain (NfL) levels in the general population. METHODS This study included 1040 participants with a median (IQR) age of 47 (35-60) years from the 2013-2014 National Health and Nutrition Examination Survey. Serum NfL levels were measured through immunoassay, and whole blood cadmium concentrations were detected by means of inductively coupled plasma mass spectrometry. Linear regression and restricted cubic spline model was applied to analyze the significance of relationship between blood cadmium and serum NfL levels. RESULTS In the full adjusted model, blood cadmium levels were found to be positively associated with serum NfL levels (Q4 vs Q1, β = 3.35, 95 %CI: 0.41, 6.30, p for trend = 0.014). A potential linear positive dose-effect relationship was discovered between blood cadmium and serum NfL levels (p for non-linearity = 0.15). According to the result of stratified analysis, the significant positive relationship between blood cadmium and serum NfL levels was present only in the population of middle-aged and older adults. CONCLUSION The present study suggested a positive association between blood cadmium and serum NfL levels in the general US population.
Collapse
Affiliation(s)
- Jing Luo
- School of Rehabilitation, Jiangsu College of Nursing, Huaian, Jiangsu 223003, China
| | - Song Lin
- Department of Clinical Nutrition, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223300, China.
| |
Collapse
|
13
|
Rajendran K, Krishnan UM. Biomarkers in Alzheimer's disease. Clin Chim Acta 2024; 562:119857. [PMID: 38986861 DOI: 10.1016/j.cca.2024.119857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is among the most common neurodegenerative disorders. AD is characterized by deposition of neurofibrillary tangles and amyloid plaques, leading to associated secondary pathologies, progressive neurodegeneration, and eventually death. Currently used diagnostics are largely image-based, lack accuracy and do not detect early disease, ie, prior to onset of symptoms, thus limiting treatment options and outcomes. Although biomarkers such as amyloid-β and tau protein in cerebrospinal fluid have gained much attention, these are generally limited to disease progression. Unfortunately, identification of biomarkers for early and accurate diagnosis remains a challenge. As such, body fluids such as sweat, serum, saliva, mucosa, tears, and urine are under investigation as alternative sources for biomarkers that can aid in early disease detection. This review focuses on biomarkers identified through proteomics in various biofluids and their potential for early and accurate diagnosis of AD.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities, & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
14
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
15
|
De Lorenzo R, Loré NI, Finardi A, Mandelli A, Calesella F, Palladini M, Cirillo DM, Tresoldi C, Ciceri F, Rovere-Querini P, Manfredi AA, Mazza MG, Benedetti F, Furlan R. Inflammatory Markers Predict Blood Neurofilament Light Chain Levels in Acute COVID-19 Patients. Int J Mol Sci 2024; 25:8259. [PMID: 39125829 PMCID: PMC11311410 DOI: 10.3390/ijms25158259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Acute coronavirus disease 2019 (COVID-19) is paralleled by a rise in the peripheral levels of neurofilament light chain (NfL), suggesting early nervous system damage. In a cohort of 103 COVID-19 patients, we studied the relationship between the NfL and peripheral inflammatory markers. We found that the NfL levels are significantly predicted by a panel of circulating cytokines/chemokines, including CRP, IL-4, IL-8, IL-9, Eotaxin, and MIP-1ß, which are highly up-regulated during COVID-19 and are associated with clinical outcomes. Our findings show that peripheral cytokines influence the plasma levels of the NfL, suggesting a potential role of the NfL as a marker of neuronal damage associated with COVID-19 inflammation.
Collapse
Affiliation(s)
- Rebecca De Lorenzo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (R.D.L.); (N.I.L.); (P.R.-Q.); (A.A.M.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Nicola I. Loré
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (R.D.L.); (N.I.L.); (P.R.-Q.); (A.A.M.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Annamaria Finardi
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.F.); (A.M.); (R.F.)
| | - Alessandra Mandelli
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.F.); (A.M.); (R.F.)
| | - Federico Calesella
- Faculty of Psychology, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (F.C.); (M.P.)
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Mariagrazia Palladini
- Faculty of Psychology, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (F.C.); (M.P.)
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Daniela M. Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Cristina Tresoldi
- Hematology and Bone Marrow Transplant, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Fabio Ciceri
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
- Hematology and Bone Marrow Transplant, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Patrizia Rovere-Querini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (R.D.L.); (N.I.L.); (P.R.-Q.); (A.A.M.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Angelo A. Manfredi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (R.D.L.); (N.I.L.); (P.R.-Q.); (A.A.M.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Mario G. Mazza
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Francesco Benedetti
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
- Faculty of Psychology, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (F.C.); (M.P.)
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Roberto Furlan
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.F.); (A.M.); (R.F.)
| |
Collapse
|
16
|
Mousele C, Holden D, Gnanapavan S. Neurofilaments in neurologic disease. Adv Clin Chem 2024; 123:65-128. [PMID: 39181624 DOI: 10.1016/bs.acc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neurofilaments (NFs), major cytoskeletal constituents of neurons, have emerged as universal biomarkers of neuronal injury. Neuroaxonal damage underlies permanent disability in various neurological conditions. It is crucial to accurately quantify and longitudinally monitor this damage to evaluate disease progression, evaluate treatment effectiveness, contribute to novel treatment development, and offer prognostic insights. Neurofilaments show promise for this purpose, as their levels increase with neuroaxonal damage in both cerebrospinal fluid and blood, independent of specific causal pathways. New assays with high sensitivity allow reliable measurement of neurofilaments in body fluids and open avenues to investigate their role in neurological disorders. This book chapter will delve into the evolving landscape of neurofilaments, starting with their structure and cellular functions within neurons. It will then provide a comprehensive overview of their broad clinical value as biomarkers in diseases affecting the central or peripheral nervous system.
Collapse
|
17
|
Tran KM, Kwang N, Gomez-Arboledas A, Kawauchi S, Mar C, Chao D, Da Cunha C, Wang S, Collins S, Walker A, Shi KX, Alcantara JA, Neumann J, Tenner AJ, LaFerla FM, Hohsfield LA, Swarup V, MacGregor GR, Green KN. APOE Christchurch enhances a disease-associated microglial response to plaque but suppresses response to tau pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597211. [PMID: 38895362 PMCID: PMC11185750 DOI: 10.1101/2024.06.03.597211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Background Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects. Methods We introduced the R136S variant into mouse Apoe (ApoeCh) and investigated its effect on the development of AD-related pathology using the 5xFAD model of amyloidosis and the PS19 model of tauopathy. We used immunohistochemical and biochemical analysis along with single-cell spatial transcriptomics and proteomics to explore the impact of the ApoeCh variant on AD pathological development and the brain's response to plaques and tau. Results In 5xFAD mice, ApoeCh enhances a Disease-Associated Microglia (DAM) phenotype in microglia surrounding plaques, and reduces plaque load, dystrophic neurites, and plasma neurofilament light chain. By contrast, in PS19 mice, ApoeCh suppresses the microglial and astrocytic responses to tau-laden neurons and does not reduce tau accumulation or phosphorylation, but partially rescues tau-induced synaptic and myelin loss. We compared how microglia responses differ between the two mouse models to elucidate the distinct DAM signatures induced by ApoeCh. We identified upregulation of antigen presentation-related genes in the DAM response in a PS19 compared to a 5xFAD background, suggesting a differential response to amyloid versus tau pathology that is modulated by the presence of ApoeCh. Conclusions These findings highlight the ability of the ApoeCh variant to modulate microglial responses based on the type of pathology, enhancing DAM reactivity in amyloid models and dampening neuroinflammation to promote protection in tau models. This suggests that the Christchurch variant's protective effects likely involve multiple mechanisms, including changes in receptor binding and microglial programming.
Collapse
Affiliation(s)
- Kristine M. Tran
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Nellie Kwang
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Angela Gomez-Arboledas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Shimako Kawauchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Cassandra Mar
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Donna Chao
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Celia Da Cunha
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Shuling Wang
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Sherilyn Collins
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Amber Walker
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Kai-Xuan Shi
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Joshua A. Alcantara
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Jonathan Neumann
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Andrea J. Tenner
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Frank M. LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Lindsay A. Hohsfield
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| | - Grant R. MacGregor
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Kim N. Green
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Azadian MM, Macedo N, Yu BJ, Fame RM, Airan RD. Ultrasonic cerebrospinal fluid clearance improves outcomes in hemorrhagic brain injury models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597001. [PMID: 38895304 PMCID: PMC11185536 DOI: 10.1101/2024.06.02.597001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Impaired clearance of the byproducts of aging and neurologic disease from the brain exacerbates disease progression and severity. We have developed a noninvasive, low intensity transcranial focused ultrasound protocol that facilitates the removal of pathogenic substances from the cerebrospinal fluid (CSF) and the brain interstitium. This protocol clears neurofilament light chain (NfL) - an aging byproduct - in aged mice and clears red blood cells (RBCs) from the central nervous system in two mouse models of hemorrhagic brain injury. Cleared RBCs accumulate in the cervical lymph nodes from both the CSF and interstitial compartments, indicating clearance through meningeal lymphatics. Treating these hemorrhagic brain injury models with this ultrasound protocol reduced neuroinflammatory and neurocytotoxic profiles, improved behavioral outcomes, decreased morbidity and, importantly, increased survival. RBC clearance efficacy was blocked by mechanosensitive channel antagonism and was effective when applied in anesthetized subjects, indicating a mechanosensitive channel mediated mechanism that does not depend on sensory stimulation or a specific neural activity pattern. Notably, this protocol qualifies for an FDA non-significant risk designation given its low intensity, making it readily clinically translatable. Overall, our results demonstrate that this low-intensity transcranial focused ultrasound protocol clears hemorrhage and other harmful substances from the brain via the meningeal lymphatic system, potentially offering a novel therapeutic tool for varied neurologic disorders.
