1
|
Li H, Li F, Chen Z, Wu E, Dai X, Li D, An H, Zeng S, Wang C, Yang L, Long C. Glutamatergic CYLD deletion leads to aberrant excitatory activity in the basolateral amygdala: association with enhanced cued fear expression. Neural Regen Res 2025; 20:3259-3272. [PMID: 39715097 DOI: 10.4103/nrr.nrr-d-24-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 12/25/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00029/figure1/v/2024-12-20T164640Z/r/image-tiff Neuronal activity, synaptic transmission, and molecular changes in the basolateral amygdala play critical roles in fear memory. Cylindromatosis (CYLD) is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway. CYLD is well studied in non-neuronal cells, yet under-investigated in the brain, where it is highly expressed. Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses, neuroinflammation, fear memory, and anxiety- and autism-like behaviors. However, the precise role of CYLD in glutamatergic neurons is largely unknown. Here, we first proposed involvement of CYLD in cued fear expression. We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons. Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice. Further, loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation, impaired excitatory synaptic transmission, and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice. Altogether, our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal, synaptic, and microglial activation. This may contribute, at least in part, to cued fear expression.
Collapse
Affiliation(s)
- Huidong Li
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Faqin Li
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhaoyi Chen
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Erwen Wu
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xiaoxi Dai
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Danni Li
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Haojie An
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Shiyi Zeng
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Chunyan Wang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Maher C, Tortolero L, Jun S, Cummins DD, Saad A, Young J, Nunez Martinez L, Schulman Z, Marcuse L, Waters A, Mayberg HS, Davidson RJ, Panov F, Saez I. Intracranial substrates of meditation-induced neuromodulation in the amygdala and hippocampus. Proc Natl Acad Sci U S A 2025; 122:e2409423122. [PMID: 39903119 DOI: 10.1073/pnas.2409423122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/02/2024] [Indexed: 02/06/2025] Open
Abstract
Meditation is an accessible mental practice associated with emotional regulation and well-being. Loving-kindness meditation (LKM), a specific subtype of meditative practice, involves focusing one's attention on thoughts of well-being for oneself and others. Meditation has been proven to be beneficial in a variety of settings, including therapeutic applications, but the neural activity underlying meditative practices and their positive effects are not well understood. It has been difficult to understand the contribution of deep limbic structures given the difficulty of studying neural activity directly in the human brain. Here, we leverage a unique patient population, epilepsy patients chronically implanted with responsive neurostimulation devices that allow chronic, invasive electrophysiology recording to investigate the physiological correlates of LKM in the amygdala and hippocampus of novice meditators. We find that LKM-associated changes in physiological activity were specific to periodic, but not aperiodic, features of neural activity. LKM was associated with an increase in γ (30 to 55 Hz) power and an alternation in the duration of β (13 to 30 Hz) and γ oscillatory bursts in both the amygdala and hippocampus, two regions associated with mood disorders. These findings reveal the nature of LKM-induced modulation of limbic activity in first-time meditators.
Collapse
Affiliation(s)
- Christina Maher
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lea Tortolero
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Soyeon Jun
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Daniel D Cummins
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adam Saad
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - James Young
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lizbeth Nunez Martinez
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Zachary Schulman
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lara Marcuse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Allison Waters
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Helen S Mayberg
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Richard J Davidson
- Departments of Psychology and Psychiatry, University of Wisconsin-Madison, Madison, WI 53706
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ignacio Saez
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
3
|
Zheng J, Sun Y, Wang F, Xie Z, Wang Q, Peng JY, Ni J. Dynamic Routing of Theta-Frequency Synchrony in the Amygdalo-Hippocampal-Entorhinal Circuit Coordinates Retrieval of Competing Memories. Neurosci Bull 2025:10.1007/s12264-025-01356-w. [PMID: 39891844 DOI: 10.1007/s12264-025-01356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/25/2024] [Indexed: 02/03/2025] Open
Affiliation(s)
- Jiahua Zheng
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yiqi Sun
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Fuhai Wang
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhongyu Xie
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qianyun Wang
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jian-Ya Peng
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jianguang Ni
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Saito Y, Osako Y, Odagawa M, Oisi Y, Matsubara C, Kato S, Kobayashi K, Morita M, Johansen JP, Murayama M. Amygdalo-cortical dialogue underlies memory enhancement by emotional association. Neuron 2025:S0896-6273(25)00005-4. [PMID: 39884277 DOI: 10.1016/j.neuron.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/15/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Emotional arousal plays a critical role in determining what is remembered from experiences. It is hypothesized that activation of the amygdala by emotional stimuli enhances memory consolidation in its downstream brain regions. However, the physiological basis of the inter-regional interaction and its functions remain unclear. Here, by adding emotional information to a perceptual recognition task that relied on a frontal-sensory cortical circuit in mice, we demonstrated that the amygdala not only associates emotional information with perceptual information but also enhances perceptual memory retention via amygdalo-frontal cortical projections. Furthermore, emotional association increased reactivation of coordinated activity across the amygdalo-cortical circuit during non-rapid eye movement (NREM) sleep but not during rapid eye movement (REM) sleep. Notably, this increased reactivation was associated with amygdala high-frequency oscillations. Silencing of amygdalo-cortical inputs during NREM sleep selectively disrupted perceptual memory enhancement. Our findings indicate that inter-regional reactivation triggered by the amygdala during NREM sleep underlies emotion-induced perceptual memory enhancement.
Collapse
Affiliation(s)
- Yoshihito Saito
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; RIKEN CBS-Kao Collaboration Center (BKCC), Wako-shi 351-0198, Saitama, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe-shi 657-8501, Hyogo, Japan
| | - Yuma Osako
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maya Odagawa
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; RIKEN CBS-Kao Collaboration Center (BKCC), Wako-shi 351-0198, Saitama, Japan
| | - Yasuhiro Oisi
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; RIKEN CBS-Kao Collaboration Center (BKCC), Wako-shi 351-0198, Saitama, Japan
| | - Chie Matsubara
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; RIKEN CBS-Kao Collaboration Center (BKCC), Wako-shi 351-0198, Saitama, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima-shi 960-1295, Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima-shi 960-1295, Fukushima, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe University, Kobe-shi 657-8501, Hyogo, Japan
| | - Joshua P Johansen
- Laboratory for the Neural Circuitry of Learning and Memory, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan
| | - Masanori Murayama
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; RIKEN CBS-Kao Collaboration Center (BKCC), Wako-shi 351-0198, Saitama, Japan.
| |
Collapse
|
5
|
Peng Y, Zou Y, Asakawa T. The glamor of and insights regarding hydrotherapy, from simple immersion to advanced computer-assisted exercises: A narrative review. Biosci Trends 2025:2024.01356. [PMID: 39756867 DOI: 10.5582/bst.2024.01356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Water-based therapy has been gaining attention in recent years and is being widely used in clinical settings. Hydrotherapy is the most important area of water-based therapy, and it has distinct advantages and characteristics compared to conventional land-based exercises. Several new techniques and pieces of equipment are currently emerging with advances in computer technologies. However, comprehensive reviews of hydrotherapy are insufficient. Hence, this study reviewed the status quo, mechanisms, adverse events and contraindications, and future prospects of the use of hydrotherapy. This study aims to comprehensively review the latest information regarding the application of hydrotherapy to musculoskeletal diseases, neurological diseases, and COVID-19. We have attempted to provide a "take-home message" regarding the clinical applications and mechanisms of hydrotherapy based on the latest evidence available.
Collapse
Affiliation(s)
- Yaohan Peng
- Key Laboratory of Plateau Hypoxia Environment and Life and Health, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Yucong Zou
- Department of Rehabilitation, Zhuhai Hospital of Integrated Traditional Chinese & Western, Zhuhai, Guandong, China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Zhao H, Li H, Meng L, Du P, Mo X, Gong M, Chen J, Liao Y. Disrupting heroin-associated memory reconsolidation through actin polymerization inhibition in the nucleus accumbens core. Int J Neuropsychopharmacol 2024; 28:pyae065. [PMID: 39716383 DOI: 10.1093/ijnp/pyae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Understanding drug addiction as a disorder of maladaptive learning, where drug-associated or environmental cues trigger drug cravings and seeking, is crucial for developing effective treatments. Actin polymerization, a biochemical process, plays a crucial role in drug-related memory formation, particularly evident in conditioned place preference paradigms involving drugs like morphine and methamphetamine. However, the role of actin polymerization in the reconsolidation of heroin-associated memories remains understudied. METHODS This study employed a rodent model of self-administered heroin to investigate the involvement of actin polymerization in the reconsolidation of heroin-associated memories. Rats underwent ten days of intravenous heroin self-administration paired with conditioned cues. Subsequently, a 10-day extinction phase aimed to reduce heroin-seeking behaviors. Following this, rats participated in a 15-minute retrieval trial with or without cues. Immediately post-retrieval, rats received bilateral injections of the actin polymerization inhibitor Latrunculin A (Lat A) into the nucleus accumbens core (NACc), a critical brain region for memory reconsolidation. RESULTS Immediate administration of Lat A into the NACc post-retrieval significantly reduced cue-induced and heroin-primed reinstatement of heroin-seeking behavior for at least 28 days. However, administering Lat A 6-hour post-retrieval or without a retrieval trial, as well as administering Jasplakionlide prior to memory reactivation did not affect heroin-seeking behaviors. CONCLUSIONS Inhibiting actin polymerization during the reconsolidation window disrupts heroin-associated memory reconsolidation, leading to decreased heroin-seeking behavior and prevention of relapse. These effects are contingent upon the presence of a retrieval trial and exhibit temporal specificity, shedding light on addiction mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Haiting Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyu Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Meng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peng Du
- Department of Neurosurgery, The Second Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Xin Mo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengqi Gong
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaxin Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiwei Liao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Makino Y, Wang Y, McHugh TJ. Multi-regional control of amygdalar dynamics reliably reflects fear memory age. Nat Commun 2024; 15:10283. [PMID: 39653694 PMCID: PMC11628566 DOI: 10.1038/s41467-024-54273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
The basolateral amygdala (BLA) is crucial for the encoding and expression of fear memory, yet it remains unexplored how neural activity in this region is dynamically influenced by distributed circuits across the brain to facilitate expression of fear memory of different ages. Using longitudinal multisite electrophysiological recordings in male mice, we find that the recall of older contextual fear memory is accompanied by weaker, yet more rhythmic, BLA gamma activity which is distally entrained by theta oscillations in both the hippocampal CA1 and the anterior cingulate cortex. Computational modeling with Light Gradient Boosting Machine using extracted oscillatory features from these three regions, as well as with Transformer using raw local field potentials, accurately classified remote from recent memory recall primarily based on BLA gamma and CA1 theta. These results demonstrate in a non-biased manner that multi-regional control of BLA activity serves as reliable neural signatures for memory age-dependent recall mechanisms.
Collapse
Affiliation(s)
- Yuichi Makino
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
- International Research Center for Neurointelligence, UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Yi Wang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand.
