1
|
Witteveen I, Balmer T. Comparative Analysis of Six Adeno-Associated Viral Vector Serotypes in Mouse Inferior Colliculus and Cerebellum. eNeuro 2024; 11:ENEURO.0391-24.2024. [PMID: 39467650 DOI: 10.1523/eneuro.0391-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Adeno-associated viral vector (AAV) serotypes vary in how effectively they express genes across different cell types and brain regions. Here we report a systematic comparison of the AAV serotypes 1, 2, 5, 8, 9, and the directed evolution derived AAVrg, in the inferior colliculus (IC) and cerebellum. The AAVs were identical apart from their different serotypes, each having a synapsin promotor and expressing GFP (AAV-hSyn-GFP). Identical titers and volumes were injected into the IC and cerebellum of adult male and female mice, and brains were sectioned and imaged 2 weeks later. Transduction efficacy, anterograde labeling of axonal projections, and retrograde labeling of somata were characterized and compared across serotypes. Cell-type tropism was assessed by analyzing the morphology of the GFP-labeled neurons in the cerebellar cortex. In both the cerebellum and IC, AAV1 expressed GFP in more cells, labeled a larger volume, and produced significantly brighter labeling than all other serotypes, indicating superior transgene expression. AAV1 labeled more Purkinje cells, unipolar brush cells, and molecular layer interneurons than the other serotypes, while AAV2 labeled a greater number of granule cells. These results provide guidelines for the use of AAVs as gene delivery tools in these regions.
Collapse
Affiliation(s)
| | - Timothy Balmer
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| |
Collapse
|
2
|
Witteveen I, Balmer T. Comparative analysis of six adeno-associated viral vector serotypes in mouse inferior colliculus and cerebellum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618966. [PMID: 39484622 PMCID: PMC11526941 DOI: 10.1101/2024.10.17.618966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Adeno-associated viral vector (AAV) serotypes vary in how effectively they express genes across different cell types and brain regions. Here we report a systematic comparison of the AAV serotypes 1, 2, 5, 8, 9, and the directed evolution derived AAVrg, in the inferior colliculus and cerebellum. The AAVs were identical apart from their different serotypes, each having a synapsin promotor and expressing GFP (AAV-hSyn-GFP). Identical titers and volumes were injected into the inferior colliculus and cerebellum of adult male and female mice and brains were sectioned and imaged 2 weeks later. Transduction efficacy, anterograde labeling of axonal projections, and retrograde labeling of somata, were characterized and compared across serotypes. Cell-type tropism was assessed by analyzing the morphology of the GFP-labeled neurons in the cerebellar cortex. In both the cerebellum and inferior colliculus, AAV1 expressed GFP in more cells, labeled a larger volume, and produced significantly brighter labeling than all other serotypes, indicating superior transgene expression. AAV1 labeled more Purkinje cells, unipolar brush cells, and molecular layer interneurons than the other serotypes, while AAV2 labeled a greater number of granule cells. These results provide guidelines for the use of AAVs as gene delivery tools in these regions.
Collapse
Affiliation(s)
- Isabelle Witteveen
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Timothy Balmer
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
3
|
Li T, Sakthivelpathi V, Qian Z, Soetedjo R, Chung JH. Primate eye tracking with carbon-nanotube-paper-composite based capacitive sensors and machine learning algorithms. J Neurosci Methods 2024; 410:110249. [PMID: 39151657 PMCID: PMC11364525 DOI: 10.1016/j.jneumeth.2024.110249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/20/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Accurate real-time eye tracking is crucial in oculomotor system research. While the scleral search coil system is the gold standard, its implantation procedure and bulkiness pose challenges. Camera-based systems are affected by ambient lighting and require high computational and electric power. NEW METHOD This study presents a novel eye tracker using proximity capacitive sensors made of carbon-nanotube-paper-composite (CPC). These sensors detect femtofarad-level capacitance changes caused by primate corneal movement during horizontal and vertical eye rotations. Data processing and machine learning algorithms are evaluated to enhance the accuracy of gaze angle prediction. RESULTS The system performance is benchmarked against the scleral coil during smooth pursuits, saccades tracking, and fixations. The eye tracker demonstrates up to 0.97 correlation with the coil in eye tracking and is capable of estimating gaze angle with a median absolute error as low as 0.30°. COMPARISON The capacitive eye tracker demonstrates good consistency and accuracy in comparison to the gold-standard scleral search coil method. CONCLUSIONS This lightweight, non-invasive capacitive eye tracker offers potential as an alternative to traditional coil and camera-based systems in oculomotor research and vision science.
Collapse
Affiliation(s)
- Tianyi Li
- Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | - Zhongjie Qian
- Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Robijanto Soetedjo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Jae-Hyun Chung
- Mechanical Engineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Lin TF, Busch SE, Hansel C. Intrinsic and synaptic determinants of receptive field plasticity in Purkinje cells of the mouse cerebellum. Nat Commun 2024; 15:4645. [PMID: 38821918 PMCID: PMC11143328 DOI: 10.1038/s41467-024-48373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/28/2024] [Indexed: 06/02/2024] Open
Abstract
Non-synaptic (intrinsic) plasticity of membrane excitability contributes to aspects of memory formation, but it remains unclear whether it merely facilitates synaptic long-term potentiation or plays a permissive role in determining the impact of synaptic weight increase. We use tactile stimulation and electrical activation of parallel fibers to probe intrinsic and synaptic contributions to receptive field plasticity in awake mice during two-photon calcium imaging of cerebellar Purkinje cells. Repetitive activation of both stimuli induced response potentiation that is impaired in mice with selective deficits in either synaptic or intrinsic plasticity. Spatial analysis of calcium signals demonstrated that intrinsic, but not synaptic plasticity, enhances the spread of dendritic parallel fiber response potentiation. Simultaneous dendrite and axon initial segment recordings confirm these dendritic events affect axonal output. Our findings support the hypothesis that intrinsic plasticity provides an amplification mechanism that exerts a permissive control over the impact of long-term potentiation on neuronal responsiveness.
Collapse
Affiliation(s)
- Ting-Feng Lin
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Silas E Busch
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Christian Hansel
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Silva NT, Ramírez-Buriticá J, Pritchett DL, Carey MR. Climbing fibers provide essential instructive signals for associative learning. Nat Neurosci 2024; 27:940-951. [PMID: 38565684 PMCID: PMC11088996 DOI: 10.1038/s41593-024-01594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/05/2024] [Indexed: 04/04/2024]
Abstract
Supervised learning depends on instructive signals that shape the output of neural circuits to support learned changes in behavior. Climbing fiber (CF) inputs to the cerebellar cortex represent one of the strongest candidates in the vertebrate brain for conveying neural instructive signals. However, recent studies have shown that Purkinje cell stimulation can also drive cerebellar learning and the relative importance of these two neuron types in providing instructive signals for cerebellum-dependent behaviors remains unresolved. In the present study we used cell-type-specific perturbations of various cerebellar circuit elements to systematically evaluate their contributions to delay eyeblink conditioning in mice. Our findings reveal that, although optogenetic stimulation of either CFs or Purkinje cells can drive learning under some conditions, even subtle reductions in CF signaling completely block learning to natural stimuli. We conclude that CFs and corresponding Purkinje cell complex spike events provide essential instructive signals for associative cerebellar learning.
Collapse
Affiliation(s)
- N Tatiana Silva
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | | | - Dominique L Pritchett
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
- Biology Department, Howard University, Washington, DC, USA.
| | - Megan R Carey
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
| |
Collapse
|
6
|
Pi JS, Fakharian MA, Hage P, Sedaghat-Nejad E, Muller SZ, Shadmehr R. The olivary input to the cerebellum dissociates sensory events from movement plans. Proc Natl Acad Sci U S A 2024; 121:e2318849121. [PMID: 38630714 PMCID: PMC11047103 DOI: 10.1073/pnas.2318849121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Neurons in the inferior olive are thought to anatomically organize the Purkinje cells (P-cells) of the cerebellum into computational modules, but what is computed by each module? Here, we designed a saccade task in marmosets that dissociated sensory events from motor events and then recorded the complex and simple spikes of hundreds of P-cells. We found that when a visual target was presented at a random location, the olive reported the direction of that sensory event to one group of P-cells, but not to a second group. However, just before movement onset, it reported the direction of the planned movement to both groups, even if that movement was not toward the target. At the end of the movement if the subject experienced an error but chose to withhold the corrective movement, only the first group received information about the sensory prediction error. We organized the P-cells based on the information content of their olivary input and found that in the group that received sensory information, the simple spikes were suppressed during fixation, then produced a burst before saccade onset in a direction consistent with assisting the movement. In the second group, the simple spikes were not suppressed during fixation but burst near saccade deceleration in a direction consistent with stopping the movement. Thus, the olive differentiated the P-cells based on whether they would receive sensory or motor information, and this defined their contributions to control of movements as well as holding still.
Collapse
Affiliation(s)
- Jay S. Pi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MA21205
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MA21205
| | - Paul Hage
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MA21205
| | - Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MA21205
| | - Salomon Z. Muller
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY10027
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MA21205
| |
Collapse
|
7
|
Eom K, Jung J, Kim B, Hyun JH. Molecular tools for recording and intervention of neuronal activity. Mol Cells 2024; 47:100048. [PMID: 38521352 PMCID: PMC11021360 DOI: 10.1016/j.mocell.2024.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024] Open
Abstract
Observing the activity of neural networks is critical for the identification of learning and memory processes, as well as abnormal activities of neural circuits in disease, particularly for the purpose of tracking disease progression. Methodologies for describing the activity history of neural networks using molecular biology techniques first utilized genes expressed by active neurons, followed by the application of recently developed techniques including optogenetics and incorporation of insights garnered from other disciplines, including chemistry and physics. In this review, we will discuss ways in which molecular biological techniques used to describe the activity of neural networks have evolved along with the potential for future development.
Collapse
Affiliation(s)
- Kisang Eom
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jinhwan Jung
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Byungsoo Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jung Ho Hyun
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
8
|
Soetedjo R, Horwitz GD. Closed-Loop Optogenetic Perturbation of Macaque Oculomotor Cerebellum: Evidence for an Internal Saccade Model. J Neurosci 2024; 44:e1317232023. [PMID: 38182420 PMCID: PMC10860481 DOI: 10.1523/jneurosci.1317-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024] Open
Abstract
Internal models are essential for the production of accurate movements. The accuracy of saccadic eye movements is thought to be mediated by an internal model of oculomotor mechanics encoded in the cerebellum. The cerebellum may also be part of a feedback loop that predicts the displacement of the eyes and compares it to the desired displacement in real time to ensure that saccades land on target. To investigate the role of the cerebellum in these two aspects of saccade production, we delivered saccade-triggered light pulses to channelrhodopsin-2-expressing Purkinje cells in the oculomotor vermis (OMV) of two male macaque monkeys. Light pulses delivered during the acceleration phase of ipsiversive saccades slowed the deceleration phase. The long latency of these effects and their scaling with light pulse duration are consistent with an integration of neural signals at or downstream of the stimulation site. In contrast, light pulses delivered during contraversive saccades reduced saccade velocity at short latency and were followed by a compensatory reacceleration which caused gaze to land on or near the target. We conclude that the contribution of the OMV to saccade production depends on saccade direction; the ipsilateral OMV is part of a forward model that predicts eye displacement, whereas the contralateral OMV is part of an inverse model that creates the force required to move the eyes with optimal peak velocity for the intended displacement.