Collapse
Affiliation(s)
- Matine M. Azadian
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Nicholas Macedo
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Brenda J. Yu
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Ryann M. Fame
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Raag D. Airan
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Materials Science and Engineering, Stanford University School of Medicine, Stanford, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
19
|
Liang J, Ma T, Li Y, Sun R, Zhao S, Shen Y, Gao H, Jing Y, Bai X, He M, Wang Q, Xi H, Shi R, Yang Y. Association between sleep duration and serum neurofilament light chain levels among adults in the United States. Heliyon 2024; 10:e30699. [PMID: 38770343 PMCID: PMC11103434 DOI: 10.1016/j.heliyon.2024.e30699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Background Neurofilaments are neuron specific skeleton proteins maintaining axon transduction speed, leaked into cerebrospinal fluid and serum after axonal injury or neuron death. Sleep duration change has long related to many health issues but lack laboratory examination. Methods This study enrolled total 10,175 participants from 2013 to 2014 National Health and Nutrition Examination Survey and used a multi-variable linear model to analyze the relationship between sleep duration and serum neurofilament light chain (sNfL) level. Results There was a fixed relationship between sleep duration and sNfL level (β = 0.65, p = 0.0280). After adjusted for covariates, this relationship still (β = 0.82, p = 0.0052). Segmented regression showed that the turning point of sleep duration was 7 h 1 h decrease in sleep duration was significantly associated with -1.26 higher sNfL level (95 % CI: 2.25, -0.28; p = 0.0115) when sleep duration <7 h; however, 1 h increase in sleep duration was significantly associated with 3.20 higher sNfL level (95 % CI: 2.13, 4.27; p < 0.0001) when sleep duration >7 h. Furthermore, the stratified analysis indicated that the associations between sleep duration and sNfL level were stronger among those normal body mass index and trouble sleeping (p-interaction <0.0001 and 0.0003). Conclusion In summary, there was a J-shaped relationship between sleep duration and sNfL level in the United States of America representative group, these may suggest that extreme sleep duration can be deleterious judged by sNfL level. And still need large cohort study to determine the accurate relationship, and cluster analysis to infer the nervous disease connected with extreme sleep duration.
Collapse
Affiliation(s)
- Jiaxing Liang
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Tengchi Ma
- Medical School of Yan'an University, Yan'an, China
- The First Affiliated Hospital of Xi’an Jiao tong University Yulin Hospital, Yulin, China
| | - Youlei Li
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Ruixin Sun
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
- Medical School of Xi'an International University, Xi'an, China
| | - Shuaishuai Zhao
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Yuzhe Shen
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Hui Gao
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Yunhang Jing
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
- Imagining Department, Yan'an University Affiliated Hospital, Yan'an, China
| | - Xinyue Bai
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Mengze He
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Qingyan Wang
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Huilin Xi
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Rui Shi
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yanling Yang
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| |
Collapse
|
20
|
Mitra S, Sameer Kumar GS, Samanta A, Schmidt MV, Thakur SS. Hypothalamic protein profiling from mice subjected to social defeat stress. Mol Brain 2024; 17:30. [PMID: 38802853 PMCID: PMC11131206 DOI: 10.1186/s13041-024-01096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
The Hypothalmic-Pituitary-Adrenal axis also known as the HPA axis is central to stress response. It also acts as the relay center between the body and the brain. We analysed hypothalamic proteome from mice subjected to chronic social defeat paradigm using iTRAQ based quantitative proteomics to identify changes associated with stress response. We identified greater than 2000 proteins after processing our samples analysed through Q-Exactive (Thermo) and Orbitrap Velos (Thermo) at 5% FDR. Analysis of data procured from the runs showed that the proteins whose levels were affected belonged primarily to mitochondrial and metabolic processes, translation, complement pathway among others. We also found increased levels of fibrinogen, myelin basic protein (MBP) and neurofilaments (NEFL, NEFM, NEFH) in the hypothalamus from socially defeated mice. Interestingly, research indicates that these proteins are upregulated in blood and CSF of subjects exposed to trauma and stress. Since hypothalamus secreted proteins can be found in blood and CSF, their utility as biomarkers in depression holds an impressive probability and should be validated in clinical samples.
Collapse
Affiliation(s)
- Shiladitya Mitra
- Max Planck Institute of Psychiatry, Kraepelinstr 2-10, Munich, 80804, Germany.
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, India.
| | | | - Anumita Samanta
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, India
- Donders Institute for Brain Cognition and Behavior, Radboud University, Postbs 9010, Nijmegen, 6500GL, Netherlands
| | - Mathias V Schmidt
- Max Planck Institute of Psychiatry, Kraepelinstr 2-10, Munich, 80804, Germany
| | - Suman S Thakur
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, India
| |
Collapse
|
21
|
Liu C, Zhou W, Sun X, Zhang X, Xiao H, Yang H, Lin H, Lu Y, Liu Z, Qiu W, Kermode AG, Yang X, Wang Y. Combination of serum markers with optical coherence tomography angiography for evaluating neuromyelitis optica spectrum disorders and multiple sclerosis. Mult Scler Relat Disord 2024; 85:105478. [PMID: 38457885 DOI: 10.1016/j.msard.2024.105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/11/2022] [Accepted: 01/27/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS), autoimmune inflammatory diseases of the central nervous system, affect the optic nerve and brain. A lumbar puncture to obtain biomarkers is highly invasive. Serum biomarkers and optical coherence tomography angiography (OCTA) are more accessible and less expensive than magnetic resonance imaging and provide reliable, reproducible measures of neuroaxonal damage. This study investigated the association between serum neurofilament light chain (sNfL), serum glial fibrillary acidic protein (sGFAP), and OCTA metrics. Serum sNfL and sGFAP levels, OCTA values, and clinical characteristics were compared among 91 patients with NMOSD, 81 patients with MS, and 34 healthy controls (HCs) at baseline and 1-year follow-up. RESULTS sNfL and sGFAP levels were higher while the sGFAP/sNfL quotients were significantly lower in NMOSD and MS patients than those in HCs. At baseline, the average thicknesses of the peripapillary retinal nerve fibre layer (pRNFL) and macular ganglion cell-inner plexiform layer (mGC-IPL) were significantly smaller in NMOSD and MS patients than those in HCs (pRNFL: MS 92.0 [80.2; 101] μm, NMOSD 80.0 [59.0; 95.8] μm, vs HC 99.0 [92.0; 104] μm, p < 0.001; mGC-IPL: MS 74.5 [64.2; 81.0] μm, NMOSD 68.0 [56.0; 81.0] μm, vs HC 83.5 [78.0; 88.0] μm, p < 0.001). The vessel density (VD) and perfusion density (PD) were increased in MS patients without optic neuritis compared to HCs (VD: MS 16.7 [15.6; 17.9] HC 15.3 [13.4; 16.9], p = 0.008; PD: MS 0.41 [0.38; 0.43], HC 0.37 [0.32; 0.41], p = 0.017). In NMOSD patients without optic neuritis, sNfL was significantly associated with PD at baseline (r = 0.329, q = 0.041). The baseline and follow-up values of the sNfL level and average pRNFL and mGC-IPL thicknesses in MS patients showed significant differences. NMOSD patients showed significant differences between baseline and follow-up sNfL and sGFAP levels but not OCTA metrics. CONCLUSION Changes in retinal microvasculature might occur earlier than those in retinal structure and may therefore serve as a promising diagnostic marker for early NMOSD. The combination of serum markers and OCTA metrics could be used to evaluate and differentiate between MS and NMOSD.
Collapse
Affiliation(s)
- Chunxin Liu
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Emergency Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - WeiXiong Zhou
- Emergency Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaobo Sun
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiayin Zhang
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hui Xiao
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hui Yang
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haotian Lin
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yaxin Lu
- Clinical Data Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zifeng Liu
- Clinical Data Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Qiu
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Allan G Kermode
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Perron Institute, University of Western Australia, Nedlands, Australia
| | - Xiaoyan Yang
- Emergency Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
22
|
Maroto-Izquierdo S, Mulero P, Menéndez H, Pinto-Fraga J, Lista S, Santos-Lozano A, Téllez N. Pumping up the Fight against Multiple Sclerosis: The Effects of High-Intensity Resistance Training on Functional Capacity, Muscle Mass, and Axonal Damage. Healthcare (Basel) 2024; 12:837. [PMID: 38667599 PMCID: PMC11050496 DOI: 10.3390/healthcare12080837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Resistance training (RT) has been recognized as a beneficial non-pharmacological intervention for multiple sclerosis (MS) patients, but its impact on neurodegeneration is not fully understood. This study aimed to investigate the effects of high-intensity RT on muscle mass, strength, functional capacity, and axonal damage in MS patients. METHODS Eleven relapsing-remitting MS patients volunteered in this within-subject counterbalanced intervention study. Serum neurofilament light-chain (NfL) concentration, vastus lateralis thickness (VL), timed up-and-go test (TUG), sit-to-stand test (60STS), and maximal voluntary isometric contraction (MVIC) were measured before and after intervention. Participants performed 18 sessions of high-intensity RT (70-80% 1-RM) over 6 weeks. RESULTS Significant (p < 0.05) differences were observed post-intervention for VL (ES = 2.15), TUG (ES = 1.98), 60STS (ES = 1.70), MVIC (ES = 1.78), and NfL (ES = 1.43). Although moderate correlations between changes in VL (R = 0.434), TUG (R = -0.536), and MVIC (R = 0.477) and changes in NfL were observed, only the correlation between VL and MVIC changes was significant (R = 0.684, p = 0.029). CONCLUSIONS A 6-week RT program significantly increased muscle mass, functional capacity, and neuromuscular function while also decreasing serum NfL in MS patients. These results suggest the effectiveness of RT as a non-pharmacological approach to mitigate neurodegeneration while improving functional capacity in MS patients.
