1
|
Ruge O, Hoppe JPM, Molle RD, Silveira PP. Early environmental influences on the orbito-frontal cortex function and its effects on behavior. Neurosci Biobehav Rev 2025:106013. [PMID: 39814119 DOI: 10.1016/j.neubiorev.2025.106013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Early-life adversity during pre- and early post-natal phases can impact brain development and lead to maladaptive changes in executive behaviors. This increases the risk for a range of psychopathologies and physical diseases. Importantly, exposure to adversities during these periods is also linked to alterations in the orbito-frontal cortex (OFC) which is a key player in these executive functions. The OFC thus appears to be a central node in this association between early life stress and disease risk. Gaining a clear, and detailed understanding of the association between early life stress, OFC function, and executive behaviors, as well as the underlying mechanisms mediating this association is relevant to inform potential therapeutic interventions. In this paper, we begin by reviewing evidence linking early life adversities to 1) alterations in behaviors regulated by the OFC and 2) changes in OFC anatomy and function. We then present insights into the underlying mechanisms for these changes, stemming from early life adversity models, and highlight important future directions for this line of research.
Collapse
Affiliation(s)
- Olivia Ruge
- Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - João Paulo Maires Hoppe
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | - Patricia Pelufo Silveira
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Bein O, Niv Y. Schemas, reinforcement learning and the medial prefrontal cortex. Nat Rev Neurosci 2025:10.1038/s41583-024-00893-z. [PMID: 39775183 DOI: 10.1038/s41583-024-00893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Schemas are rich and complex knowledge structures about the typical unfolding of events in a context; for example, a schema of a dinner at a restaurant. In this Perspective, we suggest that reinforcement learning (RL), a computational theory of learning the structure of the world and relevant goal-oriented behaviour, underlies schema learning. We synthesize literature about schemas and RL to offer that three RL principles might govern the learning of schemas: learning via prediction errors, constructing hierarchical knowledge using hierarchical RL, and dimensionality reduction through learning a simplified and abstract representation of the world. We then suggest that the orbitomedial prefrontal cortex is involved in both schemas and RL due to its involvement in dimensionality reduction and in guiding memory reactivation through interactions with posterior brain regions. Last, we hypothesize that the amount of dimensionality reduction might underlie gradients of involvement along the ventral-dorsal and posterior-anterior axes of the orbitomedial prefrontal cortex. More specific and detailed representations might engage the ventral and posterior parts, whereas abstraction might shift representations towards the dorsal and anterior parts of the medial prefrontal cortex.
Collapse
Affiliation(s)
- Oded Bein
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| | - Yael Niv
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Psychology Department, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Takahashi YK, Zhang Z, Kahnt T, Schoenbaum G. Dopaminergic responses to identity prediction errors depend differently on the orbitofrontal cortex and hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.628003. [PMID: 39763911 PMCID: PMC11702580 DOI: 10.1101/2024.12.11.628003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Adaptive behavior depends on the ability to predict specific events, particularly those related to rewards. Armed with such associative information, we can infer the current value of predicted rewards based on changing circumstances and desires. To support this ability, neural systems must represent both the value and identity of predicted rewards, and these representations must be updated when they change. Here we tested whether prediction error signaling of dopamine neurons depends on two areas known to represent the specifics of rewarding events, the HC and OFC. We monitored the spiking activity of dopamine neurons in rat VTA during changes in the number or flavor of expected rewards designed to induce errors in the prediction of reward value or reward identity, respectively. In control animals, dopamine neurons registered both error types, transiently increasing firing to additional drops of reward or changes in reward flavor. These canonical firing signatures of value and identity prediction errors were significantly disrupted in rats with ipsilateral neurotoxic lesions of either HC or OFC. Specifically, HC lesions caused a failure to register either type of prediction error, whereas OFC lesions caused persistent signaling of identity prediction errors and much more subtle effects on signaling of value errors. These results demonstrate that HC and OFC contribute distinct types of information to the computation of prediction errors signaled by dopaminergic neurons.
Collapse
Affiliation(s)
- Yuji K Takahashi
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD
| | - Zhewei Zhang
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD
| | - Thorsten Kahnt
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD
| | - Geoffrey Schoenbaum
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD
| |
Collapse
|
4
|
Núñez C, Stephan-Otto C, Roldán A, Grasa EM, Escartí MJ, Aguilar García-Iturrospe EJ, García-Martí G, de la Iglesia-Vaya M, Nacher J, Portella MJ, Corripio I. Orbitofrontal cortex hypergyrification in hallucinating schizophrenia patients: Surface ratio as a promising brain biomarker. Eur Neuropsychopharmacol 2024; 89:47-55. [PMID: 39341083 DOI: 10.1016/j.euroneuro.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The study of brain gyrification may provide useful information on the cytoarchitecture and connectivity of the brain. One of the methods that have been developed to estimate brain gyrification, known as surface ratio (SR), has not yet been studied in schizophrenia. Here we aimed to assess whether SR could provide new insights on the brain structure of schizophrenia patients and the severity of symptoms. We also computed a more established brain gyrification measure, namely absolute mean curvature (AMC). We analyzed 63 magnetic resonance images, 25 from schizophrenia patients with treatment-resistant auditory verbal hallucinations (SCH-H), 18 from schizophrenia patients without hallucinations (SCH-NH), and 20 from healthy controls (HC). The SR measure revealed that SCH-H patients had a more folded orbitofrontal cortex than SCH-NH patients and HC. Gyrification in this region was also negatively associated with positive symptoms, specifically with the delusions and conceptual disorganization items, only in the SCH-H group. Regarding the AMC measure, we identified two areas where HC showed more gyrification than SCH-H patients, but no relationships arose with symptoms. The hypergyrification of the orbitofrontal cortex displayed by SCH-H patients, as captured by the SR measure, suggests aberrant and/or excessive wiring in these patients, which in turn could give rise to auditory verbal hallucinations. Alternatively, we comment on potential compensatory mechanisms that may better explain the negative association between orbitofrontal gyrification and positive symptomatology. The SR measure captured the most relevant differences and associations, making it a promising biomarker in schizophrenia.
Collapse
Affiliation(s)
- Christian Núñez
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Christian Stephan-Otto
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Pediatric Computational Imaging Group (PeCIC), Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Alexandra Roldán
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | - Eva Mª Grasa
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain
| | - Mª José Escartí
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Hospital Clínico Universitario de Valencia, Valencia, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain; Department of Medicine, University CEU-UCH, Valencia, Spain
| | - Eduardo J Aguilar García-Iturrospe
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Hospital Clínico Universitario de Valencia, Valencia, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain; Department of Medicine, University CEU-UCH, Valencia, Spain
| | - Gracián García-Martí
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Biomedical Engineering Unit / Radiology Department, Quirónsalud Hospital, Valencia, Spain
| | - Maria de la Iglesia-Vaya
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Joint unit in Biomedical Imaging FISABIO-CIPF, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, Valencia, Spain
| | - Juan Nacher
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain; Neuroplasticity Unit, Institute of Biotechnology and Biomedicine, Universitat de València, Valencia, Spain
| | - Maria J Portella
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Iluminada Corripio
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Psychiatry Department, Hospital Consortium of Vic, Barcelona, Spain; Institute of Health Research and Innovation at Central Catalonia (IRIS-CC). Central University of Catalonia (UVic-UCC), Barcelona, Spain
| |
Collapse
|
5
|
Perkins AQ, Rich EL. Attention-dependent attribute comparisons underlie multi-attribute decision-making in orbitofrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623291. [PMID: 39605698 PMCID: PMC11601282 DOI: 10.1101/2024.11.12.623291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Economic decisions often require weighing multiple dimensions, or attributes. The orbitofrontal cortex FC) is thought to be important for computing the integrated value of an option from its attributes and comparing lues to make a choice. Although OFC neurons are known to encode integrated values, evidence for value mparison has been limited. Here, we used a multi-attribute choice task for monkeys to investigate how OFC eurons integrate and compare multi-attribute options. Attributes were represented separately and eye tracking as used to measure attention. We found that OFC neurons encode the value of attended attributes, dependent of other attributes in the same option. Encoding was negatively weighted by the value of the same tribute in the other option, consistent with a comparison between the two like attributes. These results indicate at OFC computes comparisons among attributes rather than integrated values, and does so dynamically, ifting with the focus of attention.
Collapse
|
6
|
Frömer R, Nassar MR, Ehinger BV, Shenhav A. Common neural choice signals can emerge artefactually amid multiple distinct value signals. Nat Hum Behav 2024; 8:2194-2208. [PMID: 39242928 PMCID: PMC11576515 DOI: 10.1038/s41562-024-01971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/26/2024] [Indexed: 09/09/2024]
Abstract
Previous work has identified characteristic neural signatures of value-based decision-making, including neural dynamics that closely resemble the ramping evidence accumulation process believed to underpin choice. Here we test whether these signatures of the choice process can be temporally dissociated from additional, choice-'independent' value signals. Indeed, EEG activity during value-based choice revealed distinct spatiotemporal clusters, with a stimulus-locked cluster reflecting affective reactions to choice sets and a response-locked cluster reflecting choice difficulty. Surprisingly, 'neither' of these clusters met the criteria for an evidence accumulation signal. Instead, we found that stimulus-locked activity can 'mimic' an evidence accumulation process when aligned to the response. Re-analysing four previous studies, including three perceptual decision-making studies, we show that response-locked signatures of evidence accumulation disappear when stimulus-locked and response-locked activity are modelled jointly. Collectively, our findings show that neural signatures of value can reflect choice-independent processes and look deceptively like evidence accumulation.
Collapse
Affiliation(s)
- Romy Frömer
- Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA.
- School of Psychology, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Matthew R Nassar
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Benedikt V Ehinger
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| | - Amitai Shenhav
- Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
7
|
Chachar AS, Shaikh MY. Decision-making and attention deficit hyperactivity disorder: neuroeconomic perspective. Front Neurosci 2024; 18:1339825. [PMID: 39507803 PMCID: PMC11538996 DOI: 10.3389/fnins.2024.1339825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/21/2024] [Indexed: 11/08/2024] Open
Abstract
The decision-making process involves various cognitive procedures influenced by the interplay between cognition, motivation, and attention, forming a complex neural framework. Attention is a fundamental cognitive element within decision-making mechanisms, and one of the conditions affecting the attentional system is attention deficit hyperactivity disorder (ADHD). Decision-making impairments in ADHD have significant economic consequences, necessitating effective policies and interventions to address this critical issue. Research from computational models and neuroscience suggests how cognitive functions' workings and problems affect decision-making and provide insights into the neural implications of decision-making. This article explores the intersection of decision-making, ADHD, and neuroeconomics, highlighting research gaps, potential contributions, and implications for future policies.