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
| |
Collapse
|
8
|
Bratsch-Prince JX, Jones GC, Warren JW, Mott DD. Synaptic acetylcholine induces sharp wave ripples in the basolateral amygdala through nicotinic receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626291. [PMID: 39677685 PMCID: PMC11642747 DOI: 10.1101/2024.12.01.626291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
While the basolateral amygdala (BLA) is critical in the consolidation of emotional memories, mechanisms underlying memory consolidation in this region are not well understood. In the hippocampus, memory consolidation depends upon network signatures termed sharp wave ripples (SWR). These SWRs largely occur during states of awake rest or slow wave sleep and are inversely correlated with cholinergic tone. While high frequency cholinergic stimulation can inhibit SWRs through muscarinic acetylcholine receptors, it is unclear how nicotinic acetylcholine receptors or different cholinergic firing patterns may influence SWR generation. SWRs are also present in BLA in vivo. Interestingly, the BLA receives extremely dense cholinergic inputs, yet the relationship between acetylcholine (ACh) and BLA SWRs is unexplored. Here, using brain slice electrophysiology in male and female mice, we show that brief stimulation of ACh inputs to BLA reliably induces SWRs that resemble those that occur in the BLA in vivo. Repeated ACh-SWRs are induced with single pulse stimulation at low, but not higher frequencies. ACh-SWRs are driven by nicotinic receptors which recruit different classes of local interneurons and trigger glutamate release from external inputs. In total, our findings establish a previously undefined mechanism for SWR induction in the brain. They also challenge the previous notion of neuromodulators as purely modulatory agents gating these events but instead reveal these systems can directly instruct SWR induction with temporal precision. Further, these results intriguingly suggest a new role for the nicotinic system in emotional memory consolidation.
Collapse
Affiliation(s)
| | - Grace C. Jones
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - James W. Warren
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - David D. Mott
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| |
Collapse
|
9
|
Cattani A, Arnold DB, McCarthy M, Kopell N. Basolateral amygdala oscillations enable fear learning in a biophysical model. eLife 2024; 12:RP89519. [PMID: 39590510 PMCID: PMC11594530 DOI: 10.7554/elife.89519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3-6 Hz), high theta (~6-12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.
Collapse
Affiliation(s)
- Anna Cattani
- Department of Mathematics and Statistics, Boston UniversityBostonUnited States
| | - Don B Arnold
- Department of Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Michelle McCarthy
- Department of Mathematics and Statistics, Boston UniversityBostonUnited States
| | - Nancy Kopell
- Department of Mathematics and Statistics, Boston UniversityBostonUnited States
| |
Collapse
|
10
|
Manssuer L, Ding Q, Feng Y, Yang R, Liu W, Sun B, Zhan S, Voon V. Reward recalibrates rule representations in human amygdala and hippocampus intracranial recordings. Nat Commun 2024; 15:9518. [PMID: 39496589 PMCID: PMC11535001 DOI: 10.1038/s41467-024-53521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024] Open
Abstract
Adaptive behavior requires the ability to shift responding within (intra-dimensional) or between (extra-dimensional) stimulus dimensions when reward contingencies change. Studies of shifting in humans have focused mainly on the prefrontal cortex and/ or have been restricted to indirect measures of neural activity such as fMRI and lesions. Here, we demonstrate the importance of the amygdala and hippocampus by recording local field potentials directly from these regions intracranially in human epilepsy patients. Reward signals were coded in the high frequency gamma activity (HFG; 60-250 Hz) of both regions and synchronised via low frequency (3-5 Hz) phase-locking only after a shift when patients did not already know the rule and it signalled to stop shifting ("Win-Stay"). In contrast, HFG punishment signals were only seen in the amygdala when the rule then changed and it signalled to start shifting ("Lose-Shift"). During decision-making, hippocampal HFG was more inhibited on non-shift relative to shift trials, suggesting a role in preventing interference in rule representation and amygdala HFG was sensitive to stimulus novelty. The findings expand our understanding of human amygdala-hippocampal function and shifting processes, the disruption of which could contribute to shifting deficits in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Luis Manssuer
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom.
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| | - Qiong Ding
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
| | - Yashu Feng
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Ruoqi Yang
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wei Liu
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shikun Zhan
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Valerie Voon
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom.
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Zhang LL, Cheng P, Chu YQ, Zhou ZM, Hua R, Zhang YM. The microglial innate immune receptor TREM2 participates in fear memory formation through excessive prelimbic cortical synaptic pruning. Front Immunol 2024; 15:1412699. [PMID: 39544929 PMCID: PMC11560470 DOI: 10.3389/fimmu.2024.1412699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Fear memory formation has been implicated in fear- and stress-related psychiatric disorders, including post-traumatic stress disorder (PTSD) and phobias. Synapse deficiency and microglial activation are common among patients with PTSD, and induced in animal models of fear conditioning. Increasing studies now focus on explaining the specific mechanisms between microglia and synapse deficiency. Though newly-identified microglia regulator triggering receptor expressed on myeloid cells 2 (TREM2) plays a role in microglial phagocytic activity, its role in fear-formation remains unknown. Methods We successfully constructed a fear- formation model by foot-shock. Four days after foot-shock, microglial capacity of synaptic pruning was investigated via western blotting, immunofluorescence and Golgi-Cox staining. Prelimbic chemical deletion or microglia inhibition was performed to detect the role of microglia in synaptic loss and neuron activity. Finally, Trem2 knockout mice or wild-type mice with Trem2 siRNA injection were exposed to foot-shock to identify the involvement of TREM2 in fear memory formation. Results The results herein indicate that the foot-shock protocol in male mice resulted in a fear formation model. Mechanistically, fear conditioning enhanced the microglial capacity for engulfing synapse materials, and led to glutamatergic neuron activation in the prelimbic cortex. Prelimbic chemical deletion or microglia inhibition improved fear memory formation. Further investigation demonstrated that TREM2 regulates microglial phagocytosis, enhancing synaptic pruning. Trem2 knockout mice showed remarkable reductions in prelimbic synaptic pruning and reduced neuron activation, with decreased fear memory formation. Discussion Our cumulative results suggest that prelimbic TREM2-mediated excessive microglial synaptic pruning is involved in the fear memory formation process, leading to development of abnormal stress-related behavior.
Collapse
Affiliation(s)
- Le-le Zhang
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Peng Cheng
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yuan-qing Chu
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Zi-ming Zhou
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Rong Hua
- Department of Emergency, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yong-mei Zhang
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
12
|
Liu J, Younk R, M Drahos L, S Nagrale S, Yadav S, S Widge A, Shoaran M. Neural decoding and feature selection methods for closed-loop control of avoidance behavior. J Neural Eng 2024; 21:056041. [PMID: 39419091 PMCID: PMC11523571 DOI: 10.1088/1741-2552/ad8839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Objective.Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors.Approach.We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance.Main results.Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80-150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low training/inference time and memory usage, requiring<310 ms for training,<0.051 ms for inference, and 16.6 kB of memory, using a single core of AMD Ryzen Threadripper PRO 5995WX CPU.Significance.Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation.
Collapse
Affiliation(s)
- Jinhan Liu
- Institute of Electrical and Micro Engineering, EPFL, Lausanne, Switzerland
- Neuro-X Institute, EPFL, Geneva, Switzerland
| | - Rebecca Younk
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Lauren M Drahos
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Sumedh S Nagrale
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Shreya Yadav
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Alik S Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Mahsa Shoaran
- Institute of Electrical and Micro Engineering, EPFL, Lausanne, Switzerland
- Neuro-X Institute, EPFL, Geneva, Switzerland
| |
Collapse
|
13
|
Antonoudiou P, Teboul E, Amaya KA, Stone BT, Dorst KE, Maguire JL. Biased Information Routing Through the Basolateral Amygdala, Altered Valence Processing, and Impaired Affective States Associated With Psychiatric Illnesses. Biol Psychiatry 2024:S0006-3223(24)01652-4. [PMID: 39395471 DOI: 10.1016/j.biopsych.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Accumulating evidence supports a role for altered circuit function in impaired valence processing and altered affective states as a core feature of psychiatric illnesses. We review the circuit mechanisms underlying normal valence processing and highlight evidence supporting altered function of the basolateral amygdala, valence processing, and affective states across psychiatric illnesses. The mechanisms controlling network activity that governs valence processing are reviewed in the context of potential pathophysiological mechanisms mediating circuit dysfunction and impaired valence processing in psychiatric illnesses. Finally, we review emerging data demonstrating experience-dependent, biased information routing through the basolateral amygdala promoting negative valence processing and discuss the potential relevance to impaired affective states and psychiatric illnesses.
Collapse
Affiliation(s)
- Pantelis Antonoudiou
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Eric Teboul
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Kenneth A Amaya
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Bradly T Stone
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Kaitlyn E Dorst
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
14
|
Cattani A, Arnold DB, McCarthy M, Kopell N. Basolateral amygdala oscillations enable fear learning in a biophysical model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.28.538604. [PMID: 37163011 PMCID: PMC10168360 DOI: 10.1101/2023.04.28.538604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3-6 Hz), high theta (~6-12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.
Collapse
Affiliation(s)
- Anna Cattani
- Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, United States
| | - Don B Arnold
- Department of Biology, University of Southern California, Los Angeles, California, United States
| | - Michelle McCarthy
- Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, United States
| | - Nancy Kopell
- Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
15
|
Lin ZJ, Gu X, Gong WK, Wang M, Wu YJ, Wang Q, Wu XR, Zhao XY, Zhu MX, Wang LY, Liu Q, Yuan TF, Li WG, Xu TL. Stimulation of an entorhinal-hippocampal extinction circuit facilitates fear extinction in a post-traumatic stress disorder model. J Clin Invest 2024; 134:e181095. [PMID: 39316444 PMCID: PMC11563685 DOI: 10.1172/jci181095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
Effective psychotherapy of post-traumatic stress disorder (PTSD) remains challenging owing to the fragile nature of fear extinction, for which the ventral hippocampal CA1 (vCA1) region is considered as a central hub. However, neither the core pathway nor the cellular mechanisms involved in implementing extinction are known. Here, we unveil a direct pathway, where layer 2a fan cells in the lateral entorhinal cortex (LEC) target parvalbumin-expressing interneurons (PV-INs) in the vCA1 region to propel low-gamma-band synchronization of the LEC-vCA1 activity during extinction learning. Bidirectional manipulations of either hippocampal PV-INs or LEC fan cells sufficed for fear extinction. Gamma entrainment of vCA1 by deep brain stimulation (DBS) or noninvasive transcranial alternating current stimulation (tACS) of LEC persistently enhanced the PV-IN activity in vCA1, thereby promoting fear extinction. These results demonstrate that the LEC-vCA1 pathway forms a top-down motif to empower low-gamma-band oscillations that facilitate fear extinction. Finally, application of low-gamma DBS and tACS to a mouse model with persistent PTSD showed potent efficacy, suggesting that the dedicated LEC-vCA1 pathway can be stimulated for therapy to remove traumatic memory trace.
