1
|
Naffaa MM. Neurogenesis dynamics in the olfactory bulb: deciphering circuitry organization, function, and adaptive plasticity. Neural Regen Res 2025; 20:1565-1581. [PMID: 38934393 PMCID: PMC11688548 DOI: 10.4103/nrr.nrr-d-24-00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover, the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.
Collapse
Affiliation(s)
- Moawiah M. Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Yang Y, Cao TQ, He SH, Wang LC, He QH, Fan LZ, Huang YZ, Zhang HR, Wang Y, Dang YY, Wang N, Chai XK, Wang D, Jiang QH, Li XL, Liu C, Wang SY. Revolutionizing treatment for disorders of consciousness: a multidisciplinary review of advancements in deep brain stimulation. Mil Med Res 2024; 11:81. [PMID: 39690407 DOI: 10.1186/s40779-024-00585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Among the existing research on the treatment of disorders of consciousness (DOC), deep brain stimulation (DBS) offers a highly promising therapeutic approach. This comprehensive review documents the historical development of DBS and its role in the treatment of DOC, tracing its progression from an experimental therapy to a detailed modulation approach based on the mesocircuit model hypothesis. The mesocircuit model hypothesis suggests that DOC arises from disruptions in a critical network of brain regions, providing a framework for refining DBS targets. We also discuss the multimodal approaches for assessing patients with DOC, encompassing clinical behavioral scales, electrophysiological assessment, and neuroimaging techniques methods. During the evolution of DOC therapy, the segmentation of central nuclei, the recording of single-neurons, and the analysis of local field potentials have emerged as favorable technical factors that enhance the efficacy of DBS treatment. Advances in computational models have also facilitated a deeper exploration of the neural dynamics associated with DOC, linking neuron-level dynamics with macroscopic behavioral changes. Despite showing promising outcomes, challenges remain in patient selection, precise target localization, and the determination of optimal stimulation parameters. Future research should focus on conducting large-scale controlled studies to delve into the pathophysiological mechanisms of DOC. It is imperative to further elucidate the precise modulatory effects of DBS on thalamo-cortical and cortico-cortical functional connectivity networks. Ultimately, by optimizing neuromodulation strategies, we aim to substantially enhance therapeutic outcomes and greatly expedite the process of consciousness recovery in patients.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Innovative Center, Beijing Institute of Brain Disorders, Beijing, 100070, China.
- Department of Neurosurgery, Chinese Institute for Brain Research, Beijing, 100070, China.
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7BN, UK.
| | - Tian-Qing Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Sheng-Hong He
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7BN, UK
| | - Lu-Chen Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Qi-Heng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Ling-Zhong Fan
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yong-Zhi Huang
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Hao-Ran Zhang
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100080, China
| | - Yuan-Yuan Dang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100080, China
| | - Nan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiao-Ke Chai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Dong Wang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Qiu-Hua Jiang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Xiao-Li Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chen Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
| | - Shou-Yan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Sun J, Yan J, Zhao L, Wei X, Qiu C, Dong W, Luo B, Zhang W. Spinal Cord Stimulation for Prolonged Disorders of Consciousness: A Study on Scalp Electroencephalography. CNS Neurosci Ther 2024; 30:e70180. [PMID: 39736021 DOI: 10.1111/cns.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Patients with disorders of consciousness (DOC) undergoing spinal cord stimulation (SCS) for arousal treatment require an assessment of their conscious state before and after the procedure. This is typically evaluated using behavioral scales (CRS-R), but this method can be influenced by the subjectivity of the physician. Event-related potentials (ERP) and EEG power spectrum are associated with the recovery of consciousness. This study aims to explore the electrophysiological and behavioral evidence of consciousness recovery in DOC patients after spinal cord stimulation (SCS) and to investigate the role of scalp EEG as a guide for preoperative assessment related to the surgery. METHODS For the 27 recruited patients, the CRS-R scale assessment and ERP P300 evaluation were completed before the surgery. At 3 months post-surgery, all 27 patients underwent the same assessments as preoperatively, and at 6 months post-surgery, the same evaluations were repeated for the 15 patients who could still be followed up. Between May 2023 and November 2023, resting-state EEG was collected from 13 patients using a 19-channel setup, with additional resting-state EEG recordings taken at 3 months and 6 months after the surgery. The EEG data were processed using EEGLAB to obtain P300-related metrics and EEG power spectrum. Changes in the CRS-R scale, ERP, and EEG power spectrum before and after the surgery were compared. RESULTS The Behavioral Scale (CRS-R) showed significant improvement at 3 months and 6 months post-surgery compared to preoperative assessments, with statistical significance (p < 0.001). The resting-state EEG power in the 5-9 Hz frequency band demonstrated statistically significant improvements at the P3 and O1 electrodes; however, this statistical result do not survive FDR correction. In the 9-13 Hz and 20-35 Hz frequency bands, the power spectrum showed statistically significant improvements across most electrodes of the brain, and these results survive FDR correction (p < 0.05). The mean amplitude, peak, and latency of P300 at the Pz electrode showed significant improvements at 3 months and 6 months post-surgery compared to preoperative values, with statistical significance (p < 0.05). CONCLUSION Our study shows that SCS can effectively improve the consciousness states of patients with DOC. After surgery, there were positive changes in the EEG power spectrum of the patients, transitioning from type "B" to better types "C" and "D." The average amplitude, peak, and latency of P300 also demonstrated significant improvements postoperatively. We believe that the "ABCD" model and ERP assessment applied during the preoperative evaluation can effectively enhance the success rate of SCS surgery in promoting awakening.
Collapse
Affiliation(s)
- Jian Sun
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiuqi Yan
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Zhao
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Wei
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Qiu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Dong
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Bei Luo
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Camassa A, Torao-Angosto M, Manasanch A, Kringelbach ML, Deco G, Sanchez-Vives MV. The temporal asymmetry of cortical dynamics as a signature of brain states. Sci Rep 2024; 14:24271. [PMID: 39414871 PMCID: PMC11484927 DOI: 10.1038/s41598-024-74649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
The brain is a complex non-equilibrium system capable of expressing many different dynamics as well as the transitions between them. We hypothesized that the level of non-equilibrium can serve as a signature of a given brain state, which was quantified using the arrow of time (the level of irreversibility). Using this thermodynamic framework, the irreversibility of emergent cortical activity was quantified from local field potential recordings in male Lister-hooded rats at different anesthesia levels and during the sleep-wake cycle. This measure was carried out on five distinct brain states: slow-wave sleep, awake, deep anesthesia-slow waves, light anesthesia-slow waves, and microarousals. Low levels of irreversibility were associated with synchronous activity found both in deep anesthesia and slow-wave sleep states, suggesting that slow waves were the state closest to the thermodynamic equilibrium (maximum symmetry), thus requiring minimum energy. Higher levels of irreversibility were found when brain dynamics became more asynchronous, for example, in wakefulness. These changes were also reflected in the hierarchy of cortical dynamics across different cortical areas. The neural dynamics associated with different brain states were characterized by different degrees of irreversibility and hierarchy, also acting as markers of brain state transitions. This could open new routes to monitoring, controlling, and even changing brain states in health and disease.
Collapse
Affiliation(s)
- Alessandra Camassa
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Melody Torao-Angosto
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Arnau Manasanch
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, 8000, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Maria V Sanchez-Vives
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain.
| |
Collapse
|
5
|
Pardo-Valencia J, Moreno-Gomez M, Mercado N, Pro B, Ammann C, Humanes-Valera D, Foffani G. Local wakefulness-like activity of layer 5 cortex under general anaesthesia. J Physiol 2024; 602:5289-5307. [PMID: 39316039 DOI: 10.1113/jp286417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024] Open
Abstract
Consciousness, defined as being aware of and responsive to one's surroundings, is characteristic of normal waking life and typically is lost during sleep and general anaesthesia. The traditional view of consciousness as a global brain state has evolved toward a more sophisticated interplay between global and local states, with the presence of local sleep in the awake brain and local wakefulness in the sleeping brain. However, this interplay is not clear for general anaesthesia, where loss of consciousness was recently suggested to be associated with a global state of brain-wide synchrony that selectively involves layer 5 cortical pyramidal neurons across sensory, motor and associative areas. According to this global view, local wakefulness of layer 5 cortex should be incompatible with deep anaesthesia, a hypothesis that deserves to be scrutinised with causal manipulations. Here, we show that unilateral chemogenetic activation of layer 5 pyramidal neurons in the sensorimotor cortex of isoflurane-anaesthetised mice induces a local state transition from slow-wave activity to tonic firing in the transfected hemisphere. This wakefulness-like activity dramatically disrupts layer 5 interhemispheric synchrony with mirror-image locations in the contralateral hemisphere, but does not reduce the level of unconsciousness under deep anaesthesia, nor in the transitions to/from anaesthesia. Global layer 5 synchrony may thus be a sufficient condition for anaesthesia-induced unconsciousness, but is not a necessary one, at least under isoflurane anaesthesia. Local wakefulness-like activity of layer 5 cortex can be induced and maintained under deep anaesthesia, encouraging further investigation into the local vs. global aspects of anaesthesia-induced unconsciousness. KEY POINTS: The neural correlates of consciousness have evolved from global brain states to a nuanced interplay between global and local states, evident in terms of local sleep in awake brains and local wakefulness in sleeping brains. The concept of local wakefulness remains unclear for general anaesthesia, where the loss of consciousness has been recently suggested to involve brain-wide synchrony of layer 5 cortical neurons. We found that local wakefulness-like activity of layer 5 cortical can be chemogenetically induced in anaesthetised mice without affecting the depth of anaesthesia or the transitions to and from unconsciousness. Global layer 5 synchrony may thus be a sufficient but not necessary feature for the unconsciousness induced by general anaesthesia. Local wakefulness-like activity of layer 5 neurons is compatible with general anaesthesia, thus promoting further investigation into the local vs. global aspects of anaesthesia-induced unconsciousness.
Collapse
Affiliation(s)
- Jesús Pardo-Valencia
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Miryam Moreno-Gomez
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, Madrid, Spain
| | - Noelia Mercado
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Beatriz Pro
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Claudia Ammann
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Desire Humanes-Valera
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Idesis S, Patow G, Allegra M, Vohryzek J, Sanz Perl Y, Sanchez-Vives MV, Massimini M, Corbetta M, Deco G. Whole-brain model replicates sleep-like slow-wave dynamics generated by stroke lesions. Neurobiol Dis 2024; 200:106613. [PMID: 39079580 DOI: 10.1016/j.nbd.2024.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Focal brain injuries, such as stroke, cause local structural damage as well as alteration of neuronal activity in distant brain regions. Experimental evidence suggests that one of these changes is the appearance of sleep-like slow waves in the otherwise awake individual. This pattern is prominent in areas surrounding the damaged region and can extend to connected brain regions in a way consistent with the individual's specific long-range connectivity patterns. In this paper we present a generative whole-brain model based on (f)MRI data that, in combination with the disconnection mask associated with a given patient, explains the effects of the sleep-like slow waves originated in the vicinity of the lesion area on the distant brain activity. Our model reveals new aspects of their interaction, being able to reproduce functional connectivity patterns of stroke patients and offering a detailed, causal understanding of how stroke-related effects, in particular slow waves, spread throughout the brain. The presented findings demonstrate that the model effectively captures the links between stroke occurrences, sleep-like slow waves, and their subsequent spread across the human brain.
