1
|
Okamoto Y, Kitakaze K, Takenouchi Y, Matsui R, Koga D, Miyashima R, Ishimaru H, Tsuboi K. GPR176 promotes fibroblast-to-myofibroblast transition in organ fibrosis progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119798. [PMID: 39047914 DOI: 10.1016/j.bbamcr.2024.119798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/20/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Fibrosis is characterized by excessive deposition of extracellular matrix proteins, particularly collagen, caused by myofibroblasts in response to chronic inflammation. Although G protein-coupled receptors (GPCRs) are among the targets of current antifibrotic drugs, no drug has yet been approved to stop fibrosis progression. Herein, we aimed to identify GPCRs with profibrotic effects. In gene expression analysis of mouse lungs with induced fibrosis, eight GPCRs were identified, showing a >2-fold increase in mRNA expression after fibrosis induction. Among them, we focused on Gpr176 owing to its significant correlation with a myofibroblast marker α-smooth muscle actin (αSMA), the profibrotic factor transforming growth factor β1 (TGFβ1), and collagen in a human lung gene expression database. Similar to the lung fibrosis model, increased Gpr176 expression was also observed in other organs affected by fibrosis, including the kidney, liver, and heart, suggesting its role in fibrosis across various organs. Furthermore, fibroblasts abundantly expressed Gpr176 compared to alveolar epithelial cells, endothelial cells, and macrophages in the fibrotic lung. GPR176 expression was unaffected by TGFβ1 stimulation in rat renal fibroblast NRK-49 cells, whereas knockdown of Gpr176 by siRNA reduced TGFβ1-induced expression of αSMA, fibronectin, and collagen as well as Smad2 phosphorylation. This suggested that Gpr176 regulates fibroblast activation. Consequently, Gpr176 acts in a profibrotic manner, and inhibiting its activity could potentially prevent myofibroblast differentiation and improve fibrosis. Developing a GPR176 inverse agonist or allosteric modulator is a promising therapeutic approach for fibrosis.
Collapse
Affiliation(s)
- Yasuo Okamoto
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | - Keisuke Kitakaze
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Yasuhiro Takenouchi
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Rena Matsui
- Department of Medical Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama 701-0192, Japan
| | - Daisuke Koga
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Ryo Miyashima
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Hironobu Ishimaru
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| |
Collapse
|
2
|
Wacker D, Filizola M. Can Targeting the Sodium Site via Water Molecules Lead to the Development of Safer Opioids? ACS CENTRAL SCIENCE 2024; 10:1436-1438. [PMID: 39220703 PMCID: PMC11363340 DOI: 10.1021/acscentsci.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
- Daniel Wacker
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, United
States
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, United
States
| |
Collapse
|
3
|
Shen S, Wu C, Lin G, Yang X, Zhou Y, Zhao C, Miao Z, Tian X, Wang K, Yang Z, Liu Z, Guo N, Li Y, Xia A, Zhou P, Liu J, Yan W, Ke B, Yang S, Shao Z. Structure-based identification of a G protein-biased allosteric modulator of cannabinoid receptor CB1. Proc Natl Acad Sci U S A 2024; 121:e2321532121. [PMID: 38830102 PMCID: PMC11181136 DOI: 10.1073/pnas.2321532121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/01/2024] [Indexed: 06/05/2024] Open
Abstract
Cannabis sativa is known for its therapeutic benefit in various diseases including pain relief by targeting cannabinoid receptors. The primary component of cannabis, Δ9-tetrahydrocannabinol (THC), and other agonists engage the orthosteric site of CB1, activating both Gi and β-arrestin signaling pathways. The activation of diverse pathways could result in on-target side effects and cannabis addiction, which may hinder therapeutic potential. A significant challenge in pharmacology is the design of a ligand that can modulate specific signaling of CB1. By leveraging insights from the structure-function selectivity relationship (SFSR), we have identified Gi signaling-biased agonist-allosteric modulators (ago-BAMs). Further, two cryoelectron microscopy (cryo-EM) structures reveal the binding mode of ago-BAM at the extrahelical allosteric site of CB1. Combining mutagenesis and pharmacological studies, we elucidated the detailed mechanism of ago-BAM-mediated biased signaling. Notably, ago-BAM CB-05 demonstrated analgesic efficacy with fewer side effects, minimal drug toxicity and no cannabis addiction in mouse pain models. In summary, our finding not only suggests that ago-BAMs of CB1 provide a potential nonopioid strategy for pain management but also sheds light on BAM identification for GPCRs.