Collapse
|
8
|
Stoll FM, Rudebeck PH. Decision-making shapes dynamic inter-areal communication within macaque ventral frontal cortex. Curr Biol 2024; 34:4526-4538.e5. [PMID: 39293441 PMCID: PMC11461104 DOI: 10.1016/j.cub.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Macaque ventral frontal cortex is composed of a set of anatomically heterogeneous and highly interconnected areas. Collectively, these areas have been implicated in many higher-level affective and cognitive processes, most notably the adaptive control of decision-making. Despite this appreciation, little is known about how subdivisions of ventral frontal cortex dynamically interact with each other during decision-making. Here, we assessed functional interactions between areas by analyzing the activity of thousands of single neurons recorded from eight anatomically defined subdivisions of ventral frontal cortex in macaques performing a visually guided two-choice probabilistic task for different fruit juices. We found that the onset of stimuli and reward delivery globally increased communication between all parts of ventral frontal cortex. Inter-areal communication was, however, temporally specific, occurred through unique activity subspaces between areas, and depended on the encoding of decision variables. In particular, areas 12l and 12o showed the highest connectivity with other areas while being more likely to receive information from other parts of ventral frontal cortex than to send it. This pattern of functional connectivity suggests a role for these two areas in integrating diverse sources of information during decision processes. Taken together, our work reveals the specific patterns of inter-areal communication between anatomically connected subdivisions of ventral frontal cortex that are dynamically engaged during decision-making.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
9
|
Del Vecchio M, Avanzini P, Gerbella M, Costa S, Zauli FM, d'Orio P, Focacci E, Sartori I, Caruana F. Anatomo-functional basis of emotional and motor resonance elicited by facial expressions. Brain 2024; 147:3018-3031. [PMID: 38365267 DOI: 10.1093/brain/awae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 02/18/2024] Open
Abstract
Simulation theories predict that the observation of other's expressions modulates neural activity in the same centres controlling their production. This hypothesis has been developed by two models, postulating that the visual input is directly projected either to the motor system for action recognition (motor resonance) or to emotional/interoceptive regions for emotional contagion and social synchronization (emotional resonance). Here we investigated the role of frontal/insular regions in the processing of observed emotional expressions by combining intracranial recording, electrical stimulation and effective connectivity. First, we intracranially recorded from prefrontal, premotor or anterior insular regions of 44 patients during the passive observation of emotional expressions, finding widespread modulations in prefrontal/insular regions (anterior cingulate cortex, anterior insula, orbitofrontal cortex and inferior frontal gyrus) and motor territories (Rolandic operculum and inferior frontal junction). Subsequently, we electrically stimulated the activated sites, finding that (i) in the anterior cingulate cortex and anterior insula, the stimulation elicited emotional/interoceptive responses, as predicted by the 'emotional resonance model'; (ii) in the Rolandic operculum it evoked face/mouth sensorimotor responses, in line with the 'motor resonance' model; and (iii) all other regions were unresponsive or revealed functions unrelated to the processing of facial expressions. Finally, we traced the effective connectivity to sketch a network-level description of these regions, finding that the anterior cingulate cortex and the anterior insula are reciprocally interconnected while the Rolandic operculum is part of the parieto-frontal circuits and poorly connected with the former. These results support the hypothesis that the pathways hypothesized by the 'emotional resonance' and the 'motor resonance' models work in parallel, differing in terms of spatio-temporal fingerprints, reactivity to electrical stimulation and connectivity patterns.
Collapse
Affiliation(s)
- Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Sara Costa
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Flavia Maria Zauli
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Piergiorgio d'Orio
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Elena Focacci
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Ivana Sartori
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| |
Collapse
|
10
|
Stoll FM, Rudebeck PH. Dissociable Representations of Decision Variables within Subdivisions of the Macaque Orbital and Ventrolateral Frontal Cortex. J Neurosci 2024; 44:e0464242024. [PMID: 38991790 PMCID: PMC11358530 DOI: 10.1523/jneurosci.0464-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
The ventral frontal cortex (VFC) in macaques is involved in many affective and cognitive processes and has a key role in flexibly guiding reward-based decision-making. VFC is composed of a set of anatomically distinct subdivisions that are within the orbitofrontal cortex, ventrolateral prefrontal cortex, and anterior insula. In part, because prior studies have lacked the resolution to test for differences, it is unclear if neural representations related to decision-making are dissociable across these subdivisions. Here we recorded the activity of thousands of neurons within eight anatomically defined subdivisions of VFC in male macaque monkeys performing a two-choice probabilistic task for different fruit juice outcomes. We found substantial variation in the encoding of decision variables across these eight subdivisions. Notably, ventrolateral Area 12l was unique relative to the other areas that we recorded from as the activity of single neurons integrated multiple attributes when monkeys evaluated the different choice options. Activity within Area 12o, in contrast, more closely represented reward probability and whether reward was received on a given trial. Orbitofrontal Area 11m/l contained more specific representations of the quality of the outcome that could be earned later on. We also found that reward delivery encoding was highly distributed across all VFC subdivisions, while the properties of the reward, such as its flavor, were more strongly represented in Areas 11m/l and 13m. Taken together, our work reveals the diversity of encoding within the various anatomically distinct subdivisions of VFC in primates.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
11
|
Luo TZ, Kim TD, Gupta D, Bondy AG, Kopec CD, Elliot VA, DePasquale B, Brody CD. Transitions in dynamical regime and neural mode underlie perceptual decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.15.562427. [PMID: 37904994 PMCID: PMC10614809 DOI: 10.1101/2023.10.15.562427] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Perceptual decision-making is the process by which an animal uses sensory stimuli to choose an action or mental proposition. This process is thought to be mediated by neurons organized as attractor networks 1,2 . However, whether attractor dynamics underlie decision behavior and the complex neuronal responses remains unclear. Here we use an unsupervised, deep learning-based method to discover decision-related dynamics from the simultaneous activity of neurons in frontal cortex and striatum of rats while they accumulate pulsatile auditory evidence. We found that trajectories evolved along two sequential regimes, the first dominated by sensory inputs, and the second dominated by the autonomous dynamics, with flow in a direction (i.e., "neural mode") largely orthogonal to that in the first regime. We propose that the second regime corresponds to decision commitment. We developed a simplified model that approximates the coupled transition in dynamics and neural mode and allows precise inference, from each trial's neural activity, of a putative internal decision commitment time in that trial. The simplified model captures diverse and complex single-neuron temporal profiles, such as ramping and stepping 3-5 . It also captures trial-averaged curved trajectories 6-8 , and reveals distinctions between brain regions. The putative neurally-inferred commitment times ("nTc") occurred at times broadly distributed across trials, and not time-locked to stimulus onset, offset, or response onset. Nevertheless, when trials were aligned to nTc, behavioral analysis showed that, as predicted by a decision commitment time, sensory evidence before nTc affected the subjects' decision, but evidence after nTc did not. Our results show that the formation of a perceptual choice involves a rapid, coordinated transition in both the dynamical regime and the neural mode of the decision process, and suggest the moment of commitment to be a useful entry point for dissecting mechanisms underlying rapid changes in internal state.
Collapse
|
12
|
Regalado JM, Corredera Asensio A, Haunold T, Toader AC, Li YR, Neal LA, Rajasethupathy P. Neural activity ramps in frontal cortex signal extended motivation during learning. eLife 2024; 13:RP93983. [PMID: 39037775 PMCID: PMC11262795 DOI: 10.7554/elife.93983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward-associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection-specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward-associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.
Collapse
Affiliation(s)
- Josue M Regalado
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | | | - Theresa Haunold
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | - Andrew C Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | - Yan Ran Li
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | - Lauren A Neal
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | | |
Collapse
|
13
|
Ferro D, Cash-Padgett T, Wang MZ, Hayden BY, Moreno-Bote R. Gaze-centered gating, reactivation, and reevaluation of economic value in orbitofrontal cortex. Nat Commun 2024; 15:6163. [PMID: 39039055 PMCID: PMC11263430 DOI: 10.1038/s41467-024-50214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
During economic choice, options are often considered in alternation, until commitment. Nonetheless, neuroeconomics typically ignores the dynamic aspects of deliberation. We trained two male macaques to perform a value-based decision-making task in which two risky offers were presented in sequence at the opposite sides of the visual field, each followed by a delay epoch where offers were invisible. Surprisingly, during the two delays, subjects tend to look at empty locations where the offers had previously appeared, with longer fixations increasing the probability of choosing the associated offer. Spiking activity in orbitofrontal cortex reflects the value of the gazed offer, or of the offer associated with the gazed empty spatial location, even if it is not the most recent. This reactivation reflects a reevaluation process, as fluctuations in neural spiking correlate with upcoming choice. Our results suggest that look-at-nothing gazing triggers the reactivation of a previously seen offer for further evaluation.
Collapse
Affiliation(s)
- Demetrio Ferro
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08002, Barcelona, Spain.
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08002, Barcelona, Spain.
| | - Tyler Cash-Padgett
- Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN55455, USA
| | - Maya Zhe Wang
- Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN55455, USA
| | - Benjamin Y Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rubén Moreno-Bote
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08002, Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08002, Barcelona, Spain
- Serra Húnter Fellow Programme, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
14
|
Hirabayashi T, Nagai Y, Hori Y, Hori Y, Oyama K, Mimura K, Miyakawa N, Iwaoki H, Inoue KI, Suhara T, Takada M, Higuchi M, Minamimoto T. Multiscale chemogenetic dissection of fronto-temporal top-down regulation for object memory in primates. Nat Commun 2024; 15:5369. [PMID: 38987235 PMCID: PMC11237144 DOI: 10.1038/s41467-024-49570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Visual object memory is a fundamental element of various cognitive abilities, and the underlying neural mechanisms have been extensively examined especially in the anterior temporal cortex of primates. However, both macroscopic large-scale functional network in which this region is embedded and microscopic neuron-level dynamics of top-down regulation it receives for object memory remains elusive. Here, we identified the orbitofrontal node as a critical partner of the anterior temporal node for object memory by combining whole-brain functional imaging during rest and a short-term object memory task in male macaques. Focal chemogenetic silencing of the identified orbitofrontal node downregulated both the local orbitofrontal and remote anterior temporal nodes during the task, in association with deteriorated mnemonic, but not perceptual, performance. Furthermore, imaging-guided neuronal recordings in the same monkeys during the same task causally revealed that orbitofrontal top-down modulation enhanced stimulus-selective mnemonic signal in individual anterior temporal neurons while leaving bottom-up perceptual signal unchanged. Furthermore, similar activity difference was also observed between correct and mnemonic error trials before silencing, suggesting its behavioral relevance. These multifaceted but convergent results provide a multiscale causal understanding of dynamic top-down regulation of the anterior temporal cortex along the ventral fronto-temporal network underpinning short-term object memory in primates.