Collapse
Affiliation(s)
- Sebastian Idesis
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005 Barcelona, Catalonia, Spain.
| | - Gustavo Patow
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005 Barcelona, Catalonia, Spain; ViRVIG, University of Girona, Girona, Spain
| | - Michele Allegra
- Padova Neuroscience Center (PNC), University of Padova, via Orus 2/B, 35129 Padova, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, via Marzolo 8, 35131 Padova, Italy
| | - Jakub Vohryzek
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005 Barcelona, Catalonia, Spain; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK
| | - Yonatan Sanz Perl
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005 Barcelona, Catalonia, Spain; Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council, Buenos Aires, Argentina; Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosellón, 149, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy; IRCCS, Fondazione Don Carlo Gnocchi Onlus, Milan 20148, Italy
| | - Maurizio Corbetta
- Padova Neuroscience Center (PNC), University of Padova, via Orus 2/B, 35129 Padova, Italy; Department of Neuroscience University of Padova, via Giustiniani 5, 35128 Padova, Italy; Venetian Institute of Molecular Medicine (VIMM), via Orus 2/B, 35129 Padova, Italy
| | - Gustavo Deco
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005 Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Massimini M, Corbetta M, Sanchez-Vives MV, Andrillon T, Deco G, Rosanova M, Sarasso S. Sleep-like cortical dynamics during wakefulness and their network effects following brain injury. Nat Commun 2024; 15:7207. [PMID: 39174560 PMCID: PMC11341729 DOI: 10.1038/s41467-024-51586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
By connecting old and recent notions, different spatial scales, and research domains, we introduce a novel framework on the consequences of brain injury focusing on a key role of slow waves. We argue that the long-standing finding of EEG slow waves after brain injury reflects the intrusion of sleep-like cortical dynamics during wakefulness; we illustrate how these dynamics are generated and how they can lead to functional network disruption and behavioral impairment. Finally, we outline a scenario whereby post-injury slow waves can be modulated to reawaken parts of the brain that have fallen asleep to optimize rehabilitation strategies and promote recovery.
Collapse
Grants
- The authors thank Dr Ezequiel Mikulan, Dr Silvia Casarotto, Dr Andrea Pigorini, Dr Simone Russo, and Dr Pilleriin Sikka for their help and comments on the manuscript draft and illustrations. This work was financially supported by the following entities: ERC-2022-SYG Grant number 101071900 Neurological Mechanisms of Injury and Sleep-like Cellular Dynamics (NEMESIS); Italian National Recovery and Resilience Plan (NRRP), M4C2, funded by the European Union - NextGenerationEU (Project IR0000011, CUP B51E22000150006, “EBRAINS-Italy”); European Union’s Horizon 2020 Framework Program for Research and Innovation under the Specific Grant Agreement No.945539 (Human Brain Project SGA3); Tiny Blue Dot Foundation; Canadian Institute for Advanced Research (CIFAR), Canada; Italian Ministry for Universities and Research (PRIN 2022); Fondazione Regionale per la Ricerca Biomedica (Regione Lombardia), Project ERAPERMED2019–101, GA 779282; CORTICOMOD PID2020-112947RB-I00 financed by MCIN/ AEI /10.13039/501100011033; Fondazione Cassa di Risparmio di Padova e Rovigo (CARIPARO) Grant Agreement number 55403; Ministry of Health, Italy (RF-2008 -12366899) Brain connectivity measured with high-density electroencephalography: a novel neurodiagnostic tool for stroke- NEUROCONN; BIAL foundation grant (Grant Agreement number 361/18); H2020 European School of Network Neuroscience (euSNN); H2020 Visionary Nature Based Actions For Heath, Wellbeing & Resilience in Cities (VARCITIES); Ministry of Health Italy (RF-2019-12369300): Eye-movement dynamics during free viewing as biomarker for assessment of visuospatial functions and for closed-loop rehabilitation in stroke (EYEMOVINSTROKE).
Collapse
Affiliation(s)
- Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Thomas Andrillon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Mov'it team, Inserm, CNRS, Paris, France
- Monash Centre for Consciousness and Contemplative Studies, Faculty of Arts, Monash University, Melbourne, VIC, Australia
| | - Gustavo Deco
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Center for Brain and Cognition, Computational Neuroscience Group, Barcelona, Spain
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Tscherpel C, Mustin M, Massimini M, Paul T, Ziemann U, Fink GR, Grefkes C. Local neuronal sleep after stroke: The role of cortical bistability in brain reorganization. Brain Stimul 2024; 17:836-846. [PMID: 39019396 DOI: 10.1016/j.brs.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Acute cerebral ischemia triggers a number of cellular mechanisms not only leading to excitotoxic cell death but also to enhanced neuroplasticity, facilitating neuronal reorganization and functional recovery. OBJECTIVE Transferring these cellular mechanisms to neurophysiological correlates adaptable to patients is crucial to promote recovery post-stroke. The combination of TMS and EEG constitutes a promising readout of neuronal network activity in stroke patients. METHODS We used the combination of TMS and EEG to investigate the development of local signal processing and global network alterations in 40 stroke patients with motor deficits alongside neural reorganization from the acute to the chronic phase. RESULTS We show that the TMS-EEG response reflects information about reorganization and signal alterations associated with persistent motor deficits throughout the entire post-stroke period. In the early post-stroke phase and in a subgroup of patients with severe motor deficits, TMS applied to the lesioned motor cortex evoked a sleep-like slow wave response associated with a cortical off-period, a manifestation of cortical bistability, as well as a rapid disruption of the TMS-induced formation of causal network effects. Mechanistically, these phenomena were linked to lesions affecting ascending activating brainstem fibers. Of note, slow waves invariably vanished in the chronic phase, but were highly indicative of a poor functional outcome. CONCLUSION In summary, we found evidence that transient effects of sleep-like slow waves and cortical bistability within ipsilesional M1 resulting in excessive inhibition may interfere with functional reorganization, leading to a less favorable functional outcome post-stroke, pointing to a new therapeutic target to improve recovery of function.
Collapse
Affiliation(s)
- Caroline Tscherpel
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Maike Mustin
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Marcello Massimini
- Department of Biomedical and Clinical Science 'L. Sacco', University Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Theresa Paul
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Gereon R Fink
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
9
|
Choudhary K, Berberich S, Hahn TTG, McFarland JM, Mehta MR. Spontaneous persistent activity and inactivity in vivo reveals differential cortico-entorhinal functional connectivity. Nat Commun 2024; 15:3542. [PMID: 38719802 PMCID: PMC11079062 DOI: 10.1038/s41467-024-47617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Understanding the functional connectivity between brain regions and its emergent dynamics is a central challenge. Here we present a theory-experiment hybrid approach involving iteration between a minimal computational model and in vivo electrophysiological measurements. Our model not only predicted spontaneous persistent activity (SPA) during Up-Down-State oscillations, but also inactivity (SPI), which has never been reported. These were confirmed in vivo in the membrane potential of neurons, especially from layer 3 of the medial and lateral entorhinal cortices. The data was then used to constrain two free parameters, yielding a unique, experimentally determined model for each neuron. Analytic and computational analysis of the model generated a dozen quantitative predictions about network dynamics, which were all confirmed in vivo to high accuracy. Our technique predicted functional connectivity; e. g. the recurrent excitation is stronger in the medial than lateral entorhinal cortex. This too was confirmed with connectomics data. This technique uncovers how differential cortico-entorhinal dialogue generates SPA and SPI, which could form an energetically efficient working-memory substrate and influence the consolidation of memories during sleep. More broadly, our procedure can reveal the functional connectivity of large networks and a theory of their emergent dynamics.
Collapse
Affiliation(s)
- Krishna Choudhary
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA
- HRL Laboratories, Malibu, CA, USA
| | - Sven Berberich
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | | | - Mayank R Mehta
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.
- W. M. Keck Center for Neurophysics, University of California, Los Angeles, CA, USA.
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.
- Departments of Neurology and Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Branchi I. Taming Complexity from the Interface: Simplifying Neuroscience. Neuroscience 2024; 544:102-103. [PMID: 38447689 DOI: 10.1016/j.neuroscience.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Affiliation(s)
- Igor Branchi
- Center for Behavioral Sciences and Mental Health Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Roma, Italy.
| |
Collapse
|
11
|
Casarotto S, Hassan G, Rosanova M, Sarasso S, Derchi CC, Trimarchi PD, Viganò A, Russo S, Fecchio M, Devalle G, Navarro J, Massimini M, Comanducci A. Dissociations between spontaneous electroencephalographic features and the perturbational complexity index in the minimally conscious state. Eur J Neurosci 2024; 59:934-947. [PMID: 38440949 DOI: 10.1111/ejn.16299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
The analysis of spontaneous electroencephalogram (EEG) is a cornerstone in the assessment of patients with disorders of consciousness (DoC). Although preserved EEG patterns are highly suggestive of consciousness even in unresponsive patients, moderately or severely abnormal patterns are difficult to interpret. Indeed, growing evidence shows that consciousness can be present despite either large delta or reduced alpha activity in spontaneous EEG. Quantifying the complexity of EEG responses to direct cortical perturbations (perturbational complexity index [PCI]) may complement the observational approach and provide a reliable assessment of consciousness even when spontaneous EEG features are inconclusive. To seek empirical evidence of this hypothesis, we compared PCI with EEG spectral measures in the same population of minimally conscious state (MCS) patients (n = 40) hospitalized in rehabilitation facilities. We found a remarkable variability in spontaneous EEG features across MCS patients as compared with healthy controls: in particular, a pattern of predominant delta and highly reduced alpha power-more often observed in vegetative state/unresponsive wakefulness syndrome (VS/UWS) patients-was found in a non-negligible number of MCS patients. Conversely, PCI values invariably fell above an externally validated empirical cutoff for consciousness in all MCS patients, consistent with the presence of clearly discernible, albeit fleeting, behavioural signs of awareness. These results confirm that, in some MCS patients, spontaneous EEG rhythms may be inconclusive about the actual capacity for consciousness and suggest that a perturbational approach can effectively compensate for this pitfall with practical implications for the individual patient's stratification and tailored rehabilitation.