Collapse
Affiliation(s)
- Siyuan Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu610212, Sichuan, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Guifeng Lin
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Xin Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Yangli Zhou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Chang Zhao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Zhuang Miao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Kexin Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Zhiyu Liu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Nihong Guo
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Yueshan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Anjie Xia
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Pei Zhou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Jingming Liu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Shengyong Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu610212, Sichuan, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu610212, Sichuan, China
| |
Collapse
|
4
|
Alabdali R, Franchini L, Orlandi C. G α Protein Signaling Bias at Serotonin 1A Receptor. Mol Pharmacol 2023; 104:230-238. [PMID: 37567783 PMCID: PMC10586511 DOI: 10.1124/molpharm.123.000722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Serotonin 1A receptor (5-HT1AR) is a clinically relevant target because of its involvement in several central and peripheral functions, including sleep, temperature homeostasis, processing of emotions, and response to stress. As a G protein coupled receptor (GPCR) activating numerous Gα i/o/z family members, 5-HT1AR can potentially modulate multiple intracellular signaling pathways in response to different therapeutics. Here, we applied a cell-based bioluminescence resonance energy transfer assay to quantify how ten structurally diverse 5-HT1AR agonists exert biased signaling by differentially stimulating Gα i/o/z family members. Our concentration-response analysis of the activation of each Gα i/o/z protein revealed unique potency and efficacy profiles of selected agonists when compared with the reference 5-hydroxytryptamine, serotonin. Overall, our analysis of signaling bias identified groups of ligands sharing comparable G protein activation selectivity and also drugs with unique selectivity profiles. We observed, for example, a strong bias of F-15599 toward the activation of Gα i3 that was unique among the agonists tested: we found a biased factor of +2.19 when comparing the activation of Gα i3 versus Gα i2 by F-15599, while it was -0.29 for 8-hydroxy-2-(di-n-propylamino) tetralin. Similarly, vortioxetine showed a biased factor of +1.06 for Gα z versus Gα oA, while it was -1.38 for vilazodone. Considering that alternative signaling pathways are regulated downstream of each Gα protein, our data suggest that the unique pharmacological properties of the tested agonists could result in multiple unrelated cellular outcomes. Further investigation is needed to reveal how this type of ligand bias could affect cellular responses and to illuminate the molecular mechanisms underlying therapeutic profile and side effects of each drug. SIGNIFICANCE STATEMENT: Serotonin 1a receptor (5-HT1AR) activates several members of the Gi/o/z protein family. Here, we examined ten structurally diverse and clinically relevant agonists acting on 5-HT1AR and identified distinctive bias patterns among G proteins. Considering the diversity of their intracellular effectors and signaling properties, this data reveal novel mechanisms underlying both therapeutic and undesirable effects.
Collapse
Affiliation(s)
- Rana Alabdali
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Luca Franchini
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
5
|
Ramos-Gonzalez N, Paul B, Majumdar S. IUPHAR themed review: Opioid efficacy, bias, and selectivity. Pharmacol Res 2023; 197:106961. [PMID: 37844653 DOI: 10.1016/j.phrs.2023.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Drugs acting at the opioid receptor family are clinically used to treat chronic and acute pain, though they represent the second line of treatment behind GABA analogs, antidepressants and SSRI's. Within the opioid family mu and kappa opioid receptor are commonly targeted. However, activation of the mu opioid receptor has side effects of constipation, tolerance, dependence, euphoria, and respiratory depression; activation of the kappa opioid receptor leads to dysphoria and sedation. The side effects of mu opioid receptor activation have led to mu receptor drugs being widely abused with great overdose risk. For these reasons, newer safer opioid analgesics are in high demand. For many years a focus within the opioid field was finding drugs that activated the G protein pathway at mu opioid receptor, without activating the β-arrestin pathway, known as biased agonism. Recent advances have shown that this may not be the way forward to develop safer analgesics at mu opioid receptor, though there is still some promise at the kappa opioid receptor. Here we discuss recent novel approaches to develop safer opioid drugs including efficacy vs bias and fine-tuning receptor activation by targeting sub-pockets in the orthosteric site, we explore recent works on the structural basis of bias, and we put forward the suggestion that Gα subtype selectivity may be an exciting new area of interest.