Collapse
Affiliation(s)
- Toshiyuki Hirabayashi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan.
| | - Yuji Nagai
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yuki Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yukiko Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Kei Oyama
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Koki Mimura
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Naohisa Miyakawa
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Haruhiko Iwaoki
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ken-Ichi Inoue
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Tetsuya Suhara
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
15
|
Stoll FM, Rudebeck PH. Decision-making shapes dynamic inter-areal communication within macaque ventral frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602229. [PMID: 39026728 PMCID: PMC11257438 DOI: 10.1101/2024.07.05.602229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Macaque ventral frontal cortex is comprised of a set of anatomically heterogeneous and highly interconnected areas. Collectively these areas have been implicated in many higher-level affective and cognitive processes, most notably the adaptive control of decision-making. Despite this appreciation, little is known about how subdivisions of ventral frontal cortex dynamically interact with each other during decision-making. Here we assessed functional interactions between areas by analyzing the activity of thousands of single neurons recorded from eight anatomically defined subdivisions of ventral frontal cortex in macaques performing a visually guided two-choice probabilistic task for different fruit juices. We found that the onset of stimuli and reward delivery globally increased communication between all parts of ventral frontal cortex. Inter-areal communication was, however, temporally specific, occurred through unique activity subspaces between areas, and depended on the encoding of decision variables. In particular, areas 12l and 12o showed the highest connectivity with other areas while being more likely to receive information from other parts of ventral frontal cortex than to send it. This pattern of functional connectivity suggests a role for these two areas in integrating diverse sources of information during decision processes. Taken together, our work reveals the specific patterns of interareal communication between anatomically connected subdivisions of ventral frontal cortex that are dynamically engaged during decision-making.
Collapse
Affiliation(s)
- Frederic M. Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Lead Contact
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
16
|
Ren H, Li J, Zhou J, Chen X, Tang J, Li Z, Wang Q. Grey matter volume reduction in the frontotemporal cortex associated with persistent verbal auditory hallucinations in Chinese patients with chronic schizophrenia: Insights from a 3 T magnetic resonance imaging study. Schizophr Res 2024; 269:123-129. [PMID: 38772324 DOI: 10.1016/j.schres.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Persistent auditory verbal hallucinations (pAVHs) are a fundamental manifestation of schizophrenia (SCZ), yet the exact connection between pAVHs and brain structure remains contentious. This study aims to explore the potential correlation between pAVHs and alterations in grey matter volume (GMV) within specific brain regions among individuals diagnosed with SCZ. METHODS 76 SCZ patients with pAVHs (pAVH group), 57 SCZ patients without AVHs (non-AVH group), and 83 healthy controls (HC group) were investigated using 3 T magnetic resonance imaging. The P3 hallucination item of the Positive and Negative Syndrome Scale was used to assess the severity of pAVHs. Voxel-based morphometry was used to analyze the GMV profile between the three groups. RESULTS Compared to the non-AVH and HC groups, the pAVH group exhibited extensive reduction in GMV within the frontotemporal cortex. Conversely, no significant difference in GMV was observed between the non-AVH and HC groups. The severity of pAVHs showed a negative correlation with GMV in several regions, including the right fusiform, right inferior temporal, right medial orbitofrontal, right superior frontal, and right temporal pole (p = 0.0036, Bonferroni correction). Stepwise linear regression analysis revealed that GMV in the right temporal pole (β = -0.29, p = 0.001) and right fusiform (β = -0.21, p = 0.01) were significantly associated with the severity of pAVHs. CONCLUSIONS Widespread reduction in GMV is observed within the frontotemporal cortex, particularly involving the right temporal pole and right fusiform, which potentially contribute to the pathogenesis of pAVHs in individuals with chronic SCZ.
Collapse
Affiliation(s)
- Honghong Ren
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China; Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinguang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jun Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Qianjin Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China; Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
17
|
Lockwood PL, Cutler J, Drew D, Abdurahman A, Jeyaretna DS, Apps MAJ, Husain M, Manohar SG. Human ventromedial prefrontal cortex is necessary for prosocial motivation. Nat Hum Behav 2024; 8:1403-1416. [PMID: 38802539 PMCID: PMC11272586 DOI: 10.1038/s41562-024-01899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Ventromedial prefrontal cortex (vmPFC) is vital for decision-making. Functional neuroimaging links vmPFC to processing rewards and effort, while parallel work suggests vmPFC involvement in prosocial behaviour. However, the necessity of vmPFC for these functions is unknown. Patients with rare focal vmPFC lesions (n = 25), patients with lesions elsewhere (n = 15) and healthy controls (n = 40) chose between rest and exerting effort to earn rewards for themselves or another person. vmPFC damage decreased prosociality across behavioural and computational measures. vmPFC patients earned less, discounted rewards by effort more, and exerted less force when another person benefited, compared to both control groups. Voxel-based lesion mapping revealed dissociations between vmPFC subregions. While medial damage led to antisocial behaviour, lateral damage increased prosocial behaviour relative to patients with damage elsewhere. vmPFC patients also showed reduced effort sensitivity overall, but reward sensitivity was limited to specific subregions. These results reveal multiple causal contributions of vmPFC to prosocial behaviour, effort and reward.
Collapse
Affiliation(s)
- Patricia L Lockwood
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Jo Cutler
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Daniel Drew
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ayat Abdurahman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Deva Sanjeeva Jeyaretna
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
| | - Matthew A J Apps
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
18
|
Vodret M. Irreversibility in belief dynamics: Unraveling the link to cognitive effort. Phys Rev E 2024; 110:014304. [PMID: 39160952 DOI: 10.1103/physreve.110.014304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/25/2024] [Indexed: 08/21/2024]
Abstract
The relationship between time irreversibility in neuronal dynamics and cognitive effort is a subject of growing interest in the scientific literature. Although correlations between proxies of both concepts have been experimentally observed, the underlying precise linkage between them remains elusive. Here we investigate the case of learning in decision-making tasks; we do so by introducing a thermodynamically grounded metric-inspired by Landauer's principle-which connects time-irreversible information processing to energy consumption. Equipped with this metric, we investigate the role of macroscopic time-reversal symmetry breaking in belief dynamics for the case of an agent with finite sensitivity while performing a static two-armed bandit task-a standard setup in cognitive neuroscience. To gain insights into the belief dynamics, we analogize it to the dynamics of an active particle subject to state-dependent noise and living in a two-dimensional space. This mapping allows an analytical description of learning-induced biases. We deeply explore the case of Q-learning with forgetting the nonchosen option. In this case, learning-induced risk aversion is formally equivalent to standard thermophoresis, i.e., the net motion towards low-temperature regions. Finally, we quantify the irreversibility of belief dynamics in the steady state for different bandit configurations, sensitivity levels, and exploitative behavior. We found a strong correlation in high-sensitivity learning between heightened irreversibility in belief dynamics and improved decision-making outcomes. Notably, as the task's difficulty increases, a greater degree of irreversibility in belief dynamics becomes necessary for having superior performances; this explicitly unravels a plausible connection between time irreversibility and cognitive effort. In conclusion, our investigation reveals that irreversibility in belief dynamics bridges out-of-equilibrium statistical physics concepts and cognitive neuroscience. In decision-making contexts, this perspective offers insights into the notion of cognitive effort, suggesting a potential mechanism driving the evolution of living systems toward out-of-equilibrium structures.
Collapse
|
19
|
Dong J, Wei X, Huang Z, Tian J, Zhang W. Age-related changes of dopamine D1 and D2 receptors expression in parvalbumin-positive cells of the orbitofrontal and prelimbic cortices of mice. Front Neurosci 2024; 18:1364067. [PMID: 38903598 PMCID: PMC11187244 DOI: 10.3389/fnins.2024.1364067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
Dopamine (DA) plays a pivotal role in reward processing, cognitive functions, and emotional regulation. The prefrontal cortex (PFC) is a critical brain region for these processes. Parvalbumin-positive (PV+) neurons are one of the major classes of inhibitory GABAergic neurons in the cortex, they modulate the activity of neighboring neurons, influencing various brain functions. While DA receptor expression exhibits age-related changes, the age-related changes of these receptors in PV+ neurons, especially in the PFC, remain unclear. To address this, we investigated the expression of DA D1 (D1R) and D2 (D2R) receptors in PV+ neurons within the orbitofrontal (OFC) and prelimbic (PrL) cortices at different postnatal ages (P28, P42, P56, and P365). We found that the expression of D1R and D2R in PV+ neurons showed both age- and region-related changes. PV+ neurons in the OFC expressed a higher abundance of D1 than those in the PrL, and those neurons in the OFC also showed higher co-expression of D1R and D2R than those in the PrL. In the OFC and PrL, D1R in PV+ neurons increased from P28 and reached a plateau at P42, then receded to express at P365. Meanwhile, D2R did not show significant age-related changes between the two regions except at P56. These results showed dopamine receptors in the prefrontal cortex exhibit age- and region-specific changes, which may contribute to the difference of these brain regions in reward-related brain functions.
Collapse
Affiliation(s)
- Jihui Dong
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Xiaoyan Wei
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Ziran Huang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Jing Tian
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Wen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| |
Collapse
|
20
|
Hsu WC, Yeh YC. Investigating the neural substrate variations between easy and challenging creative association tasks during product design within an fMRI scanner. IBRO Neurosci Rep 2024; 16:550-559. [PMID: 38746492 PMCID: PMC11090875 DOI: 10.1016/j.ibneur.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 05/16/2024] Open
Abstract
In practice, individuals strive to develop highly original and valuable creative products within specific limitations. However, previous functional Magnetic Resonance Imaging (fMRI) studies focused on divergent-thinking tasks without considering the "valuableness" of an idea. Additionally, different types of creative tasks (e.g., the easier association vs. the harder association task) may engage distinct cognitive processes. This study aimed to investigate the underlying neural mechanisms associated with different types of creative thinking, specifically focusing on the generation of the most original and valuable creative product within an fMRI scanner. Twenty-one college students participated in a block design study. During each trial, participants were instructed to draw the most original and valuable product inspired by a given figure. The findings revealed that, in comparison to the harder association task, the easier association task led to broader activation across multiple brain regions. However, this broader activation resulted in inefficient thinking and poorer creative performance. Notably, the orbitofrontal cortex exhibited activation across various creativity tasks and displayed connectivity with several seed brain regions, highlighting the importance of decision-making when only one original and valuable product design is allowed. Furthermore, the complex functional connectivity observed between different brain networks reflects the intricate nature of creative thinking. To conclude, widespread activation of brain regions does not necessarily indicate superior creativity. Instead, optimal creative performance within constraints is achieved through an efficient utilization of association for generating innovative ideas, inhibition for suppressing unoriginal ideas, and decision-making to select the most creative idea.