Collapse
Affiliation(s)
- Sergio Maroto-Izquierdo
- i+HeALTH, Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Patricia Mulero
- Neurology Department, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| | - Héctor Menéndez
- i+HeALTH, Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - José Pinto-Fraga
- i+HeALTH, Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Simone Lista
- i+HeALTH, Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Alejandro Santos-Lozano
- i+HeALTH, Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Nieves Téllez
- Neurology Department, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| |
Collapse
|
23
|
Ou R, Liu K, Lin J, Yang T, Xiao Y, Wei Q, Hou Y, Li C, Zhang L, Jiang Z, Zhao B, Chen X, Song W, Wu Y, Shang H. Relationship between plasma NFL and disease progression in Parkinson's disease: a prospective cohort study. J Neurol 2024; 271:1837-1843. [PMID: 38063869 DOI: 10.1007/s00415-023-12117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 03/28/2024]
Abstract
OBJECTIVE We aimed to examine the longitudinal change of plasma neurofilament light chain (NFL) level and explore its diagnostic and prognostic implications in Parkinson's disease (PD). METHODS A total of 184 patients with early PD who completed 5-year annually repeated clinical assessments were included. Plasma NFL at baseline, 1 year, and 2 year were examined, which were quantified using the ultrasensitive Simoa technology. At baseline, blood from 86 sex- and age-matched healthy controls (HC) were obtained for comparison. RESULTS Plasma NFL in PD patients at baseline was significantly higher than those in HC (P = 0.046), and significantly increased after 2 years (P = 0.046). Receiver operating characteristic curve indicated that a plasma NFL cut-off value of 10.79 pg/mL resulted in 39.7% sensitivity and 84.0% specificity, with an area under the curve of 0.635, to distinguish PD from HC (P < 0.001). Linear mixed-effect models indicated that baseline plasma NFL (> 9.24 pg/mL) correlated with a greater increase in the Unified Parkinson's Disease Rating Scale III (estimate = 0.651, P = 0.001) and Hoehn & Yahr stage (estimate = 0.072, P < 0.001), and also correlated with a greater decrease in the Montreal Cognitive Assessment (estimate = - 0.387, P < 0.001) during follow-up visits. CONCLUSIONS Plasma NFL exhibits a tendency to increase with disease progression, and elevated baseline plasma NFL can serve as a predictor for accelerated motor deterioration and cognitive decline in PD. However, plasma NFL does not have high accuracy to distinguish individuals with early-stage PD from HC.
Collapse
Affiliation(s)
- Ruwei Ou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Kuncheng Liu
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Junyu Lin
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Tianmi Yang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yi Xiao
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Qianqian Wei
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yanbing Hou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Chunyu Li
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Lingyu Zhang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Zheng Jiang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Bi Zhao
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Xueping Chen
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Wei Song
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Ying Wu
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
24
|
Garcia‐Agudo LF, Shi Z, Smith IF, Kramár EA, Tran K, Kawauchi S, Wang S, Collins S, Walker A, Shi K, Neumann J, Liang HY, Da Cunha C, Milinkeviciute G, Morabito S, Miyoshi E, Rezaie N, Gomez‐Arboledas A, Arvilla AM, Ghaemi DI, Tenner AJ, LaFerla FM, Wood MA, Mortazavi A, Swarup V, MacGregor GR, Green KN. BIN1 K358R suppresses glial response to plaques in mouse model of Alzheimer's disease. Alzheimers Dement 2024; 20:2922-2942. [PMID: 38460121 PMCID: PMC11032570 DOI: 10.1002/alz.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 03/11/2024]
Abstract
INTRODUCTION The BIN1 coding variant rs138047593 (K358R) is linked to Late-Onset Alzheimer's Disease (LOAD) via targeted exome sequencing. METHODS To elucidate the functional consequences of this rare coding variant on brain amyloidosis and neuroinflammation, we generated BIN1K358R knock-in mice using CRISPR/Cas9 technology. These mice were subsequently bred with 5xFAD transgenic mice, which serve as a model for Alzheimer's pathology. RESULTS The presence of the BIN1K358R variant leads to increased cerebral amyloid deposition, with a dampened response of astrocytes and oligodendrocytes, but not microglia, at both the cellular and transcriptional levels. This correlates with decreased neurofilament light chain in both plasma and brain tissue. Synaptic densities are significantly increased in both wild-type and 5xFAD backgrounds homozygous for the BIN1K358R variant. DISCUSSION The BIN1 K358R variant modulates amyloid pathology in 5xFAD mice, attenuates the astrocytic and oligodendrocytic responses to amyloid plaques, decreases damage markers, and elevates synaptic densities. HIGHLIGHTS BIN1 rs138047593 (K358R) coding variant is associated with increased risk of LOAD. BIN1 K358R variant increases amyloid plaque load in 12-month-old 5xFAD mice. BIN1 K358R variant dampens astrocytic and oligodendrocytic response to plaques. BIN1 K358R variant decreases neuronal damage in 5xFAD mice. BIN1 K358R upregulates synaptic densities and modulates synaptic transmission.
Collapse
Affiliation(s)
| | - Zechuan Shi
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Ian F. Smith
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Enikö A. Kramár
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Katelynn Tran
- Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineCaliforniaUSA
| | - Shimako Kawauchi
- Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineCaliforniaUSA
- Transgenic Mouse Facility, ULAR, Office of Research, University of CaliforniaIrvineCaliforniaUSA
| | - Shuling Wang
- Transgenic Mouse Facility, ULAR, Office of Research, University of CaliforniaIrvineCaliforniaUSA
| | - Sherilyn Collins
- Transgenic Mouse Facility, ULAR, Office of Research, University of CaliforniaIrvineCaliforniaUSA
| | - Amber Walker
- Transgenic Mouse Facility, ULAR, Office of Research, University of CaliforniaIrvineCaliforniaUSA
| | - Kai‐Xuan Shi
- Transgenic Mouse Facility, ULAR, Office of Research, University of CaliforniaIrvineCaliforniaUSA
| | - Jonathan Neumann
- Transgenic Mouse Facility, ULAR, Office of Research, University of CaliforniaIrvineCaliforniaUSA
| | - Heidi Yahan Liang
- Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineCaliforniaUSA
- Center for Complex Biological Systems, University of CaliforniaIrvineCaliforniaUSA
| | - Celia Da Cunha
- Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineCaliforniaUSA
| | - Giedre Milinkeviciute
- Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineCaliforniaUSA
| | - Samuel Morabito
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Emily Miyoshi
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Narges Rezaie
- Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineCaliforniaUSA
- Center for Complex Biological Systems, University of CaliforniaIrvineCaliforniaUSA
| | - Angela Gomez‐Arboledas
- Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineCaliforniaUSA
| | - Adrian Mendoza Arvilla
- Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineCaliforniaUSA
| | - Daryan Iman Ghaemi
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Andrea J. Tenner
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineCaliforniaUSA
- Department of Molecular Biology & BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Frank M. LaFerla
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineCaliforniaUSA
| | - Marcelo A. Wood
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineCaliforniaUSA
| | - Ali Mortazavi
- Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineCaliforniaUSA
- Center for Complex Biological Systems, University of CaliforniaIrvineCaliforniaUSA
| | - Vivek Swarup
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineCaliforniaUSA
- Center for Complex Biological Systems, University of CaliforniaIrvineCaliforniaUSA
| | - Grant R. MacGregor
- Transgenic Mouse Facility, ULAR, Office of Research, University of CaliforniaIrvineCaliforniaUSA
- Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Kim N. Green
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
25
|
Lista S, Mapstone M, Caraci F, Emanuele E, López-Ortiz S, Martín-Hernández J, Triaca V, Imbimbo C, Gabelle A, Mielke MM, Nisticò R, Santos-Lozano A, Imbimbo BP. A critical appraisal of blood-based biomarkers for Alzheimer's disease. Ageing Res Rev 2024; 96:102290. [PMID: 38580173 DOI: 10.1016/j.arr.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Biomarkers that predict the clinical onset of Alzheimer's disease (AD) enable the identification of individuals in the early, preclinical stages of the disease. Detecting AD at this point may allow for more effective therapeutic interventions and optimized enrollment for clinical trials of novel drugs. The current biological diagnosis of AD is based on the AT(N) classification system with the measurement of brain deposition of amyloid-β (Aβ) ("A"), tau pathology ("T"), and neurodegeneration ("N"). Diagnostic cut-offs for Aβ1-42, the Aβ1-42/Aβ1-40 ratio, tau and hyperphosphorylated-tau concentrations in cerebrospinal fluid have been defined and may support AD clinical diagnosis. Blood-based biomarkers of the AT(N) categories have been described in the AD continuum. Cross-sectional and longitudinal studies have shown that the combination of blood biomarkers tracking neuroaxonal injury (neurofilament light chain) and neuroinflammatory pathways (glial fibrillary acidic protein) enhance sensitivity and specificity of AD clinical diagnosis and improve the prediction of AD onset. However, no international accepted cut-offs have been identified for these blood biomarkers. A kit for blood Aβ1-42/Aβ1-40 is commercially available in the U.S.; however, it does not provide a diagnosis, but simply estimates the risk of developing AD. Although blood-based AD biomarkers have a great potential in the diagnostic work-up of AD, they are not ready for the routine clinical use.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Mark Mapstone
- Department of Neurology, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, Troina 94018, Italy.
| | | | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome 00015, Italy.
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| | - Audrey Gabelle
- Memory Resources and Research Center, Montpellier University of Excellence i-site, Montpellier 34295, France.
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA.
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome 00133, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome 00143, Italy.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid 28041, Spain.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma 43122, Italy.
| |
Collapse
|
26
|
Soni N, Hohsfield LA, Tran KM, Kawauchi S, Walker A, Javonillo D, Phan J, Matheos D, Da Cunha C, Uyar A, Milinkeviciute G, Gomez‐Arboledas A, Tran K, Kaczorowski CC, Wood MA, Tenner AJ, LaFerla FM, Carter GW, Mortazavi A, Swarup V, MacGregor GR, Green KN. Genetic diversity promotes resilience in a mouse model of Alzheimer's disease. Alzheimers Dement 2024; 20:2794-2816. [PMID: 38426371 PMCID: PMC11032575 DOI: 10.1002/alz.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disorder with multifactorial etiology, including genetic factors that play a significant role in disease risk and resilience. However, the role of genetic diversity in preclinical AD studies has received limited attention. METHODS We crossed five Collaborative Cross strains with 5xFAD C57BL/6J female mice to generate F1 mice with and without the 5xFAD transgene. Amyloid plaque pathology, microglial and astrocytic responses, neurofilament light chain levels, and gene expression were assessed at various ages. RESULTS Genetic diversity significantly impacts AD-related pathology. Hybrid strains showed resistance to amyloid plaque formation and neuronal damage. Transcriptome diversity was maintained across ages and sexes, with observable strain-specific variations in AD-related phenotypes. Comparative gene expression analysis indicated correlations between mouse strains and human AD. DISCUSSION Increasing genetic diversity promotes resilience to AD-related pathogenesis, relative to an inbred C57BL/6J background, reinforcing the importance of genetic diversity in uncovering resilience in the development of AD. HIGHLIGHTS Genetic diversity's impact on AD in mice was explored. Diverse F1 mouse strains were used for AD study, via the Collaborative Cross. Strain-specific variations in AD pathology, glia, and transcription were found. Strains resilient to plaque formation and plasma neurofilament light chain (NfL) increases were identified. Correlations with human AD transcriptomics were observed.