Collapse
Affiliation(s)
- Nokomis Ramos-Gonzalez
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
| | - Barnali Paul
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
| | - Susruta Majumdar
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Qu Q, Huang W, Aydin D, Paggi JM, Seven AB, Wang H, Chakraborty S, Che T, DiBerto JF, Robertson MJ, Inoue A, Suomivuori CM, Roth BL, Majumdar S, Dror RO, Kobilka BK, Skiniotis G. Insights into distinct signaling profiles of the µOR activated by diverse agonists. Nat Chem Biol 2023; 19:423-430. [PMID: 36411392 PMCID: PMC11098091 DOI: 10.1038/s41589-022-01208-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 10/13/2022] [Indexed: 11/22/2022]
Abstract
Drugs targeting the μ-opioid receptor (μOR) are the most effective analgesics available but are also associated with fatal respiratory depression through a pathway that remains unclear. Here we investigated the mechanistic basis of action of lofentanil (LFT) and mitragynine pseudoindoxyl (MP), two μOR agonists with different safety profiles. LFT, one of the most lethal opioids, and MP, a kratom plant derivative with reduced respiratory depression in animal studies, exhibited markedly different efficacy profiles for G protein subtype activation and β-arrestin recruitment. Cryo-EM structures of μOR-Gi1 complex with MP (2.5 Å) and LFT (3.2 Å) revealed that the two ligands engage distinct subpockets, and molecular dynamics simulations showed additional differences in the binding site that promote distinct active-state conformations on the intracellular side of the receptor where G proteins and β-arrestins bind. These observations highlight how drugs engaging different parts of the μOR orthosteric pocket can lead to distinct signaling outcomes.
Collapse
Affiliation(s)
- Qianhui Qu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Shanghai Stomatological Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Weijiao Huang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Deniz Aydin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Joseph M Paggi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Alpay B Seven
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Soumen Chakraborty
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Tao Che
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Carl-Mikael Suomivuori
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA.
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Ron O Dror
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Computer Science, Stanford University, Stanford, CA, USA.
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Ono Y, Kawakami K, Nakamura G, Ishida S, Aoki J, Inoue A. Generation of Gαi knock-out HEK293 cells illuminates Gαi-coupling diversity of GPCRs. Commun Biol 2023; 6:112. [PMID: 36709222 PMCID: PMC9884212 DOI: 10.1038/s42003-023-04465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are pivotal cell membrane proteins that sense extracellular molecules and activate cellular responses. The G-protein α subunit i (Gαi) family represents the most common GPCR-coupling partner and consists of eight subunits with distinct signaling properties. However, analyzing the coupling pattern has been challenging owing to endogenous expression of the Gαi subunits in virtually all cell lines. Here, we generate a HEK293 cell line lacking all Gαi subunits, which enables the measurement of GPCR-Gαi coupling upon transient re-expression of a specific Gαi subunit. We profile Gαi-coupling selectivity across 11 GPCRs by measuring ligand-induced inhibitory activity for cAMP accumulation. The coupling profiles are then classified into three clusters, representing those preferentially coupled to Gαz, those to Gαo, and those with unapparent selectivity. These results indicate that individual Gαi-coupled GPCRs fine-tune Gαi signaling by exerting coupling preference at the Gαi-subunit level.
Collapse
Affiliation(s)
- Yuki Ono
- grid.69566.3a0000 0001 2248 6943Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Kouki Kawakami
- grid.69566.3a0000 0001 2248 6943Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Gaku Nakamura
- grid.69566.3a0000 0001 2248 6943Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Satoru Ishida
- grid.69566.3a0000 0001 2248 6943Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Junken Aoki
- grid.26999.3d0000 0001 2151 536XDepartment of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Asuka Inoue
- grid.69566.3a0000 0001 2248 6943Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578 Japan
| |
Collapse
|
8
|
Faouzi A, Wang H, Zaidi SA, DiBerto JF, Che T, Qu Q, Robertson MJ, Madasu MK, El Daibani A, Varga BR, Zhang T, Ruiz C, Liu S, Xu J, Appourchaux K, Slocum ST, Eans SO, Cameron MD, Al-Hasani R, Pan YX, Roth BL, McLaughlin JP, Skiniotis G, Katritch V, Kobilka BK, Majumdar S. Structure-based design of bitopic ligands for the µ-opioid receptor. Nature 2023; 613:767-774. [PMID: 36450356 PMCID: PMC10328120 DOI: 10.1038/s41586-022-05588-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Mu-opioid receptor (µOR) agonists such as fentanyl have long been used for pain management, but are considered a major public health concern owing to their adverse side effects, including lethal overdose1. Here, in an effort to design safer therapeutic agents, we report an approach targeting a conserved sodium ion-binding site2 found in µOR3 and many other class A G-protein-coupled receptors with bitopic fentanyl derivatives that are functionalized via a linker with a positively charged guanidino group. Cryo-electron microscopy structures of the most potent bitopic ligands in complex with µOR highlight the key interactions between the guanidine of the ligands and the key Asp2.50 residue in the Na+ site. Two bitopics (C5 and C6 guano) maintain nanomolar potency and high efficacy at Gi subtypes and show strongly reduced arrestin recruitment-one (C6 guano) also shows the lowest Gz efficacy among the panel of µOR agonists, including partial and biased morphinan and fentanyl analogues. In mice, C6 guano displayed µOR-dependent antinociception with attenuated adverse effects, supporting the µOR sodium ion-binding site as a potential target for the design of safer analgesics. In general, our study suggests that bitopic ligands that engage the sodium ion-binding pocket in class A G-protein-coupled receptors can be designed to control their efficacy and functional selectivity profiles for Gi, Go and Gz subtypes and arrestins, thus modulating their in vivo pharmacology.