Collapse
Affiliation(s)
- Wei-Chin Hsu
- Interdisciplinary Neuroscience PhD Program, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-chu Yeh
- Institute of Teacher Education, National Chengchi University, Taipei 116, Taiwan
- Research Center for Mind, Brain & Learning, National Chengchi University, Taipei 116, Taiwan
| |
Collapse
|
21
|
Gueguen MCM, Anlló H, Bonagura D, Kong J, Hafezi S, Palminteri S, Konova AB. Recent Opioid Use Impedes Range Adaptation in Reinforcement Learning in Human Addiction. Biol Psychiatry 2024; 95:974-984. [PMID: 38101503 PMCID: PMC11065633 DOI: 10.1016/j.biopsych.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Drugs like opioids are potent reinforcers thought to co-opt value-based decisions by overshadowing other rewarding outcomes, but how this happens at a neurocomputational level remains elusive. Range adaptation is a canonical process of fine-tuning representations of value based on reward context. Here, we tested whether recent opioid exposure impacts range adaptation in opioid use disorder, potentially explaining why shifting decision making away from drug taking during this vulnerable period is so difficult. METHODS Participants who had recently (<90 days) used opioids (n = 34) or who had abstained from opioid use for ≥ 90 days (n = 20) and comparison control participants (n = 44) completed a reinforcement learning task designed to induce robust contextual modulation of value. Two models were used to assess the latent process that participants engaged while making their decisions: 1) a Range model that dynamically tracks context and 2) a standard Absolute model that assumes stationary, objective encoding of value. RESULTS Control participants and ≥90-days-abstinent participants with opioid use disorder exhibited choice patterns consistent with range-adapted valuation. In contrast, participants with recent opioid use were more prone to learn and encode value on an absolute scale. Computational modeling confirmed the behavior of most control participants and ≥90-days-abstinent participants with opioid use disorder (75%), but a minority in the recent use group (38%), was better fit by the Range model than the Absolute model. Furthermore, the degree to which participants relied on range adaptation correlated with duration of continuous abstinence and subjective craving/withdrawal. CONCLUSIONS Reduced context adaptation to available rewards could explain difficulty deciding about smaller (typically nondrug) rewards in the aftermath of drug exposure.
Collapse
Affiliation(s)
- Maëlle C M Gueguen
- Department of Psychiatry, Brain Health Institute and University Behavioral Health Care, Rutgers University-New Brunswick, Piscataway, New Jersey; Intercultural Cognitive Network, Tokyo, Japan
| | - Hernán Anlló
- Intercultural Cognitive Network, Tokyo, Japan; Watanabe Laboratory, School of Fundamental Science and Engineering, Waseda University, Tokyo, Japan; Laboratoire de Neurosciences Cognitives et Computationnelles, Institut National de la Santé et de la Recherche Médicale U960, École Normale Supérieure-Université de Recherche Paris Science et Lettres, Paris, France
| | - Darla Bonagura
- Department of Psychiatry, Brain Health Institute and University Behavioral Health Care, Rutgers University-New Brunswick, Piscataway, New Jersey; Intercultural Cognitive Network, Tokyo, Japan
| | - Julia Kong
- Department of Psychiatry, Brain Health Institute and University Behavioral Health Care, Rutgers University-New Brunswick, Piscataway, New Jersey
| | - Sahar Hafezi
- Department of Psychiatry, Brain Health Institute and University Behavioral Health Care, Rutgers University-New Brunswick, Piscataway, New Jersey
| | - Stefano Palminteri
- Intercultural Cognitive Network, Tokyo, Japan; Laboratoire de Neurosciences Cognitives et Computationnelles, Institut National de la Santé et de la Recherche Médicale U960, École Normale Supérieure-Université de Recherche Paris Science et Lettres, Paris, France
| | - Anna B Konova
- Department of Psychiatry, Brain Health Institute and University Behavioral Health Care, Rutgers University-New Brunswick, Piscataway, New Jersey; Intercultural Cognitive Network, Tokyo, Japan.
| |
Collapse
|
22
|
Regalado JM, Asensio AC, Haunold T, Toader AC, Li YR, Neal LA, Rajasethupathy P. Neural activity ramps in frontal cortex signal extended motivation during learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.15.562395. [PMID: 37905153 PMCID: PMC10614791 DOI: 10.1101/2023.10.15.562395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.
Collapse
Affiliation(s)
- Josue M. Regalado
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | | | - Theresa Haunold
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Andrew C. Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Yan Ran Li
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Lauren A. Neal
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
- Lead contact
| |
Collapse
|
23
|
Zhang B, Rolls ET, Wang X, Xie C, Cheng W, Feng J. Roles of the medial and lateral orbitofrontal cortex in major depression and its treatment. Mol Psychiatry 2024; 29:914-928. [PMID: 38212376 DOI: 10.1038/s41380-023-02380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024]
Abstract
We describe evidence for dissociable roles of the medial and lateral orbitofrontal cortex (OFC) in major depressive disorder (MDD) from structure, functional activation, functional connectivity, metabolism, and neurochemical systems. The reward-related medial orbitofrontal cortex has lower connectivity and less reward sensitivity in MDD associated with anhedonia symptoms; and the non-reward related lateral OFC has higher functional connectivity and more sensitivity to non-reward/aversive stimuli in MDD associated with negative bias symptoms. Importantly, we propose that conventional antidepressants act to normalize the hyperactive lateral (but not medial) OFC to reduce negative bias in MDD; while other treatments are needed to operate on the medial OFC to reduce anhedonia, with emerging evidence suggesting that ketamine may act in this way. The orbitofrontal cortex is the key cortical region in emotion and reward, and the current review presents much new evidence about the different ways that the medial and lateral OFC are involved in MDD.
Collapse
Affiliation(s)
- Bei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Edmund T Rolls
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, PR China
- Medical Psychological Institute, Central South University, Changsha, PR China
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, PR China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, PR China.
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China.
- Department of Computer Science, University of Warwick, Coventry, UK.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, PR China.
- Zhangjiang Fudan International Innovation Center, Shanghai, PR China.
| |
Collapse
|
24
|
Chernoff CS, Hynes TJ, Schumacher JD, Ramaiah S, Avramidis DK, Mortazavi L, Floresco SB, Winstanley CA. Noradrenergic regulation of cue-guided decision making and impulsivity is doubly dissociable across frontal brain regions. Psychopharmacology (Berl) 2024; 241:767-783. [PMID: 38001266 DOI: 10.1007/s00213-023-06508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
RATIONALE Win-paired stimuli can promote risk taking in experimental gambling paradigms in both rats and humans. We previously demonstrated that atomoxetine, a noradrenaline reuptake inhibitor, and guanfacine, a selective α2A adrenergic receptor agonist, reduced risk taking on the cued rat gambling task (crGT), a rodent assay of risky choice in which wins are accompanied by salient cues. Both compounds also decreased impulsive premature responding. OBJECTIVE The key neural loci mediating these effects were unknown. The lateral orbitofrontal cortex (lOFC) and the medial prefrontal cortex (mPFC), which are highly implicated in risk assessment, action selection, and impulse control, receive dense noradrenergic innervation. We therefore infused atomoxetine and guanfacine directly into either the lOFC or prelimbic (PrL) mPFC prior to task performance. RESULTS When infused into the lOFC, atomoxetine improved decision making score and adaptive lose-shift behaviour in males, but not in females, without altering motor impulsivity. Conversely, intra-PrL atomoxetine improved impulse control in risk preferring animals of both sexes, but did not alter decision making. Guanfacine administered into the PrL, but not lOFC, also altered motor impulsivity in all subjects, though in the opposite direction to atomoxetine. CONCLUSIONS These data highlight a double dissociation between the behavioural effects of noradrenergic signaling across frontal regions with respect to risky choice and impulsive action. Given that the influence of noradrenergic manipulations on motor impulsivity could depend on baseline risk preference, these data also suggest that the noradrenaline system may function differently in subjects that are susceptible to the risk-promoting lure of win-associated cues.
Collapse
Affiliation(s)
- Chloe S Chernoff
- Graduate Program in Neuroscience, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Department of Psychology, Downing Site, University of Cambridge, Cambridge, UK.
| | - Tristan J Hynes
- Graduate Program in Neuroscience, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, Downing Site, University of Cambridge, Cambridge, UK
| | - Jackson D Schumacher
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Shrishti Ramaiah
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Dimitrios K Avramidis
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of Concordia, Montreal, QC, Canada
| | - Leili Mortazavi
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Stan B Floresco
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Graduate Program in Neuroscience, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
25
|
Pezzoni L, Brusa R, Difonzo T, Magri F, Velardo D, Corti S, Comi GP, Saetti MC. Cognitive abnormalities in Becker muscular dystrophy: a mysterious link between dystrophin deficiency and executive functions. Neurol Sci 2024; 45:1691-1698. [PMID: 37968431 PMCID: PMC10943145 DOI: 10.1007/s10072-023-07169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/28/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Distrophinopathies are a heterogeneous group of neuromuscular disorders due to mutations in the DMD gene. Different isoforms of dystrophin are also expressed in the cerebral cortex and Purkinje cells. Despite cognitive abnormalities in Duchenne muscular dystrophy subjects that have been described in the literature, little is known about a comprehensive cognitive profile in Becker muscular dystrophy patients. AIM The aim of this study was to assess cognitive functioning in Becker muscular dystrophy patients by using an extensive neuropsychological battery. Our hypothesis is that the most impaired functions are the highly intentional and conscious ones, such as working memory functions, which require a prolonged state of cellular activation. METHODS We performed an extensive neuropsychological assessment on 28 Becker muscular dystrophy patients from 18 to 65 years old. As control subjects, we selected 20 patients with limb-girdle muscular dystrophy, whose clinical picture was similar except for cognitive integrity. The evaluation, although extended to all areas, was focused on prefrontal control skills, with a distinction between inhibitory processes of selective attention and activating processes of working memory. RESULTS AND CONCLUSIONS Significant underperformances were found exclusively in the Dual Task and PASAT tests, to demonstrate a selective impairment of working memory that, while not causing intellectual disability, reduces the intellectual potential of patients with Becker muscular dystrophy.
Collapse
Affiliation(s)
- Laura Pezzoni
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Roberta Brusa
- ASST Ovest Milanese, Ospedale Di Legnano, Neurology Unit, Legnano, Milan, Italy
| | - Teresa Difonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Francesca Magri
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Daniele Velardo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy
| | - Stefania Corti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy
- Department of Pathophysiology and Transplants, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Giacomo Pietro Comi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
- Department of Pathophysiology and Transplants, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Maria Cristina Saetti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.
