1
|
Devi S, Gedda DUK, Chawla S, Doucette J, Yadav N, Mirshahi S, de Moura LP, Velloso LA, Mekary RA. The effect of weight loss on hypothalamus structure and function in obese individuals: a systematic review and meta-analysis. Int J Neurosci 2024; 134:75-87. [PMID: 35659180 DOI: 10.1080/00207454.2022.2086127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Obesity presents with structural and functional hypothalamic dysfunction. However, it is unclear whether weight loss can lead to hypothalamic changes. We therefore aimed to conduct a systematic review and meta-analysis to determine the effect of body mass reduction in obese individuals on hypothalamic structure and function. METHODS PubMed, Embase and Cochrane databases were searched for studies that reported the change in hypothalamic structure and function after weight loss. Qualitative and quantitative analyses were performed on magnetic resonance imaging techniques, medio-basal hypothalamus T2-relaxation time, blood oxygen level dependent (BOLD) contrast, voxel-based morphometry (VBM) and biomarkers including glucose, insulin, leptin, ghrelin and inflammatory markers of interleukins. Mean differences between pre- and post-weight loss and 95% confidence intervals (CIs) were pooled using random-effects models. RESULTS Thirteen pre-post studies were included, of which six accounted for the meta-analysis. Studies showed a favorable decrease in T2-relaxation time (n = 1), favorable change in hypothalamic activity after weight loss on BOLD contrast (n = 4), with higher peak activities after surgical weight loss (n = 2). No differences were found in the gray matter density of the hypothalamus on VBM (n = 1). Pooled mean differences between pre- and post-surgical weight loss revealed a decrease of 8.53 mg/dl (95% CI: 5.17, 11.9) in glucose, 7.73 pmol/l (95% CI: 5.07, 10.4) in insulin, 15.5 ng/ml (95% CI: 9.40, 21.6) in leptin, 142.9 pg/ml (95% CI: 79.0, 206.8) in ghrelin and 9.43 pg/ml (95% CI: -6.89, 25.7) in IL-6 level. CONCLUSIONS Our study showed weight reduction in obesity led to limited structural change and significant functional changes in the hypothalamus.
Collapse
Affiliation(s)
- Sharmila Devi
- Faculty of Life Sciences and Medicine, King's College of London (KCL), London, UK
- Department of Neurosurgery, Computational Neurosurgical Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Durga Udaya Keerthi Gedda
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Shreya Chawla
- Faculty of Life Sciences and Medicine, King's College of London (KCL), London, UK
- Department of Neurosurgery, Computational Neurosurgical Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joanne Doucette
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Nishi Yadav
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Shervin Mirshahi
- Department of Neurosurgery, Computational Neurosurgical Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leandro P de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
- CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Lício A Velloso
- Department of Internal Medicine, Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | - Rania A Mekary
- Department of Neurosurgery, Computational Neurosurgical Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| |
Collapse
|
2
|
Elechi JOG, Sirianni R, Conforti FL, Cione E, Pellegrino M. Food System Transformation and Gut Microbiota Transition: Evidence on Advancing Obesity, Cardiovascular Diseases, and Cancers-A Narrative Review. Foods 2023; 12:2286. [PMID: 37372497 PMCID: PMC10297670 DOI: 10.3390/foods12122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Food, a vital component of our daily life, is fundamental to our health and well-being, and the knowledge and practices relating to food have been passed down from countless generations of ancestors. Systems may be used to describe this extremely extensive and varied body of agricultural and gastronomic knowledge that has been gathered via evolutionary processes. The gut microbiota also underwent changes as the food system did, and these alterations had a variety of effects on human health. In recent decades, the gut microbiome has gained attention due to its health benefits as well as its pathological effects on human health. Many studies have shown that a person's gut microbiota partially determines the nutritional value of food and that diet, in turn, shapes both the microbiota and the microbiome. The current narrative review aims to explain how changes in the food system over time affect the makeup and evolution of the gut microbiota, advancing obesity, cardiovascular disease (CVD), and cancer. After a brief discussion of the food system's variety and the gut microbiota's functions, we concentrate on the relationship between the evolution of food system transformation and gut microbiota system transition linked to the increase of non-communicable diseases (NCDs). Finally, we also describe sustainable food system transformation strategies to ensure healthy microbiota composition recovery and maintain the host gut barrier and immune functions to reverse advancing NCDs.
Collapse
Affiliation(s)
- Jasper Okoro Godwin Elechi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (R.S.); (F.L.C.); (E.C.); (M.P.)
| | | | | | | | | |
Collapse
|
3
|
Müller SG, Jardim NS, Zeni G, Nogueira CW. (m-CF 3-PhSe) 2 counteracts metabolic disturbances and hypothalamic inflammation in a lifestyle rodent model. Food Chem Toxicol 2023; 176:113750. [PMID: 37023972 DOI: 10.1016/j.fct.2023.113750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
An unhealthy lifestyle is associated with metabolic disorders and neuroinflammation. In this study, the efficacy of m-trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] against lifestyle model-related metabolic disturbances and hypothalamic inflammation in young mice was investigated. From postnatal day 25 (PND25) to 66, male Swiss mice were subjected to a lifestyle model, an energy-dense diet (20:20% lard: corn syrup) and sporadic ethanol (3x/week). Ethanol was administrated intragastrically (i.g., 2g/kg) to mice from PND45 to 60. From PND60 to 66, mice received (m-CF3-PhSe)2 (5mg/kg/day; i.g). (m-CF3-PhSe)2 reduced relative abdominal adipose tissue weight, hyperglycemia, and dyslipidemia in mice exposed to the lifestyle-induced model. (m-CF3-PhSe)2 normalized hepatic cholesterol and triglyceride levels, and the activity of G-6-Pase increased in lifestyle-exposed mice. (m-CF3-PhSe)2 was effective in modulating hepatic glycogen levels, citrate synthase and hexokinase activities, protein levels of GLUT-2, p-IRS/IRS, p-AKT/AKT, redox homeostasis, and inflammatory profile of mice exposed to a lifestyle model. (m-CF3-PhSe)2 counteracted hypothalamic inflammation and the ghrelin receptor levels in mice exposed to the lifestyle model. (m-CF3-PhSe)2 reversed the decreased levels of GLUT-3, p-IRS/IRS, and the leptin receptor in the hypothalamus of lifestyle-exposed mice. In conclusion, (m-CF3-PhSe)2 counteracted metabolic disturbances and hypothalamic inflammation in young mice exposed to a lifestyle model.
Collapse
Affiliation(s)
- Sabrina G Müller
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Natália S Jardim
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil.
| |
Collapse
|
4
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
5
|
O'Connor RM, Kenny PJ. Utility of 'substance use disorder' as a heuristic for understanding overeating and obesity. Prog Neuropsychopharmacol Biol Psychiatry 2022; 118:110580. [PMID: 35636576 DOI: 10.1016/j.pnpbp.2022.110580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
Abstract
Rates of obesity and obesity-associated diseases have increased dramatically in countries with developed economies. Substance use disorders (SUDs) are characterized by the persistent use of the substance despite negative consequences. It has been hypothesized that overconsumption of palatable energy dense food can elicit SUD-like maladaptive behaviors that contribute to persistent caloric intake beyond homeostatic need even in the face of negative consequences. Palatable food and drugs of abuse act on many of the same motivation-related circuits in the brain, and can induce, at least superficially, similar molecular, cellular, and physiological adaptations on these circuits. As such, applying knowledge about the neurobiological mechanisms of SUDs may serve as useful heuristic to better understand the persistent overconsumption of palatable food that contributes to obesity. However, many important differences exist between the actions of drugs of abuse and palatable food in the brain. This warrants caution when attributing weight gain and obesity to the manifestation of a putative SUD-related behavioral disorder. Here, we describe similarities and differences between compulsive drug use in SUDs and overconsumption in obesity and consider the merit of the concept of "food addiction".
Collapse
Affiliation(s)
- Richard M O'Connor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, United States of America
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, United States of America.
| |
Collapse
|
6
|
The Role of Gut Microbiota Modulation Strategies in Obesity: The Applications and Mechanisms. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, obesity is a leading public health problem worldwide. The growing prevalence of obesity significantly accounts for other cardio-metabolic diseases, including hypertension and diabetes. Several studies have shown that obesity is strongly associated with genetic, environmental, lifestyle, and dietary factors, especially the disordered profiles of gut microbiota (GM). The present review concluded mechanistic studies and potential correspondent treatments for obesity. Specifically, the anti-obesity effects of food-derived compounds manipulating GM were highlighted. The potential limitations of bioactive compounds on absorption in the intestinal tract were also discussed. Thus, the future direction of fecal microbiota transplantation (FMT) as an approach to support modulating host GM (considered to be a potential therapeutic target for obesity) was discussed. This review shed light on the role of GM modulation strategies for the prevention/treatment of obesity.
Collapse
|
7
|
Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders. Cells 2022; 11:cells11111826. [PMID: 35681521 PMCID: PMC9180493 DOI: 10.3390/cells11111826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and efficiently, without or at least having limited side effects, is considered a highly important goal. Growing evidence indicates that emerging properties are developed on recognition, trafficking, and signaling of G-protein coupled receptors (GPCRs) upon their heteromerization with other types of GPCRs, receptor tyrosine kinases, and ionotropic receptors such as N-methyl-D-aspartate (NMDA) receptors. Therefore, to develop new treatments for MDD and anxiety, it will be important to identify the most vulnerable heteroreceptor complexes involved in MDD and anxiety. This review focuses on how GPCRs, especially serotonin, dopamine, galanin, and opioid heteroreceptor complexes, modulate synaptic and volume transmission in the limbic networks of the brain. We attempt to provide information showing how these emerging concepts can contribute to finding new ways to treat both MDD and anxiety disorders.