Collapse
Affiliation(s)
- Neelakshi Soni
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Lindsay A. Hohsfield
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Kristine M. Tran
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Shimako Kawauchi
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Transgenic Mouse Facility, ULAROffice of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
| | - Amber Walker
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Transgenic Mouse Facility, ULAROffice of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
| | - Dominic Javonillo
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Jimmy Phan
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Dina Matheos
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Celia Da Cunha
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Asli Uyar
- The Jackson LaboratoryBar HarborMaineUSA
| | - Giedre Milinkeviciute
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Angela Gomez‐Arboledas
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Katelynn Tran
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | | | - Marcelo A. Wood
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Andrea J. Tenner
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Frank M. LaFerla
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | | | - Ali Mortazavi
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Developmental and Cellular BiologyUniversity of CaliforniaIrvineCaliforniaUSA
- Center for Complex Biological SystemsUniversity of CaliforniaIrvineCaliforniaUSA
| | - Vivek Swarup
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Grant R. MacGregor
- Transgenic Mouse Facility, ULAROffice of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Developmental and Cellular BiologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Kim N. Green
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
27
|
Gregorio I, Russo L, Torretta E, Barbacini P, Contarini G, Pacinelli G, Bizzotto D, Moriggi M, Braghetta P, Papaleo F, Gelfi C, Moro E, Cescon M. GBA1 inactivation in oligodendrocytes affects myelination and induces neurodegenerative hallmarks and lipid dyshomeostasis in mice. Mol Neurodegener 2024; 19:22. [PMID: 38454456 PMCID: PMC10921719 DOI: 10.1186/s13024-024-00713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Mutations in the β-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of β-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a β-glucocerebrosidase irreversible inhibitor was used to dissect the impact of β-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of β-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which β-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for β-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of β-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS Here we show that β-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific β-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.
Collapse
Affiliation(s)
- Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Loris Russo
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Milan, 20161, Italy
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Gabriella Contarini
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
- Department of Biomedical and Technological Sciences, University of Catania, 95125, Catania, Italy
| | - Giada Pacinelli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
- Padova Neuroscience Center (PNC), University of Padova, 35131, Padua, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
| | - Cecilia Gelfi
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Milan, 20161, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
| |
Collapse
|
28
|
López-Ortiz S, Caruso G, Emanuele E, Menéndez H, Peñín-Grandes S, Guerrera CS, Caraci F, Nisticò R, Lucia A, Santos-Lozano A, Lista S. Digging into the intrinsic capacity concept: Can it be applied to Alzheimer's disease? Prog Neurobiol 2024; 234:102574. [PMID: 38266702 DOI: 10.1016/j.pneurobio.2024.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Historically, aging research has largely centered on disease pathology rather than promoting healthy aging. The World Health Organization's (WHO) policy framework (2015-2030) underscores the significance of fostering the contributions of older individuals to their families, communities, and economies. The WHO has introduced the concept of intrinsic capacity (IC) as a key metric for healthy aging, encompassing five primary domains: locomotion, vitality, sensory, cognitive, and psychological. Past AD research, constrained by methodological limitations, has focused on single outcome measures, sidelining the complexity of the disease. Our current scientific milieu, however, is primed to adopt the IC concept. This is due to three critical considerations: (I) the decline in IC is linked to neurocognitive disorders, including AD, (II) cognition, a key component of IC, is deeply affected in AD, and (III) the cognitive decline associated with AD involves multiple factors and pathophysiological pathways. Our study explores the application of the IC concept to AD patients, offering a comprehensive model that could revolutionize the disease's diagnosis and prognosis. There is a dearth of information on the biological characteristics of IC, which are a result of complex interactions within biological systems. Employing a systems biology approach, integrating omics technologies, could aid in unraveling these interactions and understanding IC from a holistic viewpoint. This comprehensive analysis of IC could be leveraged in clinical settings, equipping healthcare providers to assess AD patients' health status more effectively and devise personalized therapeutic interventions in accordance with the precision medicine paradigm. We aimed to determine whether the IC concept could be extended from older individuals to patients with AD, thereby presenting a model that could significantly enhance the diagnosis and prognosis of this disease.
Collapse
Affiliation(s)
- Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | | | - Héctor Menéndez
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Saúl Peñín-Grandes
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Claudia Savia Guerrera
- Department of Educational Sciences, University of Catania, 95125 Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", 00133 Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, 00143 Rome, Italy
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre ('imas12'), 28041 Madrid, Spain; Faculty of Sport Sciences, European University of Madrid, 28670 Villaviciosa de Odón, Madrid, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), 28029 Madrid, Spain
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain; Research Institute of the Hospital 12 de Octubre ('imas12'), 28041 Madrid, Spain
| | - Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain.
| |
Collapse
|
29
|
Muir RT, Ismail Z, Black SE, Smith EE. Comparative methods for quantifying plasma biomarkers in Alzheimer's disease: Implications for the next frontier in cerebral amyloid angiopathy diagnostics. Alzheimers Dement 2024; 20:1436-1458. [PMID: 37908054 PMCID: PMC10916950 DOI: 10.1002/alz.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 11/02/2023]
Abstract
Plasma amyloid beta (Aβ) and tau are emerging as accessible biomarkers for Alzheimer's disease (AD). However, many assays exist with variable test performances, highlighting the need for a comparative assessment to identify the most valid assays for future use in AD and to apply to other settings in which the same biomarkers may be useful, namely, cerebral amyloid angiopathy (CAA). CAA is a progressive cerebrovascular disease characterized by deposition of Aβ40 and Aβ42 in cortical and leptomeningeal vessels. Novel immunotherapies for AD can induce amyloid-related imaging abnormalities resembling CAA-related inflammation. Few studies have evaluated plasma biomarkers in CAA. Identifying a CAA signature could facilitate diagnosis, prognosis, and a safer selection of patients with AD for emerging immunotherapies. This review evaluates studies that compare the diagnostic test performance of plasma biomarker techniques in AD and cerebrovascular and plasma biomarker profiles of CAA; it also discusses novel hypotheses and future avenues for plasma biomarker research in CAA.
Collapse
Affiliation(s)
- Ryan T. Muir
- Calgary Stroke ProgramDepartment of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Zahinoor Ismail
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PsychiatryUniversity of CalgaryCalgaryAlbertaCanada
| | - Sandra E. Black
- Division of NeurologyDepartment of MedicineSunnybrook Health Sciences CentreTorontoOntarioCanada
- LC Campbell Cognitive Neurology Research UnitDr Sandra Black Centre for Brain Resilience and Recovery, and Hurvitz Brain Sciences ProgramSunnybrook Research InstituteUniversity of TorontoTorontoOntarioCanada
| | - Eric E. Smith
- Calgary Stroke ProgramDepartment of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
30
|
Smith EN, Lee J, Prilutsky D, Zicha S, Wang Z, Han S, Zach N. Plasma neurofilament light levels show elevation two years prior to diagnosis of amyotrophic lateral sclerosis in the UK Biobank. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:170-176. [PMID: 38013452 DOI: 10.1080/21678421.2023.2285428] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disease with profound unmet need. In patients carrying genetic mutations, elevations in neurofilament light (NfL) have been shown to precede symptom onset, however, the natural history of NfL in general ALS patients is less characterized. METHODS We performed a secondary analysis of the UK Biobank Pharma Proteomics Project (UKB-PPP), a subset of the UK Biobank, a population-based cohort study in the United Kingdom, to examine plasma NfL levels in 237 participants subsequently diagnosed with ALS. We applied logistic and Cox proportional hazards regression to compare cases to 42,752 population-based and 948 age and sex-matched controls. Genetic information was obtained from exome and genotype array data.Results and Conclusions: We observed that NfL was 1.42-fold higher in cases vs population-based controls. At two to three years pre-diagnosis, NfL levels in patients exceeded the 95th percentile of age and sex-matched controls. A time-to-diagnosis analysis showed that a 2-fold increase in NfL levels was associated with a 3.4-fold risk of diagnosis per year, with NfL being most predictive of case status at two years (AUC = 0.96). Participants with genetic variation that might put them at risk for familial disease (N = 46) did not show a different pattern of association than those without (N = 191). DISCUSSION Our findings show that NfL is elevated and discriminative of future ALS diagnosis up to two years prior to diagnosis in patients with and without genetic risk variants.
Collapse
Affiliation(s)
- Erin N Smith
- Human Genetics and Systems Biology, Takeda Development Center Americas, Inc. San Diego, CA, USA
| | - Jonghun Lee
- Human Genetics and Systems Biology, Takeda Development Center Americas, Inc. Cambridge, MA, USA
| | - Daria Prilutsky
- Human Genetics and Systems Biology, Takeda Development Center Americas, Inc. Cambridge, MA, USA
| | - Stephen Zicha
- Neuroscience Translational Medicine, Takeda Development Center Americas, Inc. Cambridge, MA, USA, and
| | - Zemin Wang
- Neuroscience Translational Medicine, Takeda Development Center Americas, Inc. Cambridge, MA, USA, and
| | - Steve Han
- Neuroscience Therapeutic Area Unit, Takeda Development Center Americas, Inc. Cambridge, MA, USA
| | - Neta Zach
- Neuroscience Translational Medicine, Takeda Development Center Americas, Inc. Cambridge, MA, USA, and
| |
Collapse
|
31
|
Hansen ML, Ambjørn M, Harndahl MN, Benned-Jensen T, Fog K, Bjerregaard-Andersen K, Sotty F. Characterization of pSer129-αSyn Pathology and Neurofilament Light-Chain Release across In Vivo, Ex Vivo, and In Vitro Models of Pre-Formed-Fibril-Induced αSyn Aggregation. Cells 2024; 13:253. [PMID: 38334646 PMCID: PMC10854598 DOI: 10.3390/cells13030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Protein aggregation is a predominant feature of many neurodegenerative diseases, including synucleinopathies, which are characterized by cellular inclusions containing α-Synuclein (αSyn) phosphorylated at serine 129 (pSer129). In the present study, we characterized the development of αSyn pre-formed fibril (PFF)-induced pSer129-αSyn pathology in F28tg mice overexpressing human wild-type αSyn, as well as in ex vivo organotypic cultures and in vitro primary cultures from the same mouse model. Concurrently, we collected cerebrospinal fluid (CSF) from mice and conditioned media from ex vivo and in vitro cultures and quantified the levels of neurofilament light chain (NFL), a biomarker of neurodegeneration. We found that the intra-striatal injection of PFFs induces the progressive spread of pSer129-αSyn pathology and microglial activation in vivo, as well as modest increases in NFL levels in the CSF. Similarly, PFF-induced αSyn pathology occurs progressively in ex vivo organotypic slice cultures and is accompanied by significant increases in NFL release into the media. Using in vitro primary hippocampal cultures, we further confirmed that pSer129-αSyn pathology and NFL release occur in a manner that correlates with the fibril dose and the level of the αSyn protein. Overall, we demonstrate that αSyn pathology is associated with NFL release across preclinical models of seeded αSyn aggregation and that the pharmacological inhibition of αSyn aggregation in vitro also significantly reduces NFL release.