- Department of Pathophysiology and Transplants, Dino Ferrari Center, University of Milan, Milan, Italy.
| |
Collapse
|
26
|
Stoll FM, Rudebeck PH. Dissociable representations of decision variables within subdivisions of macaque orbitofrontal and ventrolateral frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584181. [PMID: 38559221 PMCID: PMC10979845 DOI: 10.1101/2024.03.10.584181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ventral frontal cortex (VFC) in macaques is involved in many affective and cognitive processes and has a key role in flexibly guiding reward-based decision-making. VFC is composed of a set of anatomically distinct subdivisions that are within the orbitofrontal cortex, ventrolateral prefrontal cortex, and anterior insula. In part, because prior studies have lacked the resolution to test for differences, it is unclear if neural representations related to decision-making are dissociable across these subdivisions. Here we recorded the activity of thousands of neurons within eight anatomically defined subregions of VFC in macaque monkeys performing a two-choice probabilistic task for different fruit juices outcomes. We found substantial variation in the encoding of decision variables across these eight subdivisions. Notably, ventrolateral subdivision 12l was unique relative to the other areas that we recorded from as the activity of single neurons integrated multiple attributes when monkeys evaluated the different choice options. Activity within 12o, by contrast, more closely represented reward probability and whether reward was received on a given trial. Orbitofrontal area 11m/l contained more specific representations of the quality of the outcome that could be earned later on. We also found that reward delivery encoding was highly distributed across all VFC subregions, while the properties of the reward, such as its flavor, were more strongly represented in areas 11m/l and 13m. Taken together, our work reveals the diversity of encoding within the various anatomically distinct subdivisions of VFC in primates.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
27
|
Çakar T, Son-Turan S, Girişken Y, Sayar A, Ertuğrul S, Filiz G, Tuna E. Unlocking the neural mechanisms of consumer loan evaluations: an fNIRS and ML-based consumer neuroscience study. Front Hum Neurosci 2024; 18:1286918. [PMID: 38375365 PMCID: PMC10875049 DOI: 10.3389/fnhum.2024.1286918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction This study conducts a comprehensive exploration of the neurocognitive processes underlying consumer credit decision-making using cutting-edge techniques from neuroscience and machine learning (ML). Employing functional Near-Infrared Spectroscopy (fNIRS), the research examines the hemodynamic responses of participants while evaluating diverse credit offers. Methods The experimental phase of this study investigates the hemodynamic responses collected from 39 healthy participants with respect to different loan offers. This study integrates fNIRS data with advanced ML algorithms, specifically Extreme Gradient Boosting, CatBoost, Extra Tree Classifier, and Light Gradient Boosted Machine, to predict participants' credit decisions based on prefrontal cortex (PFC) activation patterns. Results Findings reveal distinctive PFC regions correlating with credit behaviors, including the dorsolateral prefrontal cortex (dlPFC) associated with strategic decision-making, the orbitofrontal cortex (OFC) linked to emotional valuations, and the ventromedial prefrontal cortex (vmPFC) reflecting brand integration and reward processing. Notably, the right dorsomedial prefrontal cortex (dmPFC) and the right vmPFC contribute to positive credit preferences. Discussion This interdisciplinary approach bridges neuroscience, machine learning and finance, offering unprecedented insights into the neural mechanisms guiding financial choices regarding different loan offers. The study's predictive model holds promise for refining financial services and illuminating human financial behavior within the burgeoning field of neurofinance. The work exemplifies the potential of interdisciplinary research to enhance our understanding of human financial decision-making.
Collapse
Affiliation(s)
- Tuna Çakar
- Department of Computer Engineering, MEF University, Istanbul, Türkiye
| | - Semen Son-Turan
- Department of Business Administration, MEF University, Maslak, Türkiye
| | - Yener Girişken
- Faculty of Economics and Administrative Sciences, Final International University, Istanbul, Türkiye
| | - Alperen Sayar
- Informatics Technologies Master Program, MEF University, Istanbul, Türkiye
| | - Seyit Ertuğrul
- Informatics Technologies Master Program, MEF University, Istanbul, Türkiye
| | - Gözde Filiz
- Computer Science and Engineering Ph.D. Program, MEF University, Istanbul, Türkiye
| | - Esin Tuna
- Department of Psychology, MEF University, Istanbul, Türkiye
| |
Collapse
|
28
|
Viswanathan P, Stein AM, Nieder A. Sequential neuronal processing of number values, abstract decision, and action in the primate prefrontal cortex. PLoS Biol 2024; 22:e3002520. [PMID: 38364194 PMCID: PMC10871863 DOI: 10.1371/journal.pbio.3002520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
Decision-making requires processing of sensory information, comparing the gathered evidence to make a judgment, and performing the action to communicate it. How neuronal representations transform during this cascade of representations remains a matter of debate. Here, we studied the succession of neuronal representations in the primate prefrontal cortex (PFC). We trained monkeys to judge whether a pair of sequentially presented displays had the same number of items. We used a combination of single neuron and population-level analyses and discovered a sequential transformation of represented information with trial progression. While numerical values were initially represented with high precision and in conjunction with detailed information such as order, the decision was encoded in a low-dimensional subspace of neural activity. This decision encoding was invariant to both retrospective numerical values and prospective motor plans, representing only the binary judgment of "same number" versus "different number," thus facilitating the generalization of decisions to novel number pairs. We conclude that this transformation of neuronal codes within the prefrontal cortex supports cognitive flexibility and generalizability of decisions to new conditions.
Collapse
Affiliation(s)
- Pooja Viswanathan
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Anna M. Stein
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
29
|
Liao J, Li J, Qiu Y, Wu X, Liu B, Zhang L, Zhang Y, Peng X, Huang R. Dissociable contributions of the hippocampus and orbitofrontal cortex to representing task space in a social context. Cereb Cortex 2024; 34:bhad447. [PMID: 38011099 PMCID: PMC10793565 DOI: 10.1093/cercor/bhad447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
The hippocampus (HC) and the orbitofrontal cortex (OFC) jointly encode a map-like representation of a task space to guide behavior. It remains unclear how the OFC and HC interact in encoding this map-like representation, though previous studies indicated that both regions have different functions. We acquired the functional magnetic resonance imaging data under a social navigation task in which participants interacted with characters in a two-dimensional "social space." We calculate the social relationships between the participants and characters and used a drift-diffusion model to capture the inner process of social interaction. Then we used multivoxel pattern analysis to explore the brain-behavior relationship. We found that (i) both the HC and the OFC showed higher activations during the selective trial than the narrative trial; (ii) the neural pattern of the right HC was associated with evidence accumulation during social interaction, and the pattern of the right lateral OFC was associated with the social relationship; (iii) the neural pattern of the HC can decode the participants choices, while the neural pattern of the OFC can decode the task information about trials. The study provided evidence for distinct roles of the HC and the OFC in encoding different information when representing social space.
Collapse
Affiliation(s)
- Jiajun Liao
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Jinhui Li
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Yidan Qiu
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Xiaoyan Wu
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Bingyi Liu
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Lu Zhang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Yuting Zhang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Xiaoqi Peng
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Ruiwang Huang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, Guangdong, China
| |
Collapse
|
30
|
Vishnubhotla RV, Ahmad ST, Zhao Y, Radhakrishnan R. Impact of prenatal marijuana exposure on adolescent brain structural and functional connectivity and behavioural outcomes. Brain Commun 2024; 6:fcae001. [PMID: 38444906 PMCID: PMC10914455 DOI: 10.1093/braincomms/fcae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 03/07/2024] Open
Abstract
There has been an increase in the number of women using marijuana whilst pregnant. Previous studies have shown that children with prenatal marijuana exposure have developmental deficits in memory and decreased attentiveness. In this study, we assess whether prenatal marijuana exposure is associated with alterations in brain regional morphometry and functional and structural connectivity in adolescents. We downloaded behavioural scores and subject image files from the Adolescent Brain Cognitive DevelopmentSM Study. A total of 178 anatomical and diffusion magnetic resonance imaging files (88 prenatal marijuana exposure and 90 age- and gender-matched controls) and 152 resting-state functional magnetic resonance imaging files (76 prenatal marijuana exposure and 76 controls) were obtained. Behavioural metrics based on the parent-reported child behavioural checklist were also obtained for each subject. The associations of prenatal marijuana exposure with 17 subscales of the child behavioural checklist were calculated. We assessed differences in brain morphometry based on voxel-based and surface-based morphometry in adolescents with prenatal marijuana exposure versus controls. We also evaluated group differences in structural and functional connectivity in adolescents for region-to-region connectivity and graph theoretical metrics. Interactions of prenatal marijuana exposure and graph networks were assessed for impact on behavioural scores. Multiple comparison correction was performed as appropriate. Adolescents with prenatal marijuana exposure had greater abnormal or borderline child behavioural checklist scores in 9 out of 17 subscales. There were no significant differences in voxel- or surface-based morphometry, structural connectivity or functional connectivity between prenatal marijuana exposure and controls. However, there were significant differences in prenatal marijuana exposure-graph network interactions with respect to behavioural scores. There were three structural prenatal marijuana exposure-graph network interactions and seven functional prenatal marijuana exposure-graph network interactions that were significantly associated with behavioural scores. Whilst this study was not able to confirm anatomical or functional differences between prenatal marijuana exposure and unexposed pre-adolescent children, there were prenatal marijuana exposure-brain structural and functional graph network interactions that were significantly associated with behavioural scores. This suggests that altered brain networks may underlie behavioural outcomes in adolescents with prenatal marijuana exposure. More work needs to be conducted to better understand the prognostic value of brain structural and functional network measures in prenatal marijuana exposure.
Collapse
Affiliation(s)
- Ramana V Vishnubhotla
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sidra T Ahmad
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
31
|
Valdebenito-Oyarzo G, Martínez-Molina MP, Soto-Icaza P, Zamorano F, Figueroa-Vargas A, Larraín-Valenzuela J, Stecher X, Salinas C, Bastin J, Valero-Cabré A, Polania R, Billeke P. The parietal cortex has a causal role in ambiguity computations in humans. PLoS Biol 2024; 22:e3002452. [PMID: 38198502 PMCID: PMC10824459 DOI: 10.1371/journal.pbio.3002452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/23/2024] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Humans often face the challenge of making decisions between ambiguous options. The level of ambiguity in decision-making has been linked to activity in the parietal cortex, but its exact computational role remains elusive. To test the hypothesis that the parietal cortex plays a causal role in computing ambiguous probabilities, we conducted consecutive fMRI and TMS-EEG studies. We found that participants assigned unknown probabilities to objective probabilities, elevating the uncertainty of their decisions. Parietal cortex activity correlated with the objective degree of ambiguity and with a process that underestimates the uncertainty during decision-making. Conversely, the midcingulate cortex (MCC) encodes prediction errors and increases its connectivity with the parietal cortex during outcome processing. Disruption of the parietal activity increased the uncertainty evaluation of the options, decreasing cingulate cortex oscillations during outcome evaluation and lateral frontal oscillations related to value ambiguous probability. These results provide evidence for a causal role of the parietal cortex in computing uncertainty during ambiguous decisions made by humans.