Collapse
Affiliation(s)
- Ze-Jie Lin
- Department of Anesthesiology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD)
- Department of Anatomy and Physiology
| | - Xue Gu
- Department of Anatomy and Physiology
- Department of Anesthesiology, Shanghai General Hospital, and
| | - Wan-Kun Gong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mo Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yan-Jiao Wu
- Department of Anesthesiology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD)
- Department of Anatomy and Physiology
| | - Qi Wang
- Department of Anesthesiology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD)
- Department of Anatomy and Physiology
| | - Xin-Rong Wu
- Department of Anesthesiology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD)
- Department of Anatomy and Physiology
| | - Xin-Yu Zhao
- Department of Anesthesiology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD)
- Department of Anatomy and Physiology
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lu-Yang Wang
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Quanying Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Guang Li
- Department of Anatomy and Physiology
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Ministry of Education–Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Le Xu
- Department of Anesthesiology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD)
- Department of Anatomy and Physiology
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| |
Collapse
|
16
|
Sanchez B, Kraszewski P, Lee S, Cope EC. From molecules to behavior: Implications for perineuronal net remodeling in learning and memory. J Neurochem 2024; 168:1854-1876. [PMID: 38158878 DOI: 10.1111/jnc.16036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice-like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience-driven PNN formation and maturation. PNNs provide an interface for synaptic contacts within the holes of the structure, generally promoting synaptic stabilization and restricting the formation of new synaptic connections in the adult brain. In this way, they impact both synaptic structure and function, ultimately influencing higher cognitive processes. PNNs are highly plastic structures, changing their composition and distribution throughout life and in response to various experiences and memory disorders, thus serving as a substrate for experience- and disease-dependent cognitive function. In this review, we delve into the proposed mechanisms by which PNNs shape plasticity and memory function, highlighting the potential impact of their structural components, overall architecture, and dynamic remodeling on functional outcomes in health and disease.
Collapse
Affiliation(s)
- Brenda Sanchez
- Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA
| | - Piotr Kraszewski
- Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA
| | - Sabrina Lee
- Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA
| | - Elise C Cope
- Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA
| |
Collapse
|
17
|
Pan DN, Hoid D, Wolf OT, Merz CJ, Li X. Conflict Dynamics of Post-Retrieval Extinction: A Comparative Analysis of Unconditional and Conditional Reminders Using Skin Conductance Responses and EEG. Brain Topogr 2024; 37:834-848. [PMID: 38635017 DOI: 10.1007/s10548-024-01051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
The post-retrieval extinction paradigm, rooted in reconsolidation theory, holds promise for enhancing extinction learning and addressing anxiety and trauma-related disorders. This study investigates the impact of two reminder types, mild US-reminder (US-R) and CS-reminder (CS-R), along with a no-reminder extinction, on fear recovery prevention in a categorical fear conditioning paradigm. Scalp EEG recordings during reminder and extinction processes were conducted in a three-day design. Results show that the US-R group exhibits a distinctive extinction learning pattern, characterized by a slowed-down yet successful process and pronounced theta-alpha desynchronization (source-located in the prefrontal cortex) during CS processing, followed by enhanced synchronization (source-located in the anterior cingulate) after shock cancellation in extinction trials. These neural dynamics correlate with the subtle advantage of US-R in the Day 3 recovery test, presenting faster spontaneous recovery fading and generally lower fear reinstatement responses. Conversely, the CS reminder elicits CS-specific effects in later episodic tests. The unique neural features of the US-R group suggest a larger prediction error and subsequent effortful conflict learning processes, warranting further exploration.
Collapse
Affiliation(s)
- Dong-Ni Pan
- School of Psychology, Beijing Language and Culture University, Beijing, 100083, China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, No 16 Lincui Rd Chaoyang District, Beijing, 100101, China
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Delhii Hoid
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, No 16 Lincui Rd Chaoyang District, Beijing, 100101, China
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, 100083, China
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Xuebing Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, No 16 Lincui Rd Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
18
|
Hou WH, Jariwala M, Wang KY, Seewald A, Lin YL, Liou YC, Ricci A, Ferraguti F, Lien CC, Capogna M. Inhibitory fear memory engram in the mouse central lateral amygdala. Cell Rep 2024; 43:114468. [PMID: 39106862 DOI: 10.1016/j.celrep.2024.114468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/29/2024] [Accepted: 06/24/2024] [Indexed: 08/09/2024] Open
Abstract
Engrams, which are cellular substrates of memory traces, have been identified in various brain areas, including the amygdala. While most identified engrams are composed of excitatory, glutamatergic neurons, GABAergic inhibitory engrams have been relatively overlooked. Here, we report the identification of an inhibitory engram in the central lateral amygdala (CeL), a key area for auditory fear conditioning. This engram is primarily composed of GABAergic somatostatin-expressing (SST(+)) and, to a lesser extent, protein kinase C-δ-expressing (PKC-δ(+)) neurons. Fear memory is accompanied by a preferential enhancement of synaptic inhibition onto PKC-δ(+) neurons. Silencing this CeL GABAergic engram disinhibits the activity of targeted extra-amygdaloid areas, selectively increasing the expression of fear. Our findings define the behavioral function of an engram formed exclusively by GABAergic inhibitory neurons in the mammalian brain.
Collapse
Affiliation(s)
- Wen-Hsien Hou
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark; Center for Proteins in Memory - PROMEMO, Danish National Research Foundation, Aarhus University, Aarhus, Denmark
| | - Meet Jariwala
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Proteins in Memory - PROMEMO, Danish National Research Foundation, Aarhus University, Aarhus, Denmark
| | - Kai-Yi Wang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Anna Seewald
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yu-Ling Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chen Liou
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Alessia Ricci
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Marco Capogna
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark; Center for Proteins in Memory - PROMEMO, Danish National Research Foundation, Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
Li C, Li P, Zhang Y, Li N, Si Y, Li F, Cao Z, Chen H, Chen B, Yao D, Xu P. Effective Emotion Recognition by Learning Discriminative Graph Topologies in EEG Brain Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:10258-10272. [PMID: 37022389 DOI: 10.1109/tnnls.2023.3238519] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Multichannel electroencephalogram (EEG) is an array signal that represents brain neural networks and can be applied to characterize information propagation patterns for different emotional states. To reveal these inherent spatial graph features and increase the stability of emotion recognition, we propose an effective emotion recognition model that performs multicategory emotion recognition with multiple emotion-related spatial network topology patterns (MESNPs) by learning discriminative graph topologies in EEG brain networks. To evaluate the performance of our proposed MESNP model, we conducted single-subject and multisubject four-class classification experiments on two public datasets, MAHNOB-HCI and DEAP. Compared with existing feature extraction methods, the MESNP model significantly enhances the multiclass emotional classification performance in the single-subject and multisubject conditions. To evaluate the online version of the proposed MESNP model, we designed an online emotion monitoring system. We recruited 14 participants to conduct the online emotion decoding experiments. The average online experimental accuracy of the 14 participants was 84.56%, indicating that our model can be applied in affective brain-computer interface (aBCI) systems. The offline and online experimental results demonstrate that the proposed MESNP model effectively captures discriminative graph topology patterns and significantly improves emotion classification performance. Moreover, the proposed MESNP model provides a new scheme for extracting features from strongly coupled array signals.
Collapse
|
20
|
Farrokhi AM, Moshrefi F, Eskandari K, Azizbeigi R, Haghparast A. Hippocampal D1-like dopamine receptor as a novel target for the effect of cannabidiol on extinction and reinstatement of methamphetamine-induced CPP. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111025. [PMID: 38729234 DOI: 10.1016/j.pnpbp.2024.111025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Methamphetamine (METH) is a major health problem without effective pharmacological treatment. Cannabidiol (CBD), a component of the Cannabis sativa plant, is believed to have the potential to inhibit drug-related behavior. However, the neurobiological mechanisms responsible for the effects of CBD remain unclear. Several studies have proposed that the suppressing effects of CBD on drug-seeking behaviors could be through the modulation of the dopamine system. The hippocampus (HIP) D1-like dopamine receptor (D1R) is essential for forming and retrieving drug-associated memory. Therefore, the present study aimed to investigate the role of D1R in the hippocampal CA1 region on the effects of CBD on the extinction and reinstatement of METH-conditioned place preference (CPP). For this purpose, different groups of rats over a 10-day extinction period were administered different doses of intra-CA1 SCH23390 (0.25, 1, or 4 μg/0.5 μl, Saline) as a D1R antagonist before ICV injection of CBD (10 μg/5 μl, DMSO12%). In addition, a different set of animals received intra-CA1 SCH23390 (0.25, 1, or 4 μg/0.5 μl) before CBD injection (50 μg/5 μl) on the reinstatement day. The results revealed that the highest dose of SCH23390 (4 μg) significantly reduced the accelerating effects of CBD on the extinction of METH-CPP (P < 0.01). Furthermore, SCH23390 (1 and 4 μg) in the reinstatement phase notably reversed the preventive effects of CBD on the reinstatement of drug-seeking behavior (P < 0.05 and P < 0.001, respectively). In conclusion, the current study revealed that CBD made a shorter extinction period and suppressed METH reinstatement in part by interacting with D1-like dopamine receptors in the CA1 area of HIP.
Collapse
Affiliation(s)
- Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Azizbeigi
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Liu J, Younk R, Drahos LM, Nagrale SS, Yadav S, Widge AS, Shoaran M. Neural Decoding and Feature Selection Techniques for Closed-Loop Control of Defensive Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597165. [PMID: 38895388 PMCID: PMC11185693 DOI: 10.1101/2024.06.06.597165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Objective Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors. Approach We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance. Main results Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80-150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low time complexity, requiring <110 ms for training and <1 ms for inference. Significance Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation.