Collapse
Affiliation(s)
- Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Gabriel Hassan
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | | | | | - Simone Russo
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Guya Devalle
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Jorge Navarro
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Angela Comanducci
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
12
|
Cancino-Fuentes N, Manasanch A, Covelo J, Suarez-Perez A, Fernandez E, Matsoukis S, Guger C, Illa X, Guimerà-Brunet A, Sanchez-Vives MV. Recording physiological and pathological cortical activity and exogenous electric fields using graphene microtransistor arrays in vitro. NANOSCALE 2024; 16:664-677. [PMID: 38100059 DOI: 10.1039/d3nr03842d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Graphene-based solution-gated field-effect transistors (gSGFETs) allow the quantification of the brain's full-band signal. Extracellular alternating current (AC) signals include local field potentials (LFP, population activity within a reach of hundreds of micrometers), multiunit activity (MUA), and ultimately single units. Direct current (DC) potentials are slow brain signals with a frequency under 0.1 Hz, and commonly filtered out by conventional AC amplifiers. This component conveys information about what has been referred to as "infraslow" activity. We used gSGFET arrays to record full-band patterns from both physiological and pathological activity generated by the cerebral cortex. To this end, we used an in vitro preparation of cerebral cortex that generates spontaneous rhythmic activity, such as that occurring in slow wave sleep. This examination extended to experimentally induced pathological activities, including epileptiform discharges and cortical spreading depression. Validation of recordings obtained via gSGFETs, including both AC and DC components, was accomplished by cross-referencing with well-established technologies, thereby quantifying these components across different activity patterns. We then explored an additional gSGFET potential application, which is the measure of externally induced electric fields such as those used in therapeutic neuromodulation in humans. Finally, we tested the gSGFETs in human cortical slices obtained intrasurgically. In conclusion, this study offers a comprehensive characterization of gSGFETs for brain recordings, with a focus on potential clinical applications of this emerging technology.
Collapse
Affiliation(s)
| | - Arnau Manasanch
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Joana Covelo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Alex Suarez-Perez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | | | - Stratis Matsoukis
- g.tec medical engineering, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | | | - Xavi Illa
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Anton Guimerà-Brunet
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- ICREA, Barcelona, Spain
| |
Collapse
|
13
|
Mayeli A, Donati FL, Ferrarelli F. Altered Sleep Oscillations as Neurophysiological Biomarkers of Schizophrenia. ADVANCES IN NEUROBIOLOGY 2024; 40:351-383. [PMID: 39562451 DOI: 10.1007/978-3-031-69491-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Sleep spindles and slow waves are the two main oscillatory activities occurring during nonrapid eye movement (NREM) sleep. Here, we will first describe the electrophysiological characteristics of these sleep oscillations along with the neurophysiological and molecular mechanisms underlying their generation and synchronization in the healthy brain. We will then review the extant evidence of deficits in sleep spindles and, to a lesser extent, slow waves, including in slow wave-spindle coupling, in patients with Schizophrenia (SCZ) across the course of the disorder, from at-risk to chronic stages. Next, we will discuss how these sleep oscillatory deficits point to defects in neuronal circuits within the thalamocortical network as well as to alterations in molecular neurotransmission implicating the GABAergic and glutamatergic systems in SCZ. Finally, after explaining how spindle and slow waves may represent neurophysiological biomarkers with predictive, diagnostic, and prognostic potential, we will present novel pharmacological and neuromodulatory interventions aimed at restoring sleep oscillatory deficits in SCZ, which in turn may serve as target engagement biomarkers to ameliorate the clinical symptoms and the quality of life of individuals affected by this devastating brain disorder.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Iotchev IB, Bognár Z, Tóth K, Reicher V, Kis A, Kubinyi E. Sleep-physiological correlates of brachycephaly in dogs. Brain Struct Funct 2023; 228:2125-2136. [PMID: 37742302 PMCID: PMC10587206 DOI: 10.1007/s00429-023-02706-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
The shape of the cranium is one of the most notable physical changes induced in domestic dogs through selective breeding and is measured using the cephalic index (CI). High CI (a ratio of skull width to skull length > 60) is characterized by a short muzzle and flat face and is referred to as brachycephaly. Brachycephalic dogs display some potentially harmful changes in neuroanatomy, and there are implications for differences in behavior, as well. The path from anatomy to cognition, however, has not been charted in its entirety. Here, we report that sleep-physiological markers of white-matter loss (high delta power, low frontal spindle frequency, i.e., spindle waves/s), along with a spectral profile for REM (low beta, high delta) associated with low intelligence in humans, are each linked to higher CI values in the dog. Additionally, brachycephalic subjects spent more time sleeping, suggesting that the sleep apnea these breeds usually suffer from increases daytime sleepiness. Within sleep, more time was spent in the REM sleep stage than in non-REM, while REM duration was correlated positively with the number of REM episodes across dogs. It is currently not clear if the patterns of sleep and sleep-stage duration are mainly caused by sleep-impairing troubles in breathing and thermoregulation, present a juvenile-like sleeping profile, or are caused by neuro-psychological conditions secondary to the effects of brachycephaly, e.g., frequent REM episodes are known to appear in human patients with depression. While future studies should more directly address the interplay of anatomy, physiology, and behavior within a single experiment, this represents the first description of how the dynamics of the canine brain covary with CI, as measured in resting companion dogs using a non-invasive sleep EEG methodology. The observations suggest that the neuroanatomical changes accompanying brachycephaly alter neural systems in a way that can be captured in the sleep EEG, thus supporting the utility of the latter in the study of canine brain health and function.
Collapse
Affiliation(s)
| | - Zsófia Bognár
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Katinka Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Vivien Reicher
- Doctoral School of Biology, Eötvös Loránd University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Developmental and Translational Neuroscience Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- ELTE-ELKH NAP Comparative Ethology Research Group, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| |
Collapse
|
15
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
16
|
Dalla Porta L, Barbero-Castillo A, Sanchez-Sanchez JM, Sanchez-Vives MV. M-current modulation of cortical slow oscillations: Network dynamics and computational modeling. PLoS Comput Biol 2023; 19:e1011246. [PMID: 37405991 DOI: 10.1371/journal.pcbi.1011246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
The slow oscillation is a synchronized network activity expressed by the cortical network in slow wave sleep and under anesthesia. Waking up requires a transition from this synchronized brain state to a desynchronized one. Cholinergic innervation is critical for the transition from slow-wave-sleep to wakefulness, and muscarinic action is largely exerted through the muscarinic-sensitive potassium current (M-current) block. We investigated the dynamical impact of blocking the M-current on slow oscillations, both in cortical slices and in a cortical network computational model. Blocking M-current resulted in an elongation of Up states (by four times) and in a significant firing rate increase, reflecting an increased network excitability, albeit no epileptiform discharges occurred. These effects were replicated in a biophysical cortical model, where a parametric reduction of the M-current resulted in a progressive elongation of Up states and firing rate. All neurons, and not only those modeled with M-current, increased their firing rates due to network recurrency. Further increases in excitability induced even longer Up states, approaching the microarousals described in the transition towards wakefulness. Our results bridge an ionic current with network modulation, providing a mechanistic insight into network dynamics of awakening.
Collapse
Affiliation(s)
- Leonardo Dalla Porta
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- ICREA, Passeig Lluís Companys, Barcelona, Spain
| |
Collapse
|
17
|
Klaver LMF, Brinkhof LP, Sikkens T, Casado-Román L, Williams AG, van Mourik-Donga L, Mejías JF, Pennartz CMA, Bosman CA. Spontaneous variations in arousal modulate subsequent visual processing and local field potential dynamics in the ferret during quiet wakefulness. Cereb Cortex 2023; 33:7564-7581. [PMID: 36935096 PMCID: PMC10267643 DOI: 10.1093/cercor/bhad061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
Behavioral states affect neuronal responses throughout the cortex and influence visual processing. Quiet wakefulness (QW) is a behavioral state during which subjects are quiescent but awake and connected to the environment. Here, we examined the effects of pre-stimulus arousal variability on post-stimulus neural activity in the primary visual cortex and posterior parietal cortex in awake ferrets, using pupil diameter as an indicator of arousal. We observed that the power of stimuli-induced alpha (8-12 Hz) decreases when the arousal level increases. The peak of alpha power shifts depending on arousal. High arousal increases inter- and intra-areal coherence. Using a simplified model of laminar circuits, we show that this connectivity pattern is compatible with feedback signals targeting infragranular layers in area posterior parietal cortex and supragranular layers in V1. During high arousal, neurons in V1 displayed higher firing rates at their preferred orientations. Broad-spiking cells in V1 are entrained to high-frequency oscillations (>80 Hz), whereas narrow-spiking neurons are phase-locked to low- (12-18 Hz) and high-frequency (>80 Hz) rhythms. These results indicate that the variability and sensitivity of post-stimulus cortical responses and coherence depend on the pre-stimulus behavioral state and account for the neuronal response variability observed during repeated stimulation.
Collapse
Affiliation(s)
- Lianne M F Klaver
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lotte P Brinkhof
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tom Sikkens
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lorena Casado-Román
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Alex G Williams
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Laura van Mourik-Donga
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jorge F Mejías
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Conrado A Bosman
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Schiff ND. Mesocircuit mechanisms in the diagnosis and treatment of disorders of consciousness. Presse Med 2023; 52:104161. [PMID: 36563999 DOI: 10.1016/j.lpm.2022.104161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The 'mesocircuit hypothesis' proposes mechanisms underlying the recovery of consciousness following severe brain injuries. The model builds up from a single premise that multifocal brain injuries resulting in coma and subsequent disorders of consciousness produce widespread neuronal death and dysfunction. Considering the general properties of cortical, thalamic, and striatal neurons, a lawful and specific circuit-level mechanism is constructed based on these known anatomical and physiological specializations of neuronal subtypes. The mesocircuit model generates many testable predictions at the mesocircuit, local circuit, and cellular level across multiple cerebral structures to correlate diagnostic measurements and interpret therapeutic interventions. The anterior forebrain mesocircuit is integrally related to the frontal-parietal network, another network demonstrated to show strong correlation with levels of recovery in disorders of consciousness. A further extension known as the "ABCD" model has been used to examine interaction of these models in recovery of consciousness using electrophysiological data types. Many studies have examined predictions of the mesocircuit model; here we first present the model and review the accumulated evidence for several predictions of model across multiple stages of recovery function in human subjects. Recent studies linking the mesocircuit model, the ABCD model, and interactions with the frontoparietal network are reviewed. Finally, theoretical implications of the mesocircuit model at the neuronal level are considered to interpret recent studies of deep brain stimulation in the central lateral thalamus in patients recovering from coma and in new experimental models in the context of emerging understanding of neuronal and local circuit mechanisms underlying conscious brain states.
Collapse
Affiliation(s)
- Nicholas D Schiff
- Jerold B. Katz Professor of Neurology and Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, United States.
| |
Collapse
|
19
|
Vasilopoulos N, Kaplanian A, Vinos M, Katsaiti Y, Christodoulou O, Denaxa M, Skaliora I. The role of selective SATB1 deletion in somatostatin expressing interneurons on endogenous network activity and the transition to epilepsy. J Neurosci Res 2023; 101:424-447. [PMID: 36541427 DOI: 10.1002/jnr.25156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/24/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Somatostatin (SST) expressing interneurons are the second most abundant group of inhibitory neurons in the neocortex. They mainly target the apical dendrites of excitatory pyramidal cells and are implicated in feedforward and feedback inhibition. In the present study, we employ a conditional knockout mouse, in which the transcription factor Satb1 is selectively deleted in SST-expressing interneurons resulting to the reduction of their number across the somatosensory barrel field. Our goal was to investigate the effect of the reduced number of Satb1 mutant SST-interneurons on (i) the endogenous cortical network activity (spontaneously recurring Up/Down states), and (ii) the transition to epileptiform activity. By conducting LFP recordings in acute brain slices from young male and female mice, we demonstrate that mutant animals exhibit significant changes in network excitability, reflected in increased Up state occurrence, decreased Up state duration and higher levels of extracellular spiking activity. Epileptiform activity was induced through two distinct and widely used in vitro protocols: the low magnesium and the 4-Aminopyridine (4-AP) model. In the former, slices from mutant animals manifested shorter latency for the expression of stable seizure-like events. In contrast, when epilepsy was induced by 4-AP, no significant differences were reported. We conclude that normal SST-interneuron function has a significant role both in the regulation of the endogenous network activity, and in the transition to seizure-like discharges in a context-dependent manner.