Collapse
Affiliation(s)
- Gabriela Valdebenito-Oyarzo
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - María Paz Martínez-Molina
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Patricia Soto-Icaza
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Francisco Zamorano
- Unidad de Neuroimágenes Cuantitativas avanzadas (UNICA), Departamento de Imágenes, Clínica Alemana de Santiago, Santiago, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Campus Los Leones, Universidad San Sebastián, Santiago, Chile
| | - Alejandra Figueroa-Vargas
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Josefina Larraín-Valenzuela
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Ximena Stecher
- Unidad de Neuroimágenes Cuantitativas avanzadas (UNICA), Departamento de Imágenes, Clínica Alemana de Santiago, Santiago, Chile
| | - César Salinas
- Unidad de Neuroimágenes Cuantitativas avanzadas (UNICA), Departamento de Imágenes, Clínica Alemana de Santiago, Santiago, Chile
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Antoni Valero-Cabré
- Causal Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
- Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University, School of Medicine, Boston, Massachusetts, United States of America
| | - Rafael Polania
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Pablo Billeke
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
32
|
Esber GR, Usypchuk A, Saini GK, Deroche M, Iordanova MD, Schoenbaum G. OFC neurons do not represent the negative value of a conditioned inhibitor. Neurobiol Learn Mem 2024; 207:107869. [PMID: 38042330 DOI: 10.1016/j.nlm.2023.107869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
The orbitofrontal cortex (OFC) is often proposed to function as a value integrator; however, alternative accounts focus on its role in representing associative structures that specify the probability and sensory identity of future outcomes. These two accounts make different predictions about how this area should respond to conditioned inhibitors of reward, since in the former, neural activity should reflect the negative value of the inhibitor, whereas in the latter, it should track the estimated probability of a future reward based on all cues present. Here, we assessed these predictions by recording from small groups of neurons in the lateral OFC of rats during training in a conditioned inhibition design. Rats showed negative summation when the inhibitor was compounded with a novel excitor, suggesting that they learned to respond to the conditioned inhibitor appropriately. Against this backdrop, we found unit and population responses that scaled with expected reward value on excitor + inhibitor compound trials. However, the responses of these neurons did not differentiate between the conditioned inhibitor and a neutral cue when both were presented in isolation. Further, when the ensemble patterns were analyzed, activity to the conditioned inhibitor did not classify according to putative negative value. Instead, it classified with a same-modality neutral cue when presented alone and as a unique item when presented in compound with a novel excitor. This pattern of results supports the notion that OFC encodes a model of the causal structure of the environment rather than either the modality or the value of cues.
Collapse
Affiliation(s)
| | | | - Gurpreet Kaur Saini
- Intramural Research Program of the National Institute on Drug Abuse, Baltimore, MD, USA
| | | | | | - Geoffrey Schoenbaum
- Intramural Research Program of the National Institute on Drug Abuse, Baltimore, MD, USA.
| |
Collapse
|
33
|
Chen L, Thapaliya G, Papantoni A, Benson L, Carnell S. Neural correlates of appetite in adolescents. Appetite 2023; 191:107076. [PMID: 37806450 PMCID: PMC10997743 DOI: 10.1016/j.appet.2023.107076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Appetitive characteristics are associated with child adiposity, but their biological underpinnings are unclear. We sought to investigate the neural correlates of psychometric and behavioral measures of appetitive characteristics in youth. Adolescents (14-18y; 39F, 37M) varying in familial obesity risk and body weight (20% with overweight, 24% with obesity) viewed pictures of high energy-density (ED) foods, low-ED foods and non-foods during fMRI scanning on two separate days. On one day participants consumed a 474 ml preload of water (0 kcal, fasted) and on another (counter-balanced) 474 ml milkshake (480 kcal, fed), before scanning. A multi-item ad libitum meal (ALM) followed scanning. Parents completed Child Eating Behavior Questionnaire (CEBQ) sub-scales assessing food approach and food self-regulation. Caloric compensation was calculated as the percentage of preload intake compensated for by down-regulation of ALM intake in the fed vs. fasted condition. Analyses correcting for multiple comparisons demonstrated that, for the fasted condition, higher CEBQ Food Responsiveness scores were associated with greater activation to high-ED (vs. low-ED) foods in regions implicated in food reward (insula, rolandic operculum, putamen). In addition, higher caloric compensation was associated with greater fed vs. fasted activations in response to foods (vs. non-foods) in thalamus and supramarginal gyrus. Uncorrected analyses provided further support for associations of different measures of appetitive characteristics with brain responses to food cues in each condition. Measures of appetitive characteristics demonstrated overlapping and distinct associations with patterns of brain activation elicited by food cues in fasted and fed states. Understanding the neural basis of appetitive characteristics could aid development of biobehaviorally-informed obesity interventions.
Collapse
Affiliation(s)
- L Chen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - G Thapaliya
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - A Papantoni
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - L Benson
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - S Carnell
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
34
|
Neige C, Vassiliadis P, Ali Zazou A, Dricot L, Lebon F, Brees T, Derosiere G. Connecting the dots: harnessing dual-site transcranial magnetic stimulation to quantify the causal influence of medial frontal areas on the motor cortex. Cereb Cortex 2023; 33:11339-11353. [PMID: 37804253 DOI: 10.1093/cercor/bhad370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
Dual-site transcranial magnetic stimulation has been widely employed to investigate the influence of cortical structures on the primary motor cortex. Here, we leveraged this technique to probe the causal influence of two key areas of the medial frontal cortex, namely the supplementary motor area and the medial orbitofrontal cortex, on primary motor cortex. We show that supplementary motor area stimulation facilitates primary motor cortex activity across short (6 and 8 ms) and long (12 ms) inter-stimulation intervals, putatively recruiting cortico-cortical and cortico-subcortico-cortical circuits, respectively. Crucially, magnetic resonance imaging revealed that this facilitatory effect depended on a key morphometric feature of supplementary motor area: individuals with larger supplementary motor area volumes exhibited more facilitation from supplementary motor area to primary motor cortex for both short and long inter-stimulation intervals. Notably, we also provide evidence that the facilitatory effect of supplementary motor area stimulation at short intervals is unlikely to arise from spinal interactions of volleys descending simultaneously from supplementary motor area and primary motor cortex. On the other hand, medial orbitofrontal cortex stimulation moderately suppressed primary motor cortex activity at both short and long intervals, irrespective of medial orbitofrontal cortex volume. These results suggest that dual-site transcranial magnetic stimulation is a fruitful approach to investigate the differential influence of supplementary motor area and medial orbitofrontal cortex on primary motor cortex activity, paving the way for the multimodal assessment of these fronto-motor circuits in health and disease.
Collapse
Affiliation(s)
- Cécilia Neige
- Université Bourgogne Franche-Comté, INSERM UMR1093-CAPS, UFR des Sciences du Sport, F-21078, Dijon, France
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PsyR2 Team, F-69500, Bron, France
- Centre Hospitalier le Vinatier, 95 Boulevard Pinel, 300 3969678 Bron Cedex, France
| | - Pierre Vassiliadis
- Institute of Neuroscience, Université Catholique de Louvain, Avenue E. Mounier 53 & 73, 1200, Brussels, Belgium
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Abdelkrim Ali Zazou
- Institute of Neuroscience, Université Catholique de Louvain, Avenue E. Mounier 53 & 73, 1200, Brussels, Belgium
| | - Laurence Dricot
- Institute of Neuroscience, Université Catholique de Louvain, Avenue E. Mounier 53 & 73, 1200, Brussels, Belgium
| | - Florent Lebon
- Université Bourgogne Franche-Comté, INSERM UMR1093-CAPS, UFR des Sciences du Sport, F-21078, Dijon, France
| | - Thomas Brees
- Institute of Neuroscience, Université Catholique de Louvain, Avenue E. Mounier 53 & 73, 1200, Brussels, Belgium
| | - Gerard Derosiere
- Institute of Neuroscience, Université Catholique de Louvain, Avenue E. Mounier 53 & 73, 1200, Brussels, Belgium
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Impact Team, F-69500, Bron, France
| |
Collapse
|
35
|
Otani Y, Katagiri Y, Imai E, Kowa H. Action-rule-based cognitive control enables efficient execution of stimulus-response conflict tasks: a model validation of Simon task performance. Front Hum Neurosci 2023; 17:1239207. [PMID: 38034070 PMCID: PMC10687480 DOI: 10.3389/fnhum.2023.1239207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction The human brain can flexibly modify behavioral rules to optimize task performance (speed and accuracy) by minimizing cognitive load. To show this flexibility, we propose an action-rule-based cognitive control (ARC) model. The ARC model was based on a stochastic framework consistent with an active inference of the free energy principle, combined with schematic brain network systems regulated by the dorsal anterior cingulate cortex (dACC), to develop several hypotheses for demonstrating the validity of the ARC model. Methods A step-motion Simon task was developed involving congruence or incongruence between important symbolic information (illustration of a foot labeled "L" or "R," where "L" requests left and "R" requests right foot movement) and irrelevant spatial information (whether the illustration is actually of a left or right foot). We made predictions for behavioral and brain responses to testify to the theoretical predictions. Results Task responses combined with event-related deep-brain activity (ER-DBA) measures demonstrated a key contribution of the dACC in this process and provided evidence for the main prediction that the dACC could reduce the Shannon surprise term in the free energy formula by internally reversing the irrelevant rapid anticipatory postural adaptation. We also found sequential effects with modulated dip depths of ER-DBA waveforms that support the prediction that repeated stimuli with the same congruency can promote remodeling of the internal model through the information gain term while counterbalancing the surprise term. Discussion Overall, our results were consistent with experimental predictions, which may support the validity of the ARC model. The sequential effect accompanied by dip modulation of ER-DBA waveforms suggests that cognitive cost is saved while maintaining cognitive performance in accordance with the framework of the ARC based on 1-bit congruency-dependent selective control.
Collapse
Affiliation(s)
- Yoshitaka Otani
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Faculty of Rehabilitation, Kobe International University, Kobe, Japan
| | - Yoshitada Katagiri
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyō, Japan
| | - Emiko Imai
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hisatomo Kowa
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
36
|
Zeisler ZR, London L, Janssen WG, Fredericks JM, Elorette C, Fujimoto A, Zhan H, Russ BE, Clem RL, Hof PR, Stoll FM, Rudebeck PH. Single basolateral amygdala neurons in macaques exhibit distinct connectional motifs with frontal cortex. Neuron 2023; 111:3307-3320.e5. [PMID: 37857091 PMCID: PMC10593429 DOI: 10.1016/j.neuron.2023.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Basolateral amygdala (BLA) projects widely across the macaque frontal cortex, and amygdalo-frontal projections are critical for appropriate emotional responding and decision making. While it is appreciated that single BLA neurons branch and project to multiple areas in frontal cortex, the organization and frequency of this branching has yet to be fully characterized. Here, we determined the projection patterns of more than 3,000 macaque BLA neurons. We found that one-third of BLA neurons had two or more distinct projection targets in frontal cortex and subcortical structures. The patterns of single BLA neuron projections to multiple areas were organized into repeating motifs that targeted distinct sets of areas in medial and ventral frontal cortex, indicative of separable BLA networks. Our findings begin to reveal the rich structure of single-neuron connections in the non-human primate brain, providing a neuroanatomical basis for the role of BLA in coordinating brain-wide responses to valent stimuli.