Collapse
Affiliation(s)
- Maja L. Hansen
- Neuroscience, Molecular and Cellular Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; (M.L.H.); (M.A.); (K.F.)
| | - Malene Ambjørn
- Neuroscience, Molecular and Cellular Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; (M.L.H.); (M.A.); (K.F.)
| | - Mikkel N. Harndahl
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; (M.N.H.); (K.B.-A.)
| | - Tau Benned-Jensen
- Neuroscience, Molecular and Cellular Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; (M.L.H.); (M.A.); (K.F.)
| | - Karina Fog
- Neuroscience, Molecular and Cellular Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; (M.L.H.); (M.A.); (K.F.)
| | | | - Florence Sotty
- Neuroscience, Histology and Pathology Models, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| |
Collapse
|
32
|
Yang Y, Kim WS, Michaelian JC, Lewis SJG, Phillips CL, D'Rozario AL, Chatterjee P, Martins RN, Grunstein R, Halliday GM, Naismith SL. Predicting neurodegeneration from sleep related biofluid changes. Neurobiol Dis 2024; 190:106369. [PMID: 38049012 DOI: 10.1016/j.nbd.2023.106369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
Sleep-wake disturbances are common in neurodegenerative diseases and may occur years before the clinical diagnosis, potentially either representing an early stage of the disease itself or acting as a pathophysiological driver. Therefore, discovering biomarkers that identify individuals with sleep-wake disturbances who are at risk of developing neurodegenerative diseases will allow early diagnosis and intervention. Given the association between sleep and neurodegeneration, the most frequently analyzed fluid biomarkers in people with sleep-wake disturbances to date include those directly associated with neurodegeneration itself, such as neurofilament light chain, phosphorylated tau, amyloid-beta and alpha-synuclein. Abnormalities in these biomarkers in patients with sleep-wake disturbances are considered as evidence of an underlying neurodegenerative process. Levels of hormonal sleep-related biomarkers such as melatonin, cortisol and orexin are often abnormal in patients with clinical neurodegenerative diseases, but their relationships with the more standard neurodegenerative biomarkers remain unclear. Similarly, it is unclear whether other chronobiological/circadian biomarkers, such as disrupted clock gene expression, are causal factors or a consequence of neurodegeneration. Current data would suggest that a combination of fluid biomarkers may identify sleep-wake disturbances that are most predictive for the risk of developing neurodegenerative disease with more optimal sensitivity and specificity.
Collapse
Affiliation(s)
- Yue Yang
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia.
| | - Woojin Scott Kim
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Johannes C Michaelian
- Healthy Brain Ageing Program, School of Psychology, Brain and Mind Centre & The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia.
| | - Simon J G Lewis
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Parkinson's Disease Research Clinic, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia.
| | - Craig L Phillips
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2109, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Angela L D'Rozario
- Healthy Brain Ageing Program, School of Psychology, Brain and Mind Centre & The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2109, Australia.
| | - Pratishtha Chatterjee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Ralph N Martins
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia; School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA 6009, Australia.
| | - Ron Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2109, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Glenda M Halliday
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Sharon L Naismith
- Healthy Brain Ageing Program, School of Psychology, Brain and Mind Centre & The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia.
| |
Collapse
|
33
|
Dong Q, Li Z, Liu W, Chen K, Su Y, Wu J, Caselli RJ, Reiman EM, Wang Y, Shen J. Correlation studies of Hippocampal Morphometry and Plasma NFL Levels in Cognitively Unimpaired Subjects. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2023; 10:3602-3608. [PMID: 38084365 PMCID: PMC10713345 DOI: 10.1109/tcss.2023.3313819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Alzheimer's disease(AD) is being the burden of society and family. Applying computing-aided strategies to reveal its pathology is one of the research highlights. Plasma neurofilament light (NFL) is an emerging noninvasive and economic biomarker for AD molecular pathology. It is valuable to reveal the correlations between the plasma NFL levels and neurodegeneration, especially hippcampal deformations at the preclinical stage. The negative correlation between plasma NFL levels and hippocampal volumes has been documented. However, the relationship between the plasma NFL levels and the hippocampal morphometry details at the preclinical stage is still elusive. This study seeks to demonstrate the capacity of our proposed surface-based hippocampal morphometry system to discern the plasma NFL positive (NFL+>41.9 pg/L) level and plasma NFL negative (NFL-<41.9pg/L) level and illustrate its superiority to the hippocampal volume measurement by drawing the cohort of 154 CU middle aged and elderly adults. We also apply this morphometry measure and a proposed sparse coding based classification algorithm to classify CU individuals with NFL+ and NFL- levels. Experimental results show that the proposed hippocampal morphometry system offers stronger statistical power to discriminate CU subjects with NFL+ and NFL- levels, comparing with the hippocampal volume measure. Furthermore, this system can discriminate plasma NFL levels in CU individuals (Accuracy=0.86). Both the group level and individual level analysis results indicate that the association between plasma NFL levels and the hippocampal shapes can be mapped at the preclinical stage.
Collapse
Affiliation(s)
- Qunxi Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhigang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Weijia Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ, USA
| | | | | | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ, USA
| | - Jian Shen
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
34
|
Vanova T, Sedmik J, Raska J, Amruz Cerna K, Taus P, Pospisilova V, Nezvedova M, Fedorova V, Kadakova S, Klimova H, Capandova M, Orviska P, Fojtik P, Bartova S, Plevova K, Spacil Z, Hribkova H, Bohaciakova D. Cerebral organoids derived from patients with Alzheimer's disease with PSEN1/2 mutations have defective tissue patterning and altered development. Cell Rep 2023; 42:113310. [PMID: 37864790 DOI: 10.1016/j.celrep.2023.113310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/09/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023] Open
Abstract
During the past two decades, induced pluripotent stem cells (iPSCs) have been widely used to study human neural development and disease. Especially in the field of Alzheimer's disease (AD), remarkable effort has been put into investigating molecular mechanisms behind this disease. Then, with the advent of 3D neuronal cultures and cerebral organoids (COs), several studies have demonstrated that this model can adequately mimic familial and sporadic AD. Therefore, we created an AD-CO model using iPSCs derived from patients with familial AD forms and explored early events and the progression of AD pathogenesis. Our study demonstrated that COs derived from three AD-iPSC lines with PSEN1(A246E) or PSEN2(N141I) mutations developed the AD-specific markers in vitro, yet they also uncover tissue patterning defects and altered development. These findings are complemented by single-cell sequencing data confirming this observation and uncovering that neurons in AD-COs likely differentiate prematurely.
Collapse
Affiliation(s)
- Tereza Vanova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center (ICRC), St. Anne's University Hospital, 60200 Brno, Czech Republic
| | - Jiri Sedmik
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Jan Raska
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center (ICRC), St. Anne's University Hospital, 60200 Brno, Czech Republic
| | - Katerina Amruz Cerna
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Petr Taus
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Marketa Nezvedova
- RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Veronika Fedorova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Sona Kadakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Hana Klimova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Michaela Capandova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Petra Orviska
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Petr Fojtik
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center (ICRC), St. Anne's University Hospital, 60200 Brno, Czech Republic
| | - Simona Bartova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Karla Plevova
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, 61300 Brno, Czech Republic
| | - Zdenek Spacil
- RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Hana Hribkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center (ICRC), St. Anne's University Hospital, 60200 Brno, Czech Republic.
| |
Collapse
|
35
|
Mobed A, Charsouei S, Yazdani Y, Gargari MK, Ahmadalipour A, Sadremousavi SR, Farrahizadeh M, Shahbazi A, Haghani M. Biosensors, Recent Advances in Determination of BDNF and NfL. Cell Mol Neurobiol 2023; 43:3801-3814. [PMID: 37605014 DOI: 10.1007/s10571-023-01401-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
Key biomarkers such as Brain Derived Neurotrophic Factor (BDNF) and Neurofilament light chain (NfL) play important roles in the development and progression of many neurological diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. In these clinical conditions, the underlying biomarker processes are markedly heterogeneous. In this context, robust biomarker discovery is of critical importance for screening, early detection, and monitoring of neurological diseases. The difficulty of directly identifying biochemical processes in the central nervous system (CNS) is challenging. In recent years, biomarkers of CNS inflammatory response have been identified in various body fluids such as blood, cerebrospinal fluid, and tears. Furthermore, biotechnology and nanotechnology have facilitated the development of biosensor platforms capable of real-time detection of multiple biomarkers in clinically relevant samples. Biosensing technology is approaching maturity and will be deployed in communities, at which point screening programs and personalized medicine will become a reality. In this multidisciplinary review, our goal is to highlight clinical and current technological advances in the development of multiplex-based solutions for effective diagnosis and monitoring of neuroinflammatory and neurodegenerative diseases. The trend in the detection if BDNF and NfL.