Collapse
|
8
|
Asadi A, Shadab Mehr N, Mohamadi MH, Shokri F, Heidary M, Sadeghifard N, Khoshnood S. Obesity and gut-microbiota-brain axis: A narrative review. J Clin Lab Anal 2022; 36:e24420. [PMID: 35421277 PMCID: PMC9102524 DOI: 10.1002/jcla.24420] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Obesity is a major health problem that is associated with many physiological and mental disorders, such as diabetes, stroke, and depression. Gut microbiota has been affirmed to interact with various organs, including the brain. Intestinal microbiota and their metabolites might target the brain directly via vagal stimulation or indirectly through immune‐neuroendocrine mechanisms, and they can regulate metabolism, adiposity, homoeostasis and energy balance, and central appetite and food reward signaling, which together have crucial roles in obesity. Studies support the concept of bidirectional signaling within the gut–brain axis (GBA) in the pathophysiology of obesity, mediated by metabolic, endocrine, neural, and immune system mechanisms. Materials and methods Scopus, PubMed, Google Scholar, and Web of Science databases were searched to find relevant studies. Results The gut–brain axis (GBA), a bidirectional connection between the gut microbiota and brain, influences physiological function and behavior through three different pathways. Neural pathway mainly consists of the enteric nervous system (ENS) and vagus nerve. Endocrine pathway, however, affects the neuroendocrine system of the brain, particularly the hypothalamus–pituitary–adrenal (HPA) axis and immunological pathway. Several alterations in the gut microbiome can lead to obesity, by modulating metabolic pathways and eating behaviors of the host through GBA. Therefore, novel therapies targeting the gut microbiome, i.e., fecal microbiota transplantation and supplementation with probiotics and prebiotics, can be a potential treatment for obesity. Conclusion This study corroborates the effect of gut microbiome on physiological function and body weight. The results show that the gut microbiota is becoming a target for new antiobesity therapies.
Collapse
Affiliation(s)
- Arezoo Asadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Shadab Mehr
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Fazlollah Shokri
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
9
|
Lillo A, Lillo J, Raïch I, Miralpeix C, Dosrius F, Franco R, Navarro G. Ghrelin and Cannabinoid Functional Interactions Mediated by Ghrelin/CB 1 Receptor Heteromers That Are Upregulated in the Striatum From Offspring of Mice Under a High-Fat Diet. Front Cell Neurosci 2021; 15:786597. [PMID: 34955755 PMCID: PMC8696263 DOI: 10.3389/fncel.2021.786597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 12/05/2022] Open
Abstract
There is evidence of ghrelinergic-cannabinoidergic interactions in the central nervous system (CNS) that may impact on the plasticity of reward circuits. The aim of this article was to look for molecular and/or functional interactions between cannabinoid CB1 and ghrelin GHS-R1a receptors. In a heterologous system and using the bioluminescence resonance energy transfer technique we show that human versions of cannabinoid CB1 and ghrelin GHS-R1a receptors may form macromolecular complexes. Such receptor heteromers have particular properties in terms of CB1/Gi-mediated signaling and in terms of GHS-R1a-Gq-mediated signaling. On the one hand, just co-expression of CB1R and GHS-R1a led to impairment of cannabinoid signaling. On the other hand, cannabinoids led to an increase in ghrelin-derived calcium mobilization that was stronger at low concentrations of the CB1 receptor agonist, arachidonyl-2’-chloroethylamide (ACEA). The expression of CB1-GHS-R1a receptor complexes in striatal neurons was confirmed by in situ proximity ligation imaging assays. Upregulation of CB1-GHS-R1a- receptor complexes was found in striatal neurons from siblings of pregnant female mice on a high-fat diet. Surprisingly, the expression was upregulated after treatment of neurons with ghrelin (200 nM) or with ACEA (100 nM). These results help to better understand the complexities underlying the functional interactions of neuromodulators in the reward areas of the brain.
Collapse
Affiliation(s)
- Alejandro Lillo
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Jaume Lillo
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Iu Raïch
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Cristina Miralpeix
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.,University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - Francesc Dosrius
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Franco
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,School of Chemistry, University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona (UBNeuro), Barcelona, Spain
| |
Collapse
|
10
|
Zeng J, Zhang Z, Liao Q, Lu Q, Liu J, Yuan L, Liu G. CircPan3 Promotes the Ghrelin System and Chondrocyte Autophagy by Sponging miR-667-5p During Rat Osteoarthritis Pathogenesis. Front Cell Dev Biol 2021; 9:719898. [PMID: 34869311 PMCID: PMC8640465 DOI: 10.3389/fcell.2021.719898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the potential roles of circRNAs in regulating osteoarthritis (OA)-related ghrelin synthesis, autophagy induction, and the relevant molecular mechanisms. Results showed that Col2a1, Acan, ghrelin, and autophagy-related markers expression were downregulated, while matrix metalloproteinase 13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) expressions increased in both IL-1β-induced rat chondrocytes and cartilage tissues of OA rats. A total of 130 circRNAs and 731 mRNAs were differentially expressed in IL-1β-induced rat chondrocytes. Among them, we found that circPan3 expression was significantly decreased in both cellular and animal OA models. CircPan3 directly targeted miR-667-5p. CircPan3 overexpression promoted Col2a1, Acan, ghrelin, beclin 1, and LC3-II expression but reduced MMP13 and ADAMTS5 expression in rat chondrocytes, whereas overexpression of miR-667-5p exhibited opposite effects on the above markers. Furthermore, we found that miR-667-5p bound directly to the 3′-UTR sequence of ghrelin gene. Moreover, the circPan3-induced alterations in chondrocytes were antagonized by miR-667-5p overexpression. Taken together, our findings demonstrate that circPan3 promotes ghrelin synthesis and chondrocyte autophagy via targeting miR-667-5p, protecting against OA injury. This study provided experimental evidence that circPan3/miR-667-5p/ghrelin axis might serve as targets of drug development for the treatment of OA.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, Nanfang University of Science and Technology Hospital, Shenzhen, China
| | - Zhenzhen Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, Hankou Hospital, Wuhan, China
| | - Qing Liao
- Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Southern Medical University, Foshan, China
| | - Qijin Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiemei Liu
- Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Southern Medical University, Foshan, China
| | - Lixia Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Southern Medical University, Foshan, China
| |
Collapse
|
11
|
Zhou M, Johnston LJ, Wu C, Ma X. Gut microbiota and its metabolites: Bridge of dietary nutrients and obesity-related diseases. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34698581 DOI: 10.1080/10408398.2021.1986466] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the incidence of obesity keeps increasing in both adults and children worldwide, obesity and its complications remain major threatens to human health. Over the past decades, accumulating evidence has demonstrated the importance of microorganisms and their metabolites in the pathogenesis of obesity and related diseases. There also is a significant body of evidence validating the efficacy of microbial based therapies for managing various diseases. In this review, we collected the key information pertinent to obesity-related bacteria, fermentation substrates and major metabolites generated by studies involving humans and/or mice. We then briefly described the possible molecular mechanisms by which microorganisms cause or inhibit obesity with a focus on microbial metabolites. Lastly, we summarized the advantages and disadvantages of the utilization of probiotics, plant extracts, and exercise in controlling obesity. We speculated that new targets and combined approaches (e.g. diet combined with exercise) could lead to more precise prevention and/or alleviation of obesity in future clinical research implications.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Lillo J, Lillo A, Zafra DA, Miralpeix C, Rivas-Santisteban R, Casals N, Navarro G, Franco R. Identification of the Ghrelin and Cannabinoid CB 2 Receptor Heteromer Functionality and Marked Upregulation in Striatal Neurons from Offspring of Mice under a High-Fat Diet. Int J Mol Sci 2021; 22:ijms22168928. [PMID: 34445634 PMCID: PMC8396234 DOI: 10.3390/ijms22168928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Cannabinoids have been reported as orexigenic, i.e., as promoting food intake that, among others, is controlled by the so-called “hunger” hormone, ghrelin. The aim of this paper was to look for functional and/or molecular interactions between ghrelin GHSR1a and cannabinoid CB2 receptors at the central nervous system (CNS) level. In a heterologous system we identified CB2-GHSR1a receptor complexes with a particular heteromer print consisting of impairment of CB2 receptor/Gi-mediated signaling. The blockade was due to allosteric interactions within the heteromeric complex as it was reverted by antagonists of the GHSR1a receptor. Cannabinoids acting on the CB2 receptor did not affect cytosolic increases of calcium ions induced by ghrelin acting on the GHSR1a receptor. In situ proximity ligation imaging assays confirmed the expression of CB2-GHSR1a receptor complexes in both heterologous cells and primary striatal neurons. We tested heteromer expression in neurons from offspring of high-fat-diet mouse mothers as they have more risk to be obese. Interestingly, there was a marked upregulation of those complexes in striatal neurons from siblings of pregnant female mice under a high-fat diet.
Collapse
Affiliation(s)
- Jaume Lillo
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.L.); (D.A.Z.)
| | - David A. Zafra
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.L.); (D.A.Z.)
| | - Cristina Miralpeix
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08190 Sant Cugat del Vallès, Spain; (C.M.); (N.C.)
| | - Rafael Rivas-Santisteban
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08190 Sant Cugat del Vallès, Spain; (C.M.); (N.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos, 3, 28029 Madrid, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.L.); (D.A.Z.)
- Institut de Neurociències, Universitat de Barcelona (UBNeuro), 08035 Barcelona, Spain
- Correspondence: (G.N.); (R.F.); Tel.: +34-934021208 (R.F.)
| | - Rafael Franco
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
- School of Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (G.N.); (R.F.); Tel.: +34-934021208 (R.F.)