Collapse
Affiliation(s)
- Nikos Vasilopoulos
- Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Ani Kaplanian
- Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Michael Vinos
- Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.,Department of History and Philosophy of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Yolanda Katsaiti
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.,Department of Biology, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Ourania Christodoulou
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| | - Myrto Denaxa
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Irini Skaliora
- Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.,Department of History and Philosophy of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
20
|
Herreras O, Torres D, Makarov VA, Makarova J. Theoretical considerations and supporting evidence for the primary role of source geometry on field potential amplitude and spatial extent. Front Cell Neurosci 2023; 17:1129097. [PMID: 37066073 PMCID: PMC10097999 DOI: 10.3389/fncel.2023.1129097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Field potential (FP) recording is an accessible means to capture the shifts in the activity of neuron populations. However, the spatial and composite nature of these signals has largely been ignored, at least until it became technically possible to separate activities from co-activated sources in different structures or those that overlap in a volume. The pathway-specificity of mesoscopic sources has provided an anatomical reference that facilitates transcending from theoretical analysis to the exploration of real brain structures. We review computational and experimental findings that indicate how prioritizing the spatial geometry and density of sources, as opposed to the distance to the recording site, better defines the amplitudes and spatial reach of FPs. The role of geometry is enhanced by considering that zones of the active populations that act as sources or sinks of current may arrange differently with respect to each other, and have different geometry and densities. Thus, observations that seem counterintuitive in the scheme of distance-based logic alone can now be explained. For example, geometric factors explain why some structures produce FPs and others do not, why different FP motifs generated in the same structure extend far while others remain local, why factors like the size of an active population or the strong synchronicity of its neurons may fail to affect FPs, or why the rate of FP decay varies in different directions. These considerations are exemplified in large structures like the cortex and hippocampus, in which the role of geometrical elements and regional activation in shaping well-known FP oscillations generally go unnoticed. Discovering the geometry of the sources in play will decrease the risk of population or pathway misassignments based solely on the FP amplitude or temporal pattern.
Collapse
Affiliation(s)
- Oscar Herreras
- Laboratory of Experimental and Computational Neurophysiology, Department of Translational Neuroscience, Cajal Institute, Spanish National Research Council, Madrid, Spain
- *Correspondence: Oscar Herreras,
| | - Daniel Torres
- Laboratory of Experimental and Computational Neurophysiology, Department of Translational Neuroscience, Cajal Institute, Spanish National Research Council, Madrid, Spain
| | - Valeriy A. Makarov
- Institute for Interdisciplinary Mathematics, School of Mathematics, Universidad Complutense de Madrid, Madrid, Spain
| | - Julia Makarova
- Laboratory of Experimental and Computational Neurophysiology, Department of Translational Neuroscience, Cajal Institute, Spanish National Research Council, Madrid, Spain
- Julia Makarova,
| |
Collapse
|
21
|
Astrocyte strategies in the energy-efficient brain. Essays Biochem 2023; 67:3-16. [PMID: 36350053 DOI: 10.1042/ebc20220077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Astrocytes generate ATP through glycolysis and mitochondrion respiration, using glucose, lactate, fatty acids, amino acids, and ketone bodies as metabolic fuels. Astrocytic mitochondria also participate in neuronal redox homeostasis and neurotransmitter recycling. In this essay, we aim to integrate the multifaceted evidence about astrocyte bioenergetics at the cellular and systems levels, with a focus on mitochondrial oxidation. At the cellular level, the use of fatty acid β-oxidation and the existence of molecular switches for the selection of metabolic mode and fuels are examined. At the systems level, we discuss energy audits of astrocytes and how astrocytic Ca2+ signaling might contribute to the higher performance and lower energy consumption of the brain as compared to engineered circuits. We finish by examining the neural-circuit dysregulation and behavior impairment associated with alterations of astrocytic mitochondria. We conclude that astrocytes may contribute to brain energy efficiency by coupling energy, redox, and computational homeostasis in neural circuits.
Collapse
|
22
|
Ghatak S, Nakamura T, Lipton SA. Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer's disease: Mechanistic insights and potential therapies. Front Neural Circuits 2023; 17:1099467. [PMID: 36817649 PMCID: PMC9932935 DOI: 10.3389/fncir.2023.1099467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is arguably the most common cause of dementia in the elderly and is marked by progressive synaptic degeneration, which in turn leads to cognitive decline. Studies in patients and in various AD models have shown that one of the early signatures of AD is neuronal hyperactivity. This excessive electrical activity contributes to dysregulated neural network function and synaptic damage. Mechanistically, evidence suggests that hyperexcitability accelerates production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that contribute to neural network impairment and synapse loss. This review focuses on the pathways and molecular changes that cause hyperexcitability and how RNS-dependent posttranslational modifications, represented predominantly by protein S-nitrosylation, mediate, at least in part, the deleterious effects of hyperexcitability on single neurons and the neural network, resulting in synaptic loss in AD.
Collapse
Affiliation(s)
- Swagata Ghatak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,*Correspondence: Tomohiro Nakamura,
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States,Stuart A. Lipton,
| |
Collapse
|
23
|
Khona M, Fiete IR. Attractor and integrator networks in the brain. Nat Rev Neurosci 2022; 23:744-766. [DOI: 10.1038/s41583-022-00642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
|
24
|
Rodrigues FR, Papanikolaou A, Holeniewska J, Phillips KG, Saleem AB, Solomon SG. Altered low-frequency brain rhythms precede changes in gamma power during tauopathy. iScience 2022; 25:105232. [PMID: 36274955 PMCID: PMC9579020 DOI: 10.1016/j.isci.2022.105232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative disorders are associated with widespread disruption to brain activity and brain rhythms. Some disorders are linked to dysfunction of the membrane-associated protein Tau. Here, we ask how brain rhythms are affected in rTg4510 mouse model of tauopathy, at an early stage of tauopathy (5 months), and at a more advanced stage (8 months). We measured brain rhythms in primary visual cortex in presence or absence of visual stimulation, while monitoring pupil diameter and locomotion to establish behavioral state. At 5 months, we found increased low-frequency rhythms during resting state in tauopathic animals, associated with periods of abnormally increased neural synchronization. At 8 months, this increase in low-frequency rhythms was accompanied by a reduction of power in the gamma range. Our results therefore show that slower rhythms are impaired earlier than gamma rhythms in this model of tauopathy, and suggest that electrophysiological measurements can track the progression of tauopathic neurodegeneration.
Collapse
Affiliation(s)
- Fabio R. Rodrigues
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Amalia Papanikolaou
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Joanna Holeniewska
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | | | - Aman B. Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Samuel G. Solomon
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| |
Collapse
|
25
|
Ilhan-Bayrakcı M, Cabral-Calderin Y, Bergmann TO, Tüscher O, Stroh A. Individual slow wave events give rise to macroscopic fMRI signatures and drive the strength of the BOLD signal in human resting-state EEG-fMRI recordings. Cereb Cortex 2022; 32:4782-4796. [PMID: 35094045 PMCID: PMC9627041 DOI: 10.1093/cercor/bhab516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 08/19/2024] Open
Abstract
The slow wave state is a general state of quiescence interrupted by sudden bursts of activity or so-called slow wave events (SWEs). Recently, the relationship between SWEs and blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals was assessed in rodent models which revealed cortex-wide BOLD activation. However, it remains unclear which macroscopic signature corresponds to these specific neurophysiological events in the human brain. Therefore, we analyzed simultaneous electroencephalographic (EEG)-fMRI data during human non-REM sleep. SWEs individually detected in the EEG data were used as predictors in event-related fMRI analyses to examine the relationship between SWEs and fMRI signals. For all 10 subjects we identified significant changes in BOLD activity associated with SWEs covering substantial parts of the gray matter. As demonstrated in rodents, we observed a direct relation of a neurophysiological event to specific BOLD activation patterns. We found a correlation between the number of SWEs and the spatial extent of these BOLD activation patterns and discovered that the amplitude of the BOLD response strongly depends on the SWE amplitude. As altered SWE propagation has recently been found in neuropsychiatric diseases, it is critical to reveal the brain's physiological slow wave state networks to potentially establish early imaging biomarkers for various diseases long before disease onset.
Collapse
Affiliation(s)
- Merve Ilhan-Bayrakcı
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Yuranny Cabral-Calderin
- Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, 60322 Frankfurt, Germany
| | - Til Ole Bergmann
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Oliver Tüscher
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Albrecht Stroh
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
26
|
Schwalm M, Tabuena DR, Easton C, Richner TJ, Mourad P, Watari H, Moody WJ, Stroh A. Functional States Shape the Spatiotemporal Representation of Local and Cortex-wide Neural Activity in Mouse Sensory Cortex. J Neurophysiol 2022; 128:763-777. [PMID: 35975935 DOI: 10.1152/jn.00424.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spatiotemporal representation of neural activity during rest and upon sensory stimulation in cortical areas is highly dynamic, and may be predominantly governed by cortical state. On the mesoscale level, intrinsic neuronal activity ranges from a persistent state, generally associated with a sustained depolarization of neurons, to a bimodal, slow-wave like state with bursts of neuronal activation, alternating with silent periods. These different activity states are prevalent under certain types of sedatives, or are associated with specific behavioral or vigilance conditions. Neurophysiological experiments assessing circuit activity, usually assume a constant underlying state, yet reports of variability of neuronal responses under seemingly constant conditions are common in the field. Even when a certain type of neural activity or cortical state can stably be maintained over time, the associated response properties are highly relevant for explaining experimental outcomes. Here we describe the spatiotemporal characteristics of ongoing activity and sensory evoked responses under two predominant functional states in the sensory cortices of mice: persistent activity (PA) and slow wave activity (SWA). Using electrophysiological recordings, and local and wide-field calcium recordings, we examine whether spontaneous and sensory evoked neuronal activity propagate throughout the cortex in a state dependent manner. We find that PA and SWA differ in their spatiotemporal characteristics which determine the cortical network's response to a sensory stimulus. During PA state, sensory stimulation elicits gamma-based short-latency responses which precisely follow each stimulation pulse and are prone to adaptation upon higher stimulation frequencies. Sensory responses during SWA are more variable, dependent on refractory periods following spontaneous slow waves. While spontaneous slow waves propagated in anterior-posterior direction in a majority of observations, the direction of propagation of stimulus-elicited wave depends on the sensory modality. These findings suggest that cortical state explains variance and should be considered when investigating multi-scale correlates of functional neurocircuit activity.