Collapse
Affiliation(s)
- Jinhan Liu
- Institute of Electrical and Micro Engineering, EPFL, Lausanne, Switzerland
- Neuro-X Institute, EPFL, Geneva, Switzerland
| | - Rebecca Younk
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Lauren M Drahos
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sumedh S Nagrale
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Shreya Yadav
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Alik S Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- These authors jointly supervised this work
| | - Mahsa Shoaran
- Institute of Electrical and Micro Engineering, EPFL, Lausanne, Switzerland
- Neuro-X Institute, EPFL, Geneva, Switzerland
- These authors jointly supervised this work
| |
Collapse
|
22
|
Kiyokawa Y, Ootaki M, Kambe Y, Tanaka KD, Kimura G, Tanikawa T, Takeuchi Y. Approach/Avoidance Behavior to Novel Objects is Correlated with the Serotonergic and Dopaminergic Systems in the Brown Rat (Rattus norvegicus). Neuroscience 2024; 549:110-120. [PMID: 38723837 DOI: 10.1016/j.neuroscience.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
The brown rat (Rattus norvegicus) is known to show three types of behavioral responses to novel objects. Whereas some rats are indifferent to novel objects, neophobic and neophilic rats show avoidance and approach behavior, respectively. Here, we compared the dopaminergic, serotonergic, and noradrenergic systems immunohistochemically among these rats. Trapped wild rats and laboratory rats were first individually exposed to the novel objects in their home cage. Wild rats were divided into neophobic and indifferent rats depending on their behavioral responses. Similarly, laboratory rats were divided into neophilic and indifferent rats. Consistent with the behavioral differences, in the paraventricular nucleus of the hypothalamus, Fos expression in corticotropin-releasing hormone-containing neurons was higher in the neophobic rats than in the indifferent rats. In the anterior basal amygdala, the neophobic rats showed higher Fos expression than the indifferent rats. In the posterior basal amygdala, the neophobic and neophilic rats showed lower and higher Fos expressions than the indifferent rats, respectively. When we compared the neuromodulatory systems, in the dorsal raphe, the number of serotonergic neurons and Fos expression in serotonergic neurons increased linearly from neophobic to indifferent to neophilic rats. In the ventral tegmental area, Fos expression in dopaminergic neurons was higher in the neophilic rats than in the indifferent rats. These results demonstrate that approach/avoidance behavior to novel objects is correlated with the serotonergic and dopaminergic systems in the brown rat. We propose that the serotonergic system suppresses avoidance behavior while the dopaminergic system enhances approach behavior to novel objects.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Masato Ootaki
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshikazu Kambe
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Kazuyuki D Tanaka
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Goro Kimura
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Tsutomu Tanikawa
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
23
|
Báldi R, Muthuswamy S, Loomba N, Patel S. Synaptic Organization-Function Relationships of Amygdala Interneurons Supporting Associative Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599631. [PMID: 38948865 PMCID: PMC11212985 DOI: 10.1101/2024.06.18.599631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Coordinated activity of basolateral amygdala (BLA) GABAergic interneurons (INs) and glutamatergic principal cells (PCs) is critical for associative learning, however the microcircuit organization-function relationships of distinct IN classes remain uncertain. Here, we show somatostatin (SOM) INs provide inhibition onto, and are excited by, local PCs, whereas vasoactive intestinal peptide (VIP) INs are driven by extrinsic afferents. Parvalbumin (PV) INs inhibit PCs and are activated by local and extrinsic inputs. Thus, SOM and VIP INs exhibit complementary roles in feedback and feedforward inhibition, respectively, while PV INs contribute to both microcircuit motifs. Functionally, each IN subtype reveals unique activity patterns across fear- and extinction learning with SOM and VIP INs showing most divergent characteristics, and PV INs display an intermediate phenotype parallelling synaptic data. Finally, SOM and PV INs dynamically track behavioral state transitions across learning. These data provide insight into the synaptic microcircuit organization-function relationships of distinct BLA IN classes.
Collapse
|
24
|
Duggins P, Eliasmith C. A scalable spiking amygdala model that explains fear conditioning, extinction, renewal and generalization. Eur J Neurosci 2024; 59:3093-3116. [PMID: 38616566 DOI: 10.1111/ejn.16338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/03/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
The amygdala (AMY) is widely implicated in fear learning and fear behaviour, but it remains unclear how the many biological components present within AMY interact to achieve these abilities. Building on previous work, we hypothesize that individual AMY nuclei represent different quantities and that fear conditioning arises from error-driven learning on the synapses between AMY nuclei. We present a computational model of AMY that (a) recreates the divisions and connections between AMY nuclei and their constituent pyramidal and inhibitory neurons; (b) accommodates scalable high-dimensional representations of external stimuli; (c) learns to associate complex stimuli with the presence (or absence) of an aversive stimulus; (d) preserves feature information when mapping inputs to salience estimates, such that these estimates generalize to similar stimuli; and (e) induces a diverse profile of neural responses within each nucleus. Our model predicts (1) defensive responses and neural activities in several experimental conditions, (2) the consequence of artificially ablating particular nuclei and (3) the tendency to generalize defensive responses to novel stimuli. We test these predictions by comparing model outputs to neural and behavioural data from animals and humans. Despite the relative simplicity of our model, we find significant overlap between simulated and empirical data, which supports our claim that the model captures many of the neural mechanisms that support fear conditioning. We conclude by comparing our model to other computational models and by characterizing the theoretical relationship between pattern separation and fear generalization in healthy versus anxious individuals.
Collapse
Affiliation(s)
- Peter Duggins
- Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Chris Eliasmith
- Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
- Department of Philosophy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
25
|
Liu Y, Ye S, Li XN, Li WG. Memory Trace for Fear Extinction: Fragile yet Reinforceable. Neurosci Bull 2024; 40:777-794. [PMID: 37812300 PMCID: PMC11178705 DOI: 10.1007/s12264-023-01129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/08/2023] [Indexed: 10/10/2023] Open
Abstract
Fear extinction is a biological process in which learned fear behavior diminishes without anticipated reinforcement, allowing the organism to re-adapt to ever-changing situations. Based on the behavioral hypothesis that extinction is new learning and forms an extinction memory, this new memory is more readily forgettable than the original fear memory. The brain's cellular and synaptic traces underpinning this inherently fragile yet reinforceable extinction memory remain unclear. Intriguing questions are about the whereabouts of the engram neurons that emerged during extinction learning and how they constitute a dynamically evolving functional construct that works in concert to store and express the extinction memory. In this review, we discuss recent advances in the engram circuits and their neural connectivity plasticity for fear extinction, aiming to establish a conceptual framework for understanding the dynamic competition between fear and extinction memories in adaptive control of conditioned fear responses.
Collapse
Affiliation(s)
- Ying Liu
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China
| | - Shuai Ye
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
26
|
Luft JG, Popik B, Gonçalves DA, Cruz FC, de Oliveira Alvares L. Distinct engrams control fear and extinction memory. Hippocampus 2024; 34:230-240. [PMID: 38396226 DOI: 10.1002/hipo.23601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/06/2023] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Memories are stored in engram cells, which are necessary and sufficient for memory recall. Recalling a memory might undergo reconsolidation or extinction. It has been suggested that the original memory engram is reactivated during reconsolidation so that memory can be updated. Conversely, during extinction training, a new memory is formed that suppresses the original engram. Nonetheless, it is unknown whether extinction creates a new engram or modifies the original fear engram. In this study, we utilized the Daun02 procedure, which uses c-Fos-lacZ rats to induce apoptosis of strongly activated neurons and examine whether a new memory trace emerges as a result of a short or long reactivation, or if these processes rely on modifications within the original engram located in the basolateral amygdala (BLA) and infralimbic (IL) cortex. By eliminating neurons activated during consolidation and reactivation, we observed significant impacts on fear memory, highlighting the importance of the BLA engram in these processes. Although we were unable to show any impact when removing the neurons activated after the test of a previously extinguished memory in the BLA, disrupting the IL extinction engram reactivated the aversive memory that was suppressed by the extinction memory. Thus, we demonstrated that the IL cortex plays a crucial role in the network involved in extinction, and disrupting this specific node alone is sufficient to impair extinction behavior. Additionally, our findings indicate that extinction memories rely on the formation of a new memory, supporting the theory that extinction memories rely on the formation of a new memory, whereas the reconsolidation process reactivates the same original memory trace.
Collapse
Affiliation(s)
- Jordana Griebler Luft
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruno Popik
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Débora Aguirre Gonçalves
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabio Cardoso Cruz
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas de Oliveira Alvares
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
27
|
Mazaheri M, Radahmadi M, Sharifi MR. Effects of chronic social equality and inequality conditions on passive avoidance memory and PTSD-like behaviors in rats under chronic empathic stress. Int J Neurosci 2024:1-12. [PMID: 38598305 DOI: 10.1080/00207454.2024.2341913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
INTRODUCTION Social inequality conditions induce aversion and affect brain functions and mood. This study investigated the effects of chronic social equality and inequality (CSE and CSI, respectively) conditions on passive avoidance memory and post-traumatic stress disorder (PTSD)-like behaviors in rats under chronic empathic stress. METHODS Rats were divided into different groups, including control, sham-observer, sham-demonstrator, observer, demonstrator, and co-demonstrator groups. Chronic stress (2 h/day) was administered to all stressed groups for 21 days. Fear learning, fear memory, memory consolidation, locomotor activity, and PTSD-like behaviors were evaluated using the passive avoidance test. Apart from the hippocampal weight, the correlations of memory and right hippocampal weight with serum corticosterone (CORT) levels were separately assessed for all experimental groups. RESULTS Latency was significantly higher in the demonstrator and sham-demonstrator groups compared to the control group. It was decreased significantly in other groups compared to the control group. Latency was also decreased in the observer and co-demonstrator groups compared to the demonstrator group. Moreover, the right hippocampal weight was significantly decreased in the demonstrator and sham-demonstrator groups compared to the control group. Pearson's correlation of memory and hippocampal weight with serum CORT levels supported the present findings. CONCLUSION Maladaptive fear responses occurred in demonstrators and sham-demonstrators. Also, extremely high levels of psychological stress, especially under CSI conditions (causing abnormal fear learning) led to heightened fear memory and PTSD-like behaviors. Right hippocampal atrophy confirmed the potential role of CSI conditions in promoting PTSD-like behaviors. Compared to inequality conditions, the abnormal fear memory was reduced under equality conditions.
Collapse
Affiliation(s)
- Mohammad Mazaheri
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Sharifi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Martínez-Gallego I, Rodríguez-Moreno A. Adenosine and Cortical Plasticity. Neuroscientist 2024:10738584241236773. [PMID: 38497585 DOI: 10.1177/10738584241236773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Brain plasticity is the ability of the nervous system to change its structure and functioning in response to experiences. These changes occur mainly at synaptic connections, and this plasticity is named synaptic plasticity. During postnatal development, environmental influences trigger changes in synaptic plasticity that will play a crucial role in the formation and refinement of brain circuits and their functions in adulthood. One of the greatest challenges of present neuroscience is to try to explain how synaptic connections change and cortical maps are formed and modified to generate the most suitable adaptive behavior after different external stimuli. Adenosine is emerging as a key player in these plastic changes at different brain areas. Here, we review the current knowledge of the mechanisms responsible for the induction and duration of synaptic plasticity at different postnatal brain development stages in which adenosine, probably released by astrocytes, directly participates in the induction of long-term synaptic plasticity and in the control of the duration of plasticity windows at different cortical synapses. In addition, we comment on the role of the different adenosine receptors in brain diseases and on the potential therapeutic effects of acting via adenosine receptors.