Collapse
MESH Headings
- Animals
- Mice
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/metabolism
- Arrestins/metabolism
- Cryoelectron Microscopy
- Fentanyl/analogs & derivatives
- Fentanyl/chemistry
- Fentanyl/metabolism
- Ligands
- Morphinans/chemistry
- Morphinans/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/ultrastructure
- Binding Sites
- Nociception
- Drug Design
Collapse
Affiliation(s)
- Abdelfattah Faouzi
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Saheem A Zaidi
- Department of Quantitative and Computational Biology, Department of Chemistry, Bridge Institute and Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Qianhui Qu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Manish K Madasu
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Amal El Daibani
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Balazs R Varga
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Tiffany Zhang
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Claudia Ruiz
- Department of Chemistry, Scripps Research, Jupiter, FL, USA
| | - Shan Liu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jin Xu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Kevin Appourchaux
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | | | - Ream Al-Hasani
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Ying Xian Pan
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, Department of Chemistry, Bridge Institute and Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
9
|
Garzón-Niño J, Cortés-Montero E, Rodríguez-Muñoz M, Sánchez-Blázquez P. αN-Acetyl β-Endorphin Is an Endogenous Ligand of σ1Rs That Regulates Mu-Opioid Receptor Signaling by Exchanging G Proteins for σ2Rs in σ1R Oligomers. Int J Mol Sci 2022; 24:ijms24010582. [PMID: 36614024 PMCID: PMC9820303 DOI: 10.3390/ijms24010582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
The opioid peptide β-endorphin coexists in the pituitary and brain in its αN-acetylated form, which does not bind to opioid receptors. We now report that these neuropeptides exhibited opposite effects in in vivo paradigms, in which ligands of the sigma type 1 receptor (σ1R) displayed positive effects. Thus, αN-acetyl β-Endorphin reduced vascular infarct caused by permanent unilateral middle cerebral artery occlusion and diminished the incidence of N-methyl-D-aspartate acid-promoted convulsive syndrome and mechanical allodynia caused by unilateral chronic constriction of the sciatic nerve. Moreover, αN-acetyl β-Endorphin reduced the analgesia of morphine, β-Endorphin and clonidine but enhanced that of DAMGO. All these effects were counteracted by β-Endorphin and absent in σ1R-/- mice. We observed that σ1Rs negatively regulate mu-opioid receptor (MOR)-mediated morphine analgesia by binding and sequestering G proteins. In this scenario, β-Endorphin promoted the exchange of σ2Rs by G proteins at σ1R oligomers and increased the regulation of G proteins by MORs. The opposite was observed for the αN-acetyl derivative, as σ1R oligomerization decreased and σ2R binding was favored, which displaced G proteins; thus, MOR-regulated transduction was reduced. Our findings suggest that the pharmacological β-Endorphin-specific epsilon receptor is a σ1R-regulated MOR and that β-Endorphin and αN-acetyl β-Endorphin are endogenous ligands of σ1R.