Collapse
Affiliation(s)
- Miriam Schwalm
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Dennis R Tabuena
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Curtis Easton
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Thomas J Richner
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Pierre Mourad
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Hirofumi Watari
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Department of Biology, University of Washington, Seattle, WA, United States
| | - William J Moody
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Albrecht Stroh
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
27
|
Northoff G, Vatansever D, Scalabrini A, Stamatakis EA. Ongoing Brain Activity and Its Role in Cognition: Dual versus Baseline Models. Neuroscientist 2022:10738584221081752. [PMID: 35611670 DOI: 10.1177/10738584221081752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
What is the role of the brain's ongoing activity for cognition? The predominant perspectives associate ongoing brain activity with resting state, the default-mode network (DMN), and internally oriented mentation. This triad is often contrasted with task states, non-DMN brain networks, and externally oriented mentation, together comprising a "dual model" of brain and cognition. In opposition to this duality, however, we propose that ongoing brain activity serves as a neuronal baseline; this builds upon Raichle's original search for the default mode of brain function that extended beyond the canonical default-mode brain regions. That entails what we refer to as the "baseline model." Akin to an internal biological clock for the rest of the organism, the ongoing brain activity may serve as an internal point of reference or standard by providing a shared neural code for the brain's rest as well as task states, including their associated cognition. Such shared neural code is manifest in the spatiotemporal organization of the brain's ongoing activity, including its global signal topography and dynamics like intrinsic neural timescales. We conclude that recent empirical evidence supports a baseline model over the dual model; the ongoing activity provides a global shared neural code that allows integrating the brain's rest and task states, its DMN and non-DMN, and internally and externally oriented cognition.
Collapse
|
28
|
Sirmpilatze N, Mylius J, Ortiz-Rios M, Baudewig J, Paasonen J, Golkowski D, Ranft A, Ilg R, Gröhn O, Boretius S. Spatial signatures of anesthesia-induced burst-suppression differ between primates and rodents. eLife 2022; 11:e74813. [PMID: 35607889 PMCID: PMC9129882 DOI: 10.7554/elife.74813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/01/2022] [Indexed: 01/19/2023] Open
Abstract
During deep anesthesia, the electroencephalographic (EEG) signal of the brain alternates between bursts of activity and periods of relative silence (suppressions). The origin of burst-suppression and its distribution across the brain remain matters of debate. In this work, we used functional magnetic resonance imaging (fMRI) to map the brain areas involved in anesthesia-induced burst-suppression across four mammalian species: humans, long-tailed macaques, common marmosets, and rats. At first, we determined the fMRI signatures of burst-suppression in human EEG-fMRI data. Applying this method to animal fMRI datasets, we found distinct burst-suppression signatures in all species. The burst-suppression maps revealed a marked inter-species difference: in rats, the entire neocortex engaged in burst-suppression, while in primates most sensory areas were excluded-predominantly the primary visual cortex. We anticipate that the identified species-specific fMRI signatures and whole-brain maps will guide future targeted studies investigating the cellular and molecular mechanisms of burst-suppression in unconscious states.
Collapse
Affiliation(s)
- Nikoloz Sirmpilatze
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
- Georg-August University of GöttingenGöttingenGermany
- International Max Planck Research School for NeurosciencesGöttingenGermany
| | - Judith Mylius
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
| | - Michael Ortiz-Rios
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
| | - Jürgen Baudewig
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
| | - Jaakko Paasonen
- A.I.V. Institute for Molecular Sciences, University of Eastern FinlandKuopioFinland
| | - Daniel Golkowski
- Department of Neurology, Klinikum Rechts der Isar der Technischen Universität MünchenMunichGermany
- Department of Neurology, Heidelberg University HospitalHeidelbergGermany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar der Technischen Universität MünchenMunichGermany
| | - Rüdiger Ilg
- Department of Neurology, Klinikum Rechts der Isar der Technischen Universität MünchenMunichGermany
- Department of Neurology, Asklepios Stadtklinik Bad TölzBad TölzGermany
| | - Olli Gröhn
- A.I.V. Institute for Molecular Sciences, University of Eastern FinlandKuopioFinland
| | - Susann Boretius
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
- Georg-August University of GöttingenGöttingenGermany
- International Max Planck Research School for NeurosciencesGöttingenGermany
- Leibniz Science Campus Primate CognitionGöttingenGermany
| |
Collapse
|
29
|
Tian D, Izumi SI. Transcranial Magnetic Stimulation and Neocortical Neurons: The Micro-Macro Connection. Front Neurosci 2022; 16:866245. [PMID: 35495053 PMCID: PMC9039343 DOI: 10.3389/fnins.2022.866245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the operation of cortical circuits is an important and necessary task in both neuroscience and neurorehabilitation. The functioning of the neocortex results from integrative neuronal activity, which can be probed non-invasively by transcranial magnetic stimulation (TMS). Despite a clear indication of the direct involvement of cortical neurons in TMS, no explicit connection model has been made between the microscopic neuronal landscape and the macroscopic TMS outcome. Here we have performed an integrative review of multidisciplinary evidence regarding motor cortex neurocytology and TMS-related neurophysiology with the aim of elucidating the micro–macro connections underlying TMS. Neurocytological evidence from animal and human studies has been reviewed to describe the landscape of the cortical neurons covering the taxonomy, morphology, circuit wiring, and excitatory–inhibitory balance. Evidence from TMS studies in healthy humans is discussed, with emphasis on the TMS pulse and paradigm selectivity that reflect the underlying neural circuitry constitution. As a result, we propose a preliminary neuronal model of the human motor cortex and then link the TMS mechanisms with the neuronal model by stimulus intensity, direction of induced current, and paired-pulse timing. As TMS bears great developmental potential for both a probe and modulator of neural network activity and neurotransmission, the connection model will act as a foundation for future combined studies of neurocytology and neurophysiology, as well as the technical advances and application of TMS.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- *Correspondence: Dongting Tian,
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Shin-Ichi Izumi,
| |
Collapse
|
30
|
Kaplanian A, Vinos M, Skaliora I. GABAb- and GABAa- mediated regulation of Up and Down states across development. J Physiol 2022; 600:2401-2427. [PMID: 35365894 DOI: 10.1113/jp282736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Slow oscillations (SOs), the EEG hallmark of non-REM sleep, and their cellular counterpart, Up-and-Down states (UDSs), are considered the default activity of the cerebral cortex and reflect the underlying neural connectivity. GABAb- and GABAa- receptor-mediated inhibition play a major role in regulating UDS activity. Although SOs and UDSs exhibit significant alterations as a function of age, it is unknown how developmental changes in inhibition contribute to the developmental profile of this activity. In this study, we reveal for the first time, age-dependent effects of GABAb and GABAa signalling on UDSs. We also document the differential subunit composition of postsynaptic GABAa receptors in young and adult animals, highlighting the α1-subunit as a major component of the age-differentiated regulation of UDSs. These findings help clarify the mechanisms that underlie the maturation of cortical network activity, and enhance our understanding regarding the emergence of neurodevelopmental disorders. ABSTRACT Slow oscillations, the hallmark of non-REM sleep, and their cellular counterpart, Up-and-Down states (UDSs), are considered a signature of cortical dynamics that reflect the intrinsic network organization. Although previous studies have explored the role of inhibition in regulating UDSs, little is known about whether this role changes with maturation. This is surprising since both slow oscillations and UDSs exhibit significant age-dependent alterations. To elucidate the developmental impact of GABAb and GABAa receptors on UDS activity, we conducted simultaneous LFP and intracellular recordings ex vivo, in brain slices of young and adult male mice, using selective blockers, CGP and non-saturating concentration of gabazine, respectively. Blockade of both GABAb- and GABAa- signalling showed age-differentiated functions. CGP caused an increase in Down state duration in young animals, but a decrease in adults. Gabazine evoked Spike-and-Wave-Discharges in both ages; however, while young networks became completely epileptic, adults maintained the ability to generate UDSs. Furthermore, voltage clamp recordings of mIPSCs revealed that gabazine selectively blocks phasic currents, particularly involving postsynaptic mechanisms. The latter exhibit clear maturational changes, suggesting a different subunit composition of GABAa receptors in young vs. adult animals. Indeed, subsequent LFP recordings under diazepam (nanomolar or micromolar concentrations) revealed that mechanisms engaging the drug's classical-binding-site, mediated by α1-subunit containing GABAa receptors, have a bigger contribution in Up state initiation in young networks compared to adults. Taken together, these findings help clarify the mechanisms that underlie the maturation of cortical network activity and enhance our understanding regarding the emergence of neurodevelopmental disorders. Abstract figure legend GABAb receptors' participation in Up state termination mechanisms is well-conserved across development. However, regulation of Down-to-Up transitions is age-dependent; GABAb receptors promote them in young while preventing them in adults. Up state maintenance is determined by age-dependent synaptic GABAa receptors' subunit composition and kinetics; α1-GABAa receptors dominate in young while non-α1-GABAa receptors dominate in adults. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ani Kaplanian
- Center for Basic Research, Biomedical Research Foundation of Academy of Athens (BRFAA), Athens, 11527, Greece.,Department of Biology, University of Patras, Rio, 26504, Greece
| | - Michael Vinos
- Center for Basic Research, Biomedical Research Foundation of Academy of Athens (BRFAA), Athens, 11527, Greece.,Department of History and Philosophy of Science, University of Athens, Athens, 15771, Greece
| | - Irini Skaliora
- Center for Basic Research, Biomedical Research Foundation of Academy of Athens (BRFAA), Athens, 11527, Greece.,Department of History and Philosophy of Science, University of Athens, Athens, 15771, Greece
| |
Collapse
|
31
|
Amunts K, DeFelipe J, Pennartz C, Destexhe A, Migliore M, Ryvlin P, Furber S, Knoll A, Bitsch L, Bjaalie JG, Ioannidis Y, Lippert T, Sanchez-Vives MV, Goebel R, Jirsa V. Linking Brain Structure, Activity, and Cognitive Function through Computation. eNeuro 2022; 9:ENEURO.0316-21.2022. [PMID: 35217544 PMCID: PMC8925650 DOI: 10.1523/eneuro.0316-21.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 01/19/2023] Open
Abstract
Understanding the human brain is a "Grand Challenge" for 21st century research. Computational approaches enable large and complex datasets to be addressed efficiently, supported by artificial neural networks, modeling and simulation. Dynamic generative multiscale models, which enable the investigation of causation across scales and are guided by principles and theories of brain function, are instrumental for linking brain structure and function. An example of a resource enabling such an integrated approach to neuroscientific discovery is the BigBrain, which spatially anchors tissue models and data across different scales and ensures that multiscale models are supported by the data, making the bridge to both basic neuroscience and medicine. Research at the intersection of neuroscience, computing and robotics has the potential to advance neuro-inspired technologies by taking advantage of a growing body of insights into perception, plasticity and learning. To render data, tools and methods, theories, basic principles and concepts interoperable, the Human Brain Project (HBP) has launched EBRAINS, a digital neuroscience research infrastructure, which brings together a transdisciplinary community of researchers united by the quest to understand the brain, with fascinating insights and perspectives for societal benefits.