Collapse
Affiliation(s)
- Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| |
Collapse
|
29
|
Hashizume M, Ito R, Suge R, Hojo Y, Murakami G, Murakoshi T. Correlation Between Cued Fear Memory Retrieval and Oscillatory Network Inhibition in the Amygdala Is Disrupted by Acute REM Sleep Deprivation. Neuroscience 2024; 536:12-20. [PMID: 37944580 DOI: 10.1016/j.neuroscience.2023.08.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 11/12/2023]
Abstract
The basolateral amygdaloid complex (BLA) is critically involved in emotional behaviors, such as aversive memory formation. In particular, fear memory after cued fear conditioning is strongly associated with the BLA, whereas both the BLA and hippocampus are essential for contextual fear memory formation. In the present study, we examined the effects of acute (3 h) sleep deprivation (SD) on BLA-associated fear memory in juvenile (P24-32) rats and performed in vitro electrophysiology using whole-cell patch clamping from the basolateral nucleus (BA) of the BLA. BA projection neurons exhibit the network oscillation, i.e., spontaneous oscillatory bursts of inhibitory transmission at 0.1-3 Hz, as previously reported. In the present study, SD either before or after fear conditioning (FC) disturbed the acquisition of tone-associated fear memory without significant effects on contextual fear memory. FC reduced the power of the oscillatory activity, but SD did not further reduce the oscillation power. Oscillation power was correlated with tone-associated freezing rate (FR) in SD-free fear-conditioned rats, but this relation was disrupted in SD treated group. Rhythm index (RI), the rhythmicity of the oscillation, quantified by autocorrelation analysis, also correlated with tone-associated FR in the combined data, including FC alone and FC with SD. These results suggest that slow network oscillation in the amygdala contributes to the formation of amygdala-dependent fear memory in relation to sleep.
Collapse
Affiliation(s)
- Miki Hashizume
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Japan
| | - Rina Ito
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Japan
| | - Rie Suge
- Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, Japan
| | - Yasushi Hojo
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Japan
| | - Gen Murakami
- Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, Japan
| | - Takayuki Murakoshi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Japan.
| |
Collapse
|
30
|
Mohapatra AN, Peles D, Netser S, Wagner S. Synchronized LFP rhythmicity in the social brain reflects the context of social encounters. Commun Biol 2024; 7:2. [PMID: 38168971 PMCID: PMC10761981 DOI: 10.1038/s42003-023-05728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Mammalian social behavior is highly context-sensitive. Yet, little is known about the mechanisms that modulate social behavior according to its context. Recent studies have revealed a network of mostly limbic brain regions which regulates social behavior. We hypothesize that coherent theta and gamma rhythms reflect the organization of this network into functional sub-networks in a context-dependent manner. To test this concept, we simultaneously record local field potential (LFP) from multiple social brain regions in adult male mice performing three social discrimination tasks. While LFP rhythmicity across all tasks is dominated by a global internal state, the pattern of theta coherence between the various regions reflect the behavioral task more than other variables. Moreover, Granger causality analysis implicate the ventral dentate gyrus as a main player in coordinating the context-specific rhythmic activity. Thus, our results suggest that the pattern of coordinated rhythmic activity within the network reflects the subject's social context.
Collapse
Affiliation(s)
- Alok Nath Mohapatra
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, POB. 3338, Haifa, 3103301, Israel.
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, POB. 3338, Haifa, 3103301, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, POB. 3338, Haifa, 3103301, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, POB. 3338, Haifa, 3103301, Israel
| |
Collapse
|
31
|
Peng X, Chen P, Zhang Y, Wu K, Ji N, Gao J, Wang H, Zhang Y, Xu T, Hua R. MPP2 interacts with SK2 to rescue the excitability of glutamatergic neurons in the BLA and facilitate the extinction of conditioned fear in mice. CNS Neurosci Ther 2024; 30:e14362. [PMID: 37469037 PMCID: PMC10805397 DOI: 10.1111/cns.14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/29/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
AIMS The basolateral amygdala (BLA) plays an integral role in anxiety disorders (such as post traumatic stress disorder) stem from dysregulated fear memory. The excitability of glutamatergic neurons in the BLA correlates with fear memory, and the afterhyperpolarization current (IAHP ) mediated by small-conductance calcium-activated potassium channel subtype 2 (SK2) dominates the excitability of glutamatergicneurons. This study aimed to explore the effect of MPP2 interacts with SK2 in the excitability of glutamatergic neurons in the BLA and the extinction of conditioned fear in mice. METHODS Fear memory was analyzed via freezing percentage. Western blotting and fluorescence quantitative PCR were used to determine the expression of protein and mRNA respectively. Electrophysiology was employed to measure the excitability of glutamatergic neurons and IAHP . RESULTS Fear conditioning decreased the levels of synaptic SK2 channels in the BLA, which were restored following fear extinction. Notably, reduced expression of synaptic SK2 channels in the BLA during fear conditioning was caused by the increased activity of protein kinase A (PKA), while increased levels of synaptic SK2 channels in the BLA during fear extinction were mediated by interactions with membrane-palmitoylated protein 2 (MPP2). CONCLUSIONS Our results revealed that MPP2 interacts with the SK2 channels and rescues the excitability of glutamatergic neurons by increasing the expression of synaptic SK2 channels in the BLA to promote the normalization of anxiety disorders and provide a new direction for the treatment.
Collapse
Affiliation(s)
- Xiaohan Peng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
| | - Panpan Chen
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
- Anesthesiology DepartmentJiangsu Province HospitalNanjingChina
| | - Yang Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
| | - Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
| | - Ningning Ji
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
| | - Jinghua Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
| | - Hui Wang
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
| | - Yong‐mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
| | - Tie Xu
- Emergency Medicine DepartmentThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Rong Hua
- Emergency Medicine DepartmentThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
32
|
Fang Z, Chen J, Zheng Y, Chen Z. Targeting Histamine and Histamine Receptors for Memory Regulation: An Emotional Perspective. Curr Neuropharmacol 2024; 22:1846-1869. [PMID: 38288837 PMCID: PMC11284729 DOI: 10.2174/1570159x22666240128003108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 07/23/2024] Open
Abstract
Histamine has long been accepted as a pro-cognitive agent. However, lines of evidence have suggested that the roles of histamine in learning and memory processes are much more complex than previously thought. When explained by the spatial perspectives, there are many contradictory results. However, using emotional memory perspectives, we suspect that the histaminergic system may interplay with stress, reward inhibition, and attention to modulate emotional memory formation. The functional diversity of histamine makes it a viable target for clinical management of neuropsychiatric disorders. Here, we update the current knowledge about the functions of histamine in emotional memory and summarize the underlying molecular and neural circuit mechanisms. Finally, we review the main clinical studies about the impacts of histamine-related compounds on memory and discuss insights into future research on the roles of histamine in emotional memory. Despite the recent progress in histamine research, the histaminergic emotional memory circuits are poorly understood, and it is also worth verifying the functions of histamine receptors in a more spatiotemporally specific manner.
Collapse
Affiliation(s)
- Zhuowen Fang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
33
|
Wang C, Lin C, Zhao Y, Samantzis M, Sedlak P, Sah P, Balbi M. 40-Hz optogenetic stimulation rescues functional synaptic plasticity after stroke. Cell Rep 2023; 42:113475. [PMID: 37979173 DOI: 10.1016/j.celrep.2023.113475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Evoked brain oscillations in the gamma range have been shown to assist in stroke recovery. However, the causal relationship between evoked oscillations and neuroprotection is not well understood. We have used optogenetic stimulation to investigate how evoked gamma oscillations modulate cortical dynamics in the acute phase after stroke. Our results reveal that stimulation at 40 Hz drives activity in interneurons at the stimulation frequency and phase-locked activity in principal neurons at a lower frequency, leading to increased cross-frequency coupling. In addition, 40-Hz stimulation after stroke enhances interregional communication. These effects are observed up to 24 h after stimulation. Our stimulation protocol also rescues functional synaptic plasticity 24 h after stroke and leads to an upregulation of plasticity genes and a downregulation of cell death genes. Together these results suggest that restoration of cortical dynamics may confer neuroprotection after stroke.
Collapse
Affiliation(s)
- Cong Wang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia; Engineering Research Centre of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China
| | - Caixia Lin
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Yue Zhao
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Centre, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Montana Samantzis
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Petra Sedlak
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Matilde Balbi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia.
| |
Collapse
|
34
|
Liu S, He Y, Guo D, Liu X, Hao X, Hu P, Ming D. Transcranial alternating current stimulation ameliorates emotional attention through neural oscillations modulation. Cogn Neurodyn 2023; 17:1473-1483. [PMID: 37969947 PMCID: PMC10640550 DOI: 10.1007/s11571-022-09880-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/04/2022] [Accepted: 08/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background Numerous clinical reports have suggested that psychopathy like schizophrenia, anxiety and depression is accompanied by early attentional abnormalities in emotional processing. Recently, the efficacy of transcranial alternating current stimulation (tACS) in changing emotional functioning has been repeatedly observed and demonstrated a causal relationship between endogenous oscillations and emotional processing. Aims Up to now, tACS effects on emotional attention have not yet been tested. To assess such ability, we delivered active-tACS at individual alpha frequency (IAF), 10 Hz or sham-tACS for 7 consecutive days in the bilaterally dorsolateral prefrontal cortex (dlPFC) to totally 79 healthy participants. Results IAF-tACS group showed significant alpha entrainment at-rest, especially in open state around stimulation area and showed an obvious advantage compared to 10 Hz-tACS. Event-related potential revealed a significant larger P200 amplitude after active-tACS and IAF group showed wider range of emotions than 10 Hz-tACS, indicating the attentional improvement in facial emotion processing. A notable positive correlation between alpha power and P200 amplitude provided an electrophysiological interpretation regarding the role of tACS in emotional attention modulation instead of somatosensory effects. Conclusion These results support a seminal outcome for the effect of IAF-tACS on emotional attention modulation, demonstrating a feasible and individual-specific therapy for neuropsychiatric disorders related to emotion processing, especially regarding oscillatory disturbances.
Collapse
Affiliation(s)
- Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Yuchen He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Dongyue Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Xiaoya Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Xinyu Hao
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072 Tianjin, China
| | - Pengchong Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072 Tianjin, China
- Tianjin International Joint Research Center for Neural Engineering, 300072 Tianjin, China
| |
Collapse
|
35
|
Stubbendorff C, Hale E, Bast T, Cassaday HJ, Martin SJ, Suwansawang S, Halliday DM, Stevenson CW. Dopamine D1-like receptors modulate synchronized oscillations in the hippocampal-prefrontal-amygdala circuit in contextual fear. Sci Rep 2023; 13:17631. [PMID: 37848657 PMCID: PMC10582086 DOI: 10.1038/s41598-023-44772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Contextual fear conditioning (CFC) is mediated by a neural circuit that includes the hippocampus, prefrontal cortex, and amygdala, but the neurophysiological mechanisms underlying the regulation of CFC by neuromodulators remain unclear. Dopamine D1-like receptors (D1Rs) in this circuit regulate CFC and local synaptic plasticity, which is facilitated by synchronized oscillations between these areas. In rats, we determined the effects of systemic D1R blockade on CFC and oscillatory synchrony between dorsal hippocampus (DH), prelimbic (PL) cortex, basolateral amygdala (BLA), and ventral hippocampus (VH), which sends hippocampal projections to PL and BLA. D1R blockade altered DH-VH and reduced VH-PL and VH-BLA synchrony during CFC, as inferred from theta and gamma coherence and theta-gamma coupling. D1R blockade also impaired CFC, as indicated by decreased freezing at retrieval, which was characterized by altered DH-VH and reduced VH-PL, VH-BLA, and PL-BLA synchrony. This reduction in VH-PL-BLA synchrony was not fully accounted for by non-specific locomotor effects, as revealed by comparing between epochs of movement and freezing in the controls. These results suggest that D1Rs regulate CFC by modulating synchronized oscillations within the hippocampus-prefrontal-amygdala circuit. They also add to growing evidence indicating that this circuit synchrony at retrieval reflects a neural signature of learned fear.
