1
|
Ren C, Ma Y, Wang Y, Luo D, Hong Y, Zhang X, Mei H, Liu W. Palmitoylethanolamide-Incorporated Elastic Nano-Liposomes for Enhanced Transdermal Delivery and Anti-Inflammation. Pharmaceutics 2024; 16:876. [PMID: 39065574 PMCID: PMC11280357 DOI: 10.3390/pharmaceutics16070876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Palmitoylethanolamide (PEA) exhibits multiple skincare functions such as anti-nociceptive and anti-inflammatory effects. However, its topical application is limited due to its difficulty in bypassing the stratum corneum barrier, relatively low bioavailability, and low stability. Herein, elastic nano-liposomes (ENLs) with excellent deformability and elasticity were utilized as a novel drug delivery system to encapsulate PEA to overcome the abovementioned issues and enhance the biological effects on the skin. ENL was prepared with phosphatidylcholine, cholesterol, and cetyl-PG hydroxyethyl palmitamide with a molar ratio mimicking skin epidermal lipids, and PEA was loaded. The PEA-loaded ENL (PEA-ENL) demonstrated efficient transdermal delivery and enhanced skin retention, with negligible cytotoxicity toward HaCaT cells and no allergic reaction in the human skin patch test. Notably, PEA-ENL treatment increased cell migration and induced significant regulation in the expression of genes associated with anti-nociceptive, anti-inflammatory, and skin barrier repair. The mechanism of the anti-nociceptive and anti-inflammatory effects of PEA was further investigated and explained by molecular docking site analysis. This novel PEA-ENL, with efficient transdermal delivery efficiency and multiple skincare functionalities, is promising for topical application.
Collapse
Affiliation(s)
- Chuanpeng Ren
- The Institute of Biocelline Precision Dermatology, Shanghai 200031, China; (Y.W.); (H.M.)
| | - Yanyun Ma
- Human Phenome Institute, Fudan University, Shanghai 201210, China;
- Institute for Six-Sector Economy, Fudan University, Shanghai 201203, China
| | - Yizhen Wang
- The Institute of Biocelline Precision Dermatology, Shanghai 200031, China; (Y.W.); (H.M.)
| | - Dan Luo
- Wuhan Bestcarrier Biotechnology Co., Ltd., Wuhan 430075, China; (D.L.); (Y.H.)
| | - Yanhan Hong
- Wuhan Bestcarrier Biotechnology Co., Ltd., Wuhan 430075, China; (D.L.); (Y.H.)
| | - Xinyuan Zhang
- Shanghai Skinshield Clinical Testing and Technological Research Ltd., Shanghai 201210, China;
| | - Hexiang Mei
- The Institute of Biocelline Precision Dermatology, Shanghai 200031, China; (Y.W.); (H.M.)
| | - Wei Liu
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Devinsky O, Jones NA, Cunningham MO, Jayasekera BAP, Devore S, Whalley BJ. Cannabinoid treatments in epilepsy and seizure disorders. Physiol Rev 2024; 104:591-649. [PMID: 37882730 DOI: 10.1152/physrev.00049.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, United States
| | | | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - B Ashan P Jayasekera
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurosurgery, Royal Victoria Hospital, Newcastle upon Tyne, United Kingdom
| | - Sasha Devore
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
| | | |
Collapse
|
3
|
Tripathi S, Nathan CL, Tate MC, Horbinski CM, Templer JW, Rosenow JM, Sita TL, James CD, Deneen B, Miller SD, Heimberger AB. The immune system and metabolic products in epilepsy and glioma-associated epilepsy: emerging therapeutic directions. JCI Insight 2024; 9:e174753. [PMID: 38193532 PMCID: PMC10906461 DOI: 10.1172/jci.insight.174753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Epilepsy has a profound impact on quality of life. Despite the development of new antiseizure medications (ASMs), approximately one-third of affected patients have drug-refractory epilepsy and are nonresponsive to medical treatment. Nearly all currently approved ASMs target neuronal activity through ion channel modulation. Recent human and animal model studies have implicated new immunotherapeutic and metabolomic approaches that may benefit patients with epilepsy. In this Review, we detail the proinflammatory immune landscape of epilepsy and contrast this with the immunosuppressive microenvironment in patients with glioma-related epilepsy. In the tumor setting, excessive neuronal activity facilitates immunosuppression, thereby contributing to subsequent glioma progression. Metabolic modulation of the IDH1-mutant pathway provides a dual pathway for reversing immune suppression and dampening seizure activity. Elucidating the relationship between neurons and immunoreactivity is an area for the prioritization and development of the next era of ASMs.
Collapse
Affiliation(s)
- Shashwat Tripathi
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| | | | | | - Craig M. Horbinski
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
- Department of Pathology, and
| | | | | | - Timothy L. Sita
- Department of Neurological Surgery
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Charles D. James
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| | - Benjamin Deneen
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| |
Collapse
|
4
|
Facci L, Bolego C, Chemello C, Yasser R, Fusco M, Barbierato M, Giusti P, Moro S, Zusso M. 2-Pentadecyl-2-oxazoline inhibits lipopolysaccharide-induced microglia activation interfering with TLR4 signaling. Life Sci 2023; 335:122242. [PMID: 37952834 DOI: 10.1016/j.lfs.2023.122242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
AIM 2-Pentadecyl-2-oxazoline (PEA-OXA), the oxazoline derivative of N-palmitoylethanolamine, exerts anti-inflammatory activity; however, very little is known about the molecular mechanisms underlying this effect. Here, we tested the anti-neuroinflammatory effect of PEA-OXA in primary microglia and we also investigated the possible interaction of the molecule with the Toll-like receptor 4 (TLR4)-myeloid differentiation protein-2 (MD-2) complex. MAIN METHODS The anti-inflammatory effect of PEA-OXA was analyzed by measuring the expression and release of pro-inflammatory mediators in primary microglia by real-time PCR and ELISA, respectively. The effect of PEA-OXA on the activation of TLR4 signaling was assessed using two stably TLR4-transfected cell lines (i.e., HEK-293 and Ba/F3 cells). Finally, the putative binding mode of PEA-OXA to TLR4-MD-2 was investigated by molecular docking simulations. KEY FINDINGS Treatment with PEA-OXA resulted in the following effects: (i) it down-regulated gene expression of several pro-inflammatory molecules and the secretion of pro-inflammatory cytokines in LPS stimulated microglia cells; (ii) it did not prevent microglia activation after stimulation with TLR2 ligands; (iii) it prevented TLR4/NF-κB activation triggered by LPS in HEK-Blue™ hTLR4 cells; and (iv) it interfered with the binding of LPS to TLR4-MD-2 complex. Furthermore, molecular docking studies suggested that PEA-OXA could bind MD-2 with a 1:3 (MD-2/PEA-OXA) stoichiometry. CONCLUSION We show for the first time that the anti-neuroinflammatory effect of PEA-OXA involves its activity against TLR4 signaling, making this molecule a valuable tool for the development of new compounds directed to control neuroinflammation via inhibiting TLR4 signaling.
Collapse
Affiliation(s)
- Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Chiara Chemello
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Reem Yasser
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Mariella Fusco
- Scientific Information and Documentation Center, Epitech Group SpA, Padua, Italy
| | - Massimo Barbierato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Stefano Moro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| |
Collapse
|
5
|
Santonocito S, Donzella M, Venezia P, Nicolosi G, Mauceri R, Isola G. Orofacial Pain Management: An Overview of the Potential Benefits of Palmitoylethanolamide and Other Natural Agents. Pharmaceutics 2023; 15:pharmaceutics15041193. [PMID: 37111679 PMCID: PMC10142272 DOI: 10.3390/pharmaceutics15041193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Pain is the most common symptom that dentists are confronted with, whether acute (pulpitis, acute periodontitis, post-surgery, etc.) or chronic diseases, such as periodontitis, muscle pain, temporomandibular joint (TMJ) disorders, burning mouth syndrome (BMS), oral lichen planus (OLP) and others. The success of therapy depends on the reduction in and management of pain through specific drugs, hence the need to analyze new pain medications with specific activity, which are suitable for long-term use, with a low risk of side effects and interactions with other drugs, and capable of leading to a reduction in orofacial pain. Palmitoylethanolamide (PEA) is a bioactive lipid mediator, which is synthesized in all tissues of the body as a protective pro-homeostatic response to tissue damage and has aroused considerable interest in the dental field due to its anti-inflammatory, analgesic, antimicrobial, antipyretic, antiepileptic, immunomodulatory and neuroprotective activities. It has been observed that PEA could play a role in the management of the pain of orofacial origin, including BMS, OLP, periodontal disease, tongue a la carte and temporomandibular disorders (TMDs), as well as in the treatment of postoperative pain. However, actual clinical data on the use of PEA in the clinical management of patients with orofacial pain are still lacking. Therefore, the main objective of the present study is to provide an overview of orofacial pain in its many manifestations and an updated analysis of the molecular pain-relieving and anti-inflammatory properties of PEA to understand its beneficial effects in the management of patients with orofacial pain, both neuropathic and nociceptive in nature. The aim is also to direct research toward the testing and use of other natural agents that have already been shown to have anti-inflammatory, antioxidant and pain-relieving actions and could offer important support in the treatment of orofacial pain.
Collapse
Affiliation(s)
- Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Martina Donzella
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Pietro Venezia
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Giada Nicolosi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological, and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| |
Collapse
|
6
|
Guo HL, Wang WJ, Dong N, Zhao YT, Dai HR, Hu YH, Zhang YY, Wang J, Qiu JC, Lu XP, Chen F. Integrating metabolomics and lipidomics revealed a decrease in plasma fatty acids but an increase in triglycerides in children with drug-refractory epilepsy. Epilepsia Open 2023. [PMID: 36808532 DOI: 10.1002/epi4.12712] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVE The drug-refractory epilepsy (DRE) in children is commonly observed but the underlying mechanisms remain elusive. We examined whether fatty acids (FAs) and lipids are potentially associated with the pharmacoresistance to valproic acid (VPA) therapy. METHODS This single-center, retrospective cohort study was conducted using data from pediatric patients collected between May 2019 and December 2019 at the Children's Hospital of Nanjing Medical University. Ninety plasma samples from 53 responders with VPA monotherapy (RE group) and 37 non-responders with VPA polytherapy (NR group) were collected. Non-targeted metabolomics and lipidomics analysis for those plasma samples were performed to compare the potential differences of small metabolites and lipids between the two groups. Plasma metabolites and lipids passing the threshold of variable importance in projection value >1, fold change >1.2 or <0.8, and p-value <0.05 were regarded as statistically different substances. RESULTS A total of 204 small metabolites and 433 lipids comprising 16 different lipid subclasses were identified. The well-established partial least squares-discriminant analysis (PLS-DA) revealed a good separation of the RE from the NR group. The FAs and glycerophospholipids status were significantly decreased in the NR group, but their triglycerides (TG) levels were significantly increased. The trend of TG levels in routine laboratory tests was in line with the lipidomics analysis. Meanwhile, cases from the NR group were characterized by a decreased level of citric acid and L-thyroxine, but with an increased level of glucose and 2-oxoglutarate. The top two enriched metabolic pathways involved in the DRE condition were biosynthesis of unsaturated FAs and linoleic acid metabolism. SIGNIFICANCE The results of this study suggested an association between metabolism of FAs and the medically intractable epilepsy. Such novel findings might propose a potential mechanism linked to the energy metabolism. Ketogenic acid and FAs supplementation might therefore be high-priority strategies for DRE management.