Collapse
Affiliation(s)
- Katrin Amunts
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich 52425, Germany
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28002, Spain
| | - Cyriel Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Alain Destexhe
- Centre National de la Recherche Scientifique, Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Gif sur Yvette 91400, France
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo 90146, Italy
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne CH-1011, Switzerland
| | - Steve Furber
- Department of Computer Science, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alois Knoll
- Department of Informatics, Technical University of Munich, Garching 385748, Germany
| | - Lise Bitsch
- The Danish Board of Technology Foundation, Copenhagen, 2650 Hvidovre, Denmark
| | - Jan G Bjaalie
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yannis Ioannidis
- ATHENA Research & Innovation Center, Athena 12125, Greece
- Department of Informatics & Telecom, Nat'l and Kapodistrian University of Athens, 157 84 Athens, Greece
| | - Thomas Lippert
- Institute for Advanced Simulation (IAS), Jülich Supercomputing Centre (JSC), Research Centre Jülich, Jülich 52425, Germany
| | - Maria V Sanchez-Vives
- ICREA and Systems Neuroscience, Institute of Biomedical Investigations August Pi i Sunyer, Barcelona 08036, Spain
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands
| | - Viktor Jirsa
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| |
Collapse
|
32
|
Brinkman BAW, Yan H, Maffei A, Park IM, Fontanini A, Wang J, La Camera G. Metastable dynamics of neural circuits and networks. APPLIED PHYSICS REVIEWS 2022; 9:011313. [PMID: 35284030 PMCID: PMC8900181 DOI: 10.1063/5.0062603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/31/2022] [Indexed: 05/14/2023]
Abstract
Cortical neurons emit seemingly erratic trains of action potentials or "spikes," and neural network dynamics emerge from the coordinated spiking activity within neural circuits. These rich dynamics manifest themselves in a variety of patterns, which emerge spontaneously or in response to incoming activity produced by sensory inputs. In this Review, we focus on neural dynamics that is best understood as a sequence of repeated activations of a number of discrete hidden states. These transiently occupied states are termed "metastable" and have been linked to important sensory and cognitive functions. In the rodent gustatory cortex, for instance, metastable dynamics have been associated with stimulus coding, with states of expectation, and with decision making. In frontal, parietal, and motor areas of macaques, metastable activity has been related to behavioral performance, choice behavior, task difficulty, and attention. In this article, we review the experimental evidence for neural metastable dynamics together with theoretical approaches to the study of metastable activity in neural circuits. These approaches include (i) a theoretical framework based on non-equilibrium statistical physics for network dynamics; (ii) statistical approaches to extract information about metastable states from a variety of neural signals; and (iii) recent neural network approaches, informed by experimental results, to model the emergence of metastable dynamics. By discussing these topics, we aim to provide a cohesive view of how transitions between different states of activity may provide the neural underpinnings for essential functions such as perception, memory, expectation, or decision making, and more generally, how the study of metastable neural activity may advance our understanding of neural circuit function in health and disease.
Collapse
Affiliation(s)
| | - H. Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | | | | | | | - J. Wang
- Authors to whom correspondence should be addressed: and
| | - G. La Camera
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
33
|
Pazienti A, Galluzzi A, Dasilva M, Sanchez-Vives MV, Mattia M. Slow waves form expanding, memory-rich mesostates steered by local excitability in fading anesthesia. iScience 2022; 25:103918. [PMID: 35265807 PMCID: PMC8899414 DOI: 10.1016/j.isci.2022.103918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 11/27/2022] Open
Abstract
In the arousal process, the brain restores its integrative activity from the synchronized state of slow wave activity (SWA). The mechanisms underpinning this state transition remain, however, to be elucidated. Here we simultaneously probed neuronal assemblies throughout the whole cortex with micro-electrocorticographic recordings in mice. We investigated the progressive shaping of propagating SWA at different levels of isoflurane. We found a form of memory of the wavefront shapes at deep anesthesia, tightly alternating posterior-anterior-posterior patterns. At low isoflurane, metastable patterns propagated in more directions, reflecting an increased complexity. The wandering across these mesostates progressively increased its randomness, as predicted by simulations of a network of spiking neurons, and confirmed in our experimental data. The complexity increase is explained by the elevated excitability of local assemblies with no modifications of the network connectivity. These results shed new light on the functional reorganization of the cortical network as anesthesia fades out. Complexity of isoflurane-induced slow waves reliably determines anesthesia level In deep anesthesia, the propagation strictly alternates between front-back-front patterns In light anesthesia, there is a continuum of directions and faster propagation Local excitability underpins the cortical reorganization in fading anesthesia
Collapse
|
34
|
Zanin M, Güntekin B, Aktürk T, Yıldırım E, Yener G, Kiyi I, Hünerli-Gündüz D, Sequeira H, Papo D. Telling functional networks apart using ranked network features stability. Sci Rep 2022; 12:2562. [PMID: 35169227 PMCID: PMC8847658 DOI: 10.1038/s41598-022-06497-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Over the past few years, it has become standard to describe brain anatomical and functional organisation in terms of complex networks, wherein single brain regions or modules and their connections are respectively identified with network nodes and the links connecting them. Often, the goal of a given study is not that of modelling brain activity but, more basically, to discriminate between experimental conditions or populations, thus to find a way to compute differences between them. This in turn involves two important aspects: defining discriminative features and quantifying differences between them. Here we show that the ranked dynamical stability of network features, from links or nodes to higher-level network properties, discriminates well between healthy brain activity and various pathological conditions. These easily computable properties, which constitute local but topographically aspecific aspects of brain activity, greatly simplify inter-network comparisons and spare the need for network pruning. Our results are discussed in terms of microstate stability. Some implications for functional brain activity are discussed.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122, Palma de Mallorca, Spain.
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Tuba Aktürk
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey.,School of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Ilayda Kiyi
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Duygu Hünerli-Gündüz
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Henrique Sequeira
- University of Lille, CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, 59000, Lille, France
| | - David Papo
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy.,Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
| |
Collapse
|
35
|
The Mean Field Approach for Populations of Spiking Neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:125-157. [DOI: 10.1007/978-3-030-89439-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractMean field theory is a device to analyze the collective behavior of a dynamical system comprising many interacting particles. The theory allows to reduce the behavior of the system to the properties of a handful of parameters. In neural circuits, these parameters are typically the firing rates of distinct, homogeneous subgroups of neurons. Knowledge of the firing rates under conditions of interest can reveal essential information on both the dynamics of neural circuits and the way they can subserve brain function. The goal of this chapter is to provide an elementary introduction to the mean field approach for populations of spiking neurons. We introduce the general idea in networks of binary neurons, starting from the most basic results and then generalizing to more relevant situations. This allows to derive the mean field equations in a simplified setting. We then derive the mean field equations for populations of integrate-and-fire neurons. An effort is made to derive the main equations of the theory using only elementary methods from calculus and probability theory. The chapter ends with a discussion of the assumptions of the theory and some of the consequences of violating those assumptions. This discussion includes an introduction to balanced and metastable networks and a brief catalogue of successful applications of the mean field approach to the study of neural circuits.
Collapse
|
36
|
Ye L, Li C. Quantifying the Landscape of Decision Making From Spiking Neural Networks. Front Comput Neurosci 2021; 15:740601. [PMID: 34776914 PMCID: PMC8581041 DOI: 10.3389/fncom.2021.740601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
The decision making function is governed by the complex coupled neural circuit in the brain. The underlying energy landscape provides a global picture for the dynamics of the neural decision making system and has been described extensively in the literature, but often as illustrations. In this work, we explicitly quantified the landscape for perceptual decision making based on biophysically-realistic cortical network with spiking neurons to mimic a two-alternative visual motion discrimination task. Under certain parameter regions, the underlying landscape displays bistable or tristable attractor states, which quantify the transition dynamics between different decision states. We identified two intermediate states: the spontaneous state which increases the plasticity and robustness of changes of minds and the "double-up" state which facilitates the state transitions. The irreversibility of the bistable and tristable switches due to the probabilistic curl flux demonstrates the inherent non-equilibrium characteristics of the neural decision system. The results of global stability of decision-making quantified by barrier height inferred from landscape topography and mean first passage time are in line with experimental observations. These results advance our understanding of the stochastic and dynamical transition mechanism of decision-making function, and the landscape and kinetic path approach can be applied to other cognitive function related problems (such as working memory) in brain networks.
Collapse
Affiliation(s)
- Leijun Ye
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chunhe Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
- School of Mathematical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Abstract
Sleep disturbances are commonly observed in schizophrenia, including in chronic, early-course, and first-episode patients. This has generated considerable interest, both in clinical and research endeavors, in characterizing the relationship between disturbed sleep and schizophrenia. Sleep features can be objectively assessed with EEG recordings. Traditionally, EEG studies have focused on sleep architecture, which includes non-REM and REM sleep stages. More recently, numerous studies have investigated alterations in sleep-specific rhythms, including EEG oscillations, such as sleep spindles and slow waves, in individuals with schizophrenia compared with control subjects. In this article, the author reviews state-of-the-art evidence of disturbed sleep in schizophrenia, starting from the relationship between sleep disturbances and clinical symptoms. First, the author presents studies demonstrating abnormalities in sleep architecture and sleep-oscillatory rhythms in schizophrenia and related psychotic disorders, with an emphasis on recent work demonstrating sleep spindles and slow-wave deficits in early-course and first-episode schizophrenia. Next, the author shows how these sleep abnormalities relate to the cognitive impairments in patients diagnosed with schizophrenia and point to dysfunctions in underlying thalamocortical circuits, Ca+ channel activity, and GABA-glutamate neurotransmission. Finally, the author discusses some of the next steps needed to further establish the role of altered sleep in schizophrenia, including the need to investigate sleep abnormalities across the psychotic spectrum and to establish their relationship with circadian disturbances, which in turn will contribute to the development of novel sleep-informed treatment interventions.
Collapse
Affiliation(s)
- Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh School of Medicine Pittsburgh, PA, 15213
| |
Collapse
|
38
|
Ghatak S, Dolatabadi N, Gao R, Wu Y, Scott H, Trudler D, Sultan A, Ambasudhan R, Nakamura T, Masliah E, Talantova M, Voytek B, Lipton SA. NitroSynapsin ameliorates hypersynchronous neural network activity in Alzheimer hiPSC models. Mol Psychiatry 2021; 26:5751-5765. [PMID: 32467645 PMCID: PMC7704704 DOI: 10.1038/s41380-020-0776-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
Abstract
Beginning at early stages, human Alzheimer's disease (AD) brains manifest hyperexcitability, contributing to subsequent extensive synapse loss, which has been linked to cognitive dysfunction. No current therapy for AD is disease-modifying. Part of the problem with AD drug discovery is that transgenic mouse models have been poor predictors of potential human treatment. While it is undoubtedly important to test drugs in these animal models, additional evidence for drug efficacy in a human context might improve our chances of success. Accordingly, in order to test drugs in a human context, we have developed a platform of physiological assays using patch-clamp electrophysiology, calcium imaging, and multielectrode array (MEA) experiments on human (h)iPSC-derived 2D cortical neuronal cultures and 3D cerebral organoids. We compare hiPSCs bearing familial AD mutations vs. their wild-type (WT) isogenic controls in order to characterize the aberrant electrical activity in such a human context. Here, we show that these AD neuronal cultures and organoids manifest increased spontaneous action potentials, slow oscillatory events (~1 Hz), and hypersynchronous network activity. Importantly, the dual-allosteric NMDAR antagonist NitroSynapsin, but not the FDA-approved drug memantine, abrogated this hyperactivity. We propose a novel model of synaptic plasticity in which aberrant neural networks are rebalanced by NitroSynapsin. We propose that hiPSC models may be useful for screening drugs to treat hyperexcitability and related synaptic damage in AD.