Collapse
Affiliation(s)
- Christine Stubbendorff
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| | - Ed Hale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
- Envigo, Hillcrest, Dodgeford Lane, Belton, LE12 9TE, UK
| | - Tobias Bast
- School of Psychology, University of Nottingham, University Park, Nottingham, UK
- Neuroscience@Nottingham, University of Nottingham, Nottingham, UK
| | - Helen J Cassaday
- School of Psychology, University of Nottingham, University Park, Nottingham, UK
- Neuroscience@Nottingham, University of Nottingham, Nottingham, UK
| | - Stephen J Martin
- Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Sopapun Suwansawang
- School of Physics, Engineering and Technology, York Biomedical Research Institute, University of York, Heslington, York, UK
- Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, Thailand
| | - David M Halliday
- School of Physics, Engineering and Technology, York Biomedical Research Institute, University of York, Heslington, York, UK
| | - Carl W Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
- Neuroscience@Nottingham, University of Nottingham, Nottingham, UK.
| |
Collapse
|
36
|
McDonald AJ. Functional neuroanatomy of monoaminergic systems in the basolateral nuclear complex of the amygdala: Neuronal targets, receptors, and circuits. J Neurosci Res 2023; 101:1409-1432. [PMID: 37166098 PMCID: PMC10524224 DOI: 10.1002/jnr.25201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/03/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
This review discusses neuroanatomical aspects of the three main monoaminergic systems innervating the basolateral nuclear complex (BNC) of the amygdala (serotonergic, noradrenergic, and dopaminergic systems). It mainly focuses on immunohistochemical (IHC) and in situ hybridization (ISH) studies that have analyzed the relationship of specific monoaminergic inputs and their receptors to specific neuronal subtypes in the BNC in order to better understand the anatomical substrates of the monoaminergic modulation of BNC circuitry. First, light and electron microscopic IHC investigations identifying the main BNC neuronal subpopulations and characterizing their local circuitry, including connections with discrete PN compartments and other INs, are reviewed. Then, the relationships of each of the three monoaminergic systems to distinct PN and IN cell types, are examined in detail. For each system, the neuronal targets and their receptor expression are discussed. In addition, pertinent electrophysiological investigations are discussed. The last section of the review compares and contrasts various aspects of each of the three monoaminergic systems. It is concluded that the large number of different receptors, each with a distinct mode of action, expressed by distinct cell types with different connections and functions, should offer innumerable ways to subtlety regulate the activity of the BNC by therapeutic drugs in psychiatric diseases in which there are alterations of BNC monoaminergic modulatory systems, such as in anxiety disorders, depression, and drug addiction. It is suggested that an important area for future studies is to investigate how the three systems interact in concert at the neuronal and neuronal network levels.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
37
|
Zaki Y, Pennington ZT, Morales-Rodriguez D, Francisco TR, LaBanca AR, Dong Z, Lamsifer S, Segura SC, Chen HT, Wick ZC, Silva AJ, van der Meer M, Shuman T, Fenton A, Rajan K, Cai DJ. Aversive experience drives offline ensemble reactivation to link memories across days. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532469. [PMID: 36993254 PMCID: PMC10054942 DOI: 10.1101/2023.03.13.532469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Memories are encoded in neural ensembles during learning and stabilized by post-learning reactivation. Integrating recent experiences into existing memories ensures that memories contain the most recently available information, but how the brain accomplishes this critical process remains unknown. Here we show that in mice, a strong aversive experience drives the offline ensemble reactivation of not only the recent aversive memory but also a neutral memory formed two days prior, linking the fear from the recent aversive memory to the previous neutral memory. We find that fear specifically links retrospectively, but not prospectively, to neutral memories across days. Consistent with prior studies, we find reactivation of the recent aversive memory ensemble during the offline period following learning. However, a strong aversive experience also increases co-reactivation of the aversive and neutral memory ensembles during the offline period. Finally, the expression of fear in the neutral context is associated with reactivation of the shared ensemble between the aversive and neutral memories. Taken together, these results demonstrate that strong aversive experience can drive retrospective memory-linking through the offline co-reactivation of recent memory ensembles with memory ensembles formed days prior, providing a neural mechanism by which memories can be integrated across days.
Collapse
Affiliation(s)
- Yosif Zaki
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Zachary T. Pennington
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | | | - Taylor R. Francisco
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Alexa R. LaBanca
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Zhe Dong
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Sophia Lamsifer
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Simón Carrillo Segura
- Graduate Program in Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201
| | - Hung-Tu Chen
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH, 03755
| | - Zoé Christenson Wick
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Alcino J. Silva
- Department of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, UCLA, Los Angeles, CA 90095
| | | | - Tristan Shuman
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - André Fenton
- Center for Neural Science, New York University, New York, NY, 10003
- Neuroscience Institute at the NYU Langone Medical Center, New York, NY, 10016
| | - Kanaka Rajan
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Denise J. Cai
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| |
Collapse
|
38
|
Zhen Y, Pavez M, Li X. The role of Pcdh10 in neurological disease and cancer. J Cancer Res Clin Oncol 2023; 149:8153-8164. [PMID: 37058252 PMCID: PMC10374755 DOI: 10.1007/s00432-023-04743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Protocadherin 10 (PCDH 10), a member of the superfamily of protocadherins, is a Ca2+-dependent homophilic cell-cell adhesion molecule expressed on the surface of cell membranes. Protocadherin 10 plays a critical role in the central nervous system including in cell adhesion, formation and maintenance of neural circuits and synapses, regulation of actin assembly, cognitive function and tumor suppression. Additionally, Pcdh10 can serve as a non-invasive diagnostic and prognostic indicator for various cancers. METHODS This paper collects and reviews relevant literature in Pubmed. CONCLUSION This review describes the latest research understanding the role of Pcdh10 in neurological disease and human cancer, highlighting the importance of scrutinizing its properties for the development of targeted therapies and identifying a need for further research to explore Pcdh10 functions in other pathways, cell types and human pathologies.
Collapse
Affiliation(s)
- Yilan Zhen
- Menzies Institute for Medical Research, University of Tasmania, Liverpool street, Hobart, 7000, Australia
| | - Macarena Pavez
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand.
| | - Xinying Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
- School of Life Sciences, Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
39
|
Nakamura-Palacios EM, Falçoni Júnior AT, Anders QS, de Paula LDSP, Zottele MZ, Ronchete CF, Lirio PHC. Would frontal midline theta indicate cognitive changes induced by non-invasive brain stimulation? A mini review. Front Hum Neurosci 2023; 17:1116890. [PMID: 37520930 PMCID: PMC10375045 DOI: 10.3389/fnhum.2023.1116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
To the best of our knowledge, neurophysiological markers indicating changes induced by non-invasive brain stimulation (NIBS) on cognitive performance, especially one of the most investigated under these procedures, working memory (WM), are little known. Here, we will briefly introduce frontal midline theta (FM-theta) oscillation (4-8 Hz) as a possible indicator for NIBS effects on WM processing. Electrophysiological recordings of FM-theta oscillation seem to originate in the medial frontal cortex and the anterior cingulate cortex, but they may be driven more subcortically. FM-theta has been acknowledged to occur during memory and emotion processing, and it has been related to WM and sustained attention. It mainly occurs in the frontal region during a delay period, in which specific information previously shown is no longer perceived and must be manipulated to allow a later (delayed) response and observed in posterior regions during information maintenance. Most NIBS studies investigating effects on cognitive performance have used n-back tasks that mix manipulation and maintenance processes. Thus, if considering FM-theta as a potential neurophysiological indicator for NIBS effects on different WM components, adequate cognitive tasks should be considered to better address the complexity of WM processing. Future research should also evaluate the potential use of FM-theta as an index of the therapeutic effects of NIBS intervention on neuropsychiatric disorders, especially those involving the ventral medial prefrontal cortex and cognitive dysfunctions.
Collapse
Affiliation(s)
| | | | - Quézia Silva Anders
- Superior School of Sciences of the Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória, Brazil
| | | | | | | | | |
Collapse
|
40
|
Sun XY, Liu L, Song YT, Wu T, Zheng T, Hao JR, Cao JL, Gao C. Two parallel medial prefrontal cortex-amygdala pathways mediate memory deficits via glutamatergic projection in surgery mice. Cell Rep 2023; 42:112719. [PMID: 37392387 DOI: 10.1016/j.celrep.2023.112719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/19/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
The neural circuit mechanisms underlying postoperative cognitive dysfunction (POCD) remain elusive. We hypothesized that projections from the medial prefrontal cortex (mPFC) to the amygdala are involved in POCD. A mouse model of POCD in which isoflurane (1.5%) combined with laparotomy was used. Virally assisted tracing techniques were used to label the relevant pathways. Fear conditioning, immunofluorescence, whole-cell patch-clamp recordings, and chemogenetic and optogenetic techniques were applied to investigate the role of mPFC-amygdala projections in POCD. We find that surgery impairs memory consolidation but not retrieval of consolidated memories. In POCD mice, the glutamatergic pathway from the prelimbic cortex to the basolateral amygdala (PL-BLA) shows reduced activity, whereas the glutamatergic pathway from the infralimbic cortex to the basomedial amygdala (IL-BMA) shows enhanced activity. Our study indicates that the hypoactivity in the PL-BLA pathway interrupts memory consolidation, whereas the hyperactivity in the IL-BMA promotes memory extinction, in POCD mice.
Collapse
Affiliation(s)
- Xiao-Yu Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China
| | - Le Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yu-Tong Song
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Tong Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Teng Zheng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jun-Li Cao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
41
|
Teng SW, Wang XR, Du BW, Chen XL, Fu GZ, Liu YF, Xu SQ, Shuai JC, Chen ZY. Altered fear engram encoding underlying conditioned versus unconditioned stimulus-initiated memory updating. SCIENCE ADVANCES 2023; 9:eadf0284. [PMID: 37285430 DOI: 10.1126/sciadv.adf0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
It is known that post-retrieval extinction but not extinction alone could erase fear memory. However, whether the coding pattern of original fear engrams is remodeled or inhibited remains largely unclear. We found increased reactivation of engram cells in the prelimbic cortex and basolateral amygdala during memory updating. Moreover, conditioned stimulus- and unconditioned stimulus-initiated memory updating depends on the engram cell reactivation in the prelimbic cortex and basolateral amygdala, respectively. Last, we found that memory updating causes increased overlapping between fear and extinction cells, and the original fear engram encoding was altered during memory updating. Our data provide the first evidence to show the overlapping ensembles between fear and extinction cells and the functional reorganization of original engrams underlying conditioned stimulus- and unconditioned stimulus-initiated memory updating.