Collapse
Affiliation(s)
- Hong-Li Guo
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei-Jun Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Na Dong
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China
| | - Yue-Tao Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao-Ran Dai
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ya-Hui Hu
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Zhang
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Chun Qiu
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Peng Lu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Rai N, Gupta P, Verma A, Singh SK, Gautam V. Isolation and characterization of N-(2-Hydroxyethyl)hexadecanamide from Colletotrichum gloeosporioides with apoptosis-inducing potential in breast cancer cells. Biofactors 2023. [PMID: 36744732 DOI: 10.1002/biof.1940] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
Endophytic fungi are a well-established reservoir of bioactive compounds that are pharmaceutically valuable and therefore, contribute significantly to the biomedical field. The present study aims to identify the bioactive anticancer compound from ethyl acetate extract of fungal endophyte, Colletotrichum gloeosporioides associated with the leaf of the medicinal plant Oroxylum indicum. The fatty acid amide compound N-(2-Hydroxyethyl)hexadecanamide (Palmitoylethanolamide; PEA) was identified using antioxidant activity-guided fractionation assisted with tandem liquid chromatography coupled with quadrupole time of flight mass spectrometry, Fourier transform-infrared spectroscopy, time-of-flight mass spectrometry, and nuclear magnetic resonance. In-Silico molecular docking analysis showed that PEA potentially docked to the active sites of apoptosis-inducing proteins including BAX, BCL-2, P21, and P53. Further validation was done using in vitro study that showed PEA inhibitsthe proliferation, alters nuclear morphology and attenuates the wound closure ability of MDA-MB-231 and MCF-7 cells. PEA induces apoptosis via upregulating cell-cycle arrest (P21), tumor suppression (P53), pro-apoptotic (BAX, CASPASE-8, and FADD) genes, and downregulating anti-apoptotic gene BCL-2. The upregulation of the active form of Caspase-3 was also reported. This is the first-ever report for the isolation of PEA from C. gloeosporioides with anticancer activity against human breast cancer cells and therefore holds great potential for future therapeutics.
Collapse
Affiliation(s)
- Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Senn L, Costa AM, Avallone R, Socała K, Wlaź P, Biagini G. Is the peroxisome proliferator-activated receptor gamma a putative target for epilepsy treatment? Current evidence and future perspectives. Pharmacol Ther 2023; 241:108316. [PMID: 36436690 DOI: 10.1016/j.pharmthera.2022.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ), which belongs to the family of nuclear receptors, has been mainly studied as an important factor in metabolic disorders. However, in recent years the potential role of PPARγ in different neurological diseases has been increasingly investigated. Especially, in the search of therapeutic targets for patients with epilepsy the question of the involvement of PPARγ in seizure control has been raised. Epilepsy is a chronic neurological disorder causing a major impact on the psychological, social, and economic conditions of patients and their families, besides the problems of the disease itself. Considering that the world prevalence of epilepsy ranges between 0.5% - 1.0%, this condition is the fourth for importance among the other neurological disorders, following migraine, stroke, and dementia. Among others, temporal lobe epilepsy (TLE) is the most common form of epilepsy in adult patients. About 65% of individuals who receive antiseizure medications (ASMs) experience seizure independence. For those in whom seizures still recur, investigating PPARγ could lead to the development of novel ASMs. This review focuses on the most important findings from recent investigations about the potential intracellular PPARγ-dependent processes behind different compounds that exhibited anti-seizure effects. Additionally, recent clinical investigations are discussed along with the promising results found for PPARγ agonists and the ketogenic diet (KD) in various rodent models of epilepsy.
Collapse
Affiliation(s)
- Lara Senn
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; PhD School of Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anna-Maria Costa
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, PL 20-033 Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, PL 20-033 Lublin, Poland
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| |
Collapse
|
9
|
Vallés AS, Barrantes FJ. The synaptic lipidome in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184033. [PMID: 35964712 DOI: 10.1016/j.bbamem.2022.184033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Adequate homeostasis of lipid, protein and carbohydrate metabolism is essential for cells to perform highly specific tasks in our organism, and the brain, with its uniquely high energetic requirements, posesses singular characteristics. Some of these are related to its extraordinary dotation of synapses, the specialized subcelluar structures where signal transmission between neurons occurs in the central nervous system. The post-synaptic compartment of excitatory synapses, the dendritic spine, harbors key molecules involved in neurotransmission tightly packed within a minute volume of a few femtoliters. The spine is further compartmentalized into nanodomains that facilitate the execution of temporo-spatially separate functions in the synapse. Lipids play important roles in this structural and functional compartmentalization and in mechanisms that impact on synaptic transmission. This review analyzes the structural and dynamic processes involving lipids at the synapse, highlighting the importance of their homeostatic balance for the physiology of this complex and highly specialized structure, and underscoring the pathologies associated with disbalances of lipid metabolism, particularly in the perinatal and late adulthood periods of life. Although small variations of the lipid profile in the brain take place throughout the adult lifespan, the pathophysiological consequences are clinically manifested mostly during late adulthood. Disturbances in lipid homeostasis in the perinatal period leads to alterations during nervous system development, while in late adulthood they favor the occurrence of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Sofia Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), 8000 Bahía Blanca, Argentina.
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina.
| |
Collapse
|
10
|
Fatty Acid-Derived N-acylethanolamines Dietary Supplementation Attenuates Neuroinflammation and Cognitive Impairment in LPS Murine Model. Nutrients 2022; 14:nu14183879. [PMID: 36145255 PMCID: PMC9504857 DOI: 10.3390/nu14183879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation plays a critical role in the pathogenesis of most neurological and neurodegenerative diseases and therefore represents a potential therapeutic target. In this regard, accelerating the resolution process in chronic neuroinflammation may be an effective strategy to deal with the cognitive consequences of neuropathology and generalized inflammatory processes. N-acylethanolamine (NAE) derivatives of fatty acids, being highly active lipid mediators, possess pro-resolving activity in inflammatory processes and are promising agents for the suppression of neuroinflammation and its consequences. This paper is devoted to a study of the effects played by dietary supplement (DS), containing a composition of fatty acid-derived NAEs, obtained from squid Berryteuthis magister, on the hippocampal neuroinflammatory and memory processes. By detecting the production of pro-inflammatory cytokines and glial markers, a pronounced anti-inflammatory activity of DS was demonstrated both in vitro and in vivo. DS administration reversed the LPS-induced reduction in hippocampal neurogenesis and memory deterioration. LC-MS analysis revealed an increase in the production of a range of NAEs with well-documented anti-inflammatory activity in response to the administered lipid composition. To conclude, we found that tested DS suppresses the neuroinflammatory response by reducing glial activation, positively regulates neural progenitor proliferation, and attenuates hippocampal-dependent memory impairment.
Collapse
|
11
|
Voinsky I, Zoabi Y, Shomron N, Harel M, Cassuto H, Tam J, Rose S, Scheck AC, Karim MA, Frye RE, Aran A, Gurwitz D. Blood RNA Sequencing Indicates Upregulated BATF2 and LY6E and Downregulated ISG15 and MT2A Expression in Children with Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms23179843. [PMID: 36077244 PMCID: PMC9456089 DOI: 10.3390/ijms23179843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in over 100 genes are implicated in autism spectrum disorder (ASD). DNA SNPs, CNVs, and epigenomic modifications also contribute to ASD. Transcriptomics analysis of blood samples may offer clues for pathways dysregulated in ASD. To expand and validate published findings of RNA-sequencing (RNA-seq) studies, we performed RNA-seq of whole blood samples from an Israeli discovery cohort of eight children with ASD compared with nine age- and sex-matched neurotypical children. This revealed 10 genes with differential expression. Using quantitative real-time PCR, we compared RNAs from whole blood samples of 73 Israeli and American children with ASD and 26 matched neurotypical children for the 10 dysregulated genes detected by RNA-seq. This revealed higher expression levels of the pro-inflammatory transcripts BATF2 and LY6E and lower expression levels of the anti-inflammatory transcripts ISG15 and MT2A in the ASD compared to neurotypical children. BATF2 was recently reported as upregulated in blood samples of Japanese adults with ASD. Our findings support an involvement of these genes in ASD phenotypes, independent of age and ethnicity. Upregulation of BATF2 and downregulation of ISG15 and MT2A were reported to reduce cancer risk. Implications of the dysregulated genes for pro-inflammatory phenotypes, immunity, and cancer risk in ASD are discussed.
Collapse
Affiliation(s)
- Irena Voinsky
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yazeed Zoabi
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moria Harel
- Shaare Zedek Medical Center, Jerusalem 91031, Israel
| | | | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, AR 72205, USA
| | - Adrienne C. Scheck
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Mohammad A. Karim
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Richard E. Frye
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Rossignol Medical Center, Phoenix, AZ 85050, USA
| | - Adi Aran
- Shaare Zedek Medical Center, Jerusalem 91031, Israel
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Correspondence: (A.A.); (D.G.)
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence: (A.A.); (D.G.)
| |
Collapse
|
12
|
Cifelli P, Ruffolo G, Ceccanti M, Cambieri C, Libonati L, Palma E, Inghilleri M. Classical and Unexpected Effects of Ultra-Micronized PEA in Neuromuscular Function. Biomolecules 2022; 12:biom12060758. [PMID: 35740883 PMCID: PMC9221058 DOI: 10.3390/biom12060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Recently, the endocannabinoid system has attracted growing attention from the scientific community for its involvement in homeostatic and pathological processes as they pertains to human physiology. Among the constituents of the endocannabinoid system, the molecule palmitoyl ethanolamide has particularly been studied for its ability to reduce several inflammatory processes involving the central nervous system. Here, we reviewed published literature and summarized the main targets of the palmitoyl ethanolamide, along with its unique possible mechanisms for restoring correct functioning of the central nervous system. Moreover, we have highlighted a less-known characteristic of palmitoyl ethanolamide, namely its ability to modulate the function of the neuromuscular junction by binding to acetylcholine receptors in different experimental conditions. Indeed, there are several studies that have highlighted how ultra-micronized palmitoyl ethanolamide is an interesting nutraceutical support for the treatment of pathological neuromuscular conditions, specifically when the normal activity of the acetylcholine receptor is altered. Although further multicentric clinical trials are needed to confirm the efficacy of ultra-micronized palmitoyl ethanolamide in improving symptoms of neuromuscular diseases, all the literature reviewed here strongly supports the ability of this endocannabinoid-like molecule to modulate the acetylcholine receptors thus resulting as a valid support for the treatment of human neuromuscular diseases.
Collapse
Affiliation(s)
- Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence: (P.C.); (M.I.)
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
- IRCCS San Raffaele Roma, 00163 Rome, Italy
| | - Marco Ceccanti
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
| | - Chiara Cambieri
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
| | - Laura Libonati
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
| | - Maurizio Inghilleri
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
- Correspondence: (P.C.); (M.I.)
| |
Collapse
|
13
|
Melik-Kasumov TB, Korneyeva MA, Chuprina AV, Zhabinskaya AA, Rozhko AA. Neuroprotective Effect of Palmitoylethanolamide in the Lithium-Pilocarpine Model of Temporal Lobe Epilepsy. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Bortoletto R, Balestrieri M, Bhattacharyya S, Colizzi M. Is It Time to Test the Antiseizure Potential of Palmitoylethanolamide in Human Studies? A Systematic Review of Preclinical Evidence. Brain Sci 2022; 12:brainsci12010101. [PMID: 35053844 PMCID: PMC8773576 DOI: 10.3390/brainsci12010101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 01/25/2023] Open
Abstract
Antiseizure medications are the cornerstone pharmacotherapy for epilepsy. They are not devoid of side effects. In search for better-tolerated antiseizure agents, cannabinoid compounds and other N-acylethanolamines not directly binding cannabinoid receptors have drawn significant attention. Among these, palmitoylethanolamide (PEA) has shown neuroprotective, anti-inflammatory, and analgesic properties. All studies examining PEA’s role in epilepsy and acute seizures were systematically reviewed. Preclinical studies indicated a systematically reduced PEA tone accompanied by alterations of endocannabinoid levels. PEA supplementation reduced seizure frequency and severity in animal models of epilepsy and acute seizures, in some cases, similarly to available antiseizure medications but with a better safety profile. The peripheral-brain immune system seemed to be more effectively modulated by subchronic pretreatment with PEA, with positive consequences in terms of better responding to subsequent epileptogenic insults. PEA treatment restored the endocannabinoid level changes that occur in a seizure episode, with potential preventive implications in terms of neural damage. Neurobiological mechanisms for PEA antiseizure effect seemed to include the activation of the endocannabinoid system and the modulation of neuroinflammation and excitotoxicity. Although no human study was identified, there is ground for testing the antiseizure potential of PEA and its safety profile in human studies of epilepsy.