Collapse
Affiliation(s)
- Robijanto Soetedjo
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
- Washington National Primate Research Center, University of Washington, Seattle, Washington 98195
| | - Gregory D Horwitz
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
- Washington National Primate Research Center, University of Washington, Seattle, Washington 98195
| |
Collapse
|
9
|
Chen Y, Hong Z, Wang J, Liu K, Liu J, Lin J, Feng S, Zhang T, Shan L, Liu T, Guo P, Lin Y, Li T, Chen Q, Jiang X, Li A, Li X, Li Y, Wilde JJ, Bao J, Dai J, Lu Z. Circuit-specific gene therapy reverses core symptoms in a primate Parkinson's disease model. Cell 2023; 186:5394-5410.e18. [PMID: 37922901 DOI: 10.1016/j.cell.2023.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder. Its symptoms are typically treated with levodopa or dopamine receptor agonists, but its action lacks specificity due to the wide distribution of dopamine receptors in the central nervous system and periphery. Here, we report the development of a gene therapy strategy to selectively manipulate PD-affected circuitry. Targeting striatal D1 medium spiny neurons (MSNs), whose activity is chronically suppressed in PD, we engineered a therapeutic strategy comprised of a highly efficient retrograde adeno-associated virus (AAV), promoter elements with strong D1-MSN activity, and a chemogenetic effector to enable precise D1-MSN activation after systemic ligand administration. Application of this therapeutic approach rescues locomotion, tremor, and motor skill defects in both mouse and primate models of PD, supporting the feasibility of targeted circuit modulation tools for the treatment of PD in humans.
Collapse
Affiliation(s)
- Yefei Chen
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zexuan Hong
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China
| | - Jingyi Wang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunlin Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jing Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China
| | - Jianbang Lin
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijing Feng
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianhui Zhang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Liang Shan
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Taian Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pinyue Guo
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunping Lin
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tian Li
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qian Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiaodan Jiang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiang Li
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuantao Li
- Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China; Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | | | - Jin Bao
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Ji Dai
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zhonghua Lu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
10
|
Soetedjo R, Horwitz GD. Closed-loop optogenetic perturbation of macaque oculomotor cerebellum: evidence for an internal saccade model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.22.546199. [PMID: 37425739 PMCID: PMC10327152 DOI: 10.1101/2023.06.22.546199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Internal models are essential for the production of accurate movements. The accuracy of saccadic eye movements is thought to be mediated by an internal model of oculomotor mechanics encoded in the cerebellum. The cerebellum may also be part of a feedback loop that predicts the displacement of the eyes and compares it to the desired displacement in real time to ensure that saccades land on target. To investigate the role of the cerebellum in these two aspects of saccade production, we delivered saccade-triggered light pulses to channelrhodopsin-2-expressing Purkinje cells in the oculomotor vermis (OMV) of two macaque monkeys. Light pulses delivered during the acceleration phase of ipsiversive saccades slowed the deceleration phase. The long latency of these effects and their scaling with light pulse duration are consistent with an integration of neural signals at or downstream of the stimulation site. In contrast, light pulses delivered during contraversive saccades reduced saccade velocity at short latency and were followed by a compensatory reacceleration which caused gaze to land near or on the target. We conclude that the contribution of the OMV to saccade production depends on saccade direction; the ipsilateral OMV is part of a forward model that predicts eye displacement, whereas the contralateral OMV is part of an inverse model that creates the force required to move the eyes with optimal peak velocity for the intended displacement.
Collapse
Affiliation(s)
- Robijanto Soetedjo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Gregory D. Horwitz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Muller SZ, Pi JS, Hage P, Fakharian MA, Sedaghat-Nejad E, Shadmehr R. Complex spikes perturb movements and reveal the sensorimotor map of Purkinje cells. Curr Biol 2023; 33:4869-4879.e3. [PMID: 37858343 PMCID: PMC10751015 DOI: 10.1016/j.cub.2023.09.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Computations that are performed by the cerebellar cortex are transmitted via simple spikes of Purkinje cells (P-cells) to downstream structures, but because P-cells are many synapses away from muscles, we do not know the relationship between modulation of simple spikes and control of behavior. Here, we recorded the spiking activities of hundreds of P-cells in the oculomotor vermis of marmosets during saccadic eye movements and found that following the presentation of a visual stimulus, the olivary input to a P-cell coarsely described the direction and amplitude of the visual stimulus as well as the upcoming movement. Occasionally, the complex spike occurred just before saccade onset, suppressing the P-cell's simple spikes and disrupting its output during that saccade. Remarkably, this brief suppression of simple spikes altered the saccade's trajectory by pulling the eyes toward the part of the visual space that was preferentially encoded by the olivary input to that P-cell. Thus, there is an alignment between the sensory space encoded by the complex spikes and the behavior conveyed by the simple spikes: a reduction in simple spikes is a signal to bias the ongoing movement toward the part of the sensory space preferentially encoded by the olivary input to that P-cell.
Collapse
Affiliation(s)
- Salomon Z Muller
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA.
| | - Jay S Pi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Paul Hage
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Li L, Liu Z. Genetic Approaches for Neural Circuits Dissection in Non-human Primates. Neurosci Bull 2023; 39:1561-1576. [PMID: 37258795 PMCID: PMC10533465 DOI: 10.1007/s12264-023-01067-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/27/2023] [Indexed: 06/02/2023] Open
Abstract
Genetic tools, which can be used for the morphology study of specific neurons, pathway-selective connectome mapping, neuronal activity monitoring, and manipulation with a spatiotemporal resolution, have been widely applied to the understanding of complex neural circuit formation, interactions, and functions in rodents. Recently, similar genetic approaches have been tried in non-human primates (NHPs) in neuroscience studies for dissecting the neural circuits involved in sophisticated behaviors and clinical brain disorders, although they are still very preliminary. In this review, we introduce the progress made in the development and application of genetic tools for brain studies on NHPs. We also discuss the advantages and limitations of each approach and provide a perspective for using genetic tools to study the neural circuits of NHPs.
Collapse
Affiliation(s)
- Ling Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Mich JK, Sunil S, Johansen N, Martinez RA, Leytze M, Gore BB, Mahoney JT, Ben-Simon Y, Bishaw Y, Brouner K, Campos J, Canfield R, Casper T, Dee N, Egdorf T, Gary A, Gibson S, Goldy J, Groce EL, Hirschstein D, Loftus L, Lusk N, Malone J, Martin NX, Monet D, Omstead V, Opitz-Araya X, Oster A, Pom CA, Potekhina L, Reding M, Rimorin C, Ruiz A, Sedeño-Cortés AE, Shapovalova NV, Taormina M, Taskin N, Tieu M, Valera Cuevas NJ, Weed N, Way S, Yao Z, McMillen DA, Kunst M, McGraw M, Thyagarajan B, Waters J, Bakken TE, Yao S, Smith KA, Svoboda K, Podgorski K, Kojima Y, Horwitz GD, Zeng H, Daigle TL, Lein ES, Tasic B, Ting JT, Levi BP. Enhancer-AAVs allow genetic access to oligodendrocytes and diverse populations of astrocytes across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558718. [PMID: 37790503 PMCID: PMC10542530 DOI: 10.1101/2023.09.20.558718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Proper brain function requires the assembly and function of diverse populations of neurons and glia. Single cell gene expression studies have mostly focused on characterization of neuronal cell diversity; however, recent studies have revealed substantial diversity of glial cells, particularly astrocytes. To better understand glial cell types and their roles in neurobiology, we built a new suite of adeno-associated viral (AAV)-based genetic tools to enable genetic access to astrocytes and oligodendrocytes. These oligodendrocyte and astrocyte enhancer-AAVs are highly specific (usually > 95% cell type specificity) with variable expression levels, and our astrocyte enhancer-AAVs show multiple distinct expression patterns reflecting the spatial distribution of astrocyte cell types. To provide the best glial-specific functional tools, several enhancer-AAVs were: optimized for higher expression levels, shown to be functional and specific in rat and macaque, shown to maintain specific activity in epilepsy where traditional promoters changed activity, and used to drive functional transgenes in astrocytes including Cre recombinase and acetylcholine-responsive sensor iAChSnFR. The astrocyte-specific iAChSnFR revealed a clear reward-dependent acetylcholine response in astrocytes of the nucleus accumbens during reinforcement learning. Together, this collection of glial enhancer-AAVs will enable characterization of astrocyte and oligodendrocyte populations and their roles across species, disease states, and behavioral epochs.
Collapse
|
14
|
Lin TF, Busch SE, Hansel C. Intrinsic and synaptic determinants of receptive field plasticity in Purkinje cells of the mouse cerebellum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549760. [PMID: 37502848 PMCID: PMC10370111 DOI: 10.1101/2023.07.19.549760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Non-synaptic ('intrinsic') plasticity of membrane excitability contributes to aspects of memory formation, but it remains unclear whether it merely facilitates synaptic long-term potentiation (LTP), or whether it plays a permissive role in determining the impact of synaptic weight increase. We use tactile stimulation and electrical activation of parallel fibers to probe intrinsic and synaptic contributions to receptive field (RF) plasticity in awake mice during two-photon calcium imaging of cerebellar Purkinje cells. Repetitive activation of both stimuli induced response potentiation that is impaired in mice with selective deficits in either intrinsic plasticity (SK2 KO) or LTP (CaMKII TT305/6VA). Intrinsic, but not synaptic, plasticity expands the local, dendritic RF representation. Simultaneous dendrite and axon initial segment recordings confirm that these dendritic events affect axonal output. Our findings support the hypothesis that intrinsic plasticity provides an amplification mechanism that exerts a permissive control over the impact of LTP on neuronal responsiveness.