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW In this review, we present recent insights into the role of the gut microbiota on gastrointestinal (GI) peptide secretion and signalling, with a focus on the orexigenic hormone, ghrelin. RECENT FINDINGS Evidence is accumulating suggesting that secretion of GI peptides is modulated by commensal bacteria present in our GI tract. Recent data shows that the gut microbiome impacts on ghrelinergic signalling through its metabolites, at the level of the ghrelin receptor (growth hormone secretagogue receptor) and highlights concomitant changes in circulating ghrelin levels with specific gut microbiota changes. However, the mechanisms by which the gut microbiota interacts with gut peptide secretion and signalling, including ghrelin, are still largely unknown. SUMMARY The gut microbiota may directly or indirectly influence secretion of the orexigenic hormone, ghrelin, similar to the modulation of satiety inducing GI hormones. Although data demonstrating a role of the microbiota on ghrelinergic signalling is starting to emerge, future mechanistic studies are needed to understand the full impact of the microbiota-ghrelin axis on metabolism and central-regulated homeostatic and non-homeostatic controls of food intake.
Collapse
Affiliation(s)
- Natasha K. Leeuwendaal
- Department of Anatomy and Neuroscience
- APC Microbiome, Ireland University College Cork, Cork, Ireland
| | | | - Harriët Schellekens
- Department of Anatomy and Neuroscience
- APC Microbiome, Ireland University College Cork, Cork, Ireland
| |
Collapse
|
14
|
Seidel M, Markmann Jensen S, Healy D, Dureja A, Watson HJ, Holst B, Bulik CM, Sjögren JM. A Systematic Review and Meta-Analysis Finds Increased Blood Levels of All Forms of Ghrelin in Both Restricting and Binge-Eating/Purging Subtypes of Anorexia Nervosa. Nutrients 2021; 13:nu13020709. [PMID: 33672297 PMCID: PMC7926807 DOI: 10.3390/nu13020709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Anorexia nervosa (AN) is a severe psychiatric condition associated with high mortality and chronicity. The hunt for state, trait, subtyping, and prognostic biomarkers is ongoing and the orexigenic hormone ghrelin and its different forms, acyl ghrelin and desacyl ghrelin, have been proposed to be increased in AN, especially in the restrictive subtype. A systematic literature search was performed using established databases up to 30 November 2020. Forty-nine studies met inclusion criteria for cross-sectional and longitudinal meta-analyses on total ghrelin, acyl ghrelin, and desacyl ghrelin. All forms of ghrelin were increased in the acute stage of anorexia nervosa during fasting compared to healthy controls. Previous notions on differences in ghrelin levels between AN subtypes were not supported by current data. In addition, a significant decrease in total ghrelin was observed pre-treatment to follow-up. However, total ghrelin levels at follow-up were still marginally elevated compared to healthy controls, whereas for acyl ghrelin, no overall effect of treatment was observed. Due to heterogeneity in follow-up designs and only few data on long-term recovered patients, longitudinal results should be interpreted with caution. While the first steps towards a biomarker in acute AN have been completed, the value of ghrelin as a potential indicator of treatment success or recovery status or its use in subtype differentiation are yet to be established.
Collapse
Affiliation(s)
- Maria Seidel
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 65 Solna, Sweden; (M.S.); (C.M.B.)
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, 1099 Dresden, Germany
| | - Signe Markmann Jensen
- Research Unit Eating Disorders, Psychiatric Center Ballerup, Maglevænget 32, 2750 Ballerup, Denmark; (S.M.J.); (D.H.); (A.D.)
| | - Darren Healy
- Research Unit Eating Disorders, Psychiatric Center Ballerup, Maglevænget 32, 2750 Ballerup, Denmark; (S.M.J.); (D.H.); (A.D.)
| | - Aakriti Dureja
- Research Unit Eating Disorders, Psychiatric Center Ballerup, Maglevænget 32, 2750 Ballerup, Denmark; (S.M.J.); (D.H.); (A.D.)
| | - Hunna J. Watson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- School of Psychology, Curtin University, Perth U1987, Australia
- Division of Paediatrics, University of Western Australia, Perth 6907, Australia
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark;
| | - Cynthia M. Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 65 Solna, Sweden; (M.S.); (C.M.B.)
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jan Magnus Sjögren
- Research Unit Eating Disorders, Psychiatric Center Ballerup, Maglevænget 32, 2750 Ballerup, Denmark; (S.M.J.); (D.H.); (A.D.)
- Department of Clinical Medicine, University of Copenhagen, 2200 N Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
15
|
Gimeno RE, Briere DA, Seeley RJ. Leveraging the Gut to Treat Metabolic Disease. Cell Metab 2020; 31:679-698. [PMID: 32187525 PMCID: PMC7184629 DOI: 10.1016/j.cmet.2020.02.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/23/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
25 years ago, the future of treating obesity and diabetes focused on end organs known to be involved in energy balance and glucose regulation, including the brain, muscle, adipose tissue, and pancreas. Today, the most effective therapies are focused around the gut. This includes surgical options, such as vertical sleeve gastrectomy and Roux-en-Y gastric bypass, that can produce sustained weight loss and diabetes remission but also extends to pharmacological treatments that simulate or amplify various signals that come from the gut. The purpose of this Review is to discuss the wealth of approaches currently under development that seek to further leverage the gut as a source of novel therapeutic opportunities with the hope that we can achieve the effects of surgical interventions with less invasive and more scalable solutions.
Collapse
Affiliation(s)
- Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Daniel A Briere
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Win 55,212-2, atenolol and subdiaphragmatic vagotomy prevent acceleration of gastric emptying induced by cachexia via Yoshida-AH-130 cells in rats. Eur J Pharmacol 2020; 877:173087. [PMID: 32234430 DOI: 10.1016/j.ejphar.2020.173087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the effect of cachexia induced by AH-130 cells on gastrointestinal motility in rats. We evaluated food intake, body weight variation, cachexia index, gastric emptying and in vitro gastric responsiveness of control or cachexia rats. In addition, we evaluated the effect of pretreatment with atenolol (20 mg/kg, p.o.), win 55,212-2 (2 mg/kg, s.c.) or subdiaphragmatic vagotomy on the effects found. Atenolol prevented (P < 0.05) the acceleration of gastric emptying (area under the curve, AUC, 20360.17 ± 1970.9 vs. 12579.2 ± 785.4 μg/min/ml), and increased gastric responsiveness to carbachol (CCh) stimulation in cachectic rats compared to control groups (CCh-6M: 63.2 ± 5.5% vs. 46.5 ± 5.7%). Vagotomy prevented (P < 0.05) increase in gastric emptying acceleration (AUC 20360.17 ± 1970.9 vs. 13414.0 ± 1112.9 μg/min/ml) and caused greater in vitro gastric responsiveness of cachectic compared to control rats (CCh-6M: 63.2 ± 5.5% vs. 31.2 ± 4.7%). Win 55,212-2 attenuated the cachexia index (38.5 ± 2.1% vs. 25.8 ± 2.7%), as well as significantly (P < 0.05) preventing increase in gastric emptying (AUC 20360.17 ± 1970.9 vs. 10965.4 ± 1392.3 μg/min/ml) and gastric responsiveness compared to control groups (CCh-6M: 63.2 ± 5.5% vs. 38.2 ± 3.9%). Cachexia accelerated gastric emptying and increased gastric responsiveness in vitro. These phenomena were prevented by subdiaphragmatic vagotomy and by atenolol and win 55,212-2 treatments, showing vagal involvement of β1-adrenergic and cannabinoid CB1/CB2 receptors.
Collapse
|
17
|
Behavioural characterization of ghrelin ligands, anamorelin and HM01: Appetite and reward-motivated effects in rodents. Neuropharmacology 2020; 168:108011. [PMID: 32067989 DOI: 10.1016/j.neuropharm.2020.108011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
The ghrelinergic system has been steadily investigated as a therapeutic target in the treatment of metabolic disorders and modulation of appetite. While endogenous ghrelin activates the full complement of the growth hormone secretagogue receptor (GHSR-1a) pathways, synthetic GHSR-1a ligands display biased signalling and functional selectivity, which have a significant impact on the intended and indeed, unintended, therapeutic effects. The widespread expression of the GHSR-1a receptor in vivo also necessitates an imperative consideration of the biodistribution of GHSR-1a ligands. Here, we investigate anamorelin and HM01, two recently described synthetic GHSR-1a ligands which have shown promising effects on food intake in preclinical and clinical studies. We compare the downstream signalling pathways in cellular in vitro assays, including calcium mobilization, IP-one, internalization and β-arrestin recruitment assays. We describe a novel divergent activation of central reward circuitry by anamorelin and HM01 using c-Fos immunostaining as well as behavioural effects in food intake and reward paradigms. Interestingly, we found a paradoxical reduction in reward-related behaviour for anamorelin and HM01 treated animals in our chosen paradigms. The work highlights the critical importance to consider signalling bias in relation to future ghrelin-based therapies. In addition, central access of GHSR-1a ligands, particularly to reward areas of the brain, remains a crucial factor in eliciting potent appetite-stimulating effects. The precise characterization of downstream ghrelinergic signalling and biodistribution of novel GHSR-1a ligands will be decisive in their successful development and will allow predictive modelling and design of future synthetic ligands to combat metabolic and appetite disorders involving the ghrelinergic system. This article is part of the special issue on 'Neuropeptides'.