Collapse
Affiliation(s)
- Riccardo Bortoletto
- Child and Adolescent Neuropsychiatry Unit, Maternal-Child Integrated Care Department, Integrated University Hospital of Verona, 37126 Verona, Italy;
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
| | - Marco Colizzi
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
- Correspondence:
| |
Collapse
|
15
|
Colizzi M, Bortoletto R, Colli C, Bonomo E, Pagliaro D, Maso E, Di Gennaro G, Balestrieri M. Therapeutic effect of palmitoylethanolamide in cognitive decline: A systematic review and preliminary meta-analysis of preclinical and clinical evidence. Front Psychiatry 2022; 13:1038122. [PMID: 36387000 PMCID: PMC9650099 DOI: 10.3389/fpsyt.2022.1038122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Cognitive decline is believed to be associated with neurodegenerative processes involving excitotoxicity, oxidative damage, inflammation, and microvascular and blood-brain barrier dysfunction. Interestingly, research evidence suggests upregulated synthesis of lipid signaling molecules as an endogenous attempt to contrast such neurodegeneration-related pathophysiological mechanisms, restore homeostatic balance, and prevent further damage. Among these naturally occurring molecules, palmitoylethanolamide (PEA) has been independently associated with neuroprotective and anti-inflammatory properties, raising interest into the possibility that its supplementation might represent a novel therapeutic approach in supporting the body-own regulation of many pathophysiological processes potentially contributing to neurocognitive disorders. Here, we systematically reviewed all human and animal studies examining PEA and its biobehavioral correlates in neurocognitive disorders, finding 33 eligible outputs. Studies conducted in animal models of neurodegeneration indicate that PEA improves neurobehavioral functions, including memory and learning, by reducing oxidative stress and pro-inflammatory and astrocyte marker expression as well as rebalancing glutamatergic transmission. PEA was found to promote neurogenesis, especially in the hippocampus, neuronal viability and survival, and microtubule-associated protein 2 and brain-derived neurotrophic factor expression, while inhibiting mast cell infiltration/degranulation and astrocyte activation. It also demonstrated to mitigate β-amyloid-induced astrogliosis, by modulating lipid peroxidation, protein nytrosylation, inducible nitric oxide synthase induction, reactive oxygen species production, caspase3 activation, amyloidogenesis, and tau protein hyperphosphorylation. Such effects were related to PEA ability to indirectly activate cannabinoid receptors and modulate proliferator-activated receptor-α (PPAR-α) activity. Importantly, preclinical evidence suggests that PEA may act as a disease-modifying-drug in the early stage of a neurocognitive disorder, while its protective effect in the frank disorder may be less relevant. Limited human research suggests that PEA supplementation reduces fatigue and cognitive impairment, the latter being also meta-analytically confirmed in 3 eligible studies. PEA improved global executive function, working memory, language deficits, daily living activities, possibly by modulating cortical oscillatory activity and GABAergic transmission. There is currently no established cure for neurocognitive disorders but only treatments to temporarily reduce symptom severity. In the search for compounds able to protect against the pathophysiological mechanisms leading to neurocognitive disorders, PEA may represent a valid therapeutic option to prevent neurodegeneration and support endogenous repair processes against disease progression.
Collapse
Affiliation(s)
- Marco Colizzi
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Riccardo Bortoletto
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Chiara Colli
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Enrico Bonomo
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Daniele Pagliaro
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Elisa Maso
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianfranco Di Gennaro
- Department of Health Sciences, School of Medicine, University of Catanzaro Magna Graecia, Catanzaro, Italy
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
16
|
McElroy DL, Roebuck AJ, Greba Q, Garai S, Brandt AL, Yilmaz O, Cain SM, Snutch TP, Thakur GA, Laprairie RB, Howland JG. The type 1 cannabinoid receptor positive allosteric modulators GAT591 and GAT593 reduce spike-and-wave discharges in Genetic Absence Epilepsy Rats from Strasbourg. IBRO Neurosci Rep 2022; 12:121-130. [PMID: 35128516 PMCID: PMC8804275 DOI: 10.1016/j.ibneur.2022.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Childhood absence epilepsy (CAE) is a non-convulsive seizure disorder primarily in children characterized by absence seizures. Absence seizures consist of 2.5–5 Hz spike-and-wave discharges (SWDs) detectable using electroencephalography (EEG). Current drug treatments are only partially effective and adverse side effects have spurred research into alternative treatment approaches. Recent research shows that positive allosteric modulation of the type-1 cannabinoid receptor (CB1R) reduces the frequency and duration of SWDs in Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a model that recapitulates the SWDs in CAE. Here, we tested additional CB1R ago-PAMs, GAT591 and GAT593, for their potential in alleviating SWD activity in GAERS. In vitro experiments confirm that GAT591 and GAT593 exhibit increased potency and selectivity in cell cultures and behave as CB1R allosteric agonists and PAMs. To assess drug effects on SWDs, bilateral electrodes were surgically implanted in the somatosensory cortices of male GAERS and EEGs recorded for 4 h following systemic administration of GAT591 or GAT593 (1.0, 3.0 and 10.0 mg/kg). Both GAT591 and GAT593 dose-dependently reduced total SWD duration during the recording period. The greatest effect on SWD activity was observed at 10.0 mg/kg doses, with GAT591 and GAT593 reducing seizure duration by 36% and 34% respectively. Taken together, these results support the continued investigation of CB1R PAMs as a potential therapeutic to alleviate SWDs in absence epilepsy. Positive allosteric modulators (PAMs) of cannabinoid type 1 receptors may help treat absence epilepsy. Two ago-PAMs for CB1Rs were assessed using in vitro and in vivo assays. The increased efficacy of the CB1R-PAMs GAT591 and GAT593 was confirmed in vitro. Systemic injection of either compound reduced spike-and-wave discharges in a rat genetic model of absence epilepsy.
Collapse
Affiliation(s)
- Dan L. McElroy
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Andrew J. Roebuck
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- School of Liberal Arts, Yukon University, Whitehorse, YT Y1A 5K4, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Asher L. Brandt
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Orhan Yilmaz
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Stuart M. Cain
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Terrance P. Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Robert B. Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence to: College of Pharmacy and Nutrition, University of Saskatchewan, 3B36 - 104 Clinic Place, Saskatoon, SK S7N 5E5, Canada.
| | - John G. Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence to: Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, GD30.7, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
17
|
Epps SA. Commonalities for comorbidity: Overlapping features of the endocannabinoid system in depression and epilepsy. Front Psychiatry 2022; 13:1041460. [PMID: 36339877 PMCID: PMC9626804 DOI: 10.3389/fpsyt.2022.1041460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
A wealth of clinical and pre-clinical data supports a bidirectional comorbidity between depression and epilepsy. This suggests commonalities in underlying mechanisms that may serve as targets for more effective treatment strategies. Unfortunately, many patients with this comorbidity are highly refractory to current treatment strategies, while others experience a worsening of one arm of the comorbidity when treating the other arm. This highlights the need for novel pharmaceutical targets that may provide safe and effective relief for both depression and epilepsy symptoms. The endocannabinoid system (ECS) of the brain has become an area of intense interest for possible roles in depression and epilepsy. Several existing literature reviews have provided in-depth analysis of the involvement of various aspects of the ECS in depression or epilepsy separately, while others have addressed the effectiveness of different treatment strategies targeting the ECS in either condition individually. However, there is not currently a review that considers the ECS when both conditions are comorbid. This mini-review will address areas of common overlap between the ECS in depression and in epilepsy, such as commonalities in endocannabinoids themselves, their receptors, and degradative enzymes. These areas of overlap will be discussed alongside their implications for treatment of this challenging comorbidity.
Collapse
Affiliation(s)
- S Alisha Epps
- Department of Psychology, Whitworth University, Spokane, WA, United States
| |
Collapse
|
18
|
The Endocannabinoid System in Glial Cells and Their Profitable Interactions to Treat Epilepsy: Evidence from Animal Models. Int J Mol Sci 2021; 22:ijms222413231. [PMID: 34948035 PMCID: PMC8709154 DOI: 10.3390/ijms222413231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is one of the most common neurological conditions. Yearly, five million people are diagnosed with epileptic-related disorders. The neuroprotective and therapeutic effect of (endo)cannabinoid compounds has been extensively investigated in several models of epilepsy. Therefore, the study of specific cell-type-dependent mechanisms underlying cannabinoid effects is crucial to understanding epileptic disorders. It is estimated that about 100 billion neurons and a roughly equal number of glial cells co-exist in the human brain. The glial population is in charge of neuronal viability, and therefore, their participation in brain pathophysiology is crucial. Furthermore, glial malfunctioning occurs in a wide range of neurological disorders. However, little is known about the impact of the endocannabinoid system (ECS) regulation over glial cells, even less in pathological conditions such as epilepsy. In this review, we aim to compile the existing knowledge on the role of the ECS in different cell types, with a particular emphasis on glial cells and their impact on epilepsy. Thus, we propose that glial cells could be a novel target for cannabinoid agents for treating the etiology of epilepsy and managing seizure-like disorders.
Collapse
|
19
|
Repurposing Peroxisome Proliferator-Activated Receptor Agonists in Neurological and Psychiatric Disorders. Pharmaceuticals (Basel) 2021; 14:ph14101025. [PMID: 34681249 PMCID: PMC8538250 DOI: 10.3390/ph14101025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Common pathophysiological mechanisms have emerged for different neurological and neuropsychiatric conditions. In particular, mechanisms of oxidative stress, immuno-inflammation, and altered metabolic pathways converge and cause neuronal and non-neuronal maladaptative phenomena, which underlie multifaceted brain disorders. The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors modulating, among others, anti-inflammatory and neuroprotective genes in diverse tissues. Both endogenous and synthetic PPAR agonists are approved treatments for metabolic and systemic disorders, such as diabetes, fatty liver disease, and dyslipidemia(s), showing high tolerability and safety profiles. Considering that some PPAR-acting drugs permeate through the blood-brain barrier, the possibility to extend their scope from the periphery to central nervous system has gained interest in recent years. Here, we review preclinical and clinical evidence that PPARs possibly exert a neuroprotective role, thereby providing a rationale for repurposing PPAR-targeting drugs to counteract several diseases affecting the central nervous system.
Collapse
|
20
|
Gobbo D, Scheller A, Kirchhoff F. From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research. Front Neurol 2021; 12:661408. [PMID: 34177766 PMCID: PMC8219957 DOI: 10.3389/fneur.2021.661408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
The electrographic hallmark of childhood absence epilepsy (CAE) and other idiopathic forms of epilepsy are 2.5-4 Hz spike and wave discharges (SWDs) originating from abnormal electrical oscillations of the cortico-thalamo-cortical network. SWDs are generally associated with sudden and brief non-convulsive epileptic events mostly generating impairment of consciousness and correlating with attention and learning as well as cognitive deficits. To date, SWDs are known to arise from locally restricted imbalances of excitation and inhibition in the deep layers of the primary somatosensory cortex. SWDs propagate to the mostly GABAergic nucleus reticularis thalami (NRT) and the somatosensory thalamic nuclei that project back to the cortex, leading to the typical generalized spike and wave oscillations. Given their shared anatomical basis, SWDs have been originally considered the pathological transition of 11-16 Hz bursts of neural oscillatory activity (the so-called sleep spindles) occurring during Non-Rapid Eye Movement (NREM) sleep, but more recent research revealed fundamental functional differences between sleep spindles and SWDs, suggesting the latter could be more closely related to the slow (<1 Hz) oscillations alternating active (Up) and silent (Down) cortical activity and concomitantly occurring during NREM. Indeed, several lines of evidence support the fact that SWDs impair sleep architecture as well as sleep/wake cycles and sleep pressure, which, in turn, affect seizure circadian frequency and distribution. Given the accumulating evidence on the role of astroglia in the field of epilepsy in the modulation of excitation and inhibition in the brain as well as on the development of aberrant synchronous network activity, we aim at pointing at putative contributions of astrocytes to the physiology of slow-wave sleep and to the pathology of SWDs. Particularly, we will address the astroglial functions known to be involved in the control of network excitability and synchronicity and so far mainly addressed in the context of convulsive seizures, namely (i) interstitial fluid homeostasis, (ii) K+ clearance and neurotransmitter uptake from the extracellular space and the synaptic cleft, (iii) gap junction mechanical and functional coupling as well as hemichannel function, (iv) gliotransmission, (v) astroglial Ca2+ signaling and downstream effectors, (vi) reactive astrogliosis and cytokine release.