Collapse
Affiliation(s)
- Ting-Feng Lin
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Silas E Busch
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Christian Hansel
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
15
|
Kimura K, Nagai Y, Hatanaka G, Fang Y, Tanabe S, Zheng A, Fujiwara M, Nakano M, Hori Y, Takeuchi RF, Inagaki M, Minamimoto T, Fujita I, Inoue KI, Takada M. A mosaic adeno-associated virus vector as a versatile tool that exhibits high levels of transgene expression and neuron specificity in primate brain. Nat Commun 2023; 14:4762. [PMID: 37553329 PMCID: PMC10409865 DOI: 10.1038/s41467-023-40436-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
Recent emphasis has been placed on gene transduction mediated through recombinant adeno-associated virus (AAV) vector to manipulate activity of neurons and their circuitry in the primate brain. In the present study, we created a novel vector of which capsid was composed of capsid proteins derived from both of the AAV serotypes 1 and 2 (AAV1 and AAV2). Following the injection into the frontal cortex of macaque monkeys, this mosaic vector, termed AAV2.1 vector, was found to exhibit the excellence in transgene expression (for AAV1 vector) and neuron specificity (for AAV2 vector) simultaneously. To explore its applicability to chemogenetic manipulation and in vivo calcium imaging, the AAV2.1 vector expressing excitatory DREADDs or GCaMP was injected into the striatum or the visual cortex of macaque monkeys, respectively. Our results have defined that such vectors secure intense and stable expression of the target proteins and yield conspicuous modulation and imaging of neuronal activity.
Collapse
Affiliation(s)
- Kei Kimura
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Gaku Hatanaka
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yang Fang
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Soshi Tanabe
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Andi Zheng
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Maki Fujiwara
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Mayuko Nakano
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Yukiko Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ryosuke F Takeuchi
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikio Inagaki
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ichiro Fujita
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| |
Collapse
|
16
|
Afraz A. Behavioral optogenetics in nonhuman primates; a psychological perspective. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100101. [PMID: 38020813 PMCID: PMC10663131 DOI: 10.1016/j.crneur.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 12/01/2023] Open
Abstract
Optogenetics has been a promising and developing technology in systems neuroscience throughout the past decade. It has been difficult though to reliably establish the potential behavioral effects of optogenetic perturbation of the neural activity in nonhuman primates. This poses a challenge on the future of optogenetics in humans as the concepts and technology need to be developed in nonhuman primates first. Here, I briefly summarize the viable approaches taken to improve nonhuman primate behavioral optogenetics, then focus on one approach: improvements in the measurement of behavior. I bring examples from visual behavior and show how the choice of method of measurement might conceal large behavioral effects. I will then discuss the "cortical perturbation detection" task in detail as an example of a sensitive task that can record the behavioral effects of optogenetic cortical stimulation with high fidelity. Finally, encouraged by the rich scientific landscape ahead of behavioral optogenetics, I invite technology developers to improve the chronically implantable devices designed for simultaneous neural recording and optogenetic intervention in nonhuman primates.
Collapse
Affiliation(s)
- Arash Afraz
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institute of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Merlin S, Vidyasagar T. Optogenetics in primate cortical networks. Front Neuroanat 2023; 17:1193949. [PMID: 37284061 PMCID: PMC10239886 DOI: 10.3389/fnana.2023.1193949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
The implementation of optogenetics in studies on non-human primates has generally proven quite difficult, but recent successes have paved the way for its rapid increase. Limitations in the genetic tractability in primates, have been somewhat overcome by implementing tailored vectors and promoters to maximize expression and specificity in primates. More recently, implantable devices, including microLED arrays, have made it possible to deliver light deeper into brain tissue, allowing targeting of deeper structures. However, the greatest limitation in applying optogenetics to the primate brain is the complex connections that exist within many neural circuits. In the past, relatively cruder methods such as cooling or pharmacological blockade have been used to examine neural circuit functions, though their limitations were well recognized. In some ways, similar shortcomings remain for optogenetics, with the ability to target a single component of complex neural circuits being the greatest challenge in applying optogenetics to systems neuroscience in primate brains. Despite this, some recent approaches combining Cre-expressing and Cre-dependent vectors have overcome some of these limitations. Here we suggest that optogenetics provides its greatest advantage to systems neuroscientists when applied as a specific tool to complement the techniques of the past, rather than necessarily replacing them.
Collapse
Affiliation(s)
- Sam Merlin
- Medical Science, School of Science, Western Sydney University, Campbelltown, NSW, Australia
| | - Trichur Vidyasagar
- Department of Optometry and Vision Sciences, School of Health Science, The University of Melbourne, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
18
|
Muller SZ, Pi JS, Hage P, Fakharian MA, Sedaghat-Nejad E, Shadmehr R. Complex spikes perturb movements, revealing the sensorimotor map of Purkinje cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.537034. [PMID: 37090615 PMCID: PMC10120735 DOI: 10.1101/2023.04.16.537034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The cerebellar cortex performs computations that are critical for control of our actions, and then transmits that information via simple spikes of Purkinje cells (P-cells) to downstream structures. However, because P-cells are many synapses away from muscles, we do not know how their output affects behavior. Furthermore, we do not know the level of abstraction, i.e., the coordinate system of the P-cell's output. Here, we recorded spiking activities of hundreds of P-cells in the oculomotor vermis of marmosets during saccadic eye movements and found that following the presentation of a visual stimulus, the olivary input to a P-cell encoded a probabilistic signal that coarsely described both the direction and the amplitude of that stimulus. When this input was present, the resulting complex spike briefly suppressed the P-cell's simple spikes, disrupting the P-cell's output during that saccade. Remarkably, this brief suppression altered the saccade's trajectory by pulling the eyes toward the part of the visual space that was preferentially encoded by the olivary input to that P-cell. Thus, analysis of behavior in the milliseconds following a complex spike unmasked how the P-cell's output influenced behavior: the preferred location in the coordinates of the visual system as conveyed probabilistically from the inferior olive to a P-cell defined the action in the coordinates of the motor system for which that P-cell's simple spikes directed behavior.
Collapse
Affiliation(s)
- Salomon Z. Muller
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY USA
| | - Jay S. Pi
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - Paul Hage
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| |
Collapse
|
19
|
Campos LJ, Arokiaraj CM, Chuapoco MR, Chen X, Goeden N, Gradinaru V, Fox AS. Advances in AAV technology for delivering genetically encoded cargo to the nonhuman primate nervous system. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100086. [PMID: 37397806 PMCID: PMC10313870 DOI: 10.1016/j.crneur.2023.100086] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 03/17/2023] [Indexed: 07/04/2023] Open
Abstract
Modern neuroscience approaches including optogenetics, calcium imaging, and other genetic manipulations have facilitated our ability to dissect specific circuits in rodent models to study their role in neurological disease. These approaches regularly use viral vectors to deliver genetic cargo (e.g., opsins) to specific tissues and genetically-engineered rodents to achieve cell-type specificity. However, the translatability of these rodent models, cross-species validation of identified targets, and translational efficacy of potential therapeutics in larger animal models like nonhuman primates remains difficult due to the lack of efficient primate viral vectors. A refined understanding of the nonhuman primate nervous system promises to deliver insights that can guide the development of treatments for neurological and neurodegenerative diseases. Here, we outline recent advances in the development of adeno-associated viral vectors for optimized use in nonhuman primates. These tools promise to help open new avenues for study in translational neuroscience and further our understanding of the primate brain.
Collapse
Affiliation(s)
- Lillian J. Campos
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Cynthia M. Arokiaraj
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Miguel R. Chuapoco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nick Goeden
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Capsida Biotherapeutics, Thousand Oaks, CA, 91320, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Andrew S. Fox
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
20
|
Ping A, Pan L, Zhang J, Xu K, Schriver KE, Zhu J, Roe AW. Targeted Optical Neural Stimulation: A New Era for Personalized Medicine. Neuroscientist 2023; 29:202-220. [PMID: 34865559 DOI: 10.1177/10738584211057047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Targeted optical neural stimulation comprises infrared neural stimulation and optogenetics, which affect the nervous system through induced thermal transients and activation of light-sensitive proteins, respectively. The main advantage of this pair of optical tools is high functional selectivity, which conventional electrical stimulation lacks. Over the past 15 years, the mechanism, safety, and feasibility of optical stimulation techniques have undergone continuous investigation and development. When combined with other methods like optical imaging and high-field functional magnetic resonance imaging, the translation of optical stimulation to clinical practice adds high value. We review the theoretical foundations and current state of optical stimulation, with a particular focus on infrared neural stimulation as a potential bridge linking optical stimulation to personalized medicine.
Collapse
Affiliation(s)
- An Ping
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Li Pan
- Qiushi Academy for Advanced Studies (QAAS), Key Laboratory of Biomedical Engineering of Education Ministry & Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Key Laboratory of Biomedical Engineering of Education Ministry & Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Kenneth E Schriver
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology (ZIINT), School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Anna Wang Roe
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology (ZIINT), School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Sharifi S, Golalipour M, Ghafari S, Safari R, Golalipour MJ. Effect of induced diabetes on morphometric indexes of the cerebellar cortex and gene expression in C57BL mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1444-1448. [PMID: 37970442 PMCID: PMC10634053 DOI: 10.22038/ijbms.2023.71172.15457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/03/2023] [Indexed: 11/17/2023]
Abstract
Objectives Diabetes is a metabolic disorder that affects the development of the central nervous system and plays an important role in learning and memory. Diabetes increases the reactive oxygen species (ROS) level in cells and changes the expression of several genes, including SYP, BDNF, PAX7, and SYNCAM1, through the FOXO transcription factor. This study was done to assess the effect of diabetes on morphometric indexes of the cerebellar cortex and gene expression in mice. Materials and Methods Diabetes was induced in twelve adult, male C57BL mice using an injection of streptozotocin. After two months, the mice were dissected, and the cerebellum was stored for further analysis. For the morphometric analysis, tissue sections were stained with cresyl violet and examined with a light microscope. For gene expression analysis, the RNA was extracted, and cDNA was synthesized. The mRNA levels of SYP, BDNF, PAX7, and SYNCAM1 genes were measured by the real-time PCR method. Results The thickness of the molecular layer and Purkinje layer, and the number of Purkinje and granular cells in the diabetic group were significantly reduced compared to controls P<0.0 1). The area, perimeter, and diameter of Purkinje cells in the diabetic group were significantly reduced compared to controls P<0.0 1). The expression of PAX7, SYP, and BDNF genes of the diabetic group was significantly reduced. However, SYNCAM1 expression in the cerebellum of the diabetic group was significantly increased compared to controls (P<0.05). Conclusion Induced diabetes in mice can decrease the expression of memory-related genes in the cerebellum. Also, these genes affect the morphology and thickness of the cerebellum.