Collapse
|
18
|
Magherini F, Fiaschi T, Marzocchini R, Mannelli M, Gamberi T, Modesti PA, Modesti A. Oxidative stress in exercise training: the involvement of inflammation and peripheral signals. Free Radic Res 2019; 53:1155-1165. [PMID: 31762356 DOI: 10.1080/10715762.2019.1697438] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The evidence about the health benefits of regular physical activity is well established. Exercise intensity is a significant variable and structured high-intensity interval training (HIIT) has been demonstrated to improve both whole-body and skeletal muscle metabolic health in different populations. Conversely, fatigue accumulation, if not resolved, leads to overwork, chronic fatigue syndrome (CFS), overtraining syndrome up to alterations of endocrine function, immune, systemic inflammation, and organic diseases with health threat. In response to temporary increases in stress during training, some athletes are unable to maintain sufficient caloric intake, thus suffering a negative energy balance that causes further stress. The regulation of the energy balance is controlled by the central nervous system through an elaborate interaction of the signalling that involves different tissues such as leptin, adiponectin and ghrelin whose provide important feedback to the hypothalamus to regulate the energy balance. Although exercise-induced reactive oxygen species are required for normal force production in muscle, high levels of ROS appear to promote contractile dysfunction. However, a high level of oxidative stress in may induce a rise in inflammatory markers and a disregulation in expression of adiponectin, leptin and grelin.
Collapse
Affiliation(s)
- Francesca Magherini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tania Fiaschi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Riccardo Marzocchini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Michele Mannelli
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tania Gamberi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Pietro Amedeo Modesti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandra Modesti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
19
|
Barathikannan K, Chelliah R, Rubab M, Daliri EBM, Elahi F, Kim DH, Agastian P, Oh SY, Oh DH. Gut Microbiome Modulation Based on Probiotic Application for Anti-Obesity: A Review on Efficacy and Validation. Microorganisms 2019; 7:microorganisms7100456. [PMID: 31623075 PMCID: PMC6843309 DOI: 10.3390/microorganisms7100456] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/27/2019] [Accepted: 10/12/2019] [Indexed: 12/12/2022] Open
Abstract
The growing prevalence of obesity has become an important problem worldwide as obesity has several health risks. Notably, factors such as excessive food consumption, a sedentary way of life, high sugar consumption, a fat-rich diet, and a certain genetic profile may lead to obesity. The present review brings together recent advances regarding the significance of interventions involving intestinal gut bacteria and host metabolic phenotypes. We assess important biological molecular mechanisms underlying the impact of gut microbiota on hosts including bile salt metabolism, short-chain fatty acids, and metabolic endotoxemia. Some previous studies have shown a link between microbiota and obesity, and associated disease reports have been documented. Thus, this review focuses on obesity and gut microbiota interactions and further develops the mechanism of the gut microbiome approach related to human obesity. Specifically, we highlight several alternative diet treatments including dietary changes and supplementation with probiotics. The future direction or comparative significance of fecal transplantation, synbiotics, and metabolomics as an approach to the modulation of intestinal microbes is also discussed.
Collapse
Affiliation(s)
- Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Dong-Hwan Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Paul Agastian
- Department of Plant Biology and Biotechnology, Loyola College, Chennai 600-034, India.
| | - Seong-Yoon Oh
- Three & Four Co., Ltd., 992-15, Jusan-ri, Hojeo-myeon, Wonju-si 26460, Korea.
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| |
Collapse
|
20
|
A ghrelin receptor and oxytocin receptor heterocomplex impairs oxytocin mediated signalling. Neuropharmacology 2019; 152:90-101. [DOI: 10.1016/j.neuropharm.2018.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/21/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022]
|
21
|
A Dairy-Derived Ghrelinergic Hydrolysate Modulates Food Intake In Vivo. Int J Mol Sci 2018; 19:ijms19092780. [PMID: 30223587 PMCID: PMC6165545 DOI: 10.3390/ijms19092780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
Recent times have seen an increasing move towards harnessing the health-promoting benefits of food and dietary constituents while providing scientific evidence to substantiate their claims. In particular, the potential for bioactive protein hydrolysates and peptides to enhance health in conjunction with conventional pharmaceutical therapy is being investigated. Dairy-derived proteins have been shown to contain bioactive peptide sequences with various purported health benefits, with effects ranging from the digestive system to cardiovascular circulation, the immune system and the central nervous system. Interestingly, the ability of dairy proteins to modulate metabolism and appetite has recently been reported. The ghrelin receptor (GHSR-1a) is a G-protein coupled receptor which plays a key role in the regulation of food intake. Pharmacological manipulation of the growth hormone secretagogue receptor-type 1a (GHSR-1a) receptor has therefore received a lot of attention as a strategy to combat disorders of appetite and body weight, including age-related malnutrition and the progressive muscle wasting syndrome known as cachexia. In this study, a milk protein-derivative is shown to increase GHSR-1a-mediated intracellular calcium signalling in a concentration-dependent manner in vitro. Significant increases in calcium mobilisation were also observed in a cultured neuronal cell line heterologously expressing the GHS-R1a. In addition, both additive and synergistic effects were observed following co-exposure of GHSR-1a to both the hydrolysate and ghrelin. Subsequent in vivo studies monitored standard chow intake in healthy male and female Sprague-Dawley rats after dosing with the casein hydrolysate (CasHyd). Furthermore, the provision of gastro-protected oral delivery to the bioactive in vivo may aid in the progression of in vitro efficacy to in vivo functionality. In summary, this study reports a ghrelin-stimulating bioactive peptide mixture (CasHyd) with potent effects in vitro. It also provides novel and valuable translational data supporting the potential role of CasHyd as an appetite-enhancing bioactive. Further mechanistic studies are required in order to confirm efficacy as a ghrelinergic bioactive in susceptible population groups.
Collapse
|
22
|
Ramirez VT, van Oeffelen WEPA, Torres-Fuentes C, Chruścicka B, Druelle C, Golubeva AV, van de Wouw M, Dinan TG, Cryan JF, Schellekens H. Differential functional selectivity and downstream signaling bias of ghrelin receptor antagonists and inverse agonists. FASEB J 2018; 33:518-531. [PMID: 30020830 DOI: 10.1096/fj.201800655r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ghrelin receptor [growth hormone secretagogue receptor (GHSR)-1a] represents a promising pharmacologic target for the treatment of metabolic disorders, including obesity and cachexia, via central appetite modulation. The GHSR-1a has a complex pharmacology, highlighted by G-protein-dependent and -independent downstream signaling pathways and high basal constitutive activity. The functional selectivity and signaling bias of many GHSR-1a-specific ligands has not been fully characterized. In this study, we investigated the pharmacologic properties of ghrelin, MK-0677, L692,585, and [d-Lys3]-growth hormone-releasing peptide-6 (Dlys), JMV2959, and [d-Arg(1),d-Phe(5),d-Trp(7, 9),Leu(11)]-substance P (SP-analog). We investigated their effect on basal GHSR-1a constitutive signaling, ligand-directed downstream GHSR-1a signaling, functional selectivity, and signaling bias. Dlys behaved as a partial antagonist with a strong bias toward GHSR-1a-β-arrestin signaling, whereas JMV2959 acted as a full unbiased GHSR-1a antagonist. Moreover, the SP-analog behaved as an inverse agonist increasing G-protein-dependent signaling, but only at high concentrations, whereas, at low concentrations, the SP-analog attenuated β-arrestin-dependent signaling. Considering the limited success in the clinical development of GHSR-1a-targeted drugs so far, these findings provide a novel insight into the pharmacologic characteristics of GHSR-1a ligands and their signaling bias, which has important implications in the design of novel, more selective GHSR-1a ligands with predictable functional outcome and selectivity for preclinical and clinical drug development.-Ramirez, V. T., van Oeffelen, W. E. P. A., Torres-Fuentes, C., Chruścicka, B., Druelle, C., Golubeva, A. V., van de Wouw, M., Dinan, T. G., Cryan, J. F., Schellekens, H. Differential functional selectivity and downstream signaling bias of ghrelin receptor antagonists and inverse agonists.
Collapse
Affiliation(s)
- Valerie T Ramirez
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Cristina Torres-Fuentes
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Barbara Chruścicka
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Clementine Druelle
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Anna V Golubeva
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry, University College Cork, Cork, Ireland; and
| | - John F Cryan
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,Food for Health Ireland, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,Food for Health Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Torres-Fuentes C, Pastor-Cavada E, Cano R, Kandil D, Shanahan R, Juan R, Shaban H, McGlacken GP, Schellekens H. Quinolones Modulate Ghrelin Receptor Signaling: Potential for a Novel Small Molecule Scaffold in the Treatment of Cachexia. Int J Mol Sci 2018; 19:E1605. [PMID: 29848961 PMCID: PMC6032407 DOI: 10.3390/ijms19061605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cachexia is a metabolic wasting disorder characterized by progressive weight loss, muscle atrophy, fatigue, weakness, and appetite loss. Cachexia is associated with almost all major chronic illnesses including cancer, heart failure, obstructive pulmonary disease, and kidney disease and significantly impedes treatment outcome and therapy tolerance, reducing physical function and increasing mortality. Current cachexia treatments are limited and new pharmacological strategies are needed. Agonists for the growth hormone secretagogue (GHS-R1a), or ghrelin receptor, prospectively regulate the central regulation of appetite and growth hormone secretion, and therefore have tremendous potential as cachexia therapeutics. Non-peptide GHS-R1a agonists are of particular interest, especially given the high gastrointestinal degradation of peptide-based structures, including that of the endogenous ligand, ghrelin, which has a half-life of only 30 min. However, few compounds have been reported in the literature as non-peptide GHS-R1a agonists. In this paper, we investigate the in vitro potential of quinolone compounds to modulate the GHS-R1a in both transfected human cells and mouse hypothalamic cells. These chemically synthesized compounds demonstrate a promising potential as GHS-R1a agonists, shown by an increased intracellular calcium influx. Further studies are now warranted to substantiate and exploit the potential of these novel quinolone-based compounds as orexigenic therapeutics in conditions of cachexia and other metabolic and eating disorders.