Collapse
Affiliation(s)
- Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
21
|
Clayton P, Hill M, Bogoda N, Subah S, Venkatesh R. Palmitoylethanolamide: A Natural Compound for Health Management. Int J Mol Sci 2021; 22:5305. [PMID: 34069940 PMCID: PMC8157570 DOI: 10.3390/ijms22105305] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023] Open
Abstract
All nations which have undergone a nutrition transition have experienced increased frequency and falling latency of chronic degenerative diseases, which are largely driven by chronic inflammatory stress. Dietary supplementation is a valid strategy to reduce the risk and severity of such disorders. Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator with extensively documented anti-inflammatory, analgesic, antimicrobial, immunomodulatory and neuroprotective effects. It is well tolerated and devoid of side effects in animals and humans. PEA's actions on multiple molecular targets while modulating multiple inflammatory mediators provide therapeutic benefits in many applications, including immunity, brain health, allergy, pain modulation, joint health, sleep and recovery. PEA's poor oral bioavailability, a major obstacle in early research, has been overcome by advanced delivery systems now licensed as food supplements. This review summarizes the functionality of PEA, supporting its use as an important dietary supplement for lifestyle management.
Collapse
Affiliation(s)
- Paul Clayton
- Institute of Food, Brain and Behaviour, Beaver House, 23-28 Hythe Bridge Street, Oxford OX1 2EP, UK
| | - Mariko Hill
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | - Nathasha Bogoda
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | - Silma Subah
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | | |
Collapse
|
22
|
Roebuck AJ, Greba Q, Smolyakova AM, Alaverdashvili M, Marks WN, Garai S, Baglot SL, Petrie G, Cain SM, Snutch TP, Thakur GA, Hill MN, Howland JG, Laprairie RB. Positive allosteric modulation of type 1 cannabinoid receptors reduces spike-and-wave discharges in Genetic Absence Epilepsy Rats from Strasbourg. Neuropharmacology 2021; 190:108553. [PMID: 33845076 DOI: 10.1016/j.neuropharm.2021.108553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/30/2023]
Abstract
Childhood Absence Epilepsy (CAE) accounts for approximately 10% of all pediatric epilepsies. Current treatments for CAE are ineffective in approximately 1/3 of patients and can be associated with severe side effects such as hepatotoxicity. Certain cannabinoids, such as cannabidiol (CBD), have shown promise in the treatment of pediatric epilepsies. However, CBD remains limited or prohibited in many jurisdictions, and has not been shown to have efficacy in CAE. Modulation of the type 1 cannabinoid receptor (CB1R) may provide more desirable pharmacological treatments. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model many aspects of CAE, including cortical spike and wave discharges (SWDs). We have recently demonstrated that Δ9-tetrahydrocannabinol (THC) increases SWDs in GAERS whereas CBD decreases these events. Here, we characterized aspects of the endocannabinoid system in brain areas relevant to seizures in GAERS and tested whether positive allosteric modulators (PAMs) of CB1R reduced SWDs. Both female and male GAERS had reduced (>50%) expression of CB1R and elevated levels of the endocannabinoid 2-AG in cortex compared to non-epileptic controls (NEC). We then administered the CB1R PAMs GAT211 and GAT229 to GAERS implanted with cortical electrodes. Systemic administration of GAT211 to male GAERS reduced SWDs by 40%. Systemic GAT229 administration reduced SWDs in female and male GAERS. Intracerebral infusion of GAT229 into the cortex of male GAERS reduced SWDs by >60% in a CB1R-dependent manner that was blocked by SR141716A. Together, these experiments identify altered endocannabinoid tone in GAERS and suggest that CB1R PAMs should be explored for treatment of absence seizures.
Collapse
Affiliation(s)
- Andrew J Roebuck
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada; School of Liberal Arts, Yukon University, Whitehorse, YT, Y1A 5K4, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Anna-Maria Smolyakova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Mariam Alaverdashvili
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Wendie N Marks
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, United States
| | - Samantha L Baglot
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gavin Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Stuart M Cain
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, United States
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada; Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada, B3H 4R2.
| |
Collapse
|
23
|
Lago-Fernandez A, Zarzo-Arias S, Jagerovic N, Morales P. Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System. Int J Mol Sci 2021; 22:1001. [PMID: 33498245 PMCID: PMC7863932 DOI: 10.3390/ijms22031001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids have shown to exert their therapeutic actions through a variety of targets. These include not only the canonical cannabinoid receptors CB1R and CB2R but also related orphan G protein-coupled receptors (GPCRs), ligand-gated ion channels, transient receptor potential (TRP) channels, metabolic enzymes, and nuclear receptors. In this review, we aim to summarize reported compounds exhibiting their therapeutic effects upon the modulation of CB1R and/or CB2R and the nuclear peroxisome proliferator-activated receptors (PPARs). Concomitant actions at CBRs and PPARα or PPARγ subtypes have shown to mediate antiobesity, analgesic, antitumoral, or neuroprotective properties of a variety of phytogenic, endogenous, and synthetic cannabinoids. The relevance of this multitargeting mechanism of action has been analyzed in the context of diverse pathologies. Synergistic effects triggered by combinatorial treatment with ligands that modulate the aforementioned targets have also been considered. This literature overview provides structural and pharmacological insights for the further development of dual cannabinoids for specific disorders.
Collapse
Affiliation(s)
| | | | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| | - Paula Morales
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| |
Collapse
|
24
|
Roebuck AJ, Greba Q, Onofrychuk TJ, McElroy DL, Sandini TM, Zagzoog A, Simone J, Cain SM, Snutch TP, Laprairie RB, Howland JG. Dissociable changes in spike and wave discharges following exposure to injected cannabinoids and smoked cannabis in Genetic Absence Epilepsy Rats from Strasbourg. Eur J Neurosci 2020; 55:1063-1078. [PMID: 33370468 DOI: 10.1111/ejn.15096] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022]
Abstract
There is significant interest in the use of cannabinoids for the treatment of many epilepsies including absence epilepsy (AE). Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model many aspects of AE including the presence of spike-and-wave discharges (SWDs) on electroencephalogram (EEG) and behavioral comorbidities, such as elevated anxiety. However, the effects of cannabis plant-based phytocannabinoids have not been tested in GAERS. Therefore, we investigated how SWDs in GAERS are altered by the two most common phytocannabinoids, Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), and exposure to smoke from two different chemovars of cannabis. Animals were implanted with bipolar electrodes in the somatosensory cortex and EEGs were recorded for 2 hr. Injected THC (1-10 mg/kg, i.p.) dose-dependently increased SWDs to over 200% of baseline. In contrast, CBD (30-100 mg/kg, i.p.) produced a ~50% reduction in SWDs. Exposure to smoke from a commercially available chemovar of high-THC cannabis (Mohawk, Aphria Inc.) increased SWDs whereas a low-THC/high-CBD chemovar of cannabis (Treasure Island, Aphria Inc.) did not significantly affect SWDs in GAERS. Pre-treatment with a CB1R antagonist (SR141716A) did not prevent the high-THC cannabis smoke from increasing SWDs, suggesting that the THC-mediated increase may not be CB1R-dependent. Plasma concentrations of THC and CBD were similar to previously reported values following injection and smoke exposure. Compared to injected CBD, it appears Treasure Island did not increase plasma levels sufficiently to observe an anti-epileptic effect. Together these experiments provide initial evidence that acute phytocannabinoid administration exerts the biphasic modulation of SWDs and may differentially impact patients with AE.
Collapse
Affiliation(s)
- Andrew J Roebuck
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada.,School of Liberal Arts, Yukon University, Whitehorse, YT, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Timothy J Onofrychuk
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dan L McElroy
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Thaísa M Sandini
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jonathan Simone
- Department of Biological Sciences, Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| | - Stuart M Cain
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
25
|
Lazarini-Lopes W, da Silva-Júnior RMP, Servilha-Menezes G, Do Val-da Silva RA, Garcia-Cairasco N. Cannabinoid Receptor Type 1 (CB1R) Expression in Limbic Brain Structures After Acute and Chronic Seizures in a Genetic Model of Epilepsy. Front Behav Neurosci 2020; 14:602258. [PMID: 33408620 PMCID: PMC7779524 DOI: 10.3389/fnbeh.2020.602258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/23/2020] [Indexed: 01/25/2023] Open
Abstract
The endocannabinoid system (ECS) is related to several physiological processes, associated to the modulation of brain excitability, with impact in the expression of susceptibility and control of epileptic seizures. The cannabinoid receptor type 1 (CB1R) is widely expressed in the brain, especially in forebrain limbic structures. Changes in CB1R expression are associated with epileptic seizures in animal models and humans. The Wistar Audiogenic Rat (WAR) strain is a genetic model of epilepsy capable of mimicking tonic-clonic and limbic seizures in response to intense sound stimulation. The WAR strain presents several behavioral and physiological alterations associated with seizure susceptibility, but the ECS has never been explored in this strain. Therefore, the aim of the present study was to characterize CB1R expression in forebrain limbic structures important to limbic seizure expression in WARs. We used a detailed anatomical analysis to assess the effects of acute and chronic audiogenic seizures on CB1R expression in several layers and regions of hippocampus and amygdala. WARs showed increased CB1R immunostaining in the inner molecular layer of the hippocampus, when compared to control Wistar rats. Acute and chronic audiogenic seizures increased CB1R immunostaining in several regions of the dorsal hippocampus and amygdala of WARs. Also, changes in CB1R expression in the amygdala, but not in the hippocampus, were associated with limbic recruitment and limbic seizure severity in WARs. Our results suggest that endogenous alterations in CB1R immunostaining in WARs could be associated with genetic susceptibility to audiogenic seizures. We also demonstrated CB1R neuroplastic changes associated with acute and chronic seizures in the amygdala and hippocampus. Moreover, the present study brings important information regarding CB1R and seizure susceptibility in a genetic model of seizures and supports the relationship between ECS and epilepsy.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.,Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Rui M P da Silva-Júnior
- Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.,Department of Internal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriel Servilha-Menezes
- Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Raquel A Do Val-da Silva
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.,Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
26
|
Guida F, Boccella S, Belardo C, Iannotta M, Piscitelli F, De Filippis F, Paino S, Ricciardi F, Siniscalco D, Marabese I, Luongo L, Ercolini D, Di Marzo V, Maione S. Altered gut microbiota and endocannabinoid system tone in vitamin D deficiency-mediated chronic pain. Brain Behav Immun 2020; 85:128-141. [PMID: 30953765 DOI: 10.1016/j.bbi.2019.04.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/18/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022] Open
Abstract
Recent evidence points to the gut microbiota as a regulator of brain and behavior, although it remains to be determined if gut bacteria play a role in chronic pain. The endocannabinoid system is implicated in inflammation and chronic pain processing at both the gut and central nervous system (CNS) levels. In the present study, we used low Vitamin D dietary intake in mice and evaluated possible changes in gut microbiota, pain processing and endocannabinoid system signaling. Vitamin D deficiency induced a lower microbial diversity characterized by an increase in Firmicutes and a decrease in Verrucomicrobia and Bacteroidetes. Concurrently, vitamin D deficient mice showed tactile allodynia associated with neuronal hyperexcitability and alterations of endocannabinoid system members (endogenous mediators and their receptors) at the spinal cord level. Changes in endocannabinoid (anandamide and 2-arachidonoylglycerol) levels were also observed in the duodenum and colon. Remarkably, the anti-inflammatory anandamide congener, palmitoylethanolamide, counteracted both the pain behaviour and spinal biochemical changes in vitamin D deficient mice, whilst increasing the levels of Akkermansia, Eubacterium and Enterobacteriaceae, as compared with vehicle-treated mice. Finally, induction of spared nerve injury in normal or vitamin D deficient mice was not accompanied by changes in gut microbiota composition. Our data suggest the existence of a link between Vitamin D deficiency - with related changes in gut bacterial composition - and altered nociception, possibly via molecular mechanisms involving the endocannabinoid and related mediator signaling systems.