Collapse
Affiliation(s)
- Ahmad Mobed
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Saeid Charsouei
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
- Tabriz Neuroscience Research Center (NRSC), Neurology Department, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yalda Yazdani
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morad Kohandel Gargari
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ahmadalipour
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyedeh Reyhaneh Sadremousavi
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Psychology, East Azarbayjan Science and Research Branch, Islamic Azad University, Tabriz, Iran
| | - Maryam Farrahizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ali Shahbazi
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Haghani
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Stallings NR, O'Neal MA, Hu J, Shen ZJ, Malter JS. Long-term normalization of calcineurin activity in model mice rescues Pin1 and attenuates Alzheimer's phenotypes without blocking peripheral T cell IL-2 response. Alzheimers Res Ther 2023; 15:179. [PMID: 37849016 PMCID: PMC10580561 DOI: 10.1186/s13195-023-01323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Current treatments for Alzheimer's disease (AD) have largely failed to yield significant therapeutic benefits. Novel approaches are desperately needed to help address this immense public health issue. Data suggests that early intervention at the first stages of mild cognitive impairment may have a greater chance for success. The calcineurin (CN)-Pin1 signaling cascade can be selectively targeted with tacrolimus (FK506), a highly specific, FDA-approved CN inhibitor used safely for > 20 years in solid organ transplant recipients. AD prevalence was significantly reduced in solid organ recipients treated with FK506. METHODS Time release pellets were used to deliver constant FK506 dosage to APP/PS1 mice without deleterious manipulation or handling. Immunofluorescence, histology, molecular biology, and behavior were used to evaluate changes in AD pathology. RESULTS FK506 can be safely and consistently delivered into juvenile APP/PS1 mice via time-release pellets to levels roughly seen in transplant patients, leading to the normalization of CN activity and reduction or elimination of AD pathologies including synapse loss, neuroinflammation, and cognitive impairment. Pin1 activity and function were rescued despite the continuing presence of high levels of transgenic Aβ42. Indicators of neuroinflammation including Iba1 positivity and IL-6 production were also reduced to normal levels. Peripheral blood mononuclear cells (PBMC) obtained during treatment or splenocytes isolated at euthanasia activated normally after mitogens. CONCLUSIONS Low-dose, constant FK506 can normalize CNS CN and Pin1 activity, suppress neuroinflammation, and attenuate AD-associated pathology without blocking peripheral IL-2 responses making repurposed FK506 a viable option for early, therapeutic intervention in AD.
Collapse
Affiliation(s)
- Nancy R Stallings
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines, Dallas, TX, 75390, USA
| | - Melissa A O'Neal
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines, Dallas, TX, 75390, USA
| | - Jie Hu
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines, Dallas, TX, 75390, USA
| | - Zhong-Jian Shen
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines, Dallas, TX, 75390, USA
| | - James S Malter
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines, Dallas, TX, 75390, USA.
| |
Collapse
|
37
|
Sharma H, Chang KA, Hulme J, An SSA. Mammalian Models in Alzheimer's Research: An Update. Cells 2023; 12:2459. [PMID: 37887303 PMCID: PMC10605533 DOI: 10.3390/cells12202459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
A form of dementia distinct from healthy cognitive aging, Alzheimer's disease (AD) is a complex multi-stage disease that currently afflicts over 50 million people worldwide. Unfortunately, previous therapeutic strategies developed from murine models emulating different aspects of AD pathogenesis were limited. Consequently, researchers are now developing models that express several aspects of pathogenesis that better reflect the clinical situation in humans. As such, this review seeks to provide insight regarding current applications of mammalian models in AD research by addressing recent developments and characterizations of prominent transgenic models and their contributions to pathogenesis as well as discuss the advantages, limitations, and application of emerging models that better capture genetic heterogeneity and mixed pathologies observed in the clinical situation.
Collapse
Affiliation(s)
- Himadri Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| |
Collapse
|
38
|
Zhang L, Flagan TM, Häkkinen S, Chu SA, Brown JA, Lee AJ, Pasquini L, Mandelli ML, Gorno-Tempini ML, Sturm VE, Yokoyama JS, Appleby BS, Cobigo Y, Dickerson BC, Domoto-Reilly K, Geschwind DH, Ghoshal N, Graff-Radford NR, Grossman M, Hsiung GYR, Huey ED, Kantarci K, Lago AL, Litvan I, Mackenzie IR, Mendez MF, Onyike CU, Ramos EM, Roberson ED, Tartaglia MC, Toga AW, Weintraub S, Wszolek ZK, Forsberg LK, Heuer HW, Boeve BF, Boxer AL, Rosen HJ, Miller BL, Seeley WW, Lee SE. Network Connectivity Alterations across the MAPT Mutation Clinical Spectrum. Ann Neurol 2023; 94:632-646. [PMID: 37431188 PMCID: PMC10727479 DOI: 10.1002/ana.26738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/05/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
OBJECTIVE Microtubule-associated protein tau (MAPT) mutations cause frontotemporal lobar degeneration, and novel biomarkers are urgently needed for early disease detection. We used task-free functional magnetic resonance imaging (fMRI) mapping, a promising biomarker, to analyze network connectivity in symptomatic and presymptomatic MAPT mutation carriers. METHODS We compared cross-sectional fMRI data between 17 symptomatic and 39 presymptomatic carriers and 81 controls with (1) seed-based analyses to examine connectivity within networks associated with the 4 most common MAPT-associated clinical syndromes (ie, salience, corticobasal syndrome, progressive supranuclear palsy syndrome, and default mode networks) and (2) whole-brain connectivity analyses. We applied K-means clustering to explore connectivity heterogeneity in presymptomatic carriers at baseline. Neuropsychological measures, plasma neurofilament light chain, and gray matter volume were compared at baseline and longitudinally between the presymptomatic subgroups defined by their baseline whole-brain connectivity profiles. RESULTS Symptomatic and presymptomatic carriers had connectivity disruptions within MAPT-syndromic networks. Compared to controls, presymptomatic carriers showed regions of connectivity alterations with age. Two presymptomatic subgroups were identified by clustering analysis, exhibiting predominantly either whole-brain hypoconnectivity or hyperconnectivity at baseline. At baseline, these two presymptomatic subgroups did not differ in neuropsychological measures, although the hypoconnectivity subgroup had greater plasma neurofilament light chain levels than controls. Longitudinally, both subgroups showed visual memory decline (vs controls), yet the subgroup with baseline hypoconnectivity also had worsening verbal memory and neuropsychiatric symptoms, and extensive bilateral mesial temporal gray matter decline. INTERPRETATION Network connectivity alterations arise as early as the presymptomatic phase. Future studies will determine whether presymptomatic carriers' baseline connectivity profiles predict symptomatic conversion. ANN NEUROL 2023;94:632-646.
Collapse
Affiliation(s)
- Liwen Zhang
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Taru M. Flagan
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Suvi Häkkinen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Stephanie A. Chu
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Jesse A. Brown
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Alex J. Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Lorenzo Pasquini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Virginia E. Sturm
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Jennifer S. Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Brian S. Appleby
- Department of Neurology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yann Cobigo
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | | | | | - Daniel H. Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Nupur Ghoshal
- Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Murray Grossman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Edward D. Huey
- Departments of Psychiatry and Neurology, Columbia University, New York, New York, USA
| | | | - Argentina Lario Lago
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Irene Litvan
- University of California, San Diego, La Jolla, California, USA
| | - Ian R Mackenzie
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Mario F. Mendez
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Chiadi U. Onyike
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eliana Marisa Ramos
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Erik D Roberson
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Arthur W. Toga
- University of Southern California, Laboratory of Neuroimaging (LONI), Los Angeles, California, USA
| | - Sandra Weintraub
- Department of Psychiatry and Behavioral Sciences; Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | - Hilary W. Heuer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | | | - Adam L. Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Howard J. Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - William W. Seeley
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Suzee E. Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
39
|
Wu MC, Chang YY, Lan MY, Chen YF, Tai CH, Chen SJ, Lin CH. Blood neurofilament light chain as a surrogate marker for dystonia. Eur J Neurol 2023; 30:3098-3104. [PMID: 37422850 DOI: 10.1111/ene.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND PURPOSE Dystonia is a heterogeneous movement disorder, and it remains unclear whether neurodegeneration is involved. Neurofilament light chain (NfL) is a biosignature of neurodegeneration. We aimed to investigate whether plasma NfL levels were elevated and associated with disease severity in patients with dystonia. METHOD We enrolled 231 unrelated dystonia patients (isolated dystonia n = 203; combined dystonia n = 28) and 54 healthy controls from movement disorder clinics. Clinical severity was evaluated using the Fahn Marsden Dystonia Rating Scale, the Unified Dystonia Rating Scale, and the Global Dystonia Rating Scale. Blood NfL levels were measured by single-molecule array. RESULTS Plasma NfL levels were significantly higher in those with generalized dystonia compared to those with focal dystonia (20.1 ± 8.8 vs. 11.7 ± 7.2 pg/mL; p = 0.01) or controls (p < 0.01), while the level was comparable between the focal dystonia group and controls (p = 0.08). Furthermore, the dystonia combined with parkinsonism group had higher NfL levels than the isolated dystonia group (17.4 ± 6.2 vs. 13.5 ± 7.5 pg/mL; p = 0.04). Notably, whole-exome sequencing was performed in 79 patients and two patients were identified as having likely pathogenic variants: one had a heterozygous c.122G>A (p.R41H) variant in THAP1 (DYT6) and the other carried a c.1825G>A (p.D609N) substitution in ATP1A3 (DYT12). No significant correlation was found between plasma NfL levels and dystonia rating scores. CONCLUSION Plasma NfL levels are elevated in patients with generalized dystonia and dystonia combined with parkinsonism, suggesting that neurodegeneration is involved in the disease process of this subgroup of patients.
Collapse
Affiliation(s)
- Meng-Chen Wu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ying-Fa Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Ju Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
Jucker M, Walker LC. Alzheimer's disease: From immunotherapy to immunoprevention. Cell 2023; 186:4260-4270. [PMID: 37729908 PMCID: PMC10578497 DOI: 10.1016/j.cell.2023.08.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Recent Aβ-immunotherapy trials have yielded the first clear evidence that removing aggregated Aβ from the brains of symptomatic patients can slow the progression of Alzheimer's disease. The clinical benefit achieved in these trials has been modest, however, highlighting the need for both a deeper understanding of disease mechanisms and the importance of intervening early in the pathogenic cascade. An immunoprevention strategy for Alzheimer's disease is required that will integrate the findings from clinical trials with mechanistic insights from preclinical disease models to select promising antibodies, optimize the timing of intervention, identify early biomarkers, and mitigate potential side effects.