Collapse
Affiliation(s)
- Somayeh Sharifi
- Department of Anatomical Sciences, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoud Golalipour
- Cellular and Molecular Research Center, Department of Biology, Faculty of Technology, Golestan University of Medical Sciences Gorgan, Iran
| | - Soraya Ghafari
- Department of Embryology and Histology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Razieh Safari
- Gorgan Congenital Malformations Research Center, Golestan University of Medical Sciences, and Gorgan, Iran
| | - Mohammad Jafar Golalipour
- Gorgan Congenital Malformations Research Center, Department of Anatomical Sciences, Golestan University of Medical Sciences, and Gorgan, Iran
| |
Collapse
|
22
|
Lafer-Sousa R, Wang K, Azadi R, Lopez E, Bohn S, Afraz A. Behavioral detectability of optogenetic stimulation of inferior temporal cortex varies with the size of concurrently viewed objects. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100063. [PMID: 36578652 PMCID: PMC9791129 DOI: 10.1016/j.crneur.2022.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
We have previously demonstrated that macaque monkeys can behaviorally detect a subtle optogenetic impulse delivered to their inferior temporal (IT) cortex. We have also shown that the ability to detect the cortical stimulation impulse varies depending on some characteristics of the visual images viewed at the time of brain stimulation, revealing the visual nature of the perceptual events induced by stimulation of the IT cortex. Here we systematically studied the effect of the size of viewed objects on behavioral detectability of optogenetic stimulation of the central IT cortex. Surprisingly, we found that behavioral detection of the same optogenetic impulse highly varies with the size of the viewed object images. Reduction of the object size in four steps from 8 to 1 degree of visual angle significantly decreased detection performance. These results show that identical stimulation impulses delivered to the same neural population induce variable perceptual events depending on the mere size of the objects viewed at the time of brain stimulation.
Collapse
Affiliation(s)
- Rosa Lafer-Sousa
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Karen Wang
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Reza Azadi
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Emily Lopez
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Simon Bohn
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Arash Afraz
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
23
|
Chen X, Du Y, Broussard GJ, Kislin M, Yuede CM, Zhang S, Dietmann S, Gabel H, Zhao G, Wang SSH, Zhang X, Bonni A. Transcriptomic mapping uncovers Purkinje neuron plasticity driving learning. Nature 2022; 605:722-727. [PMID: 35545673 PMCID: PMC9887520 DOI: 10.1038/s41586-022-04711-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/31/2022] [Indexed: 02/03/2023]
Abstract
Cellular diversification is critical for specialized functions of the brain including learning and memory1. Single-cell RNA sequencing facilitates transcriptomic profiling of distinct major types of neuron2-4, but the divergence of transcriptomic profiles within a neuronal population and their link to function remain poorly understood. Here we isolate nuclei tagged5 in specific cell types followed by single-nucleus RNA sequencing to profile Purkinje neurons and map their responses to motor activity and learning. We find that two major subpopulations of Purkinje neurons, identified by expression of the genes Aldoc and Plcb4, bear distinct transcriptomic features. Plcb4+, but not Aldoc+, Purkinje neurons exhibit robust plasticity of gene expression in mice subjected to sensorimotor and learning experience. In vivo calcium imaging and optogenetic perturbation reveal that Plcb4+ Purkinje neurons have a crucial role in associative learning. Integrating single-nucleus RNA sequencing datasets with weighted gene co-expression network analysis uncovers a learning gene module that includes components of FGFR2 signalling in Plcb4+ Purkinje neurons. Knockout of Fgfr2 in Plcb4+ Purkinje neurons in mice using CRISPR disrupts motor learning. Our findings define how diversification of Purkinje neurons is linked to their responses in motor learning and provide a foundation for understanding their differential vulnerability to neurological disorders.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Hope Center for Neurological Disorders,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yanhua Du
- Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | | | - Mikhail Kislin
- Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ, USA
| | - Carla M Yuede
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Shuwei Zhang
- Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Sabine Dietmann
- Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
- Insitute for Informatics, Washington University School of Medicine, St Louis, MO, USA
| | - Harrison Gabel
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Samuel S-H Wang
- Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ, USA.
| | - Xiaoqing Zhang
- Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China.
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA.
- Neuroscience and Rare Diseases, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
24
|
Canton-Josh JE, Qin J, Salvo J, Kozorovitskiy Y. Dopaminergic regulation of vestibulo-cerebellar circuits through unipolar brush cells. eLife 2022; 11:e76912. [PMID: 35476632 PMCID: PMC9106328 DOI: 10.7554/elife.76912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
While multiple monoamines modulate cerebellar output, the mechanistic details of dopaminergic signaling in the cerebellum remain poorly understood. We show that dopamine type 1 receptors (Drd1) are expressed in unipolar brush cells (UBCs) of the mouse cerebellar vermis. Drd1 activation increases UBC firing rate and post-synaptic NMDAR -mediated currents. Using anatomical tracing and in situ hybridization, we test three hypotheses about the source of cerebellar dopamine. We exclude midbrain dopaminergic nuclei and tyrosine hydroxylase-positive Purkinje (Pkj) cells as potential sources, supporting the possibility of dopaminergic co-release from locus coeruleus (LC) axons. Using an optical dopamine sensor GRABDA2h, electrical stimulation, and optogenetic activation of LC fibers in the acute slice, we find evidence for monoamine release onto Drd1-expressing UBCs. Altogether, we propose that the LC regulates cerebellar cortex activity by co-releasing dopamine onto UBCs to modulate their response to cerebellar inputs. Pkj cells directly inhibit these Drd1-positive UBCs, forming a dopamine-sensitive recurrent vestibulo-cerebellar circuit.
Collapse
Affiliation(s)
| | - Joanna Qin
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Joseph Salvo
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | | |
Collapse
|
25
|
Applications of chemogenetics in non-human primates. Curr Opin Pharmacol 2022; 64:102204. [DOI: 10.1016/j.coph.2022.102204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022]
|
26
|
Scott JT, Bourne JA. Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet? Prog Neurobiol 2021; 208:102183. [PMID: 34728308 DOI: 10.1016/j.pneurobio.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Recent years have seen a profound resurgence of activity with nonhuman primates (NHPs) to model human brain disorders. From marmosets to macaques, the study of NHP species offers a unique window into the function of primate-specific neural circuits that are impossible to examine in other models. Examining how these circuits manifest into the complex behaviors of primates, such as advanced cognitive and social functions, has provided enormous insights to date into the mechanisms underlying symptoms of numerous neurological and neuropsychiatric illnesses. With the recent optimization of modern techniques to manipulate and measure neural activity in vivo, such as optogenetics and calcium imaging, NHP research is more well-equipped than ever to probe the neural mechanisms underlying pathological behavior. However, methods for behavioral experimentation and analysis in NHPs have noticeably failed to keep pace with these advances. As behavior ultimately lies at the junction between preclinical findings and its translation to clinical outcomes for brain disorders, approaches to improve the integrity, reproducibility, and translatability of behavioral experiments in NHPs requires critical evaluation. In this review, we provide a unifying account of existing brain disorder models using NHPs, and provide insights into the present and emerging contributions of behavioral studies to the field.
Collapse
Affiliation(s)
- Jack T Scott
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
27
|
Kojima Y, Ting JT, Soetedjo R, Gibson SD, Horwitz GD. Injections of AAV Vectors for Optogenetics in Anesthetized and Awake Behaving Non-Human Primate Brain. J Vis Exp 2021:10.3791/62546. [PMID: 34424236 PMCID: PMC10281254 DOI: 10.3791/62546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Optogenetic techniques have revolutionized neuroscience research and are poised to do the same for neurological gene therapy. The clinical use of optogenetics, however, requires that safety and efficacy be demonstrated in animal models, ideally in non-human primates (NHPs), because of their neurological similarity to humans. The number of candidate vectors that are potentially useful for neuroscience and medicine is vast, and no high-throughput means to test these vectors yet exists. Thus, there is a need for techniques to make multiple spatially and volumetrically accurate injections of viral vectors into NHP brain that can be identified unambiguously through postmortem histology. Described herein is such a method. Injection cannulas are constructed from coupled polytetrafluoroethylene and stainless-steel tubes. These cannulas are autoclavable, disposable, and have low minimal-loading volumes, making them ideal for the injection of expensive, highly concentrated viral vector solutions. An inert, red-dyed mineral oil fills the dead space and forms a visible meniscus with the vector solution, allowing instantaneous and accurate measurement of injection rates and volumes. The oil is loaded into the rear of the cannula, reducing the risk of co-injection with the vector. Cannulas can be loaded in 10 min, and injections can be made in 20 min. This procedure is well suited for injections into awake or anesthetized animals. When used to deliver high-quality viral vectors, this procedure can produce robust expression of optogenetic proteins, allowing optical control of neural activity and behavior in NHPs.
Collapse
Affiliation(s)
- Yoshiko Kojima
- Dept. of Otolaryngology - Head and Neck Surgery, University of Washington; Washington National Primate Research Center, University of Washington;
| | - Jonathan T Ting
- Washington National Primate Research Center, University of Washington; Allen Institute for Brain Science; Dept. of Physiology & Biophysics, University of Washington
| | - Robijanto Soetedjo
- Washington National Primate Research Center, University of Washington; Dept. of Physiology & Biophysics, University of Washington
| | - Shane D Gibson
- Washington National Primate Research Center, University of Washington; Dept. of Physiology & Biophysics, University of Washington
| | - Gregory D Horwitz
- Washington National Primate Research Center, University of Washington; Dept. of Physiology & Biophysics, University of Washington
| |
Collapse
|
28
|
Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S, Jarraya B, Konofagou EE, Krauzlis RJ, Messinger A, Mitchell AS, Ortiz-Rios M, Oya H, Roberts AC, Roe AW, Rushworth MFS, Sallet J, Schmid MC, Schroeder CE, Tasserie J, Tsao DY, Uhrig L, Vanduffel W, Wilke M, Kagan I, Petkov CI. Combining brain perturbation and neuroimaging in non-human primates. Neuroimage 2021; 235:118017. [PMID: 33794355 PMCID: PMC11178240 DOI: 10.1016/j.neuroimage.2021.118017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.