Collapse
|
10
|
Paul B, Sribhashyam S, Majumdar S. Opioid signaling and design of analgesics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 195:153-176. [PMID: 36707153 PMCID: PMC10325139 DOI: 10.1016/bs.pmbts.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Clinical treatment of acute to severe pain relies on the use of opioids. While their potency is significant, there are considerable side effects that can negatively affect patients. Their rise in usage has correlated with the current opioid epidemic in the United States, which has led to more than 70,000 deaths per year (Volkow and Blanco, 2021). Opioid-related drug development aims to make target compounds that show strong potency but with diminished side effects. Research into pharmaceuticals that could act as potential alternatives to current pains medications has relied on mechanistic insights of opioid receptors, a class of G-protein coupled receptors (GPCRs), and biased agonism, a common phenomenon among pharmaceutical compounds where downstream effects can be altered at the same receptor via different agonists. Opioids function typically by binding to an active site on the extracellular portion of opioid receptors. Once activated, the opioid receptor initiates a G-protein signaling pathway and/or the β-arrestin2 pathway. The proposed concept for the development of safe analgesics around mu and kappa opioid receptor subtypes has focused on not recruiting β-arrestin2 (biased agonism) and/or having low efficacy at the receptor (partial agonism). By altering chemical motifs on a common scaffold, chemists can take advantage of biased agonism as well as create compounds with low intrinsic efficacy for the desired treatments. This review will focus on ligands with bias profile, signaling aspects of the receptor and probe into the structural basis of receptor that leads to bias and/or partial agonism.
Collapse
Affiliation(s)
- Barnali Paul
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, United States
| | - Sashrik Sribhashyam
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, United States.
| |
Collapse
|
11
|
Wang H, Hetzer F, Huang W, Qu Q, Meyerowitz J, Kaindl J, Hübner H, Skiniotis G, Kobilka BK, Gmeiner P. Structure-Based Evolution of G Protein-Biased μ-Opioid Receptor Agonists. Angew Chem Int Ed Engl 2022; 61:e202200269. [PMID: 35385593 PMCID: PMC9322534 DOI: 10.1002/anie.202200269] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 01/14/2023]
Abstract
The μ-opioid receptor (μOR) is the major target for opioid analgesics. Activation of μOR initiates signaling through G protein pathways as well as through β-arrestin recruitment. μOR agonists that are biased towards G protein signaling pathways demonstrate diminished side effects. PZM21, discovered by computational docking, is a G protein biased μOR agonist. Here we report the cryoEM structure of PZM21 bound μOR in complex with Gi protein. Structure-based evolution led to multiple PZM21 analogs with more pronounced Gi protein bias and increased lipophilicity to improve CNS penetration. Among them, FH210 shows extremely low potency and efficacy for arrestin recruitment. We further determined the cryoEM structure of FH210 bound to μOR in complex with Gi protein and confirmed its expected binding pose. The structural and pharmacological studies reveal a potential mechanism to reduce β-arrestin recruitment by the μOR, and hold promise for developing next-generation analgesics with fewer adverse effects.
Collapse
Affiliation(s)
- Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Florian Hetzer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Weijiao Huang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qianhui Qu
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Present address: Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Justin Meyerowitz
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonas Kaindl
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| |
Collapse
|
12
|
Wang H, Hetzer F, Huang W, Qu Q, Meyerowitz J, Kaindl J, Hübner H, Skiniotis G, Kobilka BK, Gmeiner P. Strukturbasierte Entwicklung von G‐Protein bevorzugenden μ‐Opioidrezeptor Agonisten. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haoqing Wang
- Department of Molecular and Cellular Physiology Stanford University School of Medicine Stanford, CA USA
| | - Florian Hetzer
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Deutschland
| | - Weijiao Huang
- Department of Molecular and Cellular Physiology Stanford University School of Medicine Stanford, CA USA
| | - Qianhui Qu
- Department of Molecular and Cellular Physiology Department of Structural Biology Stanford University School of Medicine Stanford, CA USA
- Derzeitige Adresse: Shanghai Stomatological Hospital Institutes of Biomedical Sciences Fudan University Shanghai 200032 China
| | - Justin Meyerowitz
- Department of Molecular and Cellular Physiology Department of Structural Biology Stanford University School of Medicine Stanford, CA USA
| | - Jonas Kaindl
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Deutschland
| | - Harald Hübner
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Deutschland
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology Department of Structural Biology Stanford University School of Medicine Stanford, CA USA
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology Stanford University School of Medicine Stanford, CA USA
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Deutschland
| |
Collapse
|
13
|
Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system. Neuropsychopharmacology 2020; 45:1781-1792. [PMID: 32079024 PMCID: PMC7608117 DOI: 10.1038/s41386-020-0643-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Drug-evoked adaptations in the mesolimbic dopamine system are postulated to drive opioid abuse and addiction. These adaptations vary in magnitude and direction following different patterns of opioid exposure, but few studies have systematically manipulated the pattern of opioid administration while measuring neurobiological and behavioral impact. We exposed male and female mice to morphine for one week, with administration patterns that were either intermittent (daily injections) or continuous (osmotic minipump infusion). We then interrupted continuous morphine exposure with either naloxone-precipitated or spontaneous withdrawal. Continuous morphine exposure caused tolerance to the psychomotor-activating effects of morphine, whereas both intermittent and interrupted morphine exposure caused long-lasting psychomotor sensitization. Given links between locomotor sensitization and mesolimbic dopamine signaling, we used fiber photometry and a genetically encoded dopamine sensor to conduct longitudinal measurements of dopamine dynamics in the nucleus accumbens. Locomotor sensitization caused by interrupted morphine exposure was accompanied by enhanced dopamine signaling in the nucleus accumbens. To further assess downstream consequences on striatal gene expression, we used next-generation RNA sequencing to perform genome-wide transcriptional profiling in the nucleus accumbens and dorsal striatum. The interruption of continuous morphine exposure exacerbated drug-evoked transcriptional changes in both nucleus accumbens and dorsal striatum, dramatically increasing differential gene expression and engaging unique signaling pathways. Our study indicates that opioid-evoked adaptations in brain function and behavior are critically dependent on the pattern of drug administration, and exacerbated by interruption of continuous exposure. Maintaining continuity of chronic opioid administration may, therefore, represent a strategy to minimize iatrogenic effects on brain reward circuits.
Collapse
|
14
|
Sil S, Hu G, Liao K, Niu F, Callen S, Periyasamy P, Fox HS, Buch S. HIV-1 Tat-mediated astrocytic amyloidosis involves the HIF-1α/lncRNA BACE1-AS axis. PLoS Biol 2020; 18:e3000660. [PMID: 32453744 PMCID: PMC7274476 DOI: 10.1371/journal.pbio.3000660] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 06/05/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Increased life expectancy of patients diagnosed with HIV in the current era of antiretroviral therapy is unfortunately accompanied with the prevalence of HIV-associated neurocognitive disorders (HANDs) and risk of comorbidities such as Alzheimer-like pathology. HIV-1 transactivator of transcription (Tat) protein has been shown to induce the production of toxic neuronal amyloid protein and also enhance neurotoxicity. The contribution of astrocytes in Tat-mediated amyloidosis remains an enigma. We report here, in simian immunodeficiency virus (SIV)+ rhesus macaques and patients diagnosed with HIV, brain region-specific up-regulation of amyloid precursor protein (APP) and Aβ (40 and 42) in astrocytes. In addition, we find increased expression of β-site cleaving enzyme (BACE1), APP, and Aβ in human primary astrocytes (HPAs) exposed to Tat. Mechanisms involved up-regulation of hypoxia-inducible factor (HIF-1α), its translocation and binding to the long noncoding RNA (lncRNA) BACE1-antisense transcript (BACE1-AS), resulting, in turn, in the formation of the BACE1-AS/BACE1 RNA complex, subsequently leading to increased BACE1 protein, and activity and generation of Aβ-42. Gene silencing approaches confirmed the regulatory role of HIF-1α in BACE1-AS/BACE1 in Tat-mediated amyloidosis. This is the first report implicating the role of the HIF-1α/lncRNABACE1-AS/BACE1 axis in Tat-mediated induction of astrocytic amyloidosis, which could be targeted as adjunctive therapies for HAND-associated Alzheimer-like comorbidity.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
15
|
Kimple ME, Moss JB, Brar HK, Rosa TC, Truchan NA, Pasker RL, Newgard CB, Casey PJ. Deletion of GαZ protein protects against diet-induced glucose intolerance via expansion of β-cell mass. J Biol Chem 2012; 287:20344-55. [PMID: 22457354 DOI: 10.1074/jbc.m112.359745] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Insufficient plasma insulin levels caused by deficits in both pancreatic β-cell function and mass contribute to the pathogenesis of type 2 diabetes. This loss of insulin-producing capacity is termed β-cell decompensation. Our work is focused on defining the role(s) of guanine nucleotide-binding protein (G protein) signaling pathways in regulating β-cell decompensation. We have previously demonstrated that the α-subunit of the heterotrimeric G(z) protein, Gα(z), impairs insulin secretion by suppressing production of cAMP. Pancreatic islets from Gα(z)-null mice also exhibit constitutively increased cAMP production and augmented glucose-stimulated insulin secretion, suggesting that Gα(z) is a tonic inhibitor of adenylate cyclase, the enzyme responsible for the conversion of ATP to cAMP. In the present study, we show that mice genetically deficient for Gα(z) are protected from developing glucose intolerance when fed a high fat (45 kcal%) diet. In these mice, a robust increase in β-cell proliferation is correlated with significantly increased β-cell mass. Further, an endogenous Gα(z) signaling pathway, through circulating prostaglandin E activating the EP3 isoform of the E prostanoid receptor, appears to be up-regulated in insulin-resistant, glucose-intolerant mice. These results, along with those of our previous work, link signaling through Gα(z) to both major aspects of β-cell decompensation: insufficient β-cell function and mass.