Collapse
Affiliation(s)
- Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany.
| | - Lary C Walker
- Department of Neurology and Emory National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
41
|
Jellinger KA. The Spectrum of Cognitive Dysfunction in Amyotrophic Lateral Sclerosis: An Update. Int J Mol Sci 2023; 24:14647. [PMID: 37834094 PMCID: PMC10572320 DOI: 10.3390/ijms241914647] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cognitive dysfunction is an important non-motor symptom in amyotrophic lateral sclerosis (ALS) that has a negative impact on survival and caregiver burden. It shows a wide spectrum ranging from subjective cognitive decline to frontotemporal dementia (FTD) and covers various cognitive domains, mainly executive/attention, language and verbal memory deficits. The frequency of cognitive impairment across the different ALS phenotypes ranges from 30% to 75%, with up to 45% fulfilling the criteria of FTD. Significant genetic, clinical, and pathological heterogeneity reflects deficits in various cognitive domains. Modern neuroimaging studies revealed frontotemporal degeneration and widespread involvement of limbic and white matter systems, with hypometabolism of the relevant areas. Morphological substrates are frontotemporal and hippocampal atrophy with synaptic loss, associated with TDP-43 and other co-pathologies, including tau deposition. Widespread functional disruptions of motor and extramotor networks, as well as of frontoparietal, frontostriatal and other connectivities, are markers for cognitive deficits in ALS. Cognitive reserve may moderate the effect of brain damage but is not protective against cognitive decline. The natural history of cognitive dysfunction in ALS and its relationship to FTD are not fully understood, although there is an overlap between the ALS variants and ALS-related frontotemporal syndromes, suggesting a differential vulnerability of motor and non-motor networks. An assessment of risks or the early detection of brain connectivity signatures before structural changes may be helpful in investigating the pathophysiological mechanisms of cognitive impairment in ALS, which might even serve as novel targets for effective disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
42
|
Elmers J, Colzato LS, Akgün K, Ziemssen T, Beste C. Neurofilaments - Small proteins of physiological significance and predictive power for future neurodegeneration and cognitive decline across the life span. Ageing Res Rev 2023; 90:102037. [PMID: 37619618 DOI: 10.1016/j.arr.2023.102037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Neurofilaments (NFs) are not only important for axonal integrity and nerve conduction in large myelinated axons but they are also thought to be crucial for receptor and synaptic functioning. Therefore, NFs may play a critical role in cognitive functions, as cognitive processes are known to depend on synaptic integrity and are modulated by dopaminergic signaling. Here, we present a theory-driven interdisciplinary approach that NFs may link inflammation, neurodegeneration, and cognitive functions. We base our hypothesis on a wealth of evidence suggesting a causal link between inflammation and neurodegeneration and between these two and cognitive decline (see Fig. 1), also taking dopaminergic signaling into account. We conclude that NFs may not only serve as biomarkers for inflammatory, neurodegenerative, and cognitive processes but also represent a potential mechanical hinge between them, moreover, they may even have predictive power regarding future cognitive decline. In addition, we advocate the use of both NFs and MRI parameters, as their synthesis offers the opportunity to individualize medical treatment by providing a comprehensive view of underlying disease activity in neurological diseases. Since our society will become significantly older in the upcoming years and decades, maintaining cognitive functions and healthy aging will play an important role. Thanks to technological advances in recent decades, NFs could serve as a rapid, noninvasive, and relatively inexpensive early warning system to identify individuals at increased risk for cognitive decline and could facilitate the management of cognitive dysfunctions across the lifespan.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
43
|
Vila-Castelar C, Chen Y, Langella S, Lopera F, Zetterberg H, Hansson O, Dage JL, Janelidzde S, Su Y, Chen K, McDowell CP, Martinez JE, Ramirez-Gomez L, Garcia G, Aguillon D, Baena A, Giraldo-Chica M, Protas HD, Ghisays V, Rios-Romenets S, Tariot PN, Blennow K, Reiman EM, Quiroz YT. Sex differences in blood biomarkers and cognitive performance in individuals with autosomal dominant Alzheimer's disease. Alzheimers Dement 2023; 19:4127-4138. [PMID: 37279390 PMCID: PMC10527358 DOI: 10.1002/alz.13314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Plasma tau phosphorylated at threonine 217 (P-tau217) and neurofilament light (NfL) have emerged as markers of Alzheimer's disease (AD) pathology. Few studies have examined the role of sex in plasma biomarkers in sporadic AD, yielding mixed findings, and none in autosomal dominant AD. METHODS We examined the effects of sex and age on plasma P-tau217 and NfL, and their association with cognitive performance in a cross-sectional study of 621 Presenilin-1 E280A mutation carriers (PSEN1) and non-carriers. RESULTS As plasma P-tau217 levels increase, cognitively unimpaired female carriers showed better cognitive performance than cognitively unimpaired male carriers. Yet, as disease progresses, female carriers had a greater plasma NfL increase than male carriers. There were no sex differences in the association between age and plasma biomarkers among non-carriers. DISCUSSION Our findings suggest that, among PSEN1 mutation carriers, females had a greater rate of neurodegeneration than males, yet it did not predict cognitive performance. HIGHLIGHTS We examined sex differences in plasma P-tau217 and NfL in Presenilin-1 E280A (PSEN1) mutation carriers and non-carriers. Female carriers had a greater plasma NfL increase, but not P-tau217, than male carriers. As plasma P-tau217 levels increase, cognitively unimpaired female carriers showed better cognitive performance than cognitively unimpaired male carriers. The interaction effect of sex by plasma NfL levels did not predict cognition among carriers.
Collapse
Affiliation(s)
- Clara Vila-Castelar
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Yinghua Chen
- Banner Alzheimer’s Institute, Phoenix, AZ, 85718, USA
| | - Stephanie Langella
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, 1226, Colombia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, 405 30, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 405 30, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Oskar Hansson
- Memory Clinic, Skåne University Hospital, Malmö, 214 28, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 205 02, Sweden
| | - Jeffrey L. Dage
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Yi Su
- Banner Alzheimer’s Institute, Phoenix, AZ, 85718, USA
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, AZ, 85718, USA
| | - Celina Pluim McDowell
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, 02215, MA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA
| | - Jairo E. Martinez
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, 02215, MA
| | | | - Gloria Garcia
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, 1226, Colombia
| | - David Aguillon
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, 1226, Colombia
| | - Ana Baena
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, 1226, Colombia
| | | | | | | | - Silvia Rios-Romenets
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, 1226, Colombia
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, 405 30, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 405 30, Sweden
| | | | - Yakeel T. Quiroz
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, 1226, Colombia
| |
Collapse
|
44
|
Li Y, Li F, Liu X, Zu J, Zhang W, Zhou S, Zhu J, Zhang T, Cui G, Xu C. Association between serum neurofilament light chain levels and sleep disorders in patients with Parkinson's disease. Neurosci Lett 2023; 812:137394. [PMID: 37437874 DOI: 10.1016/j.neulet.2023.137394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVES This study aimed to investigate the levels of serum neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP) in patients with Parkinson's disease (PD) and PD patients with sleep disorders (PD-SD), as well as the relationship between these proteins and sleep disorders in PD patients. METHODS A total of 96 PD patients and 38 healthy controls (HC) were included in this study, of which 70 PD patients experienced sleep disorders. Both motor symptoms and sleep conditions were assessed in all PD patients. The ultrasensitive single molecule array (SIMOA) technique was used to quantify NFL and GFAP in the serum. All data were statistically analyzed using SPSS 23.0. RESULTS Serum NFL and GFAP levels were significantly higher in PD patients than in HC. Similarly, PD-SD patients exhibited higher levels of these two proteins than PD patients without sleep disorders (PD-NSD). In addition, both serum GFAP and NFL were significantly associated with sleep-related scales in PD patients. After covariate-adjusted binary logistic regression analysis, NFL remained statistically significant in PD patients with or without sleep disorders, unlike GFAP. CONCLUSIONS Our findings substantiate that serum NFL and GFAP levels are elevated in PD and PD-SD, suggesting neurological axon damage in PD patients, which may be more severe in PD-SD than in PD-NSD. These findings may affect disease diagnosis and provide the foothold for future studies on the underlying mechanisms.
Collapse
Affiliation(s)
- Yangdanyu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fujia Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xu Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Su Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jienan Zhu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tao Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
45
|
Lin JB, Pitts KM, El Helwe H, Neeson C, Hall NE, Falah H, Schultz SA, Wang SL, Lo K, Song C, Margeta MA, Solá-Del Valle D. Neurofilament Light Chain in Aqueous Humor as a Marker of Neurodegeneration in Glaucoma. Clin Ophthalmol 2023; 17:2209-2217. [PMID: 37551375 PMCID: PMC10404437 DOI: 10.2147/opth.s417664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023] Open
Abstract
Purpose Neurofilament light chain (NfL) is a neuronal cytoskeletal protein that has been identified as a marker of neurodegeneration in diseases of the central nervous system. In this study, we investigated whether NfL in the aqueous humor (AH) can serve as a marker of neurodegeneration in glaucoma in a racially diverse North American population. Design Single-center, case-control study. Participants We enrolled patients with various types and stages of glaucoma undergoing planned ophthalmic surgery as part of their routine care and compared them with patients without glaucoma undergoing phacoemulsification for age-related cataract. Methods We collected AH from 39 glaucoma patients and 10 patients without glaucoma. AH NfL was quantified using the Single-Molecule Array (Simoa)® NF-light assay (Quanterix). Demographic information, such as age, body mass index, sex, and self-reported race, as well as clinical information, such as pre-operative intraocular pressure (IOP), maximum IOP, and number of pre-operative glaucoma medications, was obtained by reviewing the medical record. Main Outcome Measures Levels of AH NfL. Results In a model controlling for age and body mass index (BMI), NfL was significantly elevated in AH from glaucoma patients (mean: 429 pg/mL; standard deviation [SD]: 1136 pg/mL) compared to AH from patients without glaucoma (mean: 3.1 pg/mL; SD: 1.9 pg/mg): P = 0.002. Higher AH NfL was associated with higher maximum IOP (R = 0.44, P = 0.005), higher pre-operative IOP (R = 0.46, P = 0.003), and more pre-operative glaucoma medications (Rs = 0.61, P < 0.001). There was no association between AH NfL and Humphrey visual field mean deviation (R = -0.20, P = 0.220), retinal nerve fiber layer thickness as measured with optical coherence tomography (R = 0.07, P = 0.694), or glaucoma stage (Rs = 0.015, P = 0.935). Conclusion Our findings suggest that AH NfL may have clinical utility as a marker of glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Jonathan B Lin
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Kristen M Pitts
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Hani El Helwe
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Cameron Neeson
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Nathan E Hall
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Henisk Falah
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Stephanie A Schultz
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Silas L Wang
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Kristine Lo
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Christian Song
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Milica A Margeta
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - David Solá-Del Valle
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
46
|
Wan L, Zhu S, Chen Z, Qiu R, Tang B, Jiang H. Multidimensional biomarkers for multiple system atrophy: an update and future directions. Transl Neurodegener 2023; 12:38. [PMID: 37501056 PMCID: PMC10375766 DOI: 10.1186/s40035-023-00370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal progressive neurodegenerative disease. Biomarkers are urgently required for MSA to improve the diagnostic and prognostic accuracy in clinic and facilitate the development and monitoring of disease-modifying therapies. In recent years, significant research efforts have been made in exploring multidimensional biomarkers for MSA. However, currently few biomarkers are available in clinic. In this review, we systematically summarize the latest advances in multidimensional biomarkers for MSA, including biomarkers in fluids, tissues and gut microbiota as well as imaging biomarkers. Future directions for exploration of novel biomarkers and promotion of implementation in clinic are also discussed.