Collapse
Affiliation(s)
- Shuai-Wen Teng
- Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences and Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xin-Rong Wang
- Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences and Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bo-Wen Du
- Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences and Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiao-Lin Chen
- Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences and Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guan-Zhou Fu
- Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences and Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yun-Fei Liu
- Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences and Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shu-Qi Xu
- Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences and Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jia-Chen Shuai
- Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences and Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhe-Yu Chen
- Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences and Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Institute of Brain Science, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Institution of Traditional Chinese Medicine Innovation Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, P.R. China
| |
Collapse
|
42
|
Català-Solsona J, Lituma PJ, Lutzu S, Siedlecki-Wullich D, Fábregas-Ordoñez C, Miñano-Molina AJ, Saura CA, Castillo PE, Rodriguez-Álvarez J. Activity-Dependent Nr4a2 Induction Modulates Synaptic Expression of AMPA Receptors and Plasticity via a Ca 2+/CRTC1/CREB Pathway. J Neurosci 2023; 43:3028-3041. [PMID: 36931707 PMCID: PMC10146469 DOI: 10.1523/jneurosci.1341-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Transcription factors have a pivotal role in synaptic plasticity and the associated modification of neuronal networks required for memory formation and consolidation. The nuclear receptors subfamily 4 group A (Nr4a) have emerged as possible modulators of hippocampal synaptic plasticity and cognitive functions. However, the molecular and cellular mechanisms underlying Nr4a2-mediated hippocampal synaptic plasticity are not completely known. Here, we report that neuronal activity enhances Nr4a2 expression and function in cultured mouse hippocampal neurons (both sexes) by an ionotropic glutamate receptor/Ca2+/cAMP response element-binding protein/CREB-regulated transcription factor 1 (iGluR/Ca2+/CREB/CRTC1) pathway. Nr4a2 activation mediates BDNF production and increases expression of iGluRs, thereby affecting LTD at CA3-CA1 synapses in acute mouse hippocampal slices (both sexes). Together, our results indicate that the iGluR/Ca2+/CREB/CRTC1 pathway mediates activity-dependent expression of Nr4a2, which is involved in glutamatergic synaptic plasticity by increasing BDNF and synaptic GluA1-AMPARs. Therefore, Nr4a2 activation could be a therapeutic approach for brain disorders associated with dysregulated synaptic plasticity.SIGNIFICANCE STATEMENT A major factor that regulates fast excitatory synaptic transmission and plasticity is the modulation of synaptic AMPARs. However, despite decades of research, the underlying mechanisms of this modulation remain poorly understood. Our study identified a molecular pathway that links neuronal activity with AMPAR modulation and hippocampal synaptic plasticity through the activation of Nr4a2, a member of the nuclear receptor subfamily 4. Since several compounds have been described to activate Nr4a2, our study not only provides mechanistic insights into the molecular pathways related to hippocampal synaptic plasticity and learning, but also identifies Nr4a2 as a potential therapeutic target for pathologic conditions associated with dysregulation of glutamatergic synaptic function.
Collapse
Affiliation(s)
- Judit Català-Solsona
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Pablo J Lituma
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Stefano Lutzu
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Dolores Siedlecki-Wullich
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Cristina Fábregas-Ordoñez
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Alfredo J Miñano-Molina
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Carlos A Saura
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
- Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - José Rodriguez-Álvarez
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| |
Collapse
|
43
|
Ding H, Huang XP, Liu XD, Li YL, Tang S, Xiong HL, Huang MT, Li Y, Liu CX, Zhang W, Deng CQ. Effects of borneol combined with astragaloside IV and Panax notoginseng saponins regulation of microglia polarization to promote neurogenesis after cerebral ischaemia. J Pharm Pharmacol 2023:7143727. [PMID: 37185938 DOI: 10.1093/jpp/rgad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE To study the effect of borneol combined with astragaloside IV and Panax notoginseng saponins (BAP) on promoting neurogenesis by regulating microglia polarization after cerebral ischaemia-reperfusion(CI/R) in rats. METHODS A focal CI/R injury model was established. Evaluated the effects of BAP on ischaemic brain injury, on promoting neurogenesis, on inhibiting Inflammatory microenvironment and TLR4/MyD88/NFκB signalling pathway. A microglia oxygen-glucose deprivation reoxygenation (OGD/R) model was established that evaluated the effects of BAP on regulating the polarization of microglia and inflammatory microenvironment. RESULTS BAP can inhibit the expression of TLR4, MyD88 and NFκB proteins, reduce IL-1β and increase IL-10, reduce M1 type microglia and increase M2 microglia. The proliferation of neural stem cells increased, synaptic gap decreased, synaptic interface curvature increased, expression of SYN and PSD95 proteins increased, which improved the neurological dysfunction and reduced the volume of cerebellar infarction and nerve cell injury. CONCLUSION BAP can reduce CI/R injury and promote neurogenesis, the effect is related to inhibition of the activation of TLR4/MyD88/NFκB, regulating the polarization of microglia from M1 type to M2 type and inhibition of inflammatory response.
Collapse
Affiliation(s)
- Huang Ding
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Xiao-Ping Huang
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Xiao-Dan Liu
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Yan-Ling Li
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - San Tang
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Hai-Long Xiong
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Mei-Ting Huang
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Ying Li
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Cai-Xia Liu
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Wei Zhang
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Chang-Qing Deng
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| |
Collapse
|
44
|
Poli A, Viglione A, Mazziotti R, Totaro V, Morea S, Melani R, Silingardi D, Putignano E, Berardi N, Pizzorusso T. Selective Disruption of Perineuronal Nets in Mice Lacking Crtl1 is Sufficient to Make Fear Memories Susceptible to Erasure. Mol Neurobiol 2023; 60:4105-4119. [PMID: 37022587 DOI: 10.1007/s12035-023-03314-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/09/2023] [Indexed: 04/07/2023]
Abstract
The ability to store, retrieve, and extinguish memories of adverse experiences is an essential skill for animals' survival. The cellular and molecular factors that underlie such processes are only partially known. Using chondroitinase ABC treatment targeting chondroitin sulfate proteoglycans (CSPGs), previous studies showed that the maturation of the extracellular matrix makes fear memory resistant to deletion. Mice lacking the cartilage link protein Crtl1 (Crtl1-KO mice) display normal CSPG levels but impaired CSPG condensation in perineuronal nets (PNNs). Thus, we asked whether the presence of PNNs in the adult brain is responsible for the appearance of persistent fear memories by investigating fear extinction in Crtl1-KO mice. We found that mutant mice displayed fear memory erasure after an extinction protocol as revealed by analysis of freezing and pupil dynamics. Fear memory erasure did not depend on passive loss of retention; moreover, we demonstrated that, after extinction training, conditioned Crtl1-KO mice display no neural activation in the amygdala (Zif268 staining) in comparison to control animals. Taken together, our findings suggest that the aggregation of CSPGs into PNNs regulates the boundaries of the critical period for fear extinction.
Collapse
Affiliation(s)
- Andrea Poli
- BIO@SNS Lab, Scuola Normale Superiore Via G, Moruzzi 1, 56124, Pisa, Italy
| | - Aurelia Viglione
- BIO@SNS Lab, Scuola Normale Superiore Via G, Moruzzi 1, 56124, Pisa, Italy
| | - Raffaele Mazziotti
- Institute of Neuroscience, National Research Council, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Valentino Totaro
- BIO@SNS Lab, Scuola Normale Superiore Via G, Moruzzi 1, 56124, Pisa, Italy
| | - Silvia Morea
- Institute of Neuroscience, National Research Council, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Riccardo Melani
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Davide Silingardi
- Department of Neuroscience, Psychology, Drug Research, and Child Health NEUROFARBA, University of Florence, 50134, Florence, Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Nicoletta Berardi
- Institute of Neuroscience, National Research Council, Via Moruzzi, 1, 56124, Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research, and Child Health NEUROFARBA, University of Florence, 50134, Florence, Italy
| | - Tommaso Pizzorusso
- BIO@SNS Lab, Scuola Normale Superiore Via G, Moruzzi 1, 56124, Pisa, Italy.
- Institute of Neuroscience, National Research Council, Via Moruzzi, 1, 56124, Pisa, Italy.
| |
Collapse
|
45
|
Bierwirth P, Antov MI, Stockhorst U. Oscillatory and non-oscillatory brain activity reflects fear expression in an immediate and delayed fear extinction task. Psychophysiology 2023:e14283. [PMID: 36906880 DOI: 10.1111/psyp.14283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 03/13/2023]
Abstract
Fear extinction is pivotal for inhibiting fear responding to former threat-predictive stimuli. In rodents, short intervals between fear acquisition and extinction impair extinction recall compared to long intervals. This is called Immediate Extinction Deficit (IED). Importantly, human studies of the IED are sparse and its neurophysiological correlates have not been examined in humans. We, therefore, investigated the IED by recording electroencephalography (EEG), skin conductance responses (SCRs), an electrocardiogram (ECG), and subjective ratings of valence and arousal. Forty male participants were randomly assigned to extinction learning either 10 min after fear acquisition (immediate extinction) or 24 h afterward (delayed extinction). Fear and extinction recall were assessed 24 h after extinction learning. We observed evidence for an IED in SCR responses, but not in the ECG, subjective ratings, or in any assessed neurophysiological marker of fear expression. Irrespective of extinction timing (immediate vs. delayed), fear conditioning caused a tilt of the non-oscillatory background spectrum with decreased low-frequency power (<30 Hz) for threat-predictive stimuli. When controlling for this tilt, we observed a suppression of theta and alpha oscillations to threat-predictive stimuli, especially pronounced during fear acquisition. In sum, our data show that delayed extinction might be partially advantageous over immediate extinction in reducing sympathetic arousal (as assessed via SCR) to former threat-predictive stimuli. However, this effect was limited to SCR responses since all other fear measures were not affected by extinction timing. Additionally, we demonstrate that oscillatory and non-oscillatory activity is sensitive to fear conditioning, which has important implications for fear conditioning studies examining neural oscillations.