Collapse
Affiliation(s)
- Swagata Ghatak
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Nima Dolatabadi
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Richard Gao
- Cognitive Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yin Wu
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Henry Scott
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dorit Trudler
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Abdullah Sultan
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Rajesh Ambasudhan
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Tomohiro Nakamura
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Eliezer Masliah
- Department of Pathology, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.,National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Maria Talantova
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Bradley Voytek
- Cognitive Science, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.,Kavli Institute of Brain and Mind and Halicioglu Data Science Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Stuart A Lipton
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA. .,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
39
|
de Labra C, Pardo-Vazquez JL, Cudeiro J, Rivadulla C. Hyperthermia-Induced Changes in EEG of Anesthetized Mice Subjected to Passive Heat Exposure. Front Syst Neurosci 2021; 15:709337. [PMID: 34566589 PMCID: PMC8458808 DOI: 10.3389/fnsys.2021.709337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
Currently, the role of hypothermia in electroencephalography (EEG) is well-established. However, few studies have investigated the effect of hyperthermia on EEG, an important physiological parameter governing brain function. The aim of this work was to determine how neuronal activity in anesthetized mice is affected when the temperature rises above the physiological threshold mandatory to maintain the normal body functions. In this study, a temperature-elevation protocol, from 37 to 42°C, was applied to four female mice of 2–3 months old while EEG was recorded simultaneously. We found that hyperthermia reduces EEG amplitude by 4.36% when rising from 37 to 38 degrees and by 24.33% when it is increased to 42 degrees. Likewise, increasing the body temperature produces a very large impact on the EEG spectral parameters, reducing the frequency power at the delta, theta, alpha, and beta bands. Our results show that hyperthermia has a global effect on the EEG, being able to change the electrical activity of the brain.
Collapse
Affiliation(s)
- Carmen de Labra
- NEUROcom, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), A Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain.,Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Jose L Pardo-Vazquez
- NEUROcom, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), A Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain.,Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Javier Cudeiro
- NEUROcom, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), A Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain.,Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain.,Centro de Estimulación Cerebral de Galicia, A Coruña, Spain
| | - Casto Rivadulla
- NEUROcom, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), A Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain.,Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| |
Collapse
|
40
|
Sarasso S, Casali AG, Casarotto S, Rosanova M, Sinigaglia C, Massimini M. Consciousness and complexity: a consilience of evidence. Neurosci Conscious 2021; 2021:niab023. [PMID: 38496724 PMCID: PMC10941977 DOI: 10.1093/nc/niab023] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/19/2021] [Accepted: 07/29/2021] [Indexed: 03/19/2024] Open
Abstract
Over the last years, a surge of empirical studies converged on complexity-related measures as reliable markers of consciousness across many different conditions, such as sleep, anesthesia, hallucinatory states, coma, and related disorders. Most of these measures were independently proposed by researchers endorsing disparate frameworks and employing different methods and techniques. Since this body of evidence has not been systematically reviewed and coherently organized so far, this positive trend has remained somewhat below the radar. The aim of this paper is to make this consilience of evidence in the science of consciousness explicit. We start with a systematic assessment of the growing literature on complexity-related measures and identify their common denominator, tracing it back to core theoretical principles and predictions put forward more than 20 years ago. In doing this, we highlight a consistent trajectory spanning two decades of consciousness research and provide a provisional taxonomy of the present literature. Finally, we consider all of the above as a positive ground to approach new questions and devise future experiments that may help consolidate and further develop a promising field where empirical research on consciousness appears to have, so far, naturally converged.
Collapse
Affiliation(s)
- Simone Sarasso
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | - Adenauer Girardi Casali
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Sao Jose dos Campos, 12247-014, Brazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | | | - Marcello Massimini
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| |
Collapse
|
41
|
Golesorkhi M, Gomez-Pilar J, Zilio F, Berberian N, Wolff A, Yagoub MCE, Northoff G. The brain and its time: intrinsic neural timescales are key for input processing. Commun Biol 2021; 4:970. [PMID: 34400800 PMCID: PMC8368044 DOI: 10.1038/s42003-021-02483-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
We process and integrate multiple timescales into one meaningful whole. Recent evidence suggests that the brain displays a complex multiscale temporal organization. Different regions exhibit different timescales as described by the concept of intrinsic neural timescales (INT); however, their function and neural mechanisms remains unclear. We review recent literature on INT and propose that they are key for input processing. Specifically, they are shared across different species, i.e., input sharing. This suggests a role of INT in encoding inputs through matching the inputs' stochastics with the ongoing temporal statistics of the brain's neural activity, i.e., input encoding. Following simulation and empirical data, we point out input integration versus segregation and input sampling as key temporal mechanisms of input processing. This deeply grounds the brain within its environmental and evolutionary context. It carries major implications in understanding mental features and psychiatric disorders, as well as going beyond the brain in integrating timescales into artificial intelligence.
Collapse
Affiliation(s)
- Mehrshad Golesorkhi
- grid.28046.380000 0001 2182 2255School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada ,grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Javier Gomez-Pilar
- grid.5239.d0000 0001 2286 5329Biomedical Engineering Group, University of Valladolid, Valladolid, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain
| | - Federico Zilio
- grid.5608.b0000 0004 1757 3470Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Padua, Italy
| | - Nareg Berberian
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Annemarie Wolff
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Mustapha C. E. Yagoub
- grid.28046.380000 0001 2182 2255School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada ,grid.410595.c0000 0001 2230 9154Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China ,grid.13402.340000 0004 1759 700XMental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| |
Collapse
|
42
|
General Anesthesia Disrupts Complex Cortical Dynamics in Response to Intracranial Electrical Stimulation in Rats. eNeuro 2021; 8:ENEURO.0343-20.2021. [PMID: 34301724 PMCID: PMC8354715 DOI: 10.1523/eneuro.0343-20.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
The capacity of human brain to sustain complex cortical dynamics appears to be strongly associated with conscious experience and consistently drops when consciousness fades. For example, several recent studies in humans found a remarkable reduction of the spatiotemporal complexity of cortical responses to local stimulation during dreamless sleep, general anesthesia, and coma. However, this perturbational complexity has never been directly estimated in non-human animals in vivo previously, and the mechanisms that prevent neocortical neurons to engage in complex interactions are still unclear. Here, we quantify the complexity of electroencephalographic (EEG) responses to intracranial electrical stimulation in rats, comparing wakefulness to propofol, sevoflurane, and ketamine anesthesia. The evoked activity changed from highly complex in wakefulness to far simpler with propofol and sevoflurane. The reduced complexity was associated with a suppression of high frequencies that preceded a reduced phase-locking, and disruption of functional connectivity and pattern diversity. We then showed how these parameters dissociate with ketamine and depend on intensity and site of stimulation. Our results support the idea that brief periods of activity-dependent neuronal silence can interrupt complex interactions in neocortical circuits, and open the way for further mechanistic investigations of the neuronal basis for consciousness and loss of consciousness across species.
Collapse
|
43
|
Morgan KK, Hathaway E, Carson M, Fernandez-Corazza M, Shusterman R, Luu P, Tucker DM. Focal limbic sources create the large slow oscillations of the EEG in human deep sleep. Sleep Med 2021; 85:291-302. [PMID: 34388508 DOI: 10.1016/j.sleep.2021.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/19/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Initial observations with the human electroencephalogram (EEG) have interpreted slow oscillations (SOs) of the EEG during deep sleep (N3) as reflecting widespread surface-negative traveling waves that originate in frontal regions and propagate across the neocortex. However, mapping SOs with a high-density array shows the simultaneous appearance of posterior positive voltage fields in the EEG at the time of the frontal-negative fields, with the typical inversion point (apparent source) around the temporal lobe. METHODS Overnight 256-channel EEG recordings were gathered from 10 healthy young adults. Individual head conductivity models were created using each participant's own structural MRI. Source localization of SOs during N3 was then performed. RESULTS Electrical source localization models confirmed that these large waves were created by focal discharges within the ventral limbic cortex, including medial temporal and caudal orbitofrontal cortex. CONCLUSIONS Although the functional neurophysiology of deep sleep involves interactions between limbic and neocortical networks, the large EEG deflections of deep sleep are not created by distributed traveling waves in lateral neocortex but instead by relatively focal limbic discharges.
Collapse
Affiliation(s)
- Kyle K Morgan
- Brain Electrophysiology Laboratory Company, Eugene, OR, 97403, USA
| | - Evan Hathaway
- Brain Electrophysiology Laboratory Company, Eugene, OR, 97403, USA
| | - Megan Carson
- Brain Electrophysiology Laboratory Company, Eugene, OR, 97403, USA
| | - Mariano Fernandez-Corazza
- Brain Electrophysiology Laboratory Company, Eugene, OR, 97403, USA; LEICI Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales, Universidad Nacional de La Plata, CONICET, Argentina
| | - Roma Shusterman
- Brain Electrophysiology Laboratory Company, Eugene, OR, 97403, USA
| | - Phan Luu
- Brain Electrophysiology Laboratory Company, Eugene, OR, 97403, USA; University of Oregon, Eugene, OR, 97403, USA
| | - Don M Tucker
- Brain Electrophysiology Laboratory Company, Eugene, OR, 97403, USA; University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
44
|
Golosio B, De Luca C, Capone C, Pastorelli E, Stegel G, Tiddia G, De Bonis G, Paolucci PS. Thalamo-cortical spiking model of incremental learning combining perception, context and NREM-sleep. PLoS Comput Biol 2021; 17:e1009045. [PMID: 34181642 PMCID: PMC8270441 DOI: 10.1371/journal.pcbi.1009045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2021] [Accepted: 05/05/2021] [Indexed: 01/19/2023] Open
Abstract
The brain exhibits capabilities of fast incremental learning from few noisy examples, as well as the ability to associate similar memories in autonomously-created categories and to combine contextual hints with sensory perceptions. Together with sleep, these mechanisms are thought to be key components of many high-level cognitive functions. Yet, little is known about the underlying processes and the specific roles of different brain states. In this work, we exploited the combination of context and perception in a thalamo-cortical model based on a soft winner-take-all circuit of excitatory and inhibitory spiking neurons. After calibrating this model to express awake and deep-sleep states with features comparable with biological measures, we demonstrate the model capability of fast incremental learning from few examples, its resilience when proposed with noisy perceptions and contextual signals, and an improvement in visual classification after sleep due to induced synaptic homeostasis and association of similar memories. We created a thalamo-cortical spiking model (ThaCo) with the purpose of demonstrating a link among two phenomena that we believe to be essential for the brain capability of efficient incremental learning from few examples in noisy environments. Grounded in two experimental observations—the first about the effects of deep-sleep on pre- and post-sleep firing rate distributions, the second about the combination of perceptual and contextual information in pyramidal neurons—our model joins these two ingredients. ThaCo alternates phases of incremental learning, classification and deep-sleep. Memories of handwritten digit examples are learned through thalamo-cortical and cortico-cortical plastic synapses. In absence of noise, the combination of contextual information with perception enables fast incremental learning. Deep-sleep becomes crucial when noisy inputs are considered. We observed in ThaCo both homeostatic and associative processes: deep-sleep fights noise in perceptual and internal knowledge and it supports the categorical association of examples belonging to the same digit class, through reinforcement of class-specific cortico-cortical synapses. The distributions of pre-sleep and post-sleep firing rates during classification change in a manner similar to those of experimental observation. These changes promote energetic efficiency during recall of memories, better representation of individual memories and categories and higher classification performances.