Collapse
Affiliation(s)
- Zachary R Zeisler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Liza London
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William G Janssen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Microscopy and Advanced Bioimaging CoRE, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - J Megan Fredericks
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Huiqing Zhan
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Syosset, NY 11791, USA
| | - Brian E Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University at Langone, One, 8 Park Avenue, New York, NY 10016, USA
| | - Roger L Clem
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
37
|
Kim S, Beck MR, Cho YS. Loss aversion in the control of attention. Psychon Bull Rev 2023; 30:1887-1894. [PMID: 37040019 DOI: 10.3758/s13423-023-02287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2023] [Indexed: 04/12/2023]
Abstract
Loss aversion is a psychological bias where an increase in loss is perceived as being larger than an equivalent increase in gain. In the present study, two experiments were conducted to explore whether attentional control reflects loss aversion. Participants performed a visual search task. On each trial, a red target and a green target were presented simultaneously, and participants were free to search for either one. Participants always gained points when they searched for a gain color target (e.g., red). However, they gained or lost points when they searched for a gain-loss color target (e.g., green). In Experiment 1, the expected values of the gain color and the gain-loss color were equal. Therefore, for maximizing the reward, participants did not need to preferably search for a particular color. However, results showed that participants searched for the gain color target more than the gain-loss color target, suggesting stronger attentional control for the gain color than the gain-loss color. In Experiment 2, even though the expected value of the gain-loss color was greater than that of the gain color, attention was allocated to the gain color more than to the gain-loss color. The results imply that attentional control can operate in accordance with the loss aversion principle when the boundary conditions for loss aversion in a repeated binary decision-making task were met.
Collapse
Affiliation(s)
- Sunghyun Kim
- School of Psychology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea.
| | - Melissa R Beck
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA
| | - Yang Seok Cho
- School of Psychology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea
| |
Collapse
|
38
|
Li C, Sun T, Zhang Y, Gao Y, Sun Z, Li W, Cheng H, Gu Y, Abumaria N. A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice. Neuron 2023; 111:2727-2741.e7. [PMID: 37352858 DOI: 10.1016/j.neuron.2023.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 01/13/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Persistence in the face of failure helps to overcome challenges. But the ability to adjust behavior or even give up when the task is uncontrollable has advantages. How the mammalian brain switches behavior when facing uncontrollability remains an open question. We generated two mouse models of behavioral transition from action to no-action during exposure to a prolonged experience with an uncontrollable outcome. The transition was not caused by pain desensitization or muscle fatigue and was not a depression-/learned-helplessness-like behavior. Noradrenergic neurons projecting to GABAergic neurons within the orbitofrontal cortex (OFC) are key regulators of this behavior. Fiber photometry, microdialysis, mini-two-photon microscopy, and tetrode/optrode in vivo recording in freely behaving mice revealed that the reduction of norepinephrine and downregulation of alpha 1 receptor in the OFC reduced the number and activity of GABAergic neurons necessary for driving action behavior resulting in behavioral transition. These findings define a circuit governing behavioral switch in response to prolonged uncontrollability.
Collapse
Affiliation(s)
- Chaoqun Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Tianping Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yimu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yan Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhou Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wei Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing 100871, China; Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing 211500, China
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
39
|
Shi W, Meisner OC, Blackmore S, Jadi MP, Nandy AS, Chang SWC. The orbitofrontal cortex: A goal-directed cognitive map framework for social and non-social behaviors. Neurobiol Learn Mem 2023; 203:107793. [PMID: 37353191 PMCID: PMC10527225 DOI: 10.1016/j.nlm.2023.107793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
The orbitofrontal cortex (OFC) is regarded as one of the core brain areas in a variety of value-based behaviors. Over the past two decades, tremendous knowledge about the OFC function was gained from studying the behaviors of single subjects. As a result, our previous understanding of the OFC's function of encoding decision variables, such as the value and identity of choices, has evolved to the idea that the OFC encodes a more complex representation of the task space as a cognitive map. Accumulating evidence also indicates that the OFC importantly contributes to behaviors in social contexts, especially those involved in cooperative interactions. However, it remains elusive how exactly OFC neurons contribute to social functions and how non-social and social behaviors are related to one another in the computations performed by OFC neurons. In this review, we aim to provide an integrated view of the OFC function across both social and non-social behavioral contexts. We propose that seemingly complex functions of the OFC may be explained by its role in providing a goal-directed cognitive map to guide a wide array of adaptive reward-based behaviors in both social and non-social domains.
Collapse
Affiliation(s)
- Weikang Shi
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Department of Psychology, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Olivia C Meisner
- Department of Psychology, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sylvia Blackmore
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Department of Psychology, Yale University, New Haven, CT 06510, USA
| | - Monika P Jadi
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Anirvan S Nandy
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Steve W C Chang
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Department of Psychology, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
40
|
Rolls ET. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Struct Funct 2023; 228:1201-1257. [PMID: 37178232 PMCID: PMC10250292 DOI: 10.1007/s00429-023-02644-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
The orbitofrontal cortex and amygdala are involved in emotion and in motivation, but the relationship between these functions performed by these brain structures is not clear. To address this, a unified theory of emotion and motivation is described in which motivational states are states in which instrumental goal-directed actions are performed to obtain rewards or avoid punishers, and emotional states are states that are elicited when the reward or punisher is or is not received. This greatly simplifies our understanding of emotion and motivation, for the same set of genes and associated brain systems can define the primary or unlearned rewards and punishers such as sweet taste or pain. Recent evidence on the connectivity of human brain systems involved in emotion and motivation indicates that the orbitofrontal cortex is involved in reward value and experienced emotion with outputs to cortical regions including those involved in language, and is a key brain region involved in depression and the associated changes in motivation. The amygdala has weak effective connectivity back to the cortex in humans, and is implicated in brainstem-mediated responses to stimuli such as freezing and autonomic activity, rather than in declarative emotion. The anterior cingulate cortex is involved in learning actions to obtain rewards, and with the orbitofrontal cortex and ventromedial prefrontal cortex in providing the goals for navigation and in reward-related effects on memory consolidation mediated partly via the cholinergic system.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
41
|
Viglione A, Mazziotti R, Pizzorusso T. From pupil to the brain: New insights for studying cortical plasticity through pupillometry. Front Neural Circuits 2023; 17:1151847. [PMID: 37063384 PMCID: PMC10102476 DOI: 10.3389/fncir.2023.1151847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
Pupil size variations have been associated with changes in brain activity patterns related with specific cognitive factors, such as arousal, attention, and mental effort. The locus coeruleus (LC), a key hub in the noradrenergic system of the brain, is considered to be a key regulator of cognitive control on pupil size, with changes in pupil diameter corresponding to the release of norepinephrine (NE). Advances in eye-tracking technology and open-source software have facilitated accurate pupil size measurement in various experimental settings, leading to increased interest in using pupillometry to track the nervous system activation state and as a potential biomarker for brain disorders. This review explores pupillometry as a non-invasive and fully translational tool for studying cortical plasticity starting from recent literature suggesting that pupillometry could be a promising technique for estimating the degree of residual plasticity in human subjects. Given that NE is known to be a critical mediator of cortical plasticity and arousal, the review includes data revealing the importance of the LC-NE system in modulating brain plasticity and pupil size. Finally, we will review data suggesting that pupillometry could provide a quantitative and complementary measure of cortical plasticity also in pre-clinical studies.
Collapse
Affiliation(s)
| | | | - Tommaso Pizzorusso
- BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy
- Institute of Neuroscience, National Research Council, Pisa, Italy
| |
Collapse
|
42
|
Hyun JH, Hannan P, Iwamoto H, Blakely RD, Kwon HB. Serotonin in the orbitofrontal cortex enhances cognitive flexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531880. [PMID: 36945634 PMCID: PMC10028980 DOI: 10.1101/2023.03.09.531880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Cognitive flexibility is a brain's ability to switch between different rules or action plans depending on the context. However, cellular level understanding of cognitive flexibility have been largely unexplored. We probed a specific serotonergic pathway from dorsal raphe nuclei (DRN) to the orbitofrontal cortex (OFC) while animals are performing reversal learning task. We found that serotonin release from DRN to the OFC promotes reversal learning. A long-range connection between these two brain regions was confirmed anatomically and functionally. We further show that spatiotemporally precise serotonergic action directly enhances the excitability of OFC neurons and offers enhanced spike probability of OFC network. Serotonergic action facilitated the induction of synaptic plasticity by enhancing Ca2+ influx at dendritic spines in the OFC. Thus, our findings suggest that a key signature of flexibility is the formation of choice specific ensembles via serotonin-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Jung Ho Hyun
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Patrick Hannan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| | - Hideki Iwamoto
- Department of Biomedical Science and Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Randy D. Blakely
- Department of Biomedical Science and Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| |
Collapse
|
43
|
Yun M, Hwang JY, Jung MW. Septotemporal variations in hippocampal value and outcome processing. Cell Rep 2023; 42:112094. [PMID: 36763498 DOI: 10.1016/j.celrep.2023.112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/11/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
A large body of evidence indicates functional variations along the hippocampal longitudinal axis. To investigate whether and how value and outcome processing vary between the dorsal (DH) and the ventral hippocampus (VH), we examined neuronal activity and inactivation effects of the DH and VH in mice performing probabilistic classical conditioning tasks. Inactivation of either structure disrupts value-dependent anticipatory licking, and value-coding neurons are found in both structures, indicating their involvement in value processing. However, the DH neuronal population increases activity as a function of value, while the VH neuronal population is preferentially responsive to the highest-value sensory cue. Also, signals related to outcome-dependent value learning are stronger in the DH. VH neurons instead show rapid responses to punishment and strongly biased responses to negative prediction error. These findings suggest that the DH faithfully represents the external value landscape, whereas the VH preferentially represents behaviorally relevant, salient features of experienced events.