Collapse
Affiliation(s)
| | | | - Rafael Cano
- School of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, T12 YT20 Cork, Ireland.
| | - Dalia Kandil
- Food for Health Ireland, University College Cork, T12 YT20 Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20 Cork, Ireland.
| | - Rachel Shanahan
- School of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, T12 YT20 Cork, Ireland.
| | - Rocio Juan
- Plant Biology and Ecology Department, Seville University, 41012 Seville, Spain.
| | - Hamdy Shaban
- Food for Health Ireland, University College Cork, T12 YT20 Cork, Ireland.
| | - Gerard P McGlacken
- School of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, T12 YT20 Cork, Ireland.
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.
- Food for Health Ireland, University College Cork, T12 YT20 Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20 Cork, Ireland.
| |
Collapse
|
24
|
Howick K, Alam R, Chruscicka B, Kandil D, Fitzpatrick D, Ryan AM, Cryan JF, Schellekens H, Griffin BT. Sustained-release multiparticulates for oral delivery of a novel peptidic ghrelin agonist: Formulation design and in vitro characterization. Int J Pharm 2017; 536:63-72. [PMID: 29175643 DOI: 10.1016/j.ijpharm.2017.11.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/29/2017] [Accepted: 11/22/2017] [Indexed: 02/01/2023]
Abstract
There is an impetus to provide appropriate sustained release oral delivery vehicles to protect biofunctional peptide loads from gastric degradation in vivo. This study describes the generation of a high load capacity pellet formulation for sustained release of a freely water-soluble dairy-derived hydrolysate, FHI-2571. The activity of this novel peptidic ghrelin receptor agonist is reported using in vitro calcium mobilization assays. Conventional extrusion spheronization was then used to prepare peptide-loaded pellets which were subsequently coated with ethylcellulose (EC) film coats using a fluid bed coating system in bottom spray (Wurster) mode. Aqueous-based EC coating dispersions produced mechanically brittle coats which fractured due to osmotic pressure build-up within pellets in simulated media. In contrast, an ethanolic-based EC coating solution provided robust, near zero-order release in both USP Type 1 and Type 4 dissolution studies. Interestingly, the functionality of aqueous-based EC film coats was restored by first layering pellets with a methacrylic acid copolymer (MA) subcoat, thereby hindering pellet core swelling in acidic media. Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS) was utilised as a complementary technique to confirm the results seen in USP dissolution studies. Retention of activity of the ghrelinergic peptide hydrolysate in the final encapsulated product was confirmed as being greater than 80%. The described pellet formulation is amenable to oral dosing in small animal studies in order to assess in vivo efficacy of the whey-derived ghrelinergic hydrolysate. In more general terms, it is also suitable as a delivery vehicle for peptide-based bioactives to special population groups e.g paediatric and geriatric.
Collapse
Affiliation(s)
- Ken Howick
- School of Pharmacy, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland; Food for Health Ireland, University College Cork, Cork, Ireland
| | - Ryan Alam
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Barbara Chruscicka
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Dalia Kandil
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland; Food for Health Ireland, University College Cork, Cork, Ireland
| | - Dara Fitzpatrick
- Department of Chemistry, Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| | - Aoife M Ryan
- Food for Health Ireland, University College Cork, Cork, Ireland; Department of Food & Nutritional Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland; Food for Health Ireland, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Brendan T Griffin
- School of Pharmacy, University College Cork, Cork, Ireland; Food for Health Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
25
|
Effect of a single nucleotide polymorphism in the growth hormone secretagogue receptor (GHSR) gene on growth rate in pigs. Gene 2017; 634:68-73. [PMID: 28887157 DOI: 10.1016/j.gene.2017.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/26/2017] [Accepted: 09/04/2017] [Indexed: 01/28/2023]
Abstract
The growth hormone secretagogue receptor (GHSR) gene controls growth hormone (GH) release by inducing a strong stimulatory effect on the endogenous ligand, ghrelin. In this study, we examined the possible role of GHSR in the growth traits of four pig breeds, namely Tibetan pigs (n=45), Diannan small-eared pigs (n=40), Yorkshire pigs (n=45), and New Huai pigs (n=122). Single nucleotide polymorphisms (SNPs) in these pigs were identified by polymerase chain reaction (PCR) sequencing and genotyping was performed using PCR-restriction fragment length polymorphisms (PCR-RFLPs). A SNP (C/A) named C-1595A (the "C" allele), which is located 1595bp upstream of the initiation codon of the GHSR gene, was found at a higher frequency in the fast-growing Yorkshire pigs than in the slow-growing Tibetan and Diannan small-eared pigs. In preliminary assays, the C-1595A genotype was found to be associated with growth traits in New Huai pigs. Quantitative real-time PCR and western blotting assays were used to measure the levels of GHSR1a, a functionally active form of the GHSR protein, in the tissues of the growth axis. The estimated levels of mRNA and protein in pituitary and liver tissues were significantly higher in Yorkshire pigs than in Diannan small-eared or Tibetan pigs (P<0.05). The results indicated that GHSR had a positive influence on the growth rate of pigs and suggested that the C-1595A SNP could be of value as a molecular marker for improving the production performance of pig breeds.
Collapse
|
26
|
Zan J, Song L, Wang J, Zou R, Hong F, Zhao J, Cheng Y, Xu M. Role of ghrelin in small intestinal motility following pediatric intracerebral hemorrhage in mice. Mol Med Rep 2017; 16:6958-6966. [DOI: 10.3892/mmr.2017.7468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 04/25/2017] [Indexed: 11/06/2022] Open
|
27
|
Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol 2017; 2:747-756. [PMID: 28844808 DOI: 10.1016/s2468-1253(17)30147-4] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 12/16/2022]
Abstract
Changes in microbial diversity and composition are increasingly associated with several disease states including obesity and behavioural disorders. Obesity-associated microbiota alter host energy harvesting, insulin resistance, inflammation, and fat deposition. Additionally, intestinal microbiota can regulate metabolism, adiposity, homoeostasis, and energy balance as well as central appetite and food reward signalling, which together have crucial roles in obesity. Moreover, some strains of bacteria and their metabolites might target the brain directly via vagal stimulation or indirectly through immune-neuroendocrine mechanisms. Therefore, the gut microbiota is becoming a target for new anti-obesity therapies. Further investigations are needed to elucidate the intricate gut-microbiota-host relationship and the potential of gut-microbiota-targeted strategies, such as dietary interventions and faecal microbiota transplantation, as promising metabolic therapies that help patients to maintain a healthy weight throughout life.
Collapse
Affiliation(s)
| | - Harriët Schellekens
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
28
|
Yu CH, Chu SC, Chen PN, Hsieh YS, Kuo DY. Participation of ghrelin signalling in the reciprocal regulation of hypothalamic NPY/POMC-mediated appetite control in amphetamine-treated rats. Appetite 2017; 113:30-40. [DOI: 10.1016/j.appet.2017.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/31/2017] [Accepted: 02/05/2017] [Indexed: 12/18/2022]
|
29
|
From Belly to Brain: Targeting the Ghrelin Receptor in Appetite and Food Intake Regulation. Int J Mol Sci 2017; 18:ijms18020273. [PMID: 28134808 PMCID: PMC5343809 DOI: 10.3390/ijms18020273] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022] Open
Abstract
Ghrelin is the only known peripherally-derived orexigenic hormone, increasing appetite and subsequent food intake. The ghrelinergic system has therefore received considerable attention as a therapeutic target to reduce appetite in obesity as well as to stimulate food intake in conditions of anorexia, malnutrition and cachexia. As the therapeutic potential of targeting this hormone becomes clearer, it is apparent that its pleiotropic actions span both the central nervous system and peripheral organs. Despite a wealth of research, a therapeutic compound specifically targeting the ghrelin system for appetite modulation remains elusive although some promising effects on metabolic function are emerging. This is due to many factors, ranging from the complexity of the ghrelin receptor (Growth Hormone Secretagogue Receptor, GHSR-1a) internalisation and heterodimerization, to biased ligand interactions and compensatory neuroendocrine outputs. Not least is the ubiquitous expression of the GHSR-1a, which makes it impossible to modulate centrally-mediated appetite regulation without encroaching on the various peripheral functions attributable to ghrelin. It is becoming clear that ghrelin’s central signalling is critical for its effects on appetite, body weight regulation and incentive salience of food. Improving the ability of ghrelin ligands to penetrate the blood brain barrier would enhance central delivery to GHSR-1a expressing brain regions, particularly within the mesolimbic reward circuitry.
Collapse
|
30
|
Zheng X, Deng J, Zhang T, Yao J, Zheng F, Zhan CG. Potential anti-obesity effects of a long-acting cocaine hydrolase. Chem Biol Interact 2016; 259:99-103. [PMID: 27163854 PMCID: PMC5097895 DOI: 10.1016/j.cbi.2016.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
Abstract
A long-acting cocaine hydrolase, known as CocH3-Fc(M3), engineered from human butyrylcholinesterase (BChE) was tested, in this study, for its potential anti-obesity effects. Mice on a high-fat diet gained significantly less body weight when treated weekly with 1 mg/kg CocH3-Fc(M3) compared to control mice, though their food intake was similar. There is no correlation between the average body weight and the average food intake, which is consistent with the previously reported observation in BChE knockout mice. In addition, molecular modeling was carried out to understand how ghrelin binds with CocH3, showing that ghrelin binds with CocH3 in a similar mode as ghrelin binding with wild-type human BChE. The similar binding structures explains why CocH3 and BChE have similar catalytic activity against ghrelin.