Collapse
Affiliation(s)
- P Christiaan Klink
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Vincent P Ferrera
- Department of Neuroscience & Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Andrew S Fox
- Department of Psychology & California National Primate Research Center, University of California, Davis, CA, USA
| | | | - Béchir Jarraya
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France; Foch Hospital, UVSQ, Suresnes, France
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Adam Messinger
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Michael Ortiz-Rios
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Hiroyuki Oya
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neurosurgery, University of Iowa, Iowa city, IA, USA
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | | | - Jérôme Sallet
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Michael Christoph Schmid
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | - Charles E Schroeder
- Nathan Kline Institute, Orangeburg, NY, USA; Columbia University, New York, NY, USA
| | - Jordy Tasserie
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Doris Y Tsao
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience; Howard Hughes Medical Institute; Computation and Neural Systems, Caltech, Pasadena, CA, USA
| | - Lynn Uhrig
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Neurosciences Department, KU Leuven Medical School, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven Belgium; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Melanie Wilke
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Department of Cognitive Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Igor Kagan
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.
| | - Christopher I Petkov
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
29
|
Tremblay S, Acker L, Afraz A, Albaugh DL, Amita H, Andrei AR, Angelucci A, Aschner A, Balan PF, Basso MA, Benvenuti G, Bohlen MO, Caiola MJ, Calcedo R, Cavanaugh J, Chen Y, Chen S, Chernov MM, Clark AM, Dai J, Debes SR, Deisseroth K, Desimone R, Dragoi V, Egger SW, Eldridge MAG, El-Nahal HG, Fabbrini F, Federer F, Fetsch CR, Fortuna MG, Friedman RM, Fujii N, Gail A, Galvan A, Ghosh S, Gieselmann MA, Gulli RA, Hikosaka O, Hosseini EA, Hu X, Hüer J, Inoue KI, Janz R, Jazayeri M, Jiang R, Ju N, Kar K, Klein C, Kohn A, Komatsu M, Maeda K, Martinez-Trujillo JC, Matsumoto M, Maunsell JHR, Mendoza-Halliday D, Monosov IE, Muers RS, Nurminen L, Ortiz-Rios M, O'Shea DJ, Palfi S, Petkov CI, Pojoga S, Rajalingham R, Ramakrishnan C, Remington ED, Revsine C, Roe AW, Sabes PN, Saunders RC, Scherberger H, Schmid MC, Schultz W, Seidemann E, Senova YS, Shadlen MN, Sheinberg DL, Siu C, Smith Y, Solomon SS, Sommer MA, Spudich JL, Stauffer WR, Takada M, Tang S, Thiele A, Treue S, Vanduffel W, Vogels R, Whitmire MP, Wichmann T, Wurtz RH, Xu H, Yazdan-Shahmorad A, Shenoy KV, DiCarlo JJ, Platt ML. An Open Resource for Non-human Primate Optogenetics. Neuron 2020; 108:1075-1090.e6. [PMID: 33080229 PMCID: PMC7962465 DOI: 10.1016/j.neuron.2020.09.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/28/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022]
Abstract
Optogenetics has revolutionized neuroscience in small laboratory animals, but its effect on animal models more closely related to humans, such as non-human primates (NHPs), has been mixed. To make evidence-based decisions in primate optogenetics, the scientific community would benefit from a centralized database listing all attempts, successful and unsuccessful, of using optogenetics in the primate brain. We contacted members of the community to ask for their contributions to an open science initiative. As of this writing, 45 laboratories around the world contributed more than 1,000 injection experiments, including precise details regarding their methods and outcomes. Of those entries, more than half had not been published. The resource is free for everyone to consult and contribute to on the Open Science Framework website. Here we review some of the insights from this initial release of the database and discuss methodological considerations to improve the success of optogenetic experiments in NHPs.
Collapse
Affiliation(s)
- Sébastien Tremblay
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Leah Acker
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arash Afraz
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel L Albaugh
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Hidetoshi Amita
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ariana R Andrei
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Alessandra Angelucci
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Amir Aschner
- Dominik P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Puiu F Balan
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium
| | - Michele A Basso
- Departments of Psychiatry and Biobehavioral Sciences and Neurobiology, UCLA, Los Angeles, CA 90095, USA
| | - Giacomo Benvenuti
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Martin O Bohlen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Michael J Caiola
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Roberto Calcedo
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - James Cavanaugh
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20982, USA
| | - Yuzhi Chen
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Spencer Chen
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Mykyta M Chernov
- Division of Neuroscience, Oregon National Primate Resource Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Andrew M Clark
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Ji Dai
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Samantha R Debes
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Karl Deisseroth
- Neuroscience Program, Departments of Bioengineering, Psychiatry, and Behavioral Science, Wu Tsai Neurosciences Institute, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Robert Desimone
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Valentin Dragoi
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Seth W Egger
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Hala G El-Nahal
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Francesco Fabbrini
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Frederick Federer
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Christopher R Fetsch
- The Solomon H. Snyder Department of Neuroscience & Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michal G Fortuna
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Robert M Friedman
- Division of Neuroscience, Oregon National Primate Resource Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Naotaka Fujii
- Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Alexander Gail
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Adriana Galvan
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Supriya Ghosh
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| | - Marc Alwin Gieselmann
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Roberto A Gulli
- Zuckerman Institute, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eghbal A Hosseini
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xing Hu
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Janina Hüer
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Roger Janz
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rundong Jiang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Niansheng Ju
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Kohitij Kar
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carsten Klein
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Adam Kohn
- Dominik P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Misako Komatsu
- Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Kazutaka Maeda
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julio C Martinez-Trujillo
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Masayuki Matsumoto
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - John H R Maunsell
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ilya E Monosov
- Department of Neuroscience, Biomedical Engineering, Electrical Engineering, Neurosurgery and Pain Center, Washington University, St. Louis, MO 63110, USA
| | - Ross S Muers
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Lauri Nurminen
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Michael Ortiz-Rios
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany; Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Daniel J O'Shea
- Department of Electrical Engineering, Wu Tsai Neurosciences Institute, and Bio-X Institute, and Neuroscience Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Stéphane Palfi
- Department of Neurosurgery, Assistance Publique-Hopitaux de Paris (APHP), U955 INSERM IMRB eq.15, University of Paris 12 UPEC, Faculté de Médecine, Créteil 94010, France
| | - Christopher I Petkov
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Sorin Pojoga
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Rishi Rajalingham
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Evan D Remington
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cambria Revsine
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Anna W Roe
- Division of Neuroscience, Oregon National Primate Resource Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Interdisciplinary Institute of Neuroscience and Technology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, Zhejiang University, Hangzhou 310029, China
| | - Philip N Sabes
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Hansjörg Scherberger
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Michael C Schmid
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK; Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Wolfram Schultz
- Department of Physiology, Development of Neuroscience, University of Cambridge, Cambridge CB3 0LT, UK
| | - Eyal Seidemann
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Yann-Suhan Senova
- Department of Neurosurgery, Assistance Publique-Hopitaux de Paris (APHP), U955 INSERM IMRB eq.15, University of Paris 12 UPEC, Faculté de Médecine, Créteil 94010, France
| | - Michael N Shadlen
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, The Kavli Institute for Brain Science & Howard Hughes Medical Institute, Columbia University, NY 10027, USA
| | - David L Sheinberg
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Caitlin Siu
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Selina S Solomon
- Dominik P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marc A Sommer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - John L Spudich
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas-Houston, Houston, TX 77030, USA
| | - William R Stauffer
- Systems Neuroscience Institute, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Shiming Tang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Alexander Thiele
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Stefan Treue
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Wim Vanduffel
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; MGH Martinos Center, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02144, USA
| | - Rufin Vogels
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Matthew P Whitmire
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Robert H Wurtz
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20982, USA
| | - Haoran Xu
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Azadeh Yazdan-Shahmorad
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Departments of Bioengineering and Electrical and Computer Engineering, Washington National Primate Research Center, University of Washington, Seattle, WA 98105, USA
| | - Krishna V Shenoy
- Departments of Electrical Engineering, Bioengineering, and Neurobiology, Wu Tsai Neurosciences Institute and Bio-X Institute, Neuroscience Graduate Program, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - James J DiCarlo
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Marketing, Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Quarta E, Cohen EJ, Bravi R, Minciacchi D. Future Portrait of the Athletic Brain: Mechanistic Understanding of Human Sport Performance Via Animal Neurophysiology of Motor Behavior. Front Syst Neurosci 2020; 14:596200. [PMID: 33281568 PMCID: PMC7705174 DOI: 10.3389/fnsys.2020.596200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022] Open
Abstract
Sport performances are often showcases of skilled motor control. Efforts to understand the neural processes subserving such movements may teach us about general principles of behavior, similarly to how studies on neurological patients have guided early work in cognitive neuroscience. While investigations on non-human animal models offer valuable information on the neural dynamics of skilled motor control that is still difficult to obtain from humans, sport sciences have paid relatively little attention to these mechanisms. Similarly, knowledge emerging from the study of sport performance could inspire innovative experiments in animal neurophysiology, but the latter has been only partially applied. Here, we advocate that fostering interactions between these two seemingly distant fields, i.e., animal neurophysiology and sport sciences, may lead to mutual benefits. For instance, recording and manipulating the activity from neurons of behaving animals offer a unique viewpoint on the computations for motor control, with potentially untapped relevance for motor skills development in athletes. To stimulate such transdisciplinary dialog, in the present article, we also discuss steps for the reverse translation of sport sciences findings to animal models and the evaluation of comparability between animal models of a given sport and athletes. In the final section of the article, we envision that some approaches developed for animal neurophysiology could translate to sport sciences anytime soon (e.g., advanced tracking methods) or in the future (e.g., novel brain stimulation techniques) and could be used to monitor and manipulate motor skills, with implications for human performance extending well beyond sport.
Collapse
Affiliation(s)
| | | | | | - Diego Minciacchi
- Physiological Sciences Section, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
31
|
Cushnie AK, El-Nahal HG, Bohlen MO, May PJ, Basso MA, Grimaldi P, Wang MZ, de Velasco Ezequiel MF, Sommer MA, Heilbronner SR. Using rAAV2-retro in rhesus macaques: Promise and caveats for circuit manipulation. J Neurosci Methods 2020; 345:108859. [PMID: 32668316 PMCID: PMC7539563 DOI: 10.1016/j.jneumeth.2020.108859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recent genetic technologies such as opto- and chemogenetics allow for the manipulation of brain circuits with unprecedented precision. Most studies employing these techniques have been undertaken in rodents, but a more human-homologous model for studying the brain is the nonhuman primate (NHP). Optimizing viral delivery of transgenes encoding actuator proteins could revolutionize the way we study neuronal circuits in NHPs. NEW METHOD: rAAV2-retro, a popular new capsid variant, produces robust retrograde labeling in rodents. Whether rAAV2-retro's highly efficient retrograde transport would translate to NHPs was unknown. Here, we characterized the anatomical distribution of labeling following injections of rAAV2-retro encoding opsins or DREADDs in the cortico-basal ganglia and oculomotor circuits of rhesus macaques. RESULTS rAAV2-retro injections in striatum, frontal eye field, and superior colliculus produced local labeling at injection sites and robust retrograde labeling in many afferent regions. In every case, however, a few brain regions with well-established projections to the injected structure lacked retrogradely labeled cells. We also observed robust terminal field labeling in downstream structures. COMPARISON WITH EXISTING METHOD(S) Patterns of labeling were similar to those obtained with traditional tract-tracers, except for some afferent labeling that was noticeably absent. CONCLUSIONS rAAV2-retro promises to be useful for circuit manipulation via retrograde transduction in NHPs, but caveats were revealed by our findings. Some afferently connected regions lacked retrogradely labeled cells, showed robust axon terminal labeling, or both. This highlights the importance of anatomically characterizing rAAV2-retro's expression in target circuits in NHPs before moving to manipulation studies.