Collapse
Affiliation(s)
- Francesca Guida
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Serena Boccella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Salvatore Paino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Flavia Ricciardi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Dario Siniscalco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Quèbec Heart and Lung Institute and Institute for Nutrition and Functional Foods, Université Laval, 2325 Rue de l'Université, Québec, QC G1V 0A6, Canada.
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
27
|
Tufano M, Pinna G. Is There a Future for PPARs in the Treatment of Neuropsychiatric Disorders? Molecules 2020; 25:molecules25051062. [PMID: 32120979 PMCID: PMC7179196 DOI: 10.3390/molecules25051062] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, peroxisome proliferator-activated receptor (PPAR)-α and γ isoforms have been gaining consistent interest in neuropathology and treatment of neuropsychiatric disorders. Several studies have provided evidence that either the receptor expression or the levels of their endogenously-produced modulators are downregulated in several neurological and psychiatric disorders and in their respective animal models. Remarkably, administration of these endogenous or synthetic ligands improves mood and cognition, suggesting that PPARs may offer a significant pharmacological target to improve several neuropathologies. Furthermore, various neurological and psychiatric disorders reflect sustained levels of systemic inflammation. Hence, the strategy of targeting PPARs for their anti-inflammatory role to improve these disorders is attracting attention. Traditionally, classical antidepressants fail to be effective, specifically in patients with inflammation. Non-steroidal anti-inflammatory drugs exert potent antidepressant effects by acting along with PPARs, thereby strongly substantiating the involvement of these receptors in the mechanisms that lead to development of several neuropathologies. We reviewed running findings in support of a role for PPARs in the treatment of neurological diseases, including Alzheimer's disease or psychiatric disorders, such as major depression. We discuss the opportunity of targeting PPARs as a future pharmacological approach to decrease neuropsychiatric symptoms at the same time that PPAR ligands resolve neuroinflammatory processes.
Collapse
Affiliation(s)
| | - Graziano Pinna
- Correspondence: or ; Tel.: +1-312-355-1464; Fax: +1-312-413-4569
| |
Collapse
|
28
|
Perescis MFJ, Flipsen NAR, van Luijtelaar G, van Rijn CM. Altered SWD stopping mechanism in WAG/Rij rats subchronically treated with the cannabinoid agonist R(+)WIN55,212-2. Epilepsy Behav 2020; 102:106722. [PMID: 31855784 DOI: 10.1016/j.yebeh.2019.106722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 12/26/2022]
Abstract
A single injection of the cannabinoid agonist R(+)WIN55,212-2 (WIN) is known to cause an increase of the mean duration of spontaneously occurring spike-and-wave discharges (SWDs) in rats of the WAG/Rij strain, a genetic model for absence epilepsy. The aim of the present study was to establish whether repeated activation of CB1 receptors with WIN leads to tolerance in its effect on SWD parameters, spectral density, and behavior over time. Adult male WAG/Rij rats (n = 16) were treated with WIN (6 mg/kg) or vehicle (olive oil). Injections (s.c.) took place 3 times per week during 2 weeks. Electroencephalogram (EEG) recordings, each lasting 24 h, were made 3 times: immediately before the first injection (baseline), immediately after the first injection (acute treatment), and after 2 weeks of treatment (subchronic treatment). The recordings were analyzed regarding incidence, durations of SWDs, and hazard rates of the durations of SWDs, the latter to describe SWD stopping probabilities. Putative changes in the spectral content of the EEG before and after WIN during active and passive behaviors were additionally investigated. Spike-and-wave discharge incidence was not affected by the acute and subchronic treatments. The mean duration of the SWDs was significantly longer than controls in the acute WIN-treated animals [11.9-s standard error of the mean (SEM): 0.64 compared with 8.4-s SEM: 0.25] as well as in subchronically treated animals (11.5-s SEM: 1.00 compared with 8.4-s SEM: 0.25). Hazard rates were significantly lower for WIN-treated animals at SWD durations in the 5.04-20.16-s range on both occasions. No effects of WIN on the frequency spectrum of the ongoing EEG were found, neither acutely nor after repeated administration. Evidence for tolerance was not found. The results on the mean duration and hazard rates suggest that stimulating the endocannabinoid system affects the SWD stopping mechanism, resulting in more long SWDs. We speculate that this effect is likely to be a direct result of CB1 receptor agonism and a subsequent decrease in the availability of gamma-aminobutyric acid (GABA) in the reticular thalamic nucleus, which further weakens, in WAG/Rij rats already disturbed, the stopping mechanism of the SWDs.
Collapse
Affiliation(s)
- Martin F J Perescis
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Montessorilaan 3, 6525 HR Nijmegen, the Netherlands; HAS University of Applied Sciences, Onderwijsboulevard 221, 5223 DE 's-Hertogenbosch, the Netherlands.
| | - Nienke A R Flipsen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Montessorilaan 3, 6525 HR Nijmegen, the Netherlands; HAS University of Applied Sciences, Onderwijsboulevard 221, 5223 DE 's-Hertogenbosch, the Netherlands
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Montessorilaan 3, 6525 HR Nijmegen, the Netherlands.
| | - Clementina M van Rijn
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Montessorilaan 3, 6525 HR Nijmegen, the Netherlands.
| |
Collapse
|
29
|
Hohmann U, Pelzer M, Kleine J, Hohmann T, Ghadban C, Dehghani F. Opposite Effects of Neuroprotective Cannabinoids, Palmitoylethanolamide, and 2-Arachidonoylglycerol on Function and Morphology of Microglia. Front Neurosci 2019; 13:1180. [PMID: 31787870 PMCID: PMC6853843 DOI: 10.3389/fnins.2019.01180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
Various studies performed in cultured cells and in in vivo models of neuronal damage showed that cannabinoids exert a neuroprotective effect. The increase in cannabinoids and cannabinoid like substances after stroke has been postulated to limit the content of neuronal injury. As well-accepted, inflammation, and neuronal damage are coupled processes and microglial cells as the main intrinsic immunological effector within the brain play a central role in their regulation. Treatment with the endocannabinoid, 2-arachidonoylglycerol (2-AG) or the endocannabinoid-like substance, palmitoylethanolamide (PEA) affected microglial cells and led to a decrease in the number of damaged neurons after excitotoxical lesion in organotypic hippocampal slice cultures (OHSC). 2-AG activated abnormal cannabidiol (abn-CBD) receptor, PEA was shown to mediate neuroprotection via peroxisome proliferator-activated receptor (PPAR)α. Despite the known neuroprotective and anti-inflammatory properties, the potential synergistic effect, namely possible entourage effect after treatment with the combination of these two protective cannabinoids has not been examined yet. After excitotoxical lesion OHSC were treated with PEA, 2-AG or a combination of both and the number of damaged neurons was evaluated. To investigate the role of microglial cells in PEA and 2-AG mediated protection, primary microglial cell cultures were treated with lipopolysaccharide (LPS) and 2-AG, PEA or a combination of those. Thereafter, we measured NO production, ramification index, proliferation and PPARα distribution in microglial cells. While PEA or 2-AG alone were neuroprotective, their co-application vanished the protective effect. This behavior was independent of microglial cells. Furthermore, PEA and 2-AG had contrary effects on ramification index and on NO production. No significant changes were observed in the proliferation rate of microglial cells after treatment. The expression of PPARα was not changed upon stimulation with PEA or 2-AG, but the distribution was significantly altered. 2-AG and PEA mediated neuroprotection was abolished when co-applied. Both cannabinoids exert contrary effects on morphology and function of microglial cells. Co-application of both cannabinoids with different targets did not lead to a positive additive effect as expected, presumably due to the contrary polarization of microglial cells.
Collapse
Affiliation(s)
- Urszula Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Pelzer
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Joshua Kleine
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tim Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Chalid Ghadban
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
30
|
Junior NCF, Dos-Santos-Pereira M, Guimarães FS, Del Bel E. Cannabidiol and Cannabinoid Compounds as Potential Strategies for Treating Parkinson's Disease and L-DOPA-Induced Dyskinesia. Neurotox Res 2019; 37:12-29. [PMID: 31637586 DOI: 10.1007/s12640-019-00109-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID) are motor disorders with significant impact on the patient's quality of life. Unfortunately, pharmacological treatments that improve these disorders without causing severe side effects are not yet available. Delay in initiating L-DOPA is no longer recommended as LID development is a function of disease duration rather than cumulative L-DOPA exposure. Manipulation of the endocannabinoid system could be a promising therapy to control PD and LID symptoms. In this way, phytocannabinoids and synthetic cannabinoids, such as cannabidiol (CBD), the principal non-psychotomimetic constituent of the Cannabis sativa plant, have received considerable attention in the last decade. In this review, we present clinical and preclinical evidence suggesting CBD and other cannabinoids have therapeutic effects in PD and LID. Here, we discuss CBD pharmacology, as well as its neuroprotective effects and those of other cannabinoids. Finally, we discuss the modulation of several pro- or anti-inflammatory factors as possible mechanisms responsible for the therapeutic/neuroprotective potential of Cannabis-derived/cannabinoid synthetic compounds in motor disorders.
Collapse
Affiliation(s)
- Nilson Carlos Ferreira Junior
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil
| | - Maurício Dos-Santos-Pereira
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil.,Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil
| | - Elaine Del Bel
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil. .,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil. .,Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil.
| |
Collapse
|
31
|
Davis MP, Behm B, Mehta Z, Fernandez C. The Potential Benefits of Palmitoylethanolamide in Palliation: A Qualitative Systematic Review. Am J Hosp Palliat Care 2019; 36:1134-1154. [PMID: 31113223 DOI: 10.1177/1049909119850807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Palmitoylethanolamide (PEA) is a nutraceutical endocannabinoid that was retrospectively discovered in egg yolks. Feeding poor children with known streptococcal infections prevented rheumatic fever. Subsequently, it was found to alter the course of influenza. Unfortunately, there is little known about its pharmacokinetics. Palmitoylethanolamide targets nonclassical cannabinoid receptors rather than CB1 and CB2 receptors. Palmitoylethanolamide will only indirectly activate classical cannabinoid receptors by an entourage effect. There are a significant number of prospective and randomized trials demonstrating the pain-relieving effects of PEA. There is lesser evidence of benefit in patients with nonpain symptoms related to depression, Parkinson disease, strokes, and autism. There are no reported drug-drug interactions and very few reported adverse effects from PEA. Further research is needed to define the palliative benefits to PEA.
Collapse
|
32
|
Kytikova O, Novgorodtseva T, Antonyuk M, Denisenko Y, Gvozdenko T. Molecular Targets of Fatty Acid Ethanolamides in Asthma. ACTA ACUST UNITED AC 2019; 55:medicina55040087. [PMID: 30939862 PMCID: PMC6524029 DOI: 10.3390/medicina55040087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/13/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Asthma is a common allergic pathology of the respiratory tract that requires the study of mechanisms underlying it, due to severe forms of the disease, which are refractory to therapy. The review is devoted to the search for molecular targets of fatty acid ethanolamides in asthma, in particular palmitoylethanolamide (PEA), which has been successfully used in the treatment of chronic inflammatory and neurodegenerative diseases, in the pathogenesis of which the nervous and immune systems are involved. Recently, the potentially important role of neuro-immune interactions in the development of allergic reactions has been established. Many of the clinical symptoms accompanying allergic airway inflammation are the result of the activation of neurons in the airways, so the attention of researchers is currently focused on neuro-immune interactions, which can play an important role in asthma pathophysiology. A growing number of scientific works confirm that the key molecule in the implementation of these inter-systemic interactions is nerve growth factor (NGF). In addition to its classic role in nervous system physiology, NGF is considered as an important factor associated with the pathogenesis of allergic diseases, particularly asthma, by regulating of mast cell differentiation. In this regard, NGF can be one of the targets of PEA in asthma therapy. PEA has a biological effect on the nervous system, and affects the activation and the degranulation of mast cells.