Collapse
Affiliation(s)
- Michelle E Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Influence from genetic variability on opioid use for cancer pain: a European genetic association study of 2294 cancer pain patients. Pain 2011; 152:1139-1145. [PMID: 21398039 DOI: 10.1016/j.pain.2011.01.040] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 01/19/2011] [Accepted: 01/21/2011] [Indexed: 01/09/2023]
Abstract
Cancer pain patients need variable opioid doses. Preclinical and clinical studies suggest that opioid efficacy is related to genetic variability. However, the studies have small samples, findings are not replicated, and several candidate genes have not been studied. Therefore, a study of genetic variability with opioid doses in a large population using a confirmatory validation population was warranted. We recruited 2294 adult European patients using a World Health Organization (WHO) step III opioid and analyzed single nucleotide polymorphisms (SNPs) in genes with a putative influence on opioid mechanisms. The patients' mean age was 62.5 years, and the average pain intensity was 3.5. The patients' primary opioids were morphine (n=830), oxycodone (n=446), fentanyl (n=699), or other opioids (n=234). Pain intensity, time on opioids, age, gender, performance status, and bone or CNS metastases predicted opioid dose and were included as covariates. The patients were randomly divided into 1 development sample and 1 validation sample. None of 112 SNPs in the 25 candidate genes OPRM1, OPRD1, OPRK1, ARRB2, GNAZ, HINT1, Stat6, ABCB1, COMT, HRH1, ADRA2A, MC1R, TACR1, GCH1, DRD2, DRD3, HTR3A, HTR3B, HTR2A, HTR3C, HTR3D, HTR3E, HTR1, or CNR1 showed significant associations with opioid dose in both the development and the validation analyzes. These findings do not support the use of pharmacogenetic analyses for the assessed SNPs to guide opioid treatment. The study also demonstrates the importance of validating findings obtained in genetic association studies to avoid reporting spurious associations as valid findings. To elicit knowledge about new genes that influence pain and the need for opioids, strategies other than the candidate gene approach is needed.
Collapse
|
17
|
Anand KJS, Willson DF, Berger J, Harrison R, Meert KL, Zimmerman J, Carcillo J, Newth CJL, Prodhan P, Dean JM, Nicholson C. Tolerance and withdrawal from prolonged opioid use in critically ill children. Pediatrics 2010; 125:e1208-25. [PMID: 20403936 PMCID: PMC3275643 DOI: 10.1542/peds.2009-0489] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE After prolonged opioid exposure, children develop opioid-induced hyperalgesia, tolerance, and withdrawal. Strategies for prevention and management should be based on the mechanisms of opioid tolerance and withdrawal. PATIENTS AND METHODS Relevant manuscripts published in the English language were searched in Medline by using search terms "opioid," "opiate," "sedation," "analgesia," "child," "infant-newborn," "tolerance," "dependency," "withdrawal," "analgesic," "receptor," and "individual opioid drugs." Clinical and preclinical studies were reviewed for data synthesis. RESULTS Mechanisms of opioid-induced hyperalgesia and tolerance suggest important drug- and patient-related risk factors that lead to tolerance and withdrawal. Opioid tolerance occurs earlier in the younger age groups, develops commonly during critical illness, and results more frequently from prolonged intravenous infusions of short-acting opioids. Treatment options include slowly tapering opioid doses, switching to longer-acting opioids, or specifically treating the symptoms of opioid withdrawal. Novel therapies may also include blocking the mechanisms of opioid tolerance, which would enhance the safety and effectiveness of opioid analgesia. CONCLUSIONS Opioid tolerance and withdrawal occur frequently in critically ill children. Novel insights into opioid receptor physiology and cellular biochemical changes will inform scientific approaches for the use of opioid analgesia and the prevention of opioid tolerance and withdrawal.