Collapse
Affiliation(s)
- Bruno Golosio
- Dipartimento di Fisica, Università di Cagliari, Cagliari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Cagliari, Italy
| | - Chiara De Luca
- Ph.D. Program in Behavioural Neuroscience, “Sapienza” Università di Roma, Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
- * E-mail:
| | - Cristiano Capone
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Elena Pastorelli
- Ph.D. Program in Behavioural Neuroscience, “Sapienza” Università di Roma, Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Giovanni Stegel
- Dipartimento di Chimica e Farmacia, Università di Sassari, Sassari, Italy
| | - Gianmarco Tiddia
- Dipartimento di Fisica, Università di Cagliari, Cagliari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Cagliari, Italy
| | - Giulia De Bonis
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | | |
Collapse
|
45
|
Tort-Colet N, Capone C, Sanchez-Vives MV, Mattia M. Attractor competition enriches cortical dynamics during awakening from anesthesia. Cell Rep 2021; 35:109270. [PMID: 34161772 DOI: 10.1016/j.celrep.2021.109270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 02/19/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022] Open
Abstract
Slow oscillations (≲ 1 Hz), a hallmark of slow-wave sleep and deep anesthesia across species, arise from spatiotemporal patterns of activity whose complexity increases as wakefulness is approached and cognitive functions emerge. The arousal process constitutes an open window to the unknown mechanisms underlying the emergence of such dynamical richness in awake cortical networks. Here, we investigate the changes in network dynamics as anesthesia fades out in the rat visual cortex. Starting from deep anesthesia, slow oscillations gradually increase their frequency, eventually expressing maximum regularity. This stage is followed by the abrupt onset of an infra-slow (~0.2 Hz) alternation between sleep-like oscillations and activated states. A population rate model reproduces this transition driven by an increased excitability that brings it to periodically cross a critical point. Based on our model, dynamical richness emerges as a competition between two metastable attractor states, a conclusion strongly supported by the data.
Collapse
Affiliation(s)
- Núria Tort-Colet
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Department of Integrative and Computational Neuroscience, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.
| | - Cristiano Capone
- Physics Department, Sapienza University, Rome, Italy; Natl. Center for Radioprotection and Computational Physics, Istituto Superiore di Sanità, Rome, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome, Italy
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Maurizio Mattia
- Natl. Center for Radioprotection and Computational Physics, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
46
|
McPherson JG, Bandres MF. Spontaneous neural synchrony links intrinsic spinal sensory and motor networks during unconsciousness. eLife 2021; 10:e66308. [PMID: 34042587 PMCID: PMC8177891 DOI: 10.7554/elife.66308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Non-random functional connectivity during unconsciousness is a defining feature of supraspinal networks. However, its generalizability to intrinsic spinal networks remains incompletely understood. Previously, Barry et al., 2014 used fMRI to reveal bilateral resting state functional connectivity within sensory-dominant and, separately, motor-dominant regions of the spinal cord. Here, we record spike trains from large populations of spinal interneurons in vivo in rats and demonstrate that spontaneous functional connectivity also links sensory- and motor-dominant regions during unconsciousness. The spatiotemporal patterns of connectivity could not be explained by latent afferent activity or by populations of interconnected neurons spiking randomly. We also document connection latencies compatible with mono- and disynaptic interactions and putative excitatory and inhibitory connections. The observed activity is consistent with the hypothesis that salient, experience-dependent patterns of neural transmission introduced during behavior or by injury/disease are reactivated during unconsciousness. Such a spinal replay mechanism could shape circuit-level connectivity and ultimately behavior.
Collapse
Affiliation(s)
- Jacob Graves McPherson
- Program in Physical Therapy, Washington University School of MedicineSt. LouisUnited States
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
- Washington University Pain Center, Washington University School of MedicineSt. LouisUnited States
- Program in Neurosciences, Washington University School of MedicineSt. LouisUnited States
| | - Maria F Bandres
- Program in Physical Therapy, Washington University School of MedicineSt. LouisUnited States
- Department of Biomedical Engineering, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
47
|
de Filippo R, Rost BR, Stumpf A, Cooper C, Tukker JJ, Harms C, Beed P, Schmitz D. Somatostatin interneurons activated by 5-HT 2A receptor suppress slow oscillations in medial entorhinal cortex. eLife 2021; 10:66960. [PMID: 33789079 PMCID: PMC8016478 DOI: 10.7554/elife.66960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 12/31/2022] Open
Abstract
Serotonin (5-HT) is one of the major neuromodulators present in the mammalian brain and has been shown to play a role in multiple physiological processes. The mechanisms by which 5-HT modulates cortical network activity, however, are not yet fully understood. We investigated the effects of 5-HT on slow oscillations (SOs), a synchronized cortical network activity universally present across species. SOs are observed during anesthesia and are considered to be the default cortical activity pattern. We discovered that (±)3,4-methylenedioxymethamphetamine (MDMA) and fenfluramine, two potent 5-HT releasers, inhibit SOs within the entorhinal cortex (EC) in anesthetized mice. Combining opto- and pharmacogenetic manipulations with in vitro electrophysiological recordings, we uncovered that somatostatin-expressing (Sst) interneurons activated by the 5-HT2A receptor (5-HT2AR) play an important role in the suppression of SOs. Since 5-HT2AR signaling is involved in the etiology of different psychiatric disorders and mediates the psychological effects of many psychoactive serotonergic drugs, we propose that the newly discovered link between Sst interneurons and 5-HT will contribute to our understanding of these complex topics.
Collapse
Affiliation(s)
- Roberto de Filippo
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Cluster of Excellence NeuroCure, Berlin, Germany
| | - Benjamin R Rost
- German Centre for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Alexander Stumpf
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, Berlin, Germany
| | - Claire Cooper
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, Berlin, Germany
| | - John J Tukker
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, Berlin, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Christoph Harms
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Experimental Neurology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Center for Stroke Research Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Cluster of Excellence NeuroCure, Berlin, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
48
|
Vijayraghavan S, Everling S. Neuromodulation of Persistent Activity and Working Memory Circuitry in Primate Prefrontal Cortex by Muscarinic Receptors. Front Neural Circuits 2021; 15:648624. [PMID: 33790746 PMCID: PMC8005543 DOI: 10.3389/fncir.2021.648624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
Neuromodulation by acetylcholine plays a vital role in shaping the physiology and functions of cerebral cortex. Cholinergic neuromodulation influences brain-state transitions, controls the gating of cortical sensory stimulus responses, and has been shown to influence the generation and maintenance of persistent activity in prefrontal cortex. Here we review our current understanding of the role of muscarinic cholinergic receptors in primate prefrontal cortex during its engagement in the performance of working memory tasks. We summarize the localization of muscarinic receptors in prefrontal cortex, review the effects of muscarinic neuromodulation on arousal, working memory and cognitive control tasks, and describe the effects of muscarinic M1 receptor stimulation and blockade on the generation and maintenance of persistent activity of prefrontal neurons encoding working memory representations. Recent studies describing the pharmacological effects of M1 receptors on prefrontal persistent activity demonstrate the heterogeneity of muscarinic actions and delineate unexpected modulatory effects discovered in primate prefrontal cortex when compared with studies in rodents. Understanding the underlying mechanisms by which muscarinic receptors regulate prefrontal cognitive control circuitry will inform the search of muscarinic-based therapeutic targets in the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Susheel Vijayraghavan
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Stefan Everling
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.,Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
49
|
Rebollo B, Telenczuk B, Navarro-Guzman A, Destexhe A, Sanchez-Vives MV. Modulation of intercolumnar synchronization by endogenous electric fields in cerebral cortex. SCIENCE ADVANCES 2021; 7:7/10/eabc7772. [PMID: 33658192 PMCID: PMC7929504 DOI: 10.1126/sciadv.abc7772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/21/2021] [Indexed: 06/01/2023]
Abstract
Neurons synaptically interacting in a conductive medium generate extracellular endogenous electric fields (EFs) that reciprocally affect membrane potential. Exogenous EFs modulate neuronal activity, and their clinical applications are being profusely explored. However, whether endogenous EFs contribute to network synchronization remains unclear. We analyzed spontaneously generated slow-wave activity in the cerebral cortex network in vitro, which allowed us to distinguish synaptic from nonsynaptic mechanisms of activity propagation and synchronization. Slow oscillations generated EFs that propagated independently of synaptic transmission. We demonstrate that cortical oscillations modulate spontaneous rhythmic activity of neighboring synaptically disconnected cortical columns if layers are aligned. We provide experimental evidence that these EF-mediated effects are compatible with electric dipoles. With a model of interacting dipoles, we reproduce the experimental measurements and predict that endogenous EF-mediated synchronizing effects should be relevant in the brain. Thus, experiments and models suggest that electric-dipole interactions contribute to synchronization of neighboring cortical columns.
Collapse
Affiliation(s)
- Beatriz Rebollo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Bartosz Telenczuk
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences, Gif sur Yvette, France
| | - Alvaro Navarro-Guzman
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alain Destexhe
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences, Gif sur Yvette, France
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- ICREA, Barcelona, Spain
| |
Collapse
|
50
|
Alegre-Cortés J, Sáez M, Montanari R, Reig R. Medium spiny neurons activity reveals the discrete segregation of mouse dorsal striatum. eLife 2021; 10:e60580. [PMID: 33599609 PMCID: PMC7924950 DOI: 10.7554/elife.60580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
Behavioral studies differentiate the rodent dorsal striatum (DS) into lateral and medial regions; however, anatomical evidence suggests that it is a unified structure. To understand striatal dynamics and basal ganglia functions, it is essential to clarify the circuitry that supports this behavioral-based segregation. Here, we show that the mouse DS is made of two non-overlapping functional circuits divided by a boundary. Combining in vivo optopatch-clamp and extracellular recordings of spontaneous and evoked sensory activity, we demonstrate different coupling of lateral and medial striatum to the cortex together with an independent integration of the spontaneous activity, due to particular corticostriatal connectivity and local attributes of each region. Additionally, we show differences in slow and fast oscillations and in the electrophysiological properties between striatonigral and striatopallidal neurons. In summary, these results demonstrate that the rodent DS is segregated in two neuronal circuits, in homology with the caudate and putamen nuclei of primates.
Collapse
Affiliation(s)
| | - María Sáez
- Instituto de Neurociencias CSIC-UMHSan Juan de AlicanteSpain
| | | | - Ramon Reig
- Instituto de Neurociencias CSIC-UMHSan Juan de AlicanteSpain
| |
Collapse
|