Collapse
Affiliation(s)
- Oxana Kytikova
- Vladivostok Branch of Federal State Budgetary Science Institution «Far Eastern Scientific Center of Physiology and Pathology of Respiration-Institute of Medical Climatology and Rehabilitative Treatment, Russkaya st. 73g, 690105 Vladivostok, Russia.
| | - Tatyana Novgorodtseva
- Vladivostok Branch of Federal State Budgetary Science Institution «Far Eastern Scientific Center of Physiology and Pathology of Respiration-Institute of Medical Climatology and Rehabilitative Treatment, Russkaya st. 73g, 690105 Vladivostok, Russia.
| | - Marina Antonyuk
- Vladivostok Branch of Federal State Budgetary Science Institution «Far Eastern Scientific Center of Physiology and Pathology of Respiration-Institute of Medical Climatology and Rehabilitative Treatment, Russkaya st. 73g, 690105 Vladivostok, Russia.
| | - Yulia Denisenko
- Vladivostok Branch of Federal State Budgetary Science Institution «Far Eastern Scientific Center of Physiology and Pathology of Respiration-Institute of Medical Climatology and Rehabilitative Treatment, Russkaya st. 73g, 690105 Vladivostok, Russia.
| | - Tatyana Gvozdenko
- Vladivostok Branch of Federal State Budgetary Science Institution «Far Eastern Scientific Center of Physiology and Pathology of Respiration-Institute of Medical Climatology and Rehabilitative Treatment, Russkaya st. 73g, 690105 Vladivostok, Russia.
| |
Collapse
|
33
|
Li M, Wang D, Bi W, Jiang ZE, Piao R, Yu H. N-Palmitoylethanolamide Exerts Antidepressant-Like Effects in Rats: Involvement of PPAR α Pathway in the Hippocampus. J Pharmacol Exp Ther 2019; 369:163-172. [PMID: 30635472 DOI: 10.1124/jpet.118.254524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/04/2019] [Indexed: 12/30/2022] Open
Abstract
N-Palmitoylethanolamide (PEA), an endocannabinoid-like molecule, participates in controlling behaviors associated with mental disorders as an endogenous neuroprotective factor. On the basis of accumulating evidence and our previous data, we tested the hypothesis that the antidepressant-like effects of PEA observed during chronic unpredictable mild stress (CUMS) are mediated by possible targets in the peroxisome proliferator-activated receptor alpha (PPARα) pathway. In this study, rats were subjected to 35 days of CUMS and treated with drugs such as PEA (2.5, 5.0, or 10 mg/kg, by mouth), fluoxetine (10 mg/kg, by mouth), or the combination of PEA and MK886 (1-[(4-chlorophenyl) methyl]-3-[(1,1-dimethylethyl) thio]-α,α-dimethyl-5-(1-methylethyl)-1H-indole-2-propanoic acid). After behavioral tests, the animals were sacrificed and their hippocampi were dissected for subsequent studies. PEA normalized weight gain, sucrose preferences, locomotor activity in an open-field test, and levels of the PPARα mRNA and protein in the hippocampus, and it reduced serum adrenocorticotropic hormone (ACTH) and corticosterone (CORT) levels in rats subjected to CUMS. PEA reversed the abnormal levels of several oxidative stress biomarkers and increased the concentrations of two neurotrophic factors in the hippocampus of CUMS-induced rats. In addition, PEA alleviated the decrease in hippocampal weight. However, the aforementioned effects of PEA were completely or partially abolished by MK886, a selective PPARα antagonist. On the basis of these findings, the PPARα pathway in the hippocampus is a possible target of the antidepressant effects of PEA, and the maintenance of a stable hypothalamic-pituitary-adrenal axis, the antioxidant defenses, and normalization of neurotrophic factor levels in the hippocampus are involved in this process.
Collapse
Affiliation(s)
- Miaomiao Li
- Departments of Functional Science (M.L., W.B., Z.-e.J., R.P., H.Y.) and Pharmacology (D.W.), College of Medicine, Yanbian University, Yanji, Jilin, P. R. China
| | - Dan Wang
- Departments of Functional Science (M.L., W.B., Z.-e.J., R.P., H.Y.) and Pharmacology (D.W.), College of Medicine, Yanbian University, Yanji, Jilin, P. R. China
| | - Wenpeng Bi
- Departments of Functional Science (M.L., W.B., Z.-e.J., R.P., H.Y.) and Pharmacology (D.W.), College of Medicine, Yanbian University, Yanji, Jilin, P. R. China
| | - Zheng-Er Jiang
- Departments of Functional Science (M.L., W.B., Z.-e.J., R.P., H.Y.) and Pharmacology (D.W.), College of Medicine, Yanbian University, Yanji, Jilin, P. R. China
| | - Rilong Piao
- Departments of Functional Science (M.L., W.B., Z.-e.J., R.P., H.Y.) and Pharmacology (D.W.), College of Medicine, Yanbian University, Yanji, Jilin, P. R. China
| | - Hailing Yu
- Departments of Functional Science (M.L., W.B., Z.-e.J., R.P., H.Y.) and Pharmacology (D.W.), College of Medicine, Yanbian University, Yanji, Jilin, P. R. China
| |
Collapse
|
34
|
Nazıroğlu M, Taner AN, Balbay E, Çiğ B. Inhibitions of anandamide transport and FAAH synthesis decrease apoptosis and oxidative stress through inhibition of TRPV1 channel in an in vitro seizure model. Mol Cell Biochem 2018; 453:143-155. [PMID: 30159798 DOI: 10.1007/s11010-018-3439-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/24/2018] [Indexed: 02/03/2023]
Abstract
The expression level of TRPV1 is high in hippocampus which is a main epileptic area in the brain. In addition to the actions of capsaicin (CAP) and reactive oxygen species (ROS), the TRPV1 channel is activated in neurons by endogenous cannabinoid, anandamide (AEA). In the current study, we investigated the role of inhibitors of TRPV1 (capsazepine, CPZ), AEA transport (AM404), and FAAH (URB597) on the modulation of Ca2+ entry, apoptosis, and oxidative stress in in vitro seizure-induced rat hippocampus and human glioblastoma (DBTRG) cell line. The seizure was induced in the hippocampal and DBTRG neurons using in vitro 4-aminopyridine (4-AP) to trigger a seizure-like activity model. CPZ and AM404 were fully effective in reversing 4-AP-induced intracellular free Ca2+ concentration of the hippocampus and TRPV1 current density of DBTRG. However, AEA and CAP did not activate TRPV1 in the URB597-treated neurons. Hence, we observed TRPV1 blocker effects of URB597 in the DBTRG neurons. In addition, the AM404 and CPZ treatments decreased intracellular ROS production, mitochondrial membrane depolarization, apoptosis, caspases 3 and 9 values in the hippocampus. In conclusion, the results indicate that inhibition of AEA transport, FAAH synthesis, and TRPV1 activity can result in remarkable neuroprotective effects in the epileptic neurons. Possible molecular pathways of involvement of capsazepine (CPZ) and AM4040 in anandamide and capsaicin (CAP)-induced apoptosis, oxidative stress, and Ca2+ accumulation through TRPV1 channel in the seizure-induced rat hippocampus and human glioblastoma neurons. The TRPV1 channel is activated by different stimuli including reactive oxygen species (ROS), anandamide (AEA), and CAP and it is blocked by capsazepine (CPZ). Cannabinoid receptor type 1 (CB1) is also activated by AEA. The AEA levels in cytosol are decreased by fatty acid amide hydrolase (FAAH) enzyme. Inhibition of FAAH through URB597 induces stimulation of CB1 receptor through accumulation AEA. URB597 acts antiepileptic effects through inhibition of TRPV1. Overloaded Ca2+ concentration of mitochondria can induce an apoptotic program by stimulating the release of apoptosis-promoting factors such as caspases 3 and caspase 9 by generating ROS due to respiratory chain damage. AM404 and CPZ reduce TRPV1 channel activation and Ca2+ entry in the in vitro 4-AP seizure model-induced hippocampal and glioblastoma neurons.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, 32260, Isparta, Turkey. .,Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Afife Nur Taner
- Medicine Faculty, Suleyman Demirel University, Isparta, Turkey
| | - Esra Balbay
- Medicine Faculty, Suleyman Demirel University, Isparta, Turkey
| | - Bilal Çiğ
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
35
|
Gavzan H, Hashemi F, Babaei J, Sayyah M. A role for peroxisome proliferator-activated receptor α in anticonvulsant activity of docosahexaenoic acid against seizures induced by pentylenetetrazole. Neurosci Lett 2018; 681:83-86. [DOI: 10.1016/j.neulet.2018.05.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 11/16/2022]
|
36
|
Zareie P, Sadegh M, Palizvan MR, Moradi-Chameh H. Anticonvulsive effects of endocannabinoids; an investigation to determine the role of regulatory components of endocannabinoid metabolism in the Pentylenetetrazol induced tonic- clonic seizures. Metab Brain Dis 2018; 33:939-948. [PMID: 29504066 DOI: 10.1007/s11011-018-0195-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022]
Abstract
2-Arachidonoylglycerol (2-AG) and anandamide are two major endocannabinoids produced, released and eliminated by metabolic pathways. Anticonvulsive effect of 2-AG and CB1 receptor is well-established. Herein, we designed to investigate the anticonvulsive influence of key components of the 2-AG and anandamide metabolism. Tonic-clonic seizures were induced by an injection of Pentylenetetrazol (80 mg/kg, i.p.) in adult male Wistar rats. Delay and duration for the seizure stages were considered for analysis. Monoacylglycerol lipase blocker (JJKK048; 1 mg/kg) or alpha/beta hydroxylase domain 6 blocker (WWL70; 5 mg/kg) were administrated alone or with 2-AG to evaluate the anticonvulsive potential of these enzymes. To determine the CB1 receptor involvement, its blocker (MJ15; 3 mg/kg) was administrated associated with JJKK048 or WWL70. To assess anandamide anticonvulsive effect, anandamide membrane transporter blocker (LY21813240; 2.5 mg/kg) was used alone or associated with MJ15. Also, fatty acid amide hydrolase blocker (URB597; 1 mg/kg; to prevent intracellular anandamide hydrolysis) were used alone or with AMG21629 (transient receptor potential vanilloid; TRPV1 antagonist; 3 mg/kg). All compounds were dissolved in DMSO and injected i.p., before the Pentylenetetrazol. Both JJKK048 and WWL70 revealed anticonvulsive effect. Anticonvulsive effect of JJKK048 but not WWL70 was CB1 receptor dependent. LY2183240 showed CB1 receptor dependent anticonvulsive effect. However, URB597 revealed a TRPV1 dependent proconvulsive effect. It seems extracellular accumulation of 2-AG or anandamide has anticonvulsive effect through the CB1 receptor, while intracellular anandamide accumulation is proconvulsive through TRPV1.