Collapse
Affiliation(s)
- Adriana K Cushnie
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | - Hala G El-Nahal
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Martin O Bohlen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, 39216, United States
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Univ. of California Los Angeles, Los Angeles, CA 90095, United States
| | - Piercesare Grimaldi
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Univ. of California Los Angeles, Los Angeles, CA 90095, United States
| | - Maya Zhe Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | | | - Marc A Sommer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
32
|
Shadmehr R. Population coding in the cerebellum: a machine learning perspective. J Neurophysiol 2020; 124:2022-2051. [PMID: 33112717 DOI: 10.1152/jn.00449.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The cere resembles a feedforward, three-layer network of neurons in which the "hidden layer" consists of Purkinje cells (P-cells) and the output layer consists of deep cerebellar nucleus (DCN) neurons. In this analogy, the output of each DCN neuron is a prediction that is compared with the actual observation, resulting in an error signal that originates in the inferior olive. Efficient learning requires that the error signal reach the DCN neurons, as well as the P-cells that project onto them. However, this basic rule of learning is violated in the cerebellum: the olivary projections to the DCN are weak, particularly in adulthood. Instead, an extraordinarily strong signal is sent from the olive to the P-cells, producing complex spikes. Curiously, P-cells are grouped into small populations that converge onto single DCN neurons. Why are the P-cells organized in this way, and what is the membership criterion of each population? Here, I apply elementary mathematics from machine learning and consider the fact that P-cells that form a population exhibit a special property: they can synchronize their complex spikes, which in turn suppress activity of DCN neuron they project to. Thus complex spikes cannot only act as a teaching signal for a P-cell, but through complex spike synchrony, a P-cell population may act as a surrogate teacher for the DCN neuron that produced the erroneous output. It appears that grouping of P-cells into small populations that share a preference for error satisfies a critical requirement of efficient learning: providing error information to the output layer neuron (DCN) that was responsible for the error, as well as the hidden layer neurons (P-cells) that contributed to it. This population coding may account for several remarkable features of behavior during learning, including multiple timescales, protection from erasure, and spontaneous recovery of memory.
Collapse
Affiliation(s)
- Reza Shadmehr
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
33
|
Functional interrogation of neural circuits with virally transmitted optogenetic tools. J Neurosci Methods 2020; 345:108905. [PMID: 32795553 DOI: 10.1016/j.jneumeth.2020.108905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
The vertebrate brain comprises a plethora of cell types connected by intertwined pathways. Optogenetics enriches the neuroscientific tool set for disentangling these neuronal circuits in a manner which exceeds the spatio-temporal precision of previously existing techniques. Technically, optogenetics can be divided in three types of optical and genetic combinations: (1) it is primarily understood as the manipulation of the activity of genetically modified cells (typically neurons) with light, i.e. optical actuators. (2) A second combination refers to visualizing the activity of genetically modified cells (again typically neurons), i.e. optical sensors. (3) A completely different interpretation of optogenetics refers to the light activated expression of a genetically induced construct. Here, we focus on the first two types of optogenetics, i.e. the optical actuators and sensors in an attempt to give an overview into the topic. We first cover methods to express opsins into neurons and introduce strategies of targeting specific neuronal populations in different animal species. We then summarize combinations of optogenetics with behavioral read out and neuronal imaging. Finally, we give an overview of the current state-of-the-art and an outlook on future perspectives.
Collapse
|
34
|
Gong X, Mendoza-Halliday D, Ting JT, Kaiser T, Sun X, Bastos AM, Wimmer RD, Guo B, Chen Q, Zhou Y, Pruner M, Wu CWH, Park D, Deisseroth K, Barak B, Boyden ES, Miller EK, Halassa MM, Fu Z, Bi G, Desimone R, Feng G. An Ultra-Sensitive Step-Function Opsin for Minimally Invasive Optogenetic Stimulation in Mice and Macaques. Neuron 2020; 107:38-51.e8. [PMID: 32353253 PMCID: PMC7351618 DOI: 10.1016/j.neuron.2020.03.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/26/2020] [Accepted: 03/27/2020] [Indexed: 01/27/2023]
Abstract
Optogenetics is among the most widely employed techniques to manipulate neuronal activity. However, a major drawback is the need for invasive implantation of optical fibers. To develop a minimally invasive optogenetic method that overcomes this challenge, we engineered a new step-function opsin with ultra-high light sensitivity (SOUL). We show that SOUL can activate neurons located in deep mouse brain regions via transcranial optical stimulation and elicit behavioral changes in SOUL knock-in mice. Moreover, SOUL can be used to modulate neuronal spiking and induce oscillations reversibly in macaque cortex via optical stimulation from outside the dura. By enabling external light delivery, our new opsin offers a minimally invasive tool for manipulating neuronal activity in rodent and primate models with fewer limitations on the depth and size of target brain regions and may further facilitate the development of minimally invasive optogenetic tools for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Xin Gong
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan T Ting
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Human Cell Types, Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Tobias Kaiser
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xuyun Sun
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - André M Bastos
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ralf D Wimmer
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Baolin Guo
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Qian Chen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yang Zhou
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maxwell Pruner
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carolyn W-H Wu
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Demian Park
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Boaz Barak
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Edward S Boyden
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Earl K Miller
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael M Halassa
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhanyan Fu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Guoqiang Bi
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China; Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Robert Desimone
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
35
|
Kawato M, Ohmae S, Hoang H, Sanger T. 50 Years Since the Marr, Ito, and Albus Models of the Cerebellum. Neuroscience 2020; 462:151-174. [PMID: 32599123 DOI: 10.1016/j.neuroscience.2020.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Fifty years have passed since David Marr, Masao Ito, and James Albus proposed seminal models of cerebellar functions. These models share the essential concept that parallel-fiber-Purkinje-cell synapses undergo plastic changes, guided by climbing-fiber activities during sensorimotor learning. However, they differ in several important respects, including holistic versus complementary roles of the cerebellum, pattern recognition versus control as computational objectives, potentiation versus depression of synaptic plasticity, teaching signals versus error signals transmitted by climbing-fibers, sparse expansion coding by granule cells, and cerebellar internal models. In this review, we evaluate different features of the three models based on recent computational and experimental studies. While acknowledging that the three models have greatly advanced our understanding of cerebellar control mechanisms in eye movements and classical conditioning, we propose a new direction for computational frameworks of the cerebellum, that is, hierarchical reinforcement learning with multiple internal models.
Collapse
Affiliation(s)
- Mitsuo Kawato
- Brain Information Communication Research Group, Advanced Telecommunications Research Institutes International (ATR), Hikaridai 2-2-2, "Keihanna Science City", Kyoto 619-0288, Japan; Center for Advanced Intelligence Project (AIP), RIKEN, Nihonbashi Mitsui Building, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
| | - Shogo Ohmae
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Huu Hoang
- Brain Information Communication Research Group, Advanced Telecommunications Research Institutes International (ATR), Hikaridai 2-2-2, "Keihanna Science City", Kyoto 619-0288, Japan
| | - Terry Sanger
- Department of Electrical Engineering, University of California, Irvine, 4207 Engineering Hall, Irvine CA 92697-2625, USA; Children's Hospital of Orange County, 1201 W La Veta Ave, Orange, CA 92868, USA.
| |
Collapse
|
36
|
Forelimb movements evoked by optogenetic stimulation of the macaque motor cortex. Nat Commun 2020; 11:3253. [PMID: 32591505 PMCID: PMC7319997 DOI: 10.1038/s41467-020-16883-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Optogenetics has become an indispensable tool for investigating brain functions. Although non-human primates are particularly useful models for understanding the functions and dysfunctions of the human brain, application of optogenetics to non-human primates is still limited. In the present study, we generate an effective adeno-associated viral vector serotype DJ to express channelrhodopsin-2 (ChR2) under the control of a strong ubiquitous CAG promoter and inject into the somatotopically identified forelimb region of the primary motor cortex in macaque monkeys. ChR2 is strongly expressed around the injection sites, and optogenetic intracortical microstimulation (oICMS) through a homemade optrode induces prominent cortical activity: Even single-pulse, short-duration oICMS evokes long-lasting repetitive firings of cortical neurons. In addition, oICMS elicits distinct forelimb movements and muscle activity, which are comparable to those elicited by conventional electrical ICMS. The present study removes obstacles to optogenetic manipulation of neuronal activity and behaviors in non-human primates. Non-human primates are useful models for understanding the human brain but application of optogenetics to non-human primates is challenging. The authors used optogenetic intracortical microstimulation in the primary motor cortex of macaques to elicit distinct forelimb movements and muscle activity.
Collapse
|
37
|
Functional Access to Neuron Subclasses in Rodent and Primate Forebrain. Cell Rep 2020; 26:2818-2832.e8. [PMID: 30840900 PMCID: PMC6509701 DOI: 10.1016/j.celrep.2019.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 01/08/2019] [Accepted: 02/04/2019] [Indexed: 12/21/2022] Open
Abstract
Viral vectors enable foreign proteins to be expressed in brains of non-genetic species, including non-human primates. However, viruses targeting specific neuron classes have proved elusive. Here we describe viral promoters and strategies for accessing GABAergic interneurons and their molecularly defined subsets in the rodent and primate. Using a set intersection approach, which relies on two co-active promoters, we can restrict heterologous protein expression to cortical and hippocampal somatostatin-positive and parvalbumin-positive interneurons. With an orthogonal set difference method, we can enrich for subclasses of neuropeptide-Y-positive GABAergic interneurons by effectively subtracting the expression pattern of one promoter from that of another. These methods harness the complexity of gene expression patterns in the brain and significantly expand the number of genetically tractable neuron classes across mammals.