Collapse
Affiliation(s)
- Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, 410008, China
| | - Sudan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, 410008, China.
| |
Collapse
|
47
|
Pyka-Fościak G, Fościak M, Pabijan J, Lis GJ, Litwin JA, Lekka M. Changes in stiffness of the optic nerve and involvement of neurofilament light chains in the course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Biochim Biophys Acta Mol Basis Dis 2023:166796. [PMID: 37400000 DOI: 10.1016/j.bbadis.2023.166796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023]
Abstract
Multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), are often accompanied by optic neuritis associated with neurofilament disruption. In this study, the stiffness of the optic nerve was investigated by atomic force microscopy (AFM) in mice with induced EAE in the successive phases of the disease: onset, peak, and chronic. AFM results were compared with the intensity of the main pathological processes in the optic nerve: inflammation, demyelination, and axonal loss, as well as with the density of astrocytes, assessed by quantitative histology and immunohistochemistry. Optic nerve tissue and serum levels of neurofilament light chain protein (NEFL) were also examined by immunostaining and ELISA, respectively. The stiffness of the optic nerve in EAE mice was lower than that in control and naïve animals. It increased in the onset and peak phases and sharply decreased in the chronic phase. Serum NEFL level showed similar dynamics, while tissue NEFL level decreased in the onset and peak phases, indicating a leak of NEFL from the optic nerve to body fluids. Inflammation and demyelination gradually increased to reach the maximum in the peak phase of EAE, and inflammation slightly declined in the chronic phase, while demyelination did not. The axonal loss also gradually increased and had the highest level in the chronic phase. Among these processes, demyelination and especially axonal loss most effectively decrease the stiffness of the optic nerve. NEFL level in serum can be regarded as an early indicator of EAE, as it rapidly grows in the onset phase of the disease.
Collapse
Affiliation(s)
- G Pyka-Fościak
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland.
| | - M Fościak
- Medical Department, Novartis Poland Sp. z o.o., Marynarska 15, 02-674 Warszawa, Poland
| | - J Pabijan
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - G J Lis
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland
| | - J A Litwin
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland
| | - M Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
48
|
Buhmann C, Magnus T, Choe CU. Blood neurofilament light chain in Parkinson's disease. J Neural Transm (Vienna) 2023; 130:755-762. [PMID: 37067597 PMCID: PMC10199845 DOI: 10.1007/s00702-023-02632-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/01/2023] [Indexed: 04/18/2023]
Abstract
Blood neurofilament light chain (NfL) is an easily accessible, highly sensitive and reliable biomarker for neuroaxonal damage. Currently, its role in Parkinson's disease (PD) remains unclear. Here, we demonstrate that blood NfL can distinguish idiopathic PD from atypical parkinsonian syndromes (APS) with high sensitivity and specificity. In cross-sectional studies, some found significant correlations between blood NfL with motor and cognitive function, whereas others did not. In contrast, prospective studies reported very consistent associations between baseline blood NfL with motor progression and cognitive worsening. Amongst PD subtypes, especially postural instability and gait disorder (PIGD) subtype, symptoms and scores are reliably linked with blood NfL. Different non-motor PD comorbidities have also been associated with high blood NfL levels suggesting that the neuroaxonal damage of the autonomic nervous system as well as serotonergic, cholinergic and noradrenergic neurons is quantifiable. Numerous absolute NfL cutoff levels have been suggested in different cohort studies; however, validation across cohorts remains weak. However, age-adjusted percentiles and intra-individual blood NfL changes might represent more valid and consistent parameters compared with absolute NfL concentrations. In summary, blood NfL has the potential as biomarker in PD patients to be used in clinical practice for prediction of disease severity and especially progression.
Collapse
Affiliation(s)
- Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Neurology, Klinikum Itzehoe, Robert-Koch-Straße 2, 25524, Itzehoe, Germany.
| |
Collapse
|
49
|
Li LM, Heslegrave A, Soreq E, Nattino G, Rosnati M, Garbero E, Zimmerman KA, Graham NSN, Moro F, Novelli D, Gradisek P, Magnoni S, Glocker B, Zetterberg H, Bertolini G, Sharp DJ. Investigating the characteristics and correlates of systemic inflammation after traumatic brain injury: the TBI-BraINFLAMM study. BMJ Open 2023; 13:e069594. [PMID: 37221026 DOI: 10.1136/bmjopen-2022-069594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION A significant environmental risk factor for neurodegenerative disease is traumatic brain injury (TBI). However, it is not clear how TBI results in ongoing chronic neurodegeneration. Animal studies show that systemic inflammation is signalled to the brain. This can result in sustained and aggressive microglial activation, which in turn is associated with widespread neurodegeneration. We aim to evaluate systemic inflammation as a mediator of ongoing neurodegeneration after TBI. METHODS AND ANALYSIS TBI-braINFLAMM will combine data already collected from two large prospective TBI studies. The CREACTIVE study, a broad consortium which enrolled >8000 patients with TBI to have CT scans and blood samples in the hyperacute period, has data available from 854 patients. The BIO-AX-TBI study recruited 311 patients to have acute CT scans, longitudinal blood samples and longitudinal MRI brain scans. The BIO-AX-TBI study also has data from 102 healthy and 24 non-TBI trauma controls, comprising blood samples (both control groups) and MRI scans (healthy controls only). All blood samples from BIO-AX-TBI and CREACTIVE have already been tested for neuronal injury markers (GFAP, tau and NfL), and CREACTIVE blood samples have been tested for inflammatory cytokines. We will additionally test inflammatory cytokine levels from the already collected longitudinal blood samples in the BIO-AX-TBI study, as well as matched microdialysate and blood samples taken during the acute period from a subgroup of patients with TBI (n=18).We will use this unique dataset to characterise post-TBI systemic inflammation, and its relationships with injury severity and ongoing neurodegeneration. ETHICS AND DISSEMINATION Ethical approval for this study has been granted by the London-Camberwell St Giles Research Ethics Committee (17/LO/2066). Results will be submitted for publication in peer-review journals, presented at conferences and inform the design of larger observational and experimental medicine studies assessing the role and management of post-TBI systemic inflammation.
Collapse
Affiliation(s)
- Lucia M Li
- Brain Sciences, Imperial College, London, UK
- UKDRI Centre for Care Research & Technology, London, UK
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UKDRI at UCL, London, UK
| | - Eyal Soreq
- Brain Sciences, Imperial College, London, UK
- UKDRI Centre for Care Research & Technology, London, UK
| | - Giovanni Nattino
- IRCCS-"Mario Negri" Institute for Pharmacological Research, Ranica, Bergamo, Italy
| | - Margherita Rosnati
- Brain Sciences, Imperial College, London, UK
- BioMedIA Group, Department of Computing, Imperial College, London, UK
| | - Elena Garbero
- Istituto Di Ricerche Farmacologiche Mario Negri, Ranica, Italy
| | - Karl A Zimmerman
- Brain Sciences, Imperial College, London, UK
- DRI Centre for Care Research and Technology, London, UK
| | - Neil S N Graham
- Brain Sciences, Imperial College, London, UK
- UKDRI Centre for Care Research & Technology, London, UK
| | - Federico Moro
- Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Deborah Novelli
- Cardiovascular Medicine, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Primoz Gradisek
- Clinical Dpt of Anaesthesiology and Intensive Therapy, University Medical Center, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Sandra Magnoni
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, Trento, Italy
| | - Ben Glocker
- BioMedIA Group, Department of Computing, Imperial College, London, UK
| | - Henrik Zetterberg
- UKDRI at UCL, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Guido Bertolini
- Public Health, Laboratory of Clinical Epidemiology, IRCCS-"Mario Negri" Institute for Pharmacological Research, Ranica, Italy
| | - David J Sharp
- UKDRI Centre for Care Research & Technology, London, UK
- Division of Brain Sciences, Imperial College, London, UK
| |
Collapse
|
50
|
Al-Ani A, Chen JJ, Costello F. Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD): current understanding and challenges. J Neurol 2023:10.1007/s00415-023-11737-8. [PMID: 37154894 PMCID: PMC10165591 DOI: 10.1007/s00415-023-11737-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
New diagnostic criteria for myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) have recently been proposed, distinguishing this syndrome from other inflammatory diseases of the central nervous system. Seropositivity status for MOG-IgG autoantibodies is important for diagnosing MOGAD, but only in the context of robust clinical characterization and cautious interpretation of neuroimaging. Over the last several years, access to cell-based assay (CBA) techniques has improved diagnostic accuracy, yet the positive predictive value of serum MOG-IgG values varies with the prevalence of MOGAD in any given patient population. For this reason, possible alternative diagnoses need to be considered, and low MOG-IgG titers need to be carefully weighted. In this review, cardinal clinical features of MOGAD are discussed. Key challenges to the current understanding of MOGAD are also highlighted, including uncertainty regarding the specificity and pathogenicity of MOG autoantibodies, the need to identify immunopathologic targets for future therapies, the quest to validate biomarkers that facilitate diagnosis and detect disease activity, and the importance of deciphering which patients with MOGAD require long-term immunotherapy.
Collapse
Affiliation(s)
- Abdullah Al-Ani
- Section of Ophthalmology, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - John J Chen
- Department of Ophthalmology and Neurology, Mayo Clinic, Rochester, MN, USA
| | - Fiona Costello
- Section of Ophthalmology, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|