Collapse
Affiliation(s)
- Parisa Zareie
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehdi Sadegh
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Mohammad Reza Palizvan
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Homeira Moradi-Chameh
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada
| |
Collapse
|
37
|
Post JM, Loch S, Lerner R, Remmers F, Lomazzo E, Lutz B, Bindila L. Antiepileptogenic Effect of Subchronic Palmitoylethanolamide Treatment in a Mouse Model of Acute Epilepsy. Front Mol Neurosci 2018; 11:67. [PMID: 29593494 PMCID: PMC5861196 DOI: 10.3389/fnmol.2018.00067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/16/2018] [Indexed: 12/16/2022] Open
Abstract
Research on the antiepileptic effects of (endo-)cannabinoids has remarkably progressed in the years following the discovery of fundamental role of the endocannabinoid (eCB) system in controlling neural excitability. Moreover, an increasing number of well-documented cases of epilepsy patients exhibiting multi-drug resistance report beneficial effects of cannabis use. Pre-clinical and clinical research has increasingly focused on the antiepileptic effectiveness of exogenous administration of cannabinoids and/or pharmacologically induced increase of eCBs such as anandamide (also known as arachidonoylethanolamide [AEA]). Concomitant research has uncovered the contribution of neuroinflammatory processes and peripheral immunity to the onset and progression of epilepsy. Accordingly, modulation of inflammatory pathways such as cyclooxygenase-2 (COX-2) was pursued as alternative therapeutic strategy for epilepsy. Palmitoylethanolamide (PEA) is an endogenous fatty acid amide related to the centrally and peripherally present eCB AEA, and is a naturally occurring nutrient that has long been recognized for its analgesic and anti-inflammatory properties. Neuroprotective and anti-hyperalgesic properties of PEA were evidenced in neurodegenerative diseases, and antiepileptic effects in pentylenetetrazol (PTZ), maximal electroshock (MES) and amygdaloid kindling models of epileptic seizures. Moreover, numerous clinical trials in chronic pain revealed that PEA treatment is devoid of addiction potential, dose limiting side effects and psychoactive effects, rendering PEA an appealing candidate as antiepileptic compound or adjuvant. In the present study, we aimed at assessing antiepileptic properties of PEA in a mouse model of acute epileptic seizures induced by systemic administration of kainic acid (KA). KA-induced epilepsy in rodents is assumed to resemble to different extents human temporal lobe epilepsy (TLE) depending on the route of KA administration; intracerebral (i.c.) injection was recently shown to most closely mimic human TLE, while systemic KA administration causes more widespread pathological damage, both in brain and periphery. To explore the potential of PEA to exert therapeutic effects both in brain and periphery, acute and subchronic administration of PEA by intraperitoneal (i.p.) injection was assessed on mice with systemically administered KA. Specifically, we investigated: (i) neuroprotective and anticonvulsant properties of acute and subchronic PEA treatment in KA-induced seizure models, and (ii) temporal dynamics of eCB and eicosanoid (eiC) levels in hippocampus and plasma over 180 min post seizure induction in PEA-treated and non-treated KA-injected mice vs. vehicle injected mice. Finally, we compared the systemic PEA treatment with, and in combination with, pharmacological blockade of fatty acid amide hydrolase (FAAH) in brain and periphery, in terms of anticonvulsant properties and modulation of eCBs and eiCs. Here, we demonstrate that subchronic administration of PEA significantly alleviates seizure intensity, promotes neuroprotection and induces modulation of the plasma and hippocampal eCB and eiC levels in systemic KA-injected mice.
Collapse
Affiliation(s)
- Julia M Post
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Sebastian Loch
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Raissa Lerner
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Floortje Remmers
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
38
|
Immunoregulatory effect of mast cells influenced by microbes in neurodegenerative diseases. Brain Behav Immun 2017; 65:68-89. [PMID: 28676349 DOI: 10.1016/j.bbi.2017.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
When related to central nervous system (CNS) health and disease, brain mast cells (MCs) can be a source of either beneficial or deleterious signals acting on neural cells. We review the current state of knowledge about molecular interactions between MCs and glia in neurodegenerative diseases such as Multiple Sclerosis, Alzheimer's disease, Amyotrophic Lateral Sclerosis, Parkinson's disease, Epilepsy. We also discuss the influence on MC actions evoked by the host microbiota, which has a profound effect on the host immune system, inducing important consequences in neurodegenerative disorders. Gut dysbiosis, reduced intestinal motility and increased intestinal permeability, that allow bacterial products to circulate and pass through the blood-brain barrier, are associated with neurodegenerative disease. There are differences between the microbiota of neurologic patients and healthy controls. Distinguishing between cause and effect is a challenging task, and the molecular mechanisms whereby remote gut microbiota can alter the brain have not been fully elucidated. Nevertheless, modulation of the microbiota and MC activation have been shown to promote neuroprotection. We review this new information contributing to a greater understanding of MC-microbiota-neural cells interactions modulating the brain, behavior and neurodegenerative processes.
Collapse
|
39
|
The Role of Nuclear Hormone Receptors in Cannabinoid Function. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:291-328. [PMID: 28826538 DOI: 10.1016/bs.apha.2017.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the early 2000s, evidence has been accumulating that most cannabinoid compounds interact with the nuclear hormone family peroxisome proliferator-activated receptors (PPARs). This can be through direct binding of these compounds to PPARs, metabolism of cannabinoid to other PPAR-activating chemicals, or indirect activation of PPAR through cell signaling pathways. Delivery of cannabinoids to the nucleus may be facilitated by fatty acid-binding proteins and carrier proteins. All PPAR isoforms appear to be activated by cannabinoids, but the majority of evidence is for PPARα and γ. To date, little is known about the potential interaction of cannabinoids with other nuclear hormones. At least some (but not all) of the well-known biological actions of cannabinoids including neuroprotection, antiinflammatory action, and analgesic effects are partly mediated by PPAR-activation, often in combination with activation of the more traditional target sites of action. This has been best investigated for the endocannabinoid-like compounds palmitoylethanolamide and oleoylethanolamine acting at PPARα, and for phytocannabinoids or their derivatives activation acting at PPARγ. However, there are still many aspects of cannabinoid activation of PPAR and the role it plays in the biological and therapeutic effects of cannabinoids that remain to be investigated.
Collapse
|
40
|
Manjarrez-Marmolejo J, Franco-Pérez J. Gap Junction Blockers: An Overview of their Effects on Induced Seizures in Animal Models. Curr Neuropharmacol 2017; 14:759-71. [PMID: 27262601 PMCID: PMC5050393 DOI: 10.2174/1570159x14666160603115942] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 02/26/2016] [Accepted: 04/21/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Gap junctions are clusters of intercellular channels allowing the bidirectional pass of ions directly into the cytoplasm of adjacent cells. Electrical coupling mediated by gap junctions plays a role in the generation of highly synchronized electrical activity. The hypersynchronous neuronal activity is a distinctive characteristic of convulsive events. Therefore, it has been postulated that enhanced gap junctional communication is an underlying mechanism involved in the generation and maintenance of seizures. There are some chemical compounds characterized as gap junction blockers because of their ability to disrupt the gap junctional intercellular communication. OBJECTIVE Hence, the aim of this review is to analyze the available data concerning the effects of gap junction blockers specifically in seizure models. RESULTS Carbenoxolone, quinine, mefloquine, quinidine, anandamide, oleamide, heptanol, octanol, meclofenamic acid, niflumic acid, flufenamic acid, glycyrrhetinic acid and retinoic acid have all been evaluated on animal seizure models. In vitro, these compounds share anticonvulsant effects typically characterized by the reduction of both amplitude and frequency of the epileptiform activity induced in brain slices. In vivo, gap junction blockers modify the behavioral parameters related to seizures induced by 4-aminopyridine, pentylenetetrazole, pilocarpine, penicillin and maximal electroshock. CONCLUSION Although more studies are still required, these molecules could be a promising avenue in the search for new pharmaceutical alternatives for the treatment of epilepsy.
Collapse
Affiliation(s)
| | - Javier Franco-Pérez
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, M.V.S. Insurgentes Sur 3877, Col. La Fama, C.P. 14269, Mexico D.F., Mexico
| |
Collapse
|
41
|
Palleria C, Leo A, Andreozzi F, Citraro R, Iannone M, Spiga R, Sesti G, Constanti A, De Sarro G, Arturi F, Russo E. Liraglutide prevents cognitive decline in a rat model of streptozotocin-induced diabetes independently from its peripheral metabolic effects. Behav Brain Res 2017; 321:157-169. [PMID: 28062257 DOI: 10.1016/j.bbr.2017.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/23/2016] [Accepted: 01/01/2017] [Indexed: 12/13/2022]
Abstract
Diabetes has been identified as a risk factor for cognitive dysfunctions. Glucagone like peptide 1 (GLP-1) receptor agonists have neuroprotective effects in preclinical animal models. We evaluated the effects of GLP-1 receptor agonist, liraglutide (LIR), on cognitive decline associated with diabetes. Furthermore, we studied LIR effects against hippocampal neurodegeneration induced by streptozotocin (STZ), a well-validated animal model of diabetes and neurodegeneration associated with cognitive decline. Diabetes and/or cognitive decline were induced in Wistar rats by intraperitoneal or intracerebroventricular injection of STZ and then rats were treated with LIR (300μg/kg daily subcutaneously) for 6 weeks. Rats underwent behavioral tests: Morris water maze, passive avoidance, forced swimming (FST), open field, elevated plus maze, rotarod tests. Furthermore, LIR effects on hippocampal neurodegeneration and mTOR pathway (AKT, AMPK, ERK and p70S6K) were assessed. LIR improved learning and memory only in STZ-treated animals. Anxiolytic effects were observed in all LIR-treated groups but pro-depressant effects in CTRL rats were observed. At a cellular/molecular level, intracerebroventricular STZ induced hippocampal neurodegeneration accompanied by decreased phosphorylation of AMPK, AKT, ERK and p70S6K. LIR reduced hippocampal neuronal death and prevented the decreased phosphorylation of AKT and p70S6K; AMPK was hyper-phosphorylated in comparison to CTRL group, while LIR had no effects on ERK. LIR reduced animal endurance in the rotarod test and this effect might be also linked to a reduction in locomotor activity during only the last two minutes of the FST. LIR had protective effects on cognitive functions in addition to its effects on blood glucose levels. LIR effects in the brain also comprised anxiolytic and pro-depressant actions (although influenced by reduced endurance). Finally, LIR protected from diabetes-dependent hippocampal neurodegeneration likely through an effect on mTOR pathway.
Collapse
Affiliation(s)
- Caterina Palleria
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Antonio Leo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100, Viale Europa, Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Michelangelo Iannone
- CNR, Institute of Neurological Sciences, Pharmacology Section, Roccelletta di Borgia, Catanzaro, Italy
| | - Rosangela Spiga
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100, Viale Europa, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100, Viale Europa, Catanzaro, Italy
| | - Andrew Constanti
- Department of Pharmacology, UCL School of Pharmacy, 29/39 Brunswick Square, London, UK
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100, Viale Europa, Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy.
| |
Collapse
|
42
|
Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Gessi S, Merighi S, Borea PA. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists. Med Res Rev 2016; 37:936-983. [PMID: 27976413 DOI: 10.1002/med.21427] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/28/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel expressed on sensory neurons triggering an influx of cations. TRPV1 receptors function as homotetramers responsive to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Its phosphorylation increases sensitivity to both chemical and thermal stimuli, while desensitization involves a calcium-dependent mechanism resulting in receptor dephosphorylation. TRPV1 functions as a sensor of noxious stimuli and may represent a target to avoid pain and injury. TRPV1 activation has been associated to chronic inflammatory pain and peripheral neuropathy. Its expression is also detected in nonneuronal areas such as bladder, lungs, and cochlea where TRPV1 activation is responsible for pathology development of cystitis, asthma, and hearing loss. This review offers a comprehensive overview about TRPV1 receptor in the pathophysiology of chronic pain, epilepsy, cough, bladder disorders, diabetes, obesity, and hearing loss, highlighting how drug development targeting this channel could have a clinical therapeutic potential. Furthermore, it summarizes the advances of medicinal chemistry research leading to the identification of highly selective TRPV1 antagonists and their analysis of structure-activity relationships (SARs) focusing on new strategies to target this channel.