Collapse
Affiliation(s)
- Philipp Bierwirth
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany
| | - Martin I Antov
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany
| | - Ursula Stockhorst
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
46
|
Omoumi S, Rashidy-Pour A, Seyedinia SA, Tarahomi P, Vafaei AA, Raise-Abdullahi P. Corticosterone injection into the infralimbic prefrontal cortex enhances fear memory extinction: Involvement of GABA receptors and the extracellular signal-regulated kinase. Physiol Behav 2023; 265:114156. [PMID: 36918107 DOI: 10.1016/j.physbeh.2023.114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
This study investigated the interactive effect of glucocorticoid and Gamma-aminobutyric acid (GABA) receptors in the Infralimbic (IL) cortex on fear extinction in rats' auditory fear conditioning task (AFC). Animals received 3 conditioning trial tones (conditioned stimulus, 30 s, 4 kHz, 80 dB) co-terminated with a footshock (unconditioned stimulus, 0.8 mA, 1 s). Extinction testing was conducted over 3 days (Ext 1-3) after conditioning. Intra-IL injection of corticosterone (CORT, 20 ng/0.3 µl/side) was performed 15 min before the first extinction trial (Ext 1) which attenuated auditory fear expression in subsequent extinction trials (Ext 1-3), demonstrating fear memory extinction enhancement. Co-injection of the GABAA agonist muscimol (250 ng/0.3 µl/side) or the GABAB agonist baclofen (250 ng/0.3 µl/side) 15 min before corticosterone, did not significantly affect the facilitative effects of corticosterone on fear extinction. However, co-injection of the GABAA antagonist bicuculline (BIC, 100 ng/0.3 µl/side) or the GABAB antagonist CGP35348 (CGP, 100 ng/0.3 µl/side) 15 min before corticosterone, blocked the facilitative effects of corticosterone on fear extinction. Moreover, extracellular signal-regulated kinase (ERK) and cAMP response element-binding (CREB) in the IL were examined by Western blotting analysis after the first extinction trial (Ext 1) in some groups. Intra-IL injection of corticosterone increased the ERK activity but not CREB. Co-injection of the bicuculline or CGP35348 blocked the enhancing effect of corticosterone on ERK expression in the IL. Glucocorticoid receptors (GRs) activation in the IL cortex by corticosterone increased ERK activity and facilitated fear extinction. GABAA or GABAB antagonists decreased ERK activity and inhibited corticosterone's effect. GRs and GABA receptors in the IL cortex jointly modulate the fear extinction processes via the ERK pathway. This pre-clinical animal study may highlight GRs and GABA interactions in the IL cortex modulating fear memory processes in fear-related disorders such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Samira Omoumi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Ali Seyedinia
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Student Research Committee, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Parnia Tarahomi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Student Research Committee, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | | |
Collapse
|
47
|
Gregoriou GC, Patel SD, Pyne S, Winters BL, Bagley EE. Opioid Withdrawal Abruptly Disrupts Amygdala Circuit Function by Reducing Peptide Actions. J Neurosci 2023; 43:1668-1681. [PMID: 36781220 PMCID: PMC10010477 DOI: 10.1523/jneurosci.1317-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 02/15/2023] Open
Abstract
While the physical signs of opioid withdrawal are most readily observable, withdrawal insidiously drives relapse and contributes to compulsive drug use, by disrupting emotional learning circuits. How these circuits become disrupted during withdrawal is poorly understood. Because amygdala neurons mediate relapse, and are highly opioid sensitive, we hypothesized that opioid withdrawal would induce adaptations in these neurons, opening a window of disrupted emotional learning circuit function. Under normal physiological conditions, synaptic transmission between the basolateral amygdala (BLA) and the neighboring main island (Im) of GABAergic intercalated cells (ITCs) is strongly inhibited by endogenous opioids. Using patch-clamp electrophysiology in brain slices prepared from male rats, we reveal that opioid withdrawal abruptly reduces the ability of these peptides to inhibit neurotransmission, a direct consequence of a protein kinase A (PKA)-driven increase in the synaptic activity of peptidases. Reduced peptide control of neurotransmission in the amygdala shifts the excitatory/inhibitory balance of inputs onto accumbens-projecting amygdala cells involved in relapse. These findings provide novel insights into how peptidases control synaptic activity within the amygdala and presents restoration of endogenous peptide activity during withdrawal as a viable option to mitigate withdrawal-induced disruptions in emotional learning circuits and rescue the relapse behaviors exhibited during opioid withdrawal and beyond into abstinence.SIGNIFICANCE STATEMENT We find that opioid withdrawal dials down inhibitory neuropeptide activity in the amygdala. This disrupts both GABAergic and glutamatergic transmission through amygdala circuits, including reward-related outputs to the nucleus accumbens. This likely disrupts peptide-dependent emotional learning processes in the amygdala during withdrawal and may direct behavior toward compulsive drug use.
Collapse
Affiliation(s)
- Gabrielle C Gregoriou
- Sydney Pharmacy School, Faculty of Medicine and Health and Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia, 2111
| | - Sahil D Patel
- Sydney Pharmacy School, Faculty of Medicine and Health and Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia, 2111
| | - Sebastian Pyne
- Sydney Pharmacy School, Faculty of Medicine and Health and Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia, 2111
| | - Bryony L Winters
- Sydney Pharmacy School, Faculty of Medicine and Health and Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia, 2111
| | - Elena E Bagley
- Sydney Pharmacy School, Faculty of Medicine and Health and Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia, 2111
| |
Collapse
|
48
|
Tryon SC, Bratsch-Prince JX, Warren JW, Jones GC, McDonald AJ, Mott DD. Differential Regulation of Prelimbic and Thalamic Transmission to the Basolateral Amygdala by Acetylcholine Receptors. J Neurosci 2023; 43:722-735. [PMID: 36535767 PMCID: PMC9899087 DOI: 10.1523/jneurosci.2545-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The amygdalar anterior basolateral nucleus (BLa) plays a vital role in emotional behaviors. This region receives dense cholinergic projections from basal forebrain which are critical in regulating neuronal activity in BLa. Cholinergic signaling in BLa has also been shown to modulate afferent glutamatergic inputs to this region. However, these studies, which have used cholinergic agonists or prolonged optogenetic stimulation of cholinergic fibers, may not reflect the effect of physiological acetylcholine release in the BLa. To better understand these effects of acetylcholine, we have used electrophysiology and optogenetics in male and female mouse brain slices to examine cholinergic regulation of afferent BLa input from cortex and midline thalamic nuclei. Phasic ACh release evoked by single pulse stimulation of cholinergic terminals had a biphasic effect on transmission at cortical input, producing rapid nicotinic receptor-mediated facilitation followed by slower mAChR-mediated depression. In contrast, at this same input, sustained ACh elevation through application of the cholinesterase inhibitor physostigmine suppressed glutamatergic transmission through mAChRs only. This suppression was not observed at midline thalamic nuclei inputs to BLa. In agreement with this pathway specificity, the mAChR agonist, muscarine more potently suppressed transmission at inputs from prelimbic cortex than thalamus. Muscarinic inhibition at prelimbic cortex input required presynaptic M4 mAChRs, while at thalamic input it depended on M3 mAChR-mediated stimulation of retrograde endocannabinoid signaling. Muscarinic inhibition at both pathways was frequency-dependent, allowing only high-frequency activity to pass. These findings demonstrate complex cholinergic regulation of afferent input to BLa that is pathway-specific and frequency-dependent.SIGNIFICANCE STATEMENT Cholinergic modulation of the basolateral amygdala regulates formation of emotional memories, but the underlying mechanisms are not well understood. Here, we show, using mouse brain slices, that ACh differentially regulates afferent transmission to the BLa from cortex and midline thalamic nuclei. Fast, phasic ACh release from a single optical stimulation biphasically regulates glutamatergic transmission at cortical inputs through nicotinic and muscarinic receptors, suggesting that cholinergic neuromodulation can serve precise, computational roles in the BLa. In contrast, sustained ACh elevation regulates cortical input through muscarinic receptors only. This muscarinic regulation is pathway-specific with cortical input inhibited more strongly than midline thalamic nuclei input. Specific targeting of these cholinergic receptors may thus provide a therapeutic strategy to bias amygdalar processing and regulate emotional memory.
Collapse
Affiliation(s)
- Sarah C Tryon
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208
| | - Joshua X Bratsch-Prince
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208
| | - James W Warren
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208
| | - Grace C Jones
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208
| | - Alexander J McDonald
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208
| | - David D Mott
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208
| |
Collapse
|
49
|
Katsumi Y, de Voogd LD, Ventura-Bort C, Liu W, Qin S. Editorial: Interaction between affect and memory in the brain: From basic mechanisms to clinical implications. Front Behav Neurosci 2023; 17:1120282. [PMID: 36761035 PMCID: PMC9903060 DOI: 10.3389/fnbeh.2023.1120282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Affiliation(s)
- Yuta Katsumi
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lycia D. de Voogd
- Center for Cognitive Neuroimaging, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioral Science Institute, Radboud University, Nijmegen, Netherlands
| | - Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Wei Liu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
50
|
Lin H, Zhang J, Dai Y, Liu H, He X, Chen L, Tao J, Li C, Liu W. Neurogranin as an important regulator in swimming training to improve the spatial memory dysfunction of mice with chronic cerebral hypoperfusion. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:116-129. [PMID: 35066217 PMCID: PMC9923430 DOI: 10.1016/j.jshs.2022.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/18/2021] [Accepted: 12/30/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Vascular cognitive impairment caused by chronic cerebral hypoperfusion (CCH) has become a hot issue worldwide. Aerobic exercise positively contributes to the preservation or restoration of cognitive abilities; however, the specific mechanism has remained inconclusive. And recent studies found that neurogranin (Ng) is a potential biomarker for cognitive impairment. This study aims to investigate the underlying role of Ng in swimming training to improve cognitive impairment. METHODS To test this hypothesis, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) system was utilized to construct a strain of Ng conditional knockout (Ng cKO) mice, and bilateral common carotid artery stenosis (BCAS) surgery was performed to prepare the model. In Experiment 1, 2-month-old male and female transgenic mice were divided into a control group (wild-type littermate, n = 9) and a Ng cKO group (n = 9). Then, 2-month-old male and female C57BL/6 mice were divided into a sham group (C57BL/6, n = 12) and a BCAS group (n = 12). In Experiment 2, 2-month-old male and female mice were divided into a sham group (wild-type littermate, n = 12), BCAS group (n = 12), swim group (n = 12), BCAS + Ng cKO group (n = 12), and swim + Ng cKO group (n = 12). Then, 7 days after BCAS, mice were given swimming training for 5 weeks (1 week for adaptation and 4 weeks for training, 5 days a week, 60 min a day). After intervention, laser speckle was used to detect cerebral blood perfusion in the mice, and the T maze and Morris water maze were adopted to test their spatial memory. Furthermore, electrophysiology and Western blotting were conducted to record long-term potential and observe the expressions of Ca2+ pathway-related proteins, respectively. Immunohistochemistry was applied to analyze the expression of relevant markers in neuronal damage, inflammation, and white matter injury. RESULTS The figures showed that spatial memory impairment was detected in Ng cKO mice, and a sharp decline of cerebral blood flow and an impairment of progressive spatial memory were observed in BCAS mice. Regular swimming training improved the spatial memory impairment of BCAS mice. This was achieved by preventing long-term potential damage and reversing the decline of Ca2+ signal transduction pathway-related proteins. At the same time, the results suggested that swimming also led to improvements in neuronal death, inflammation, and white matter injury induced by CCH. Further study adopted the use of Ng cKO transgenic mice, and the results indicated that the positive effects of swimming training on cognitive impairments, synaptic plasticity, and related pathological changes caused by CCH could be abolished by the knockout of Ng. CONCLUSION Swimming training can mediate the expression of Ng to enhance hippocampal synaptic plasticity and improve related pathological changes induced by CCH, thereby ameliorating the spatial memory impairment of vascular cognitive impairment.
Collapse
Affiliation(s)
- Huawei Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jiayong Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yaling Dai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Huanhuan Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaojun He
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lewen Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jing Tao
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chaohui Li
- General surgery, Anxi General Hospital of Traditional Chinese Medicine, Quanzhou 362400, China
| | - Weilin Liu
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|