Collapse
Affiliation(s)
- Xirong Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Jing Deng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Ting Zhang
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Jianzhuang Yao
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
31
|
Yu CH, Chu SC, Chen PN, Hsieh YS, Kuo DY. Mediation of oxidative stress in hypothalamic ghrelin-associated appetite control in rats treated with phenylpropanolamine. GENES BRAIN AND BEHAVIOR 2016; 16:439-448. [PMID: 27862969 DOI: 10.1111/gbb.12360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 11/05/2016] [Indexed: 12/19/2022]
Abstract
Phenylpropanolamine (PPA)-induced appetite control is associated with oxidative stress in the hypothalamus. This study explored whether hypothalamic antioxidants participated in hypothalamic ghrelin system-associated appetite control in PPA-treated rats. Rats were given PPA daily for 4 days, and changes in food intake and the expression of neuropeptide Y (NPY), the cocaine- and amphetamine-regulated transcript (CART), superoxide dismutase, catalase, ghrelin, acyl ghrelin (AG), ghrelin O-acyltransferase (GOAT) and the ghrelin receptor (GHSR1a) were examined and compared. Results showed that both food intake and the expression of NPY and ghrelin/AG/GOAT/GHSR1a decreased in response to PPA treatment with maximum decrease on Day 2 of the treatment. In contrast, the expression of antioxidants and CART increased, with the maximum increase on Day 2, with the expression opposite to that of NPY and ghrelin. A cerebral infusion of either a GHSR1a antagonist or reactive oxygen species scavenger modulated feeding behavior and NPY, CART, antioxidants and ghrelin system expression, showing the involvement of ghrelin signaling and oxidative stress in regulating PPA-mediated appetite control. We suggest that hypothalamic ghrelin signaling system, with the help of antioxidants, may participate in NPY/CART-mediated appetite control in PPA-treated rats.
Collapse
Affiliation(s)
- C-H Yu
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - S-C Chu
- Department of Food Science, Central Taiwan University of Science and Technology, Taichung City, Taiwan
| | - P-N Chen
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Y-S Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - D-Y Kuo
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
32
|
Pastor-Cavada E, Pardo LM, Kandil D, Torres-Fuentes C, Clarke SL, Shaban H, McGlacken GP, Schellekens H. A Novel Non-Peptidic Agonist of the Ghrelin Receptor with Orexigenic Activity In vivo. Sci Rep 2016; 6:36456. [PMID: 27819353 PMCID: PMC5098229 DOI: 10.1038/srep36456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/17/2016] [Indexed: 01/13/2023] Open
Abstract
Loss of appetite in the medically ill and ageing populations is a major health problem and a significant symptom in cachexia syndromes, which is the loss of muscle and fat mass. Ghrelin is a gut-derived hormone which can stimulate appetite. Herein we describe a novel, simple, non-peptidic, 2-pyridone which acts as a selective agonist for the ghrelin receptor (GHS-R1a). The small 2-pyridone demonstrated clear agonistic activity in both transfected human cells and mouse hypothalamic cells with endogenous GHS-R1a receptor expression. In vivo tests with the hit compound showed significant increased food intake following peripheral administration, which highlights the potent orexigenic effect of this novel GHS-R1a receptor ligand.
Collapse
Affiliation(s)
- Elena Pastor-Cavada
- Alimentary Pharmabiotic Centre (APC) Microbiome Institute, University College Cork, Cork, Ireland
| | - Leticia M Pardo
- Department of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| | - Dalia Kandil
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Cristina Torres-Fuentes
- Alimentary Pharmabiotic Centre (APC) Microbiome Institute, University College Cork, Cork, Ireland
| | - Sarah L Clarke
- Department of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| | - Hamdy Shaban
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard P McGlacken
- Department of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| | - Harriet Schellekens
- Alimentary Pharmabiotic Centre (APC) Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
33
|
Edwards A, Abizaid A. Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems. Neurosci Biobehav Rev 2016; 66:33-53. [PMID: 27136126 DOI: 10.1016/j.neubiorev.2016.03.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/08/2016] [Accepted: 03/31/2016] [Indexed: 01/29/2023]
Abstract
Independent stimulation of either the ghrelin or endocannabinoid system promotes food intake and increases adiposity. Given the similar distribution of their receptors in feeding associated brain regions and organs involved in metabolism, it is not surprising that evidence of their interaction and its importance in modulating energy balance has emerged. This review documents the relationship between ghrelin and endocannabinoid systems within the periphery and hypothalamus (HYP) before presenting evidence suggesting that these two systems likewise work collaboratively within the ventral tegmental area (VTA) to modulate non-homeostatic feeding. Mechanisms, consistent with current evidence and local infrastructure within the VTA, will be proposed.
Collapse
Affiliation(s)
- Alexander Edwards
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
34
|
Kong J, Chuddy J, Stock IA, Loria PM, Straub SV, Vage C, Cameron KO, Bhattacharya SK, Lapham K, McClure KF, Zhang Y, Jackson VM. Pharmacological characterization of the first in class clinical candidate PF-05190457: a selective ghrelin receptor competitive antagonist with inverse agonism that increases vagal afferent firing and glucose-dependent insulin secretion ex vivo. Br J Pharmacol 2016; 173:1452-64. [PMID: 26784385 DOI: 10.1111/bph.13439] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Ghrelin increases growth hormone secretion, gastric acid secretion, gastric motility and hunger but decreases glucose-dependent insulin secretion and insulin sensitivity in humans. Antagonizing the ghrelin receptor has potential as a therapeutic approach in the treatment of obesity and type 2 diabetes. Therefore, the aim was to pharmacologically characterize the novel small-molecule antagonist PF-05190457 and assess translational pharmacology ex vivo. EXPERIMENTAL APPROACH Radioligand binding in filter and scintillation proximity assay formats were used to evaluate affinity, and europium-labelled GTP to assess functional activity. Rat vagal afferent firing and calcium imaging in dispersed islets were used as native tissues underlying food intake and insulin secretion respectively. KEY RESULTS PF-05190457 was a potent and selective inverse agonist on constitutively active ghrelin receptors and acted as a competitive antagonist of ghrelin action, with a human Kd of 3 nM requiring 4 h to achieve equilibrium. Potency of PF-05190457 was similar across different species. PF-05190457 increased intracellular calcium within dispersed islets and increased vagal afferent firing in a concentration-dependent manner with similar potency but was threefold less potent as compared with the in vitro Ki in recombinant overexpressing cells. The effect of PF-05190457 on rodent islets was comparable with glibenclamide, but glucose-dependent and additive with the insulin secretagogue glucagon-like peptide-1. CONCLUSIONS AND IMPLICATIONS Together, these data provide the pharmacological in vitro and ex vivo characterization of the first ghrelin receptor inverse agonist, which has advanced into clinical trials to evaluate the therapeutic potential of blocking ghrelin receptors in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- J Kong
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - J Chuddy
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - I A Stock
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - P M Loria
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - S V Straub
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - C Vage
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - K O Cameron
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - S K Bhattacharya
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - K Lapham
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - K F McClure
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - Y Zhang
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - V M Jackson
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| |
Collapse
|
35
|
Yao J, Yuan Y, Zheng F, Zhan CG. Unexpected Reaction Pathway for butyrylcholinesterase-catalyzed inactivation of "hunger hormone" ghrelin. Sci Rep 2016; 6:22322. [PMID: 26922910 PMCID: PMC4770301 DOI: 10.1038/srep22322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/12/2016] [Indexed: 11/16/2022] Open
Abstract
Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway.
Collapse
Affiliation(s)
- Jianzhuang Yao
- Molecular Modeling and Biopharmaceutical Center and College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Yaxia Yuan
- Molecular Modeling and Biopharmaceutical Center and College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center and College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| |
Collapse
|
36
|
Schellekens H, De Francesco PN, Kandil D, Theeuwes WF, McCarthy T, van Oeffelen WEPA, Perelló M, Giblin L, Dinan TG, Cryan JF. Ghrelin's Orexigenic Effect Is Modulated via a Serotonin 2C Receptor Interaction. ACS Chem Neurosci 2015; 6:1186-97. [PMID: 25727097 DOI: 10.1021/cn500318q] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Understanding the intricate pathways that modulate appetite and subsequent food intake is of particular importance considering the rise in the incidence of obesity across the globe. The serotonergic system, specifically the 5-HT2C receptor, has been shown to be of critical importance in the regulation of appetite and satiety. The GHS-R1a receptor is another key receptor that is well-known for its role in the homeostatic control of food intake and energy balance. We recently showed compelling evidence for an interaction between the GHS-R1a receptor and the 5-HT2C receptor in an in vitro cell line system heterologously expressing both receptors. Here, we investigated this interaction further. First, we show that the GHS-R1a/5-HT2C dimer-induced attenuation of calcium signaling is not due to coupling to GαS, as no increase in cAMP signaling is observed. Next, flow cytometry fluorescence resonance energy transfer (fcFRET) is used to further demonstrate the direct interaction between the GHS-R1a receptor and 5-HT2C receptor. In addition, we demonstrate colocalized expression of the 5-HT2C and GHS-R1a receptor in cultured primary hypothalamic and hippocampal rat neurons, supporting the biological relevance of a physiological interaction. Furthermore, we demonstrate that when 5-HT2C receptor signaling is blocked ghrelin's orexigenic effect is potentiated in vivo. In contrast, the specific 5-HT2C receptor agonist lorcaserin, recently approved for the treatment of obesity, attenuates ghrelin-induced food intake. This underscores the biological significance of our in vitro findings of 5-HT2C receptor-mediated attenuation of GHS-R1a receptor activity. Together, this study demonstrates, for the first time, that the GHS-R1a/5-HT2C receptor interaction translates into a biologically significant modulation of ghrelin's orexigenic effect. This data highlights the potential development of a combined GHS-R1a and 5-HT2C receptor treatment strategy in weight management.