Collapse
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Gessi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Merighi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Andrea Borea
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
43
|
Jiang B, Wang YJ, Wang H, Song L, Huang C, Zhu Q, Wu F, Zhang W. Antidepressant-like effects of fenofibrate in mice via the hippocampal brain-derived neurotrophic factor signalling pathway. Br J Pharmacol 2016; 174:177-194. [PMID: 27861729 DOI: 10.1111/bph.13668] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Depression is a neuropsychiatric disorder accompanied by a decrease in the brain-derived neurotrophic factor (BDNF) signalling cascade in the hippocampus. Fenofibrate is a selective agonist of PPAR-α. In this study, we investigated the antidepressant-like effects of fenofibrate in C57BL/6J mice. EXPERIMENTAL APPROACH The antidepressant-like effects of fenofibrate were first identified in the forced swim test (FST) and tail suspension test (TST), and then assessed in the chronic social defeat stress (CSDS) model. The changes in the hippocampal BDNF signalling pathway and adult hippocampal neurogenesis after CSDS and fenofibrate treatment were further investigated. A PPAR-α inhibitor, cannabinoid system inhibitors and BDNF signalling inhibitors were also used to determine the antidepressant mechanisms of fenofibrate. KEY RESULTS Fenofibrate administration exhibited antidepressant-like effects in the FST and TST without affecting the locomotor activity of mice. Chronic fenofibrate treatment also prevented the depressive-like symptoms induced by CSDS. Moreover, fenofibrate restored the CSDS-induced decrease in the hippocampal BDNF signalling cascade and adult hippocampal neurogenesis. The antidepressant-like effects of fenofibrate could be blocked by a PPAR-α inhibitor and BDNF signalling inhibitors. CONCLUSIONS AND IMPLICATIONS Taken together, these results suggest that fenofibrate has antidepressant-like effects mediated through the promotion of the hippocampal BDNF signalling cascade.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Ying-Jie Wang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Hao Wang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Lu Song
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Qing Zhu
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Feng Wu
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Wei Zhang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| |
Collapse
|
44
|
Russo E, Citraro R, Constanti A, Leo A, Lüttjohann A, van Luijtelaar G, De Sarro G. Upholding WAG/Rij rats as a model of absence epileptogenesis: Hidden mechanisms and a new theory on seizure development. Neurosci Biobehav Rev 2016; 71:388-408. [DOI: 10.1016/j.neubiorev.2016.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 09/19/2016] [Indexed: 02/06/2023]
|
45
|
Płonka-Półtorak E, Zagrodzki P, Kryczyk-Kozioł J, Westermarck T, Kaipainen P, Kaski M, Atroshi F. Does valproate therapy in epileptic patients contribute to changing atherosclerosis risk factors? The role of lipids and free fatty acids. Pharmacol Rep 2016; 68:1339-1344. [PMID: 27701058 DOI: 10.1016/j.pharep.2016.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/01/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND We aimed to demonstrate the relationship between the valproate (VPA) treatment versus lipid and serum free fatty acids (FFAs) profiles to be the potential atherosclerosis risk factor in epileptic patients. METHODS Fasting blood samples were taken from 21 adult VPA-treated patients and 21 controls. The profiles of lipids, FFAs, clinical parameters and body mass index (BMI) were evaluated. RESULTS No significant differences between the study group and controls were found for any of the studied parameters. However, significant differences in the total cholesterol (CHOL), low-density-lipoprotein cholesterol (LDL), triglycerides, the CHOL/HDL (high-density-lipoprotein cholesterol) ratio, and Atherogenic Index of Plasma were observed for overweight patients when compared to those of normal weight. Patients with uncontrolled epilepsy tended to have significantly lower palmitic acid level than seizure-free patients. Oleic acid was found to be positively correlated with VPA concentration for patients with uncontrolled epilepsy, and with the dose corrected VPA concentration for all the patients. The acid was however negatively correlated with stearic acid for both the controls and the patients with uncontrolled epilepsy. PLS method revealed CHOL, LDL, triglycerides and myristic acid to be positively interrelated for the whole group under the study, whereas these parameters were found to be negatively correlated with VPA concentration, and positively with BMI. Furthermore, high sensitivity C-reactive protein was found to be negatively correlated with palmitic acid levels. CONCLUSION Overweight VPA-treated patients are exposed to higher risk of atherosclerosis. Alterations in FFAs are likely to depend on seizures control, and on VPA levels.
Collapse
Affiliation(s)
| | - Paweł Zagrodzki
- Henryk Niewodniczański Institute of Nuclear Physics, Kraków, Poland; Department of Food Chemistry and Nutrition, Medical College Jagiellonian University, Kraków, Poland
| | - Jadwiga Kryczyk-Kozioł
- Department of Food Chemistry and Nutrition, Medical College Jagiellonian University, Kraków, Poland
| | | | | | - Markus Kaski
- Rinnekoti Research Centre, FIN 02980 Espoo, Finland
| | - Faik Atroshi
- Department of Pharmacology and Toxicology, ELTDK, FIN 00014 University of Helsinki, Finland
| |
Collapse
|
46
|
Citraro R, Russo E, Leo A, Russo R, Avagliano C, Navarra M, Calignano A, De Sarro G. Pharmacokinetic-pharmacodynamic influence of N-palmitoylethanolamine, arachidonyl-2'-chloroethylamide and WIN 55,212-2 on the anticonvulsant activity of antiepileptic drugs against audiogenic seizures in DBA/2 mice. Eur J Pharmacol 2016; 791:523-534. [PMID: 27663280 DOI: 10.1016/j.ejphar.2016.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022]
Abstract
We evaluated the effects of ACEA (selective cannabinoid (CB)1 receptor agonist), WIN 55,212-2 mesylate (WIN; non-selective CB1 and CB2 receptor agonist) and N-palmitoylethanolamine (PEA; an endogenous fatty acid of ethanolamide) in DBA/2 mice, a genetic model of reflex audiogenic epilepsy. PEA, ACEA or WIN intraperitoneal (i.p.) administration decreased the severity of tonic-clonic seizures. We also studied the effects of PEA, WIN or ACEA after co-administration with NIDA-41020 (CB1 receptor antagonist) or GW6471 (PPAR-α antagonist) and compared the effects of WIN, ACEA and PEA in order to clarify their mechanisms of action. PEA has anticonvulsant features in DBA/2 mice mainly through PPAR-α and likely indirectly on CB1 receptors, whereas ACEA and WIN act through CB1 receptors. The co-administration of ineffective doses of ACEA, PEA and WIN with some antiepileptic drugs (AEDs) was examined in order to identify potential pharmacological interactions in DBA/2 mice. We found that PEA, ACEA and WIN co-administration potentiated the efficacy of carbamazepine, diazepam, felbamate, gabapentin, phenobarbital, topiramate and valproate and PEA only also that of oxcarbazepine and lamotrigine whereas, their co-administration with levetiracetam and phenytoin did not have effects. PEA, ACEA or WIN administration did not significantly influence the total plasma and brain levels of AEDs; therefore, it can be concluded that the observed potentiation was only of pharmacodynamic nature. In conclusion, PEA, ACEA and WIN show anticonvulsant effects in DBA/2 mice and potentiate the effects several AEDs suggesting a possible therapeutic relevance of these drugs and their mechanisms of action.
Collapse
Affiliation(s)
- Rita Citraro
- Science of Health Department, Clinical Pharmacology Unit, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, Clinical Pharmacology Unit, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Antonio Leo
- Science of Health Department, Clinical Pharmacology Unit, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Michele Navarra
- Department of Experimental Pharmacology, University of Messina, Messina, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Giovambattista De Sarro
- Science of Health Department, Clinical Pharmacology Unit, School of Medicine, University "Magna Graecia" of Catanzaro, Italy.
| |
Collapse
|
47
|
Sánchez-Fuentes A, Marichal-Cancino BA, Méndez-Díaz M, Becerril-Meléndez AL, Ruiz-Contreras AE, Prospéro-Garcia O. mGluR1/5 activation in the lateral hypothalamus increases food intake via the endocannabinoid system. Neurosci Lett 2016; 631:104-108. [PMID: 27542344 DOI: 10.1016/j.neulet.2016.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/14/2016] [Accepted: 08/13/2016] [Indexed: 11/17/2022]
Abstract
Mounting evidence has shown that glutamatergic and endocannabinoid systems in the hypothalamus regulate mammalian food intake. Stimulation of hypothalamic mGluR1/5 and CB1 receptors induces hyperphagia suggesting a possible interaction between these systems to control food intake. In addition, synthesis of endocannabinoids has been reported after mGluR1/5 stimulation in the brain. The aim of this study was to examine the potential cannabinergic activity in the food intake induction by lateral hypothalamic stimulation of mGluR1/5. Wistar albino male rats received bilateral infusions in the lateral hypothalamus (LH) of: (i) vehicle; (ii) (RS)-2-Chloro-5-hidroxyphenylglycine (CHPG; mGluR1/5 agonist); (iii) 2-AG (CB1 endogenous agonist); (iv) AM251 (CB1 antagonist); (v) tetrahydrolipstatin (THL, 1.2μg; diacyl-glycerol lipase inhibitor); and (vi) combinations of CHPG + with the other aforementioned drugs. Food intake was evaluated the first two hours after drug administration. CHPG significantly increased food intake; whereas CHPG in combination with a dose of 2-AG (with no effects on food intake) greatly increased food ingestion compared to CHPG alone. The increase induced by CHPG in food intake was prevented with AM251 or THL. These results suggest that activation of mGluR1/5 in the lateral hypothalamus induces an orexigenic effect via activation of the endocannabinoid system.
Collapse
Affiliation(s)
- Asai Sánchez-Fuentes
- Grupo de Neurociencias, Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Bruno A Marichal-Cancino
- Grupo de Neurociencias, Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Mónica Méndez-Díaz
- Grupo de Neurociencias, Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Alline L Becerril-Meléndez
- Grupo de Neurociencias, Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Alejandra E Ruiz-Contreras
- Lab. Neurogenomica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicologia, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Oscar Prospéro-Garcia
- Grupo de Neurociencias, Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
48
|
Abstract
Epilepsy has 2-3% incidence worldwide. However, present antiepileptic drugs provide only partial control of seizures. Calcium ion accumulation in hippocampal neurons has long been known as a major contributor to the etiology of epilepsy. TRPV1 is a calcium-permeable channel and mediator of epilepsy in the hippocampus. TRPV1 is expressed in epileptic brain areas such as CA1 area and dentate gyrus of the hippocampus. Here the author reviews the patent literature on novel molecules targeting TRPV1 that are currently being investigated in the laboratory and are candidates for future clinical evaluation in the management of epilepsy. A limited number of recent reports have implicated TRPV1 in the induction or treatment of epilepsy suggesting that this may be new area for potential drugs targeting this debilitating disease. Thus activation of TRPV1 by oxidative stress, resiniferatoxin, cannabinoid receptor (CB1) activators (i.e. anandamide) or capsaicin induced epileptic effects, and these effects could be reduced by appropriate inhibitors, including capsazepine (CPZ), 5'-iodoresiniferatoxin (IRTX), resolvins, and CB1 antagonists. It has been also reported that CPZ and IRTX reduced spontaneous excitatory synaptic transmission through modulation of glutaminergic systems and desensitization of TRPV1 channels in the hippocampus of rats. Immunocytochemical studies indicated that TRPV1 channel expression increased in the hippocampus of mice and patients with temporal lobe epilepsy. Taken together, findings in the current literature support a role for calcium ion accumulation through TRPV1 channels in the etiology of epileptic seizures, indicating that inhibition of TRPV1 in the hippocampus may possibly be a novel target for prevention of epileptic seizures.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Director of Neuroscience Research Center, Suleyman Demirel University, TR-32260, Isparta, Turkey.
| |
Collapse
|
49
|
Dos-Santos-Pereira M, da-Silva CA, Guimarães FS, Del-Bel E. Co-administration of cannabidiol and capsazepine reduces L-DOPA-induced dyskinesia in mice: Possible mechanism of action. Neurobiol Dis 2016; 94:179-95. [PMID: 27373843 DOI: 10.1016/j.nbd.2016.06.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Maurício Dos-Santos-Pereira
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Célia Aparecida da-Silva
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Francisco Silveira Guimarães
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Pharmacology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Elaine Del-Bel
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; USP, Medical School of Ribeirão Preto, Department of Pharmacology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
50
|
O'Sullivan SE. An update on PPAR activation by cannabinoids. Br J Pharmacol 2016; 173:1899-910. [PMID: 27077495 PMCID: PMC4882496 DOI: 10.1111/bph.13497] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 03/16/2016] [Accepted: 04/04/2016] [Indexed: 02/06/2023] Open
Abstract
Some cannabinoids activate the different isoforms of PPARs (α, β and γ), as shown through the use of reporter gene assays, binding studies, selective antagonists and knockout studies. Activation of all isoforms, but primarily PPARα and γ, mediates some (but not all) of the analgesic, neuroprotective, neuronal function modulation, anti-inflammatory, metabolic, anti-tumour, gastrointestinal and cardiovascular effects of some cannabinoids, often in conjunction with activation of the more traditional target sites of action such as the cannabinoid CB1 and CB2 receptors and the TRPV1 ion channel. PPARs also mediate some of the effects of inhibitors of endocannabinoid degradation or transport. Cannabinoids may be chaperoned to the PPARs by fatty acid binding proteins. The aims of this review are to update the evidence supporting PPAR activation by cannabinoids and to review the physiological responses to cannabinoids that are mediated, and not mediated, by PPAR activation.
Collapse
|