Collapse
|
38
|
De A, El-Shamayleh Y, Horwitz GD. Fast and reversible neural inactivation in macaque cortex by optogenetic stimulation of GABAergic neurons. eLife 2020; 9:52658. [PMID: 32452766 PMCID: PMC7329331 DOI: 10.7554/elife.52658] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/24/2020] [Indexed: 12/21/2022] Open
Abstract
Optogenetic techniques for neural inactivation are valuable for linking neural activity to behavior but they have serious limitations in macaques. To achieve powerful and temporally precise neural inactivation, we used an adeno-associated viral (AAV) vector carrying the channelrhodopsin-2 gene under the control of a Dlx5/6 enhancer, which restricts expression to GABAergic neurons. We tested this approach in the primary visual cortex, an area where neural inactivation leads to interpretable behavioral deficits. Optical stimulation modulated spiking activity and reduced visual sensitivity profoundly in the region of space represented by the stimulated neurons. Rebound firing, which can have unwanted effects on neural circuits following inactivation, was not observed, and the efficacy of the optogenetic manipulation on behavior was maintained across >1000 trials. We conclude that this inhibitory cell-type-specific optogenetic approach is a powerful and spatiotemporally precise neural inactivation tool with broad utility for probing the functional contributions of cortical activity in macaques.
Collapse
Affiliation(s)
- Abhishek De
- Graduate Program in Neuroscience, University of Washington, Seattle, United States.,Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, United States
| | - Yasmine El-Shamayleh
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Gregory D Horwitz
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, United States
| |
Collapse
|
39
|
Zhang LB, Zhang J, Sun MJ, Chen H, Yan J, Luo FL, Yao ZX, Wu YM, Hu B. Neuronal Activity in the Cerebellum During the Sleep-Wakefulness Transition in Mice. Neurosci Bull 2020; 36:919-931. [PMID: 32430873 DOI: 10.1007/s12264-020-00511-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebellar malfunction can lead to sleep disturbance such as excessive daytime sleepiness, suggesting that the cerebellum may be involved in regulating sleep and/or wakefulness. However, understanding the features of cerebellar regulation in sleep and wakefulness states requires a detailed characterization of neuronal activity within this area. By performing multiple-unit recordings in mice, we showed that Purkinje cells (PCs) in the cerebellar cortex exhibited increased firing activity prior to the transition from sleep to wakefulness. Notably, the increased PC activity resulted from the inputs of low-frequency non-PC units in the cerebellar cortex. Moreover, the increased PC activity was accompanied by decreased activity in neurons of the deep cerebellar nuclei at the non-rapid eye-movement sleep-wakefulness transition. Our results provide in vivo electrophysiological evidence that the cerebellum has the potential to actively regulate the sleep-wakefulness transition.
Collapse
Affiliation(s)
- Li-Bin Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital/Research Institute of Surgery, Army Medical University, Chongqing, 400042, China
| | - Jie Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Meng-Jia Sun
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.,Squadron 10, Battalion 3, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Hao Chen
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jie Yan
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Fen-Lan Luo
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Zhong-Xiang Yao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Ya-Min Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital/Research Institute of Surgery, Army Medical University, Chongqing, 400042, China.
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
40
|
Martel AC, Elseedy H, Lavigne M, Scapula J, Ghestem A, Kremer EJ, Esclapez M, Apicella P. Targeted Transgene Expression in Cholinergic Interneurons in the Monkey Striatum Using Canine Adenovirus Serotype 2 Vectors. Front Mol Neurosci 2020; 13:76. [PMID: 32499678 PMCID: PMC7242643 DOI: 10.3389/fnmol.2020.00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
The striatum, the main input structure of the basal ganglia, is critical for action selection and adaptive motor control. To understand the neuronal mechanisms underlying these functions, an analysis of microcircuits that compose the striatum is necessary. Among these, cholinergic interneurons (ChIs) provide intrinsic striatal innervation whose dysfunction is implicated in neuropsychiatric diseases, such as Parkinson’s disease and Tourette syndrome. The ability to experimentally manipulate the activity of ChIs is critical to gain insights into their contribution to the normal function of the striatum and the emergence of behavioral abnormalities in pathological states. In this study, we generated and tested CAV-pChAT-GFP, a replication-defective canine adenovirus type 2 (CAV-2) vector carrying the green fluorescent protein (GFP) sequence under the control of the human choline acetyltransferase (ChAT) promoter. We first tested the potential specificity of CAV-pChAT-GFP to label striatal ChIs in a rat before performing experiments on two macaque monkeys. In the vector-injected rat and monkey striatum, we found that GFP expression preferentially colocalized with ChAT-immunoreactivity throughout the striatum, including those from local circuit interneurons. CAV-2 vectors containing transgene driven by the ChAT promoter provide a powerful tool for investigating ChI contributions to circuit function and behavior in nonhuman primates.
Collapse
Affiliation(s)
- Anne-Caroline Martel
- CNRS, Institut de Neurosciences de la Timone, Aix Marseille University, Marseille, France
| | - Heba Elseedy
- INSERM, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France.,Department of Zoology, Alexandria University, Alexandria, Egypt
| | - Marina Lavigne
- CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Jennyfer Scapula
- INSERM, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Antoine Ghestem
- INSERM, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Eric J Kremer
- CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Monique Esclapez
- INSERM, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Paul Apicella
- CNRS, Institut de Neurosciences de la Timone, Aix Marseille University, Marseille, France
| |
Collapse
|
41
|
Liu Y, Hegarty S, Winter C, Wang F, He Z. Viral vectors for neuronal cell type-specific visualization and manipulations. Curr Opin Neurobiol 2020; 63:67-76. [PMID: 32344323 DOI: 10.1016/j.conb.2020.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022]
Abstract
Characterizing neuronal cell types demands efficient strategies for specific labeling and manipulation of individual subtypes to dissect their connectivity and functions. Recombinant viral technology offers a powerful toolbox for targeted transgene expression in specific neuronal populations. In order to achieve cell type-specific targeting, exciting progress has been made to: alter viral tropisms, design rational delivery strategies, and drive selective expression patterns with engineered DNA sequences in viral genomes. For the latter case, emerging single-cell genomic analyses provide rich databases. In this review, we will summarize current status, and point out challenges, of using viral vectors for neuronal cell type-specific visualization and manipulations. With concerted efforts, progress will continue to be made toward developing viral vectors for the vast array of neuronal subtypes in the mammalian nervous system.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Somatosensation and Pain Unit, National Institute of Dental and Craniofacial Research (NIDCR), National Center for Complementary and Integrative Health (NCCIH), National Institutes of Health (NIH), MD, USA
| | - Shane Hegarty
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Carla Winter
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhigang He
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Lee C, Lavoie A, Liu J, Chen SX, Liu BH. Light Up the Brain: The Application of Optogenetics in Cell-Type Specific Dissection of Mouse Brain Circuits. Front Neural Circuits 2020; 14:18. [PMID: 32390806 PMCID: PMC7193678 DOI: 10.3389/fncir.2020.00018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Abstract
The exquisite intricacies of neural circuits are fundamental to an animal’s diverse and complex repertoire of sensory and motor functions. The ability to precisely map neural circuits and to selectively manipulate neural activity is critical to understanding brain function and has, therefore been a long-standing goal for neuroscientists. The recent development of optogenetic tools, combined with transgenic mouse lines, has endowed us with unprecedented spatiotemporal precision in circuit analysis. These advances greatly expand the scope of tractable experimental investigations. Here, in the first half of the review, we will present applications of optogenetics in identifying connectivity between different local neuronal cell types and of long-range projections with both in vitro and in vivo methods. We will then discuss how these tools can be used to reveal the functional roles of these cell-type specific connections in governing sensory information processing, and learning and memory in the visual cortex, somatosensory cortex, and motor cortex. Finally, we will discuss the prospect of new optogenetic tools and how their application can further advance modern neuroscience. In summary, this review serves as a primer to exemplify how optogenetics can be used in sophisticated modern circuit analyses at the levels of synapses, cells, network connectivity and behaviors.
Collapse
Affiliation(s)
- Candice Lee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Andreanne Lavoie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jiashu Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Simon X Chen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.,Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
| | - Bao-Hua Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
The Optogenetic Revolution in Cerebellar Investigations. Int J Mol Sci 2020; 21:ijms21072494. [PMID: 32260234 PMCID: PMC7212757 DOI: 10.3390/ijms21072494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
The cerebellum is most renowned for its role in sensorimotor control and coordination, but a growing number of anatomical and physiological studies are demonstrating its deep involvement in cognitive and emotional functions. Recently, the development and refinement of optogenetic techniques boosted research in the cerebellar field and, impressively, revolutionized the methodological approach and endowed the investigations with entirely new capabilities. This translated into a significant improvement in the data acquired for sensorimotor tests, allowing one to correlate single-cell activity with motor behavior to the extent of determining the role of single neuronal types and single connection pathways in controlling precise aspects of movement kinematics. These levels of specificity in correlating neuronal activity to behavior could not be achieved in the past, when electrical and pharmacological stimulations were the only available experimental tools. The application of optogenetics to the investigation of the cerebellar role in higher-order and cognitive functions, which involves a high degree of connectivity with multiple brain areas, has been even more significant. It is possible that, in this field, optogenetics has changed the game, and the number of investigations using optogenetics to study the cerebellar role in non-sensorimotor functions in awake animals is growing. The main issues addressed by these studies are the cerebellar role in epilepsy (through connections to the hippocampus and the temporal lobe), schizophrenia and cognition, working memory for decision making, and social behavior. It is also worth noting that optogenetics opened a new perspective for cerebellar neurostimulation in patients (e.g., for epilepsy treatment and stroke rehabilitation), promising unprecedented specificity in the targeted pathways that could be either activated or inhibited.
Collapse
|
44
|
Cong W, Shi Y, Qi Y, Wu J, Gong L, He M. Viral approaches to study the mammalian brain: Lineage tracing, circuit dissection and therapeutic applications. J Neurosci Methods 2020; 335:108629. [PMID: 32045571 DOI: 10.1016/j.jneumeth.2020.108629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 02/09/2023]
Abstract
Viral vectors are widely used to study the development, function and pathology of neural circuits in the mammalian brain. Their flexible payloads with customizable choices of tool genes allow versatile applications ranging from lineage tracing, circuit mapping and functional interrogation, to translational and therapeutic applications. Different applications have distinct technological requirements, therefore, often utilize different types of virus. This review introduces the most commonly used viruses for these applications and some recent advances in improving the resolution and throughput of lineage tracing, the efficacy and selectivity of circuit tracing and the specificity of cell type targeting.