Collapse
Affiliation(s)
| | - Pablo N. De Francesco
- Laboratory
of Neurophysiology, Multidisciplinary Institute of Cell Biology, National Scientific and Technical Research Council, La Plata, Argentina
| | | | | | | | | | - Mario Perelló
- Laboratory
of Neurophysiology, Multidisciplinary Institute of Cell Biology, National Scientific and Technical Research Council, La Plata, Argentina
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | |
Collapse
|
37
|
Martin KA, Mani MV, Mani A. New targets to treat obesity and the metabolic syndrome. Eur J Pharmacol 2015; 763:64-74. [PMID: 26001373 DOI: 10.1016/j.ejphar.2015.03.093] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/19/2015] [Accepted: 03/30/2015] [Indexed: 01/12/2023]
Abstract
Metabolic syndrome (MetS) is a cluster ofassociated metabolic traits that collectively confer unsurpassed risk for development of cardiovascular disease (CVD) and type 2 diabetes compared to any single CVD risk factor. Truncal obesity plays an exceptionally critical role among all metabolic traits of the MetS. Consequently, the prevalence of the MetS has steadily increased with the growing epidemic of obesity. Pharmacotherapy has been available for obesity for more than one decade, but with little success in improving the metabolic profiles. The serotonergic drugs and inhibitors of pancreatic lipases were among the few drugs that were initially approved to treat obesity. At the present time, only the pancreatic lipase inhibitor orlistat is approved for long-term treatment of obesity. New classes of anti-diabetic drugs, including glucagon-like peptide 1 receptor (GLP-1R) agonists and Dipeptidyl-peptidase IV (DPP-IV) inhibitors, are currently being evaluated for their effects on obesity and metabolic traits. The genetic studies of obesity and metabolic syndrome have identified novel molecules acting on the hunger and satiety peptidergic signaling of the gut-hypothalamus axis or the melanocortin system of the brain and are promising targets for future drug development. The goal is to develop drugs that not only treat obesity, but also favorably impact its associated traits.
Collapse
Affiliation(s)
- Kathleen A Martin
- Department of Internal Medicine, Yale University School of Medicine, USA
| | | | - Arya Mani
- Department of Internal Medicine, Yale University School of Medicine, USA; Department of Genetics, Yale University School of Medicine, USA.
| |
Collapse
|
38
|
Zhang SR, Fan XM. Ghrelin-ghrelin O-acyltransferase system in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2015; 21:3214-3222. [PMID: 25805927 PMCID: PMC4363750 DOI: 10.3748/wjg.v21.i11.3214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/29/2014] [Accepted: 01/30/2015] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently considered as the most common liver disease in Western countries, and is rapidly becoming a serious threat to public health worldwide. However, the underlying mechanisms leading to the development of NAFLD are still not fully understood. The ghrelin-ghrelin O-acyltransferase (GOAT) system has recently been found to play a crucial role in both the development of steatosis and its progression to nonalcoholic steatohepatitis. Ghrelin, the natural ligand of the growth hormone secretagogue receptor, is a 28-amino acid peptide possessing a unique acylation on the serine in position 3 catalyzed by GOAT. The ghrelin-GOAT system is involved in insulin resistance, lipid metabolism dysfunction, and inflammation, all of which play important roles in the pathogenesis of NAFLD. A better understanding of ghrelin-GOAT system biology led to the identification of its potential roles in NAFLD. Molecular targets modulating ghrelin-GOAT levels and the biologic effects are being studied, which provide a new insight into the pathogenesis of NAFLD. This review probes into the possible relationship between the ghrelin-GOAT system and NAFLD, and considers the potential mechanisms by which the ghrelin-GOAT system brings about insulin resistance and other aspects concerning NAFLD.
Collapse
|
39
|
El Gammal AT, Dupree A, Wolter S, Aberle J, Izbicki JR, Güngör C, Mann O. Obesity research: Status quo and future outlooks. World J Transl Med 2014; 3:119-132. [DOI: 10.5528/wjtm.v3.i3.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/27/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
Obesity is a multifactorial disease showing a pandemic increase within the last decades in developing, and developed countries. It is associated with several severe comorbidities such as type II diabetes, hypertension, sleep apnea, non-alcoholic steatosis hepatis and cancer. Due to the increasing number of overweight individuals worldwide, research in the field of obesity has become more vital than ever. Currently, great efforts are spend to understand this complex disease from a biological, psychological and sociological angle. Further insights of obesity research come from bariatric surgery that provides new information regarding hormonal changes during weight loss. The initiation of programs for obesity treatment, both interventional and pharmaceutical, are being pursued with the fullest intensity. Currently, bariatric surgery is the most effective therapy for weight loss and resolution of comorbidities in morbid obese patients. Reasons for weight loss and remission of comorbidities following Roux-en-Y-Gastric Bypass, Sleeve Gastrectomy, and other bariatric procedures are therefore under intense investigation. In this review, however, we will focus on obesity treatment, highlighting new insights and future trends of gut hormone research, the relation of obesity and cancer development via the obesity induced chronic state of inflammation, and new potential concepts of interventional and conservative obesity treatment.
Collapse
|
40
|
Schellekens H, Nongonierma AB, Clarke G, van Oeffelen WE, FitzGerald RJ, Dinan TG, Cryan JF. Milk protein-derived peptides induce 5-HT2C-mediated satiety in vivo. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2014.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Torres-Fuentes C, Theeuwes WF, McMullen MK, McMullen AK, Dinan TG, Cryan JF, Schellekens H. Devil's Claw to suppress appetite--ghrelin receptor modulation potential of a Harpagophytum procumbens root extract. PLoS One 2014; 9:e103118. [PMID: 25068823 PMCID: PMC4113378 DOI: 10.1371/journal.pone.0103118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022] Open
Abstract
Ghrelin is a stomach-derived peptide that has been identified as the only circulating hunger hormone that exerts a potent orexigenic effect via activation of its receptor, the growth hormone secretagogue receptor (GHS-R1a). Hence, the ghrelinergic system represents a promising target to treat obesity and obesity-related diseases. In this study we analysed the GHS-R1a receptor activating potential of Harpagophytum procumbens, popularly known as Devil's Claw, and its effect on food intake in vivo. H. procumbens is an important traditional medicinal plant from Southern Africa with potent anti-inflammatory and analgesic effects. This plant has been also used as an appetite modulator but most evidences are anecdotal and to our knowledge, no clear scientific studies relating to appetite modulation have been done to this date. The ghrelin receptor activation potential of an extract derived from the dried tuberous roots of H. procumbens was analysed by calcium mobilization and receptor internalization assays in human embryonic kidney cells (Hek) stably expressing the GHS-R1a receptor. Food intake was investigated in male C57BL/6 mice following intraperitoneal administration of H. procumbens root extract in ad libitum and food restricted conditions. Exposure to H. procumbens extract demonstrated a significant increased cellular calcium influx but did not induce subsequent GHS-R1a receptor internalization, which is a characteristic for full receptor activation. A significant anorexigenic effect was observed in male C57BL/6 mice following peripheral administration of H. procumbens extract. We conclude that H. procumbens root extract is a potential novel source for potent anti-obesity bioactives. These results reinforce the promising potential of natural bioactives to be developed into functional foods with weight-loss and weight maintenance benefits.
Collapse
Affiliation(s)
| | - Wessel F. Theeuwes
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Michael K. McMullen
- Life Force Research, Ljungskile, Sweden
- School of Biosciences, University of Westminster, London, United Kingdom
| | | | - Timothy G. Dinan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Dept of Psychiatry, University College Cork, Cork, Ireland
| | - John F. Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
42
|
Abstract
INTRODUCTION Over the past 3 years, several patents appeared dealing with the discovery of compounds able to modulate ghrelin actions: agonists for the treatment of cachexia, as diagnostic agents for GH deficiency or for the increase in gastrointestinal motility, antagonists and inverse agonists as anorexigenic agents for the treatment of obesity and type 2 diabetes. This research has been conducted by several pharmaceutical companies and some compounds have entered clinical trials, but, to date, compounds acting on the ghrelin receptor do not represent clinical options yet. AREAS COVERED A comprehensive description and categorization of patents related to each type of compounds is provided, together with data related to these compounds that appeared in the scientific literature. EXPERT OPINION Ghrelin appears to mediate a myriad of actions, and some of these appear to be due to unknown mechanisms (a second putative ghrelin receptor, putative receptors for unacylated ghrelin); several agonists, antagonists and inverse agonists at ghrelin receptor have been developed but their mechanism of action into CNS is poorly understood. The therapeutic potential of compounds acting on ghrelin receptor is still to be fully assessed, but the results obtained to date are encouraging for the successful clinical translation of compounds able to treat several pathologies.
Collapse
Affiliation(s)
- Luca Costantino
- University of Modena and Reggio Emilia, Dipartimento di Scienze della Vita , Via Campi 183, 41100 Modena , Italy +39 059 2055749 ; +39 059 2055131 ;
| | | |
Collapse
|
43
|
Panagopoulos VN, Ralevski E. The role of ghrelin in addiction: a review. Psychopharmacology (Berl) 2014; 231:2725-40. [PMID: 24947976 DOI: 10.1007/s00213-014-3640-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/19/2014] [Indexed: 12/24/2022]
Abstract
RATIONALE Ghrelin is a fast-acting hormone that is produced primarily by the stomach and by the brain although in smaller quantities. The regulation and the secretion of ghrelin are complex and not limited to aspects of feeding. Ghrelin exerts powerful effects on multiple processes, and it has been demonstrated that it mediates the rewarding properties of food as well as of drugs of abuse. OBJECTIVES The purpose of this review is to summarize the findings of preclinical and clinical studies related to ghrelin's possible role in addiction for each specific class of substances. Questions related to ghrelin's involvement in addiction are highlighted. Recurrent methodological issues that render the interpretation of the findings challenging are discussed. Also, the potential of targeting ghrelin as a pharmacologic treatment strategy for addiction is explored. RESULTS Ghrelin signaling is implicated in the mediation of behavioral and biochemical effects of drugs of abuse that are cardinal for the development of addiction, especially for alcohol, nicotine, and stimulants. The available literature implicating ghrelin in opioid or cannabis use disorders is currently limited and inconclusive. CONCLUSIONS There is intriguing, although not always consistent, evidence for the involvement of ghrelin signaling in aspects of addiction, especially in the cases of alcohol, nicotine, and stimulants. Further research, particularly in humans, is recommended to replicate and expand on the findings of the current literature. Improved and novel methodologies that take into account the volatile and complex nature of ghrelin are required to clarify the inconsistencies of the findings.