Collapse
Affiliation(s)
- Kanwaljeet J. S. Anand
- Department of Pediatrics, Le Bonheur Children’s Hospital and University of Tennessee Health Science Center, Memphis, Tennessee
| | - Douglas F. Willson
- Department of Pediatrics & Anesthesiology, University of Virginia Children’s Hospital, Charlottesville, Virginia
| | - John Berger
- Department of Pediatrics, Children’s National Medical Center, Washington, DC
| | - Rick Harrison
- Department of Pediatrics, University of California at Los Angeles, Los Angeles, California
| | - Kathleen L. Meert
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, Michigan
| | - Jerry Zimmerman
- Department of Pediatrics, Children’s Hospital and Medical Center, Seattle, Washington
| | - Joseph Carcillo
- Department of Critical Care Medicine, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Parthak Prodhan
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - J. Michael Dean
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Carol Nicholson
- Pediatric Critical Care and Rehabilitation Program, National Center for Medical Rehabilitation Research (NCMRR), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
18
|
Brain-specific Gαz interacts with Src tyrosine kinase to regulate Mu-opioid receptor-NMDAR signaling pathway. Cell Signal 2009; 21:1444-54. [DOI: 10.1016/j.cellsig.2009.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/06/2009] [Accepted: 05/06/2009] [Indexed: 11/20/2022]
|
19
|
Candidate gene polymorphisms predicting individual sensitivity to opioids. Naunyn Schmiedebergs Arch Pharmacol 2007; 377:269-81. [DOI: 10.1007/s00210-007-0205-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/18/2007] [Indexed: 11/26/2022]
|
20
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|
21
|
van den Buuse M, Martin S, Brosda J, Leck KJ, Matthaei KI, Hendry I. Enhanced effect of dopaminergic stimulation on prepulse inhibition in mice deficient in the alpha subunit of G(z). Psychopharmacology (Berl) 2005; 183:358-67. [PMID: 16220329 DOI: 10.1007/s00213-005-0181-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 08/22/2005] [Indexed: 11/29/2022]
Abstract
RATIONALE G(z) is a member of the G(i) G protein family associated with dopamine D2-like receptors; however, its functions remain relatively unknown. The aim of the present study was to investigate prepulse inhibition (PPI) of acoustic startle, locomotor hyperactivity and dopamine D2 receptor binding in mice deficient in the alpha subunit of G(z). METHODS We used automated startle boxes to assess startle and PPI after treatment with saline, amphetamine, apomorphine or MK-801. We used photocell cages to quantitate locomotor activity after amphetamine treatment. Dopamine D2 receptor density was determined by autoradiography. RESULTS Startle responses and baseline PPI were not different between the Galpha(z) knockout mice and wild-type controls (average PPI 46+/-4 vs 49+/-3%, respectively). Amphetamine treatment caused a marked disruption of PPI in Galpha(z) knockouts (average PPI 22+/-2%), but less so in controls (average PPI 42+/-3%). Similar genotype-dependent responses were seen after apomorphine treatment (average PPI 23+/-3% vs 40+/-3%), but not after MK-801 treatment (average PPI 29+/-5 vs 33+/-2%). Amphetamine-induced locomotor hyperactivity was greater in Galpha(z) knockouts than in controls. There was no difference in the density of dopamine D2 receptors in nucleus accumbens. CONCLUSIONS Mice deficient in the alpha subunit of G(z) show enhanced sensitivity to the disruption of PPI and locomotor hyperactivity caused by dopaminergic stimulation. These results suggest a possible role for G(z) in neuropsychiatric illnesses with presumed dopaminergic hyperactivity, such as schizophrenia.
Collapse
Affiliation(s)
- M van den Buuse
- Behavioural Neuroscience Laboratory, Mental Health Research Institute of Victoria, 155 Oak Street, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Heterotrimeric G proteins are key players in transmembrane signaling by coupling a huge variety of receptors to channel proteins, enzymes, and other effector molecules. Multiple subforms of G proteins together with receptors, effectors, and various regulatory proteins represent the components of a highly versatile signal transduction system. G protein-mediated signaling is employed by virtually all cells in the mammalian organism and is centrally involved in diverse physiological functions such as perception of sensory information, modulation of synaptic transmission, hormone release and actions, regulation of cell contraction and migration, or cell growth and differentiation. In this review, some of the functions of heterotrimeric G proteins in defined cells and tissues are described.
Collapse
Affiliation(s)
- Nina Wettschureck
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | | |
Collapse
|