Collapse
Affiliation(s)
- Miru Yun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Ji Young Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Min Whan Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea.
| |
Collapse
|
44
|
Zeisler ZR, London L, Janssen WG, Fredericks JM, Elorette C, Fujimoto A, Zhan H, Russ BE, Clem RL, Hof PR, Stoll FM, Rudebeck PH. High-throughput sequencing of macaque basolateral amygdala projections reveals dissociable connectional motifs with frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524407. [PMID: 36711708 PMCID: PMC9882200 DOI: 10.1101/2023.01.18.524407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The basolateral amygdala (BLA) projects widely across the macaque frontal cortex1-4, and amygdalo-frontal projections are critical for optimal emotional responding5 and decision-making6. Yet, little is known about the single-neuron architecture of these projections: namely, whether single BLA neurons project to multiple parts of the frontal cortex. Here, we use MAPseq7 to determine the projection patterns of over 3000 macaque BLA neurons. We found that one-third of BLA neurons have two or more distinct targets in parts of frontal cortex and of subcortical structures. Further, we reveal non-random structure within these branching patterns such that neurons with four targets are more frequently observed than those with two or three, indicative of widespread networks. Consequently, these multi-target single neurons form distinct networks within medial and ventral frontal cortex consistent with their known functions in regulating mood and decision-making. Additionally, we show that branching patterns of single neurons shape functional networks in the brain as assessed by fMRI-based functional connectivity. These results provide a neuroanatomical basis for the role of the BLA in coordinating brain-wide responses to valent stimuli8 and highlight the importance of high-resolution neuroanatomical data for understanding functional networks in the brain.
Collapse
Affiliation(s)
- Zachary R Zeisler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Liza London
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - William G Janssen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Microscopy and Advanced Bioimaging CoRE, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - J Megan Fredericks
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Huiqing Zhan
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Syosset, NY 11791
| | - Brian E Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, 10 Orangeburg, NY 10962
- Department of Psychiatry, New York University at Langone, One, 8 Park Ave, New York, NY 10016
| | - Roger L Clem
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
45
|
Globig LK, Gianotti LRR, Ponsi G, Koenig T, Dahinden FM, Knoch D. The path of dishonesty: identification of mental processes with electrical neuroimaging. Cereb Cortex 2023:7033304. [PMID: 36758947 DOI: 10.1093/cercor/bhac535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 02/11/2023] Open
Abstract
Much research finds that lying takes longer than truth-telling. Yet, the source of this response time difference remains elusive. Here, we assessed the spatiotemporal evolution of electrical brain activity during honesty and dishonesty in 150 participants using a sophisticated electrical neuroimaging approach-the microstate approach. This uniquely positioned us to identify and contrast the entire chain of mental processes involved during honesty and dishonesty. Specifically, we find that the response time difference is the result of an additional late-occurring mental process, unique to dishonest decisions, interrupting the antecedent mental processing. We suggest that this process inhibits the activation of the truth, thus permitting the execution of the lie. These results advance our understanding of dishonesty and clarify existing theories about the role of increased cognitive load. More broadly, we demonstrate the vast potential of our approach to illuminate the temporal organization of mental processes involved in decision-making.
Collapse
Affiliation(s)
- Laura K Globig
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland.,Affective Brain Lab, Department of Experimental Psychology, University College London, London, WC1H 0AP, United Kingdom.,The Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, WC1H 0AP, United Kingdom
| | - Lorena R R Gianotti
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland
| | - Giorgia Ponsi
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland.,Department of Psychology, Italian Institute of Technology, Sapienza University of Rome and CLN2S@Sapienza, Rome 00185, Italy.,IRCCS Santa Lucia Foundation, Rome 00170, Italy
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern 3012, Switzerland
| | - Franziska M Dahinden
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland
| | - Daria Knoch
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
46
|
Rolls ET. The orbitofrontal cortex, food reward, body weight and obesity. Soc Cogn Affect Neurosci 2023; 18:nsab044. [PMID: 33830272 PMCID: PMC9997078 DOI: 10.1093/scan/nsab044] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
In primates including humans, the orbitofrontal cortex is the key brain region representing the reward value and subjective pleasantness of the sight, smell, taste and texture of food. At stages of processing before this, in the insular taste cortex and inferior temporal visual cortex, the identity of the food is represented, but not its affective value. In rodents, the whole organisation of reward systems appears to be different, with reward value reflected earlier in processing systems. In primates and humans, the amygdala is overshadowed by the great development of the orbitofrontal cortex. Social and cognitive factors exert a top-down influence on the orbitofrontal cortex, to modulate the reward value of food that is represented in the orbitofrontal cortex. Recent evidence shows that even in the resting state, with no food present as a stimulus, the liking for food, and probably as a consequence of that body mass index, is correlated with the functional connectivity of the orbitofrontal cortex and ventromedial prefrontal cortex. This suggests that individual differences in these orbitofrontal cortex reward systems contribute to individual differences in food pleasantness and obesity. Implications of how these reward systems in the brain operate for understanding, preventing and treating obesity are described.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK
- Department of Computer Science, University of Warwick, Coventry, UK
| |
Collapse
|
47
|
Hall PA, Best JR, Danckert J, Beaton EA, Lee JA. Morphometry of the lateral orbitofrontal cortex is associated with eating dispositions in early adolescence: findings from a large population-based study. Soc Cogn Affect Neurosci 2023; 18:6313497. [PMID: 34216137 PMCID: PMC9997071 DOI: 10.1093/scan/nsab084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Early adolescence is a critical period for eating behaviors as children gain autonomy around food choice and peer influences increase in potency. From a neurodevelopmental perspective, significant structural changes take place in the prefrontal cortex during this time, including the orbitofrontal cortex (OFC), which is involved in socially contextualized decision-making. We examined the morphological features of the OFC in relation to food choice in a sample of 10 309 early adolescent children from the Adolescent Brain and Cognitive Development Study. Structural parameters of the OFC and insula were examined for relationships with two important aspects of food choice: limiting the consumption of fast/fried food and maximizing the consumption of nutritious foods. Raw, partially adjusted and fully adjusted models were evaluated. Findings revealed that a larger surface area of the lateral OFC was associated with higher odds of limiting fast/fried food consumption in raw [odds ratio (OR) = 1.07, confidence interval (CI): 1.02, 1.12, P = 0.002, PFDR = 0.012], partially adjusted (OR = 1.11, CI: 1.03, 1.19, P = 0.004, PFDR = 0.024) and fully adjusted models (OR = 1.11, CI: 1.03, 1.19, P = 0.006, PFDR = 0.036). In contrast, a larger insula volume was associated with lower odds of maximizing healthy foods in raw (OR = 0.94, CI: 0.91, 0.97, P <0.001, PFDR = 0.003) and partially adjusted (OR = 0.93, CI: 0.88, 0.98, P = 0.008, PFDR = 0.048) models. These findings refine our understanding of the OFC as a network node implicated in socially mediated eating behaviors.
Collapse
Affiliation(s)
- Peter A Hall
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - John R Best
- Gerontology Research Centre, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - James Danckert
- Department of Psychology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Elliott A Beaton
- Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA
| | - Jessica A Lee
- Department of Psychology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
48
|
Experiential values are underweighted in decisions involving symbolic options. Nat Hum Behav 2023; 7:611-626. [PMID: 36604497 DOI: 10.1038/s41562-022-01496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 11/04/2022] [Indexed: 01/07/2023]
Abstract
Standard models of decision-making assume each option is associated with subjective value, regardless of whether this value is inferred from experience (experiential) or explicitly instructed probabilistic outcomes (symbolic). In this study, we present results that challenge the assumption of unified representation of experiential and symbolic value. Across nine experiments, we presented participants with hybrid decisions between experiential and symbolic options. Participants' choices exhibited a pattern consistent with a systematic neglect of the experiential values. This normatively irrational decision strategy held after accounting for alternative explanations, and persisted even when it bore an economic cost. Overall, our results demonstrate that experiential and symbolic values are not symmetrically considered in hybrid decisions, suggesting they recruit different representational systems that may be assigned different priority levels in the decision process. These findings challenge the dominant models commonly used in value-based decision-making research.
Collapse
|
49
|
Altered neural correlates of optimal decision-making in individuals with depressive status. Biol Psychol 2023; 176:108462. [PMID: 36410588 DOI: 10.1016/j.biopsycho.2022.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Making optimal decisions by computing risk and benefit is necessary for humans. However, whether individuals with depressive status could utilize the optimal strategy to guide decision and its neural correlates remain unclear. The current study explored these issues by combining a decision task and high temporal-resolution electroencephalogram (EEG). The decision task involved an eight-box trial in which participants successively decided whether to open a box containing a potential reward or punishment, deciding to stop guaranteed they would retain the rewards already accumulated. Theoretically, the optimal strategy in the task was to stop at the fourth box, which had the largest expected value. We found that individuals with depressive status stopped fewer trials at the fourth box, relative to healthy controls, indicating their impaired optimal strategy during decision-making. Moreover, compared to healthy controls, individuals with depressive status showed weaker P2 amplitude and weaker beta-band oscillation at the frontocentral scalp when deciding whether to open the fourth box. Additionally, for healthy controls but not for individuals with depressive status, the P2 amplitude fully mediated the relationship between participants' degree of expected benefit (as reflected by the recreational risk-taking scale) and the frequency of trials stopped at the fourth box. Overall, this study revealed that the P2 amplitude and beta-band oscillation might explain the altered optimal decision-making in individuals with depressive status.
Collapse
|
50
|
Anticevic A, Halassa MM. The thalamus in psychosis spectrum disorder. Front Neurosci 2023; 17:1163600. [PMID: 37123374 PMCID: PMC10133512 DOI: 10.3389/fnins.2023.1163600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Psychosis spectrum disorder (PSD) affects 1% of the world population and results in a lifetime of chronic disability, causing devastating personal and economic consequences. Developing new treatments for PSD remains a challenge, particularly those that target its core cognitive deficits. A key barrier to progress is the tenuous link between the basic neurobiological understanding of PSD and its clinical phenomenology. In this perspective, we focus on a key opportunity that combines innovations in non-invasive human neuroimaging with basic insights into thalamic regulation of functional cortical connectivity. The thalamus is an evolutionary conserved region that forms forebrain-wide functional loops critical for the transmission of external inputs as well as the construction and update of internal models. We discuss our perspective across four lines of evidence: First, we articulate how PSD symptomatology may arise from a faulty network organization at the macroscopic circuit level with the thalamus playing a central coordinating role. Second, we discuss how recent animal work has mechanistically clarified the properties of thalamic circuits relevant to regulating cortical dynamics and cognitive function more generally. Third, we present human neuroimaging evidence in support of thalamic alterations in PSD, and propose that a similar "thalamocortical dysconnectivity" seen in pharmacological imaging (under ketamine, LSD and THC) in healthy individuals may link this circuit phenotype to the common set of symptoms in idiopathic and drug-induced psychosis. Lastly, we synthesize animal and human work, and lay out a translational path for biomarker and therapeutic development.
Collapse
Affiliation(s)
- Alan Anticevic
- School of Medicine, Yale University, New Haven, CT, United States
- *Correspondence: Alan Anticevic,
| | - Michael M. Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
- Michael M. Halassa,
| |
Collapse
|