Collapse
Affiliation(s)
- Vassilis N Panagopoulos
- Department of Psychiatry, VA St. Louis Health Care System, 915 North Grand Blvd, St. Louis, MO, 63106, USA
| | | |
Collapse
|
44
|
Schmidt JB, Gregersen NT, Pedersen SD, Arentoft JL, Ritz C, Schwartz TW, Holst JJ, Astrup A, Sjödin A. Effects of PYY3-36 and GLP-1 on energy intake, energy expenditure, and appetite in overweight men. Am J Physiol Endocrinol Metab 2014; 306:E1248-56. [PMID: 24735885 DOI: 10.1152/ajpendo.00569.2013] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Our aim was to examine the effects of GLP-1 and PYY3-36, separately and in combination, on energy intake, energy expenditure, appetite sensations, glucose and fat metabolism, ghrelin, and vital signs in healthy overweight men. Twenty-five healthy male subjects participated in this randomized, double-blinded, placebo-controlled, four-arm crossover study (BMI 29 ± 3 kg/m(2), age 33 ± 9 yr). On separate days they received a 150-min intravenous infusion of 1) 0.8 pmol·kg(-1)·min(-1) PYY3-36, 2) 1.0 pmol·kg(-1)·min(-1) GLP-1, 3) GLP-1 + PYY3-36, or 4) placebo. Ad libitum energy intake was assessed during the final 30 min. Measurements of appetite sensations, energy expenditure and fat oxidation, vital signs, and blood variables were collected throughout the infusion period. No effect on energy intake was found after monoinfusions of PYY3-36 (-4.2 ± 4.8%, P = 0.8) or GLP-1 (-3.0 ± 4.5%, P = 0.9). However, the coinfusion reduced energy intake compared with placebo (-30.4 ± 6.5%, P < 0.0001) and more than the sum of the monoinfusions (P < 0.001), demonstrating a synergistic effect. Coinfusion slightly increased sensation of nausea (P < 0.05), but this effect could not explain the effect on energy intake. A decrease in plasma ghrelin was found after all treatments compared with placebo (all P < 0.05); however, infusions of GLP-1 + PYY3-36 resulted in an additional decrease compared with the monoinfusions (both P < 0.01). We conclude that coinfusion of GLP-1 and PYY3-36 exerted a synergistic effect on energy intake. The satiating effect of the meal was enhanced by GLP-1 and PYY3-36 in combination compared with placebo. Coinfusion was accompanied by slightly increased nausea and a decrease in plasma ghrelin, but neither of these factors could explain the reduction in energy intake.
Collapse
Affiliation(s)
- Julie Berg Schmidt
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark;
| | - Nikolaj Ture Gregersen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sue D Pedersen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Johanne L Arentoft
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian Ritz
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thue W Schwartz
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. A natural solution for obesity: Bioactives for the prevention and treatment of weight gain. A review. Nutr Neurosci 2014; 18:49-65. [DOI: 10.1179/1476830513y.0000000099] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Troke RC, Tan TM, Bloom SR. The future role of gut hormones in the treatment of obesity. Ther Adv Chronic Dis 2014; 5:4-14. [PMID: 24381724 PMCID: PMC3871274 DOI: 10.1177/2040622313506730] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The obesity pandemic presents a significant burden, both in terms of healthcare and economic outcomes, and current medical therapies are inadequate to deal with this challenge. Bariatric surgery is currently the only therapy available for obesity which results in long-term, sustained weight loss. The favourable effects of this surgery are thought, at least in part, to be mediated via the changes of gut hormones such as GLP-1, PYY, PP and oxyntomodulin seen following the procedure. These hormones have subsequently become attractive novel targets for the development of obesity therapies. Here, we review the development of these gut peptides as current and emerging therapies in the treatment of obesity.
Collapse
Affiliation(s)
- Rachel C Troke
- Department of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Tricia M Tan
- Department of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Steve R Bloom
- Department of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, 6th Floor, Commonwealth Building, London W12 0HS, UK
| |
Collapse
|
47
|
Abstract
The prevalence of obesity continues to increase and has reached epidemic proportions. Accumulating data over the past few decades have given us key insights and broadened our understanding of the peripheral and central regulation of energy homeostasis. Despite this, the currently available pharmacological treatments, reducing body weight, remain limited due to poor efficacy and side effects. The gastric peptide ghrelin has been identified as the only orexigenic hormone from the periphery to act in the hypothalamus to stimulate food intake. Recently, a role for ghrelin and its receptor at the interface between homeostatic control of appetite and reward circuitries modulating the hedonic aspects of food has also emerged. Nonhomeostatic factors such as the rewarding and motivational value of food, which increase with food palatability and caloric content, can override homeostatic control of food intake. This nonhomeostatic decision to eat leads to overconsumption beyond nutritional needs and is being recognized as a key component in the underlying causes for the increase in obesity incidence worldwide. In addition, the hedonic feeding behavior has been linked to food addiction and an important role for ghrelin in the development of addiction has been suggested. Moreover, plasma ghrelin levels are responsive to conditions of stress, and recent evidence has implicated ghrelin in stress-induced food-reward behavior. The prominent role of the ghrelinergic system in the regulation of feeding gives rise to it as an effective target for the development of successful antiobesity pharmacotherapies that not only affect satiety but also selectively modulate the rewarding properties of food and reduce the desire to eat.
Collapse
|
48
|
Zhang Q, Deng C, Huang XF. The role of ghrelin signalling in second-generation antipsychotic-induced weight gain. Psychoneuroendocrinology 2013; 38:2423-38. [PMID: 23953928 DOI: 10.1016/j.psyneuen.2013.07.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/17/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
Abstract
Based on clinical and animal studies, this review suggests a tri-phasic effect of second-generation antipsychotics (SGAs) on circulating ghrelin levels: an initial increase exerted by the acute effect of SGAs; followed by a secondary decrease possibly due to the negative feedback from the SGA-induced body weight gain or hyperphagia; and a final re-increase to reach the new equilibrium. Moreover, the results can also vary depending on individual SGAs, other hormonal states, dietary choices, and other confounding factors including medical history, co-treatments, age, gender, and ghrelin measurement techniques. Interestingly, rats treated with olanzapine, an SGA with high weight gain liabilities, are associated with increased hypothalamic ghrelin receptor (GHS-R1a) levels. In addition, expressions of downstream ghrelin signalling parameters at the hypothalamus, including neuropeptide Y (NPY)/agouti-related peptide (AgRP) and proopiomelanocortin (POMC) are also altered under SGA treatments. Thus, understanding the role of ghrelin signalling in antipsychotic drug-induced weight gain should offer potential novel pharmacological targets for tackling the obesity side-effect of SGAs and its associated metabolic syndrome.
Collapse
Affiliation(s)
- Qingsheng Zhang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | | |
Collapse
|
49
|
Schellekens H, Dinan TG, Cryan JF. Taking two to tango: a role for ghrelin receptor heterodimerization in stress and reward. Front Neurosci 2013; 7:148. [PMID: 24009547 PMCID: PMC3757321 DOI: 10.3389/fnins.2013.00148] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/01/2013] [Indexed: 12/25/2022] Open
Abstract
The gut hormone, ghrelin, is the only known peripherally derived orexigenic signal. It activates its centrally expressed receptor, the growth hormone secretagogue receptor (GHS-R1a), to stimulate food intake. The ghrelin signaling system has recently been suggested to play a key role at the interface of homeostatic control of appetite and the hedonic aspects of food intake, as a critical role for ghrelin in dopaminergic mesolimbic circuits involved in reward signaling has emerged. Moreover, enhanced plasma ghrelin levels are associated with conditions of physiological stress, which may underline the drive to eat calorie-dense "comfort-foods" and signifies a role for ghrelin in stress-induced food reward behaviors. These complex and diverse functionalities of the ghrelinergic system are not yet fully elucidated and likely involve crosstalk with additional signaling systems. Interestingly, accumulating data over the last few years has shown the GHS-R1a receptor to dimerize with several additional G-protein coupled receptors (GPCRs) involved in appetite signaling and reward, including the GHS-R1b receptor, the melanocortin 3 receptor (MC3), dopamine receptors (D1 and D2), and more recently, the serotonin 2C receptor (5-HT2C). GHS-R1a dimerization was shown to affect downstream signaling and receptor trafficking suggesting a potential novel mechanism for fine-tuning GHS-R1a receptor mediated activity. This review summarizes ghrelin's role in food reward and stress and outlines the GHS-R1a dimer pairs identified to date. In addition, the downstream signaling and potential functional consequences of dimerization of the GHS-R1a receptor in appetite and stress-induced food reward behavior are discussed. The existence of multiple GHS-R1a heterodimers has important consequences for future pharmacotherapies as it significantly increases the pharmacological diversity of the GHS-R1a receptor and has the potential to enhance specificity of novel ghrelin-targeted drugs.
Collapse
|
50
|
Qinna NA, Akayleh FT, Al Remawi MM, Kamona BS, Taha H, Badwan AA. Evaluation of a functional food preparation based on chitosan as a meal replacement diet. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|