Collapse
Affiliation(s)
- Wei Cong
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shi
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanqing Qi
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinyun Wu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Gong
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
45
|
Excitatory/Inhibitory Responses Shape Coherent Neuronal Dynamics Driven by Optogenetic Stimulation in the Primate Brain. J Neurosci 2020; 40:2056-2068. [PMID: 31964718 DOI: 10.1523/jneurosci.1949-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/21/2022] Open
Abstract
Coherent neuronal dynamics play an important role in complex cognitive functions. Optogenetic stimulation promises to provide new ways to test the functional significance of coherent neural activity. However, the mechanisms by which optogenetic stimulation drives coherent dynamics remain unclear, especially in the nonhuman primate brain. Here, we perform computational modeling and experiments to study the mechanisms of optogenetic-stimulation-driven coherent neuronal dynamics in three male nonhuman primates. Neural responses arise from stimulation-evoked, temporally dynamic excitatory (E) and inhibitory (I) activity. Spiking activity is more likely to occur during E/I imbalances. Thus the relative difference in the driven E and I responses precisely controls spike timing by forming a brief time interval of increased spiking likelihood. Experimental results agree with parameter-dependent predictions from the computational models. These results demonstrate that optogenetic stimulation driven coherent neuronal dynamics are governed by the temporal properties of E/I activity. Transient imbalances in excitatory and inhibitory activity may provide a general mechanism for generating coherent neuronal dynamics without the need for an oscillatory generator.SIGNIFICANCE STATEMENT We examine how coherent neuronal dynamics arise from optogenetic stimulation in the primate brain. Using computational models and experiments, we demonstrate that coherent spiking and local field potential activity is generated by stimulation-evoked responses of excitatory and inhibitory activity in networks, extending the growing literature on neuronal dynamics. These responses create brief time intervals of increased spiking tendency and are consistent with previous observations in the literature that balanced excitation and inhibition controls spike timing, suggesting that optogenetic-stimulation-driven coherence may arise from intrinsic E/I balance. Most importantly, our results are obtained in nonhuman primates and thus will play a leading role in driving the use of causal manipulations with optogenetic tools to study higher cognitive functions in the primate brain.
Collapse
|
46
|
Lab-Scale Production of Recombinant Adeno-Associated Viruses (AAV) for Expression of Optogenetic Elements. Methods Mol Biol 2020; 2173:83-100. [PMID: 32651911 DOI: 10.1007/978-1-0716-0755-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Optogenetics, that is, the use of photoswitchable/-activatable moieties to precisely control or monitor the activity of cells and genes at unprecedented spatiotemporal resolution, holds tremendous promise for a wide array of applications in fundamental and clinical research. To fully realize and harness this potential, the availability of gene transfer vehicles ("vectors") that are easily produced and that allow to deliver the essential components to desired target cells in an efficient manner is key. For in vivo applications, it is, moreover, important that these vectors exhibit a high degree of cell specificity in order to reduce the risk of adverse side effects in off-targets and to minimize manufacturing costs. Here, we describe a set of basic protocols for the cloning, production, purification, and quality control of a particular vector that can fulfill all these requirements, that is, recombinant adeno-associated viruses (AAV). The latter are very attractive owing to their apathogenicity, their compatibility with the lowest biosafety level 1 conditions, their occurrence in multiple natural variants with distinct properties, and their exceptional amenability to engineering of the viral capsid and genome. The specific procedures reported here complement alternative protocols for AAV production described by others and us before, and, together, should enable any laboratory to generate these vectors on a small-to-medium scale for ex vivo or in vivo expression of optogenetic elements.
Collapse
|
47
|
Abstract
Monkeys are a premier model organism for neuroscience research. Activity in the central nervous systems of monkeys can be recorded and manipulated while they perform complex perceptual, motor, or cognitive tasks. Conventional techniques for manipulating neural activity in monkeys are too coarse to address many of the outstanding questions in primate neuroscience, but optogenetics holds the promise to overcome this hurdle. In this article, we review the progress that has been made in primate optogenetics over the past 5 years. We emphasize the use of gene regulatory sequences in viral vectors to target specific neuronal types, and we present data on vectors that we engineered to target parvalbumin-expressing neurons. We conclude with a discussion of the utility of optogenetics for treating sensorimotor hearing loss and Parkinson's disease, areas of translational neuroscience in which monkeys provide unique leverage for basic science and medicine.
Collapse
|
48
|
Streng ML, Krook-Magnuson E. Excitation, but not inhibition, of the fastigial nucleus provides powerful control over temporal lobe seizures. J Physiol 2019; 598:171-187. [PMID: 31682010 DOI: 10.1113/jp278747] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS On-demand optogenetic inhibition of glutamatergic neurons in the fastigial nucleus of the cerebellum does not alter hippocampal seizures in a mouse model of temporal lobe epilepsy. In contrast, on-demand optogenetic excitation of glutamatergic neurons in the fastigial nucleus successfully inhibits hippocampal seizures. With this approach, even a single 50 ms pulse of light is able to significantly inhibit seizures. On-demand optogenetic excitation of glutamatergic fastigial neurons either ipsilateral or contralateral to the seizure focus is able to inhibit seizures. Selective excitation of glutamatergic nuclear neurons provides greater seizure inhibition than broadly exciting nuclear neurons without cell-type specificity. ABSTRACT Temporal lobe epilepsy is the most common form of epilepsy in adults, but current treatment options provide limited efficacy, leaving as many as one-third of patients with uncontrolled seizures. Recently, attention has shifted towards more closed-loop therapies for seizure control, and on-demand optogenetic modulation of the cerebellar cortex was shown to be highly effective at attenuating hippocampal seizures. Intriguingly, both optogenetic excitation and inhibition of cerebellar cortical output neurons, Purkinje cells, attenuated seizures. The mechanisms by which the cerebellum impacts seizures, however, are unknown. In the present study, we targeted the immediate downstream projection of vermal Purkinje cells - the fastigial nucleus - in order to determine whether increases and/or decreases in fastigial output can underlie seizure cessation. Though Purkinje cell input to fastigial neurons is inhibitory, direct optogenetic inhibition of the fastigial nucleus had no effect on seizure duration. Conversely, however, fastigial excitation robustly attenuated hippocampal seizures. Seizure cessation was achieved at multiple stimulation frequencies, regardless of laterality relative to seizure focus, and even with single light pulses. Seizure inhibition was greater when selectively targeting glutamatergic fastigial neurons than when an approach that lacked cell-type specificity was used. Together, these results suggest that stimulating excitatory neurons in the fastigial nucleus may be a promising approach for therapeutic intervention in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Martha L Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
49
|
Nagai Y, Nishitani N, Yasuda M, Ueda Y, Fukui Y, Andoh C, Shirakawa H, Nakagawa T, Inoue KI, Nagayasu K, Kasparov S, Nakamura K, Kaneko S. Identification of neuron-type specific promoters in monkey genome and their functional validation in mice. Biochem Biophys Res Commun 2019; 518:619-624. [PMID: 31451217 DOI: 10.1016/j.bbrc.2019.08.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/18/2019] [Indexed: 12/19/2022]
Abstract
Viral gene delivery is one of the most versatile techniques for elucidating the mechanisms underlying brain dysfunction, such as neuropsychiatric disorders. Due to the complexity of the brain, expression of genetic tools, such as channelrhodopsin and calcium sensors, often has to be restricted to a specified cell type within a circuit implicated in these disorders. Only a handful of promoters targeting neuronal subtypes are currently used for viral gene delivery. Here, we isolated conserved promoter regions of several subtype-specific genes from the macaque genome and investigated their functionality in the mouse brain when used within lentiviral vectors (LVVs). Immunohistochemical analysis revealed that transgene expression induced by the promoter sequences for somatostatin (SST), cholecystokinin (CCK), parvalbumin (PV), serotonin transporter (SERT), vesicular acetylcholine transporter (vAChT), substance P (SP) and proenkephalin (PENK) was largely colocalized with specific markers for the targeted neuronal populations. Moreover, by combining these results with in silico predictions of transcription factor binding to the isolated sequences, we identified transcription factors possibly underlying cell-type specificity. These findings lay a foundation for the expansion of the current toolbox of promoters suitable for elucidating these neuronal phenotypes.
Collapse
Affiliation(s)
- Yuma Nagai
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoya Nishitani
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, 060-8638, Japan
| | - Masaharu Yasuda
- Department of Physiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata-city, Osaka, 573-1010, Japan
| | - Yasumasa Ueda
- Department of Physiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata-city, Osaka, 573-1010, Japan
| | - Yuto Fukui
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Chihiro Andoh
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Sergey Kasparov
- School of Physiology Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Institute of Living Systems, Immanuel Kant Baltic Federal University, Universitetskaya str, 2, Kaliningrad, 236041, Russia
| | - Kae Nakamura
- Department of Physiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata-city, Osaka, 573-1010, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
50
|
Williams JJ, Watson AM, Vazquez AL, Schwartz AB. Viral-Mediated Optogenetic Stimulation of Peripheral Motor Nerves in Non-human Primates. Front Neurosci 2019; 13:759. [PMID: 31417342 PMCID: PMC6684788 DOI: 10.3389/fnins.2019.00759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: Reanimation of muscles paralyzed by disease states such as spinal cord injury remains a highly sought therapeutic goal of neuroprosthetic research. Optogenetic stimulation of peripheral motor nerves expressing light-sensitive opsins is a promising approach to muscle reanimation that may overcome several drawbacks of traditional methods such as functional electrical stimulation (FES). However, the utility of these methods has only been demonstrated in rodents to date, while translation to clinical practice will likely first require demonstration and refinement of these gene therapy techniques in non-human primates. Approach: Three rhesus macaques were injected intramuscularly with either one or both of two optogenetic constructs (AAV6-hSyn-ChR2-eYFP and/or AAV6-hSyn-Chronos-eYFP) to transduce opsin expression in the corresponding nerves. Neuromuscular junctions were targeted for virus delivery using an electrical stimulating injection technique. Functional opsin expression was periodically evaluated up to 13 weeks post-injection by optically stimulating targeted nerves with a 472 nm fiber-coupled laser while recording electromyographic (EMG) responses. Main Results: One monkey demonstrated functional expression of ChR2 at 8 weeks post-injection in each of two injected muscles, while the second monkey briefly exhibited contractions coupled to optical stimulation in a muscle injected with the Chronos construct at 10 weeks. A third monkey injected only in one muscle with the ChR2 construct showed strong optically coupled contractions at 5 ½ weeks which then disappeared by 9 weeks. EMG responses to optical stimulation of ChR2-transduced nerves demonstrated graded recruitment relative to both stimulus pulse-width and light intensity, and followed stimulus trains up to 16 Hz. In addition, the EMG response to prolonged stimulation showed delayed fatigue over several minutes. Significance: These results demonstrate the feasibility of viral transduction of peripheral motor nerves for functional optical stimulation of motor activity in non-human primates, a variable timeline of opsin expression in a animal model closer to humans, and fundamental EMG response characteristics to optical nerve stimulation. Together, they represent an important step in translating these optogenetic techniques as a clinically viable gene therapy.
Collapse
Affiliation(s)
- Jordan J. Williams
- Department of Neurobiology, Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alan M. Watson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto L. Vazquez
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew B. Schwartz
- Department of Neurobiology, Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|