1
|
Olivero G, Taddeucci A, Vallarino G, Trebesova H, Roggeri A, Gagliani MC, Cortese K, Grilli M, Pittaluga A. Complement tunes glutamate release and supports synaptic impairments in an animal model of multiple sclerosis. Br J Pharmacol 2024. [PMID: 38369641 DOI: 10.1111/bph.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND AND PURPOSE To deepen our knowledge of the role of complement in synaptic impairment in experimental autoimmune encephalomyelitis (EAE) mice, we investigated the distribution of C1q and C3 proteins and the role of complement as a promoter of glutamate release in purified nerve endings (synaptosomes) and astrocytic processes (gliosomes) isolated from the cortex of EAE mice at the acute stage of the disease (21 ± 1 day post-immunization). EXPERIMENTAL APPROACH EAE cortical synaptosomes and gliosomes were analysed for glutamate release efficiency (measured as release of preloaded [3 H]D-aspartate ([3 H]D-ASP)), C1q and C3 protein density, and for viability and ongoing apoptosis. KEY RESULTS In healthy mice, complement releases [3 H]D-ASP from gliosomes more efficiently than from synaptosomes. The releasing activity occurs in a dilution-dependent manner and involves the reversal of the excitatory amino acid transporters (EAATs). In EAE mice, the complement-induced releasing activity is significantly reduced in cortical synaptosomes but amplified in cortical gliosomes. These adaptations are paralleled by decreased density of the EAAT2 protein in synaptosomes and increased EAAT1 staining in gliosomes. Concomitantly, PSD95, GFAP, and CD11b, but not SNAP25, proteins are overexpressed in the cortex of the EAE mice. Similarly, C1q and C3 protein immunostaining is increased in EAE cortical synaptosomes and gliosomes, although signs of ongoing apoptosis or altered viability are not detectable. CONCLUSION AND IMPLICATIONS Our results unveil a new noncanonical role of complement in the CNS of EAE mice relevant to disease progression and central synaptopathy that suggests new therapeutic targets for the management of MS.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Alice Taddeucci
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Giulia Vallarino
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Hanna Trebesova
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Alessandra Roggeri
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Maria Cristina Gagliani
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Laboratory, Università di Genova, Genoa, Italy
| | - Katia Cortese
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Laboratory, Università di Genova, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, Centre of Excellence for Biomedical Research, 3Rs Center, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
2
|
Transcriptome Profiling in the Hippocampi of Mice with Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2022; 23:ijms232314829. [PMID: 36499161 PMCID: PMC9738199 DOI: 10.3390/ijms232314829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), approximates the key histopathological, clinical, and immunological features of MS. Hippocampal dysfunction in MS and EAE causes varying degrees of cognitive and emotional impairments and synaptic abnormalities. However, the molecular alterations underlying hippocampal dysfunctions in MS and EAE are still under investigation. The purpose of this study was to identify differentially expressed genes (DEGs) in the hippocampus of mice with EAE in order to ascertain potential genes associated with hippocampal dysfunction. Gene expression in the hippocampus was analyzed by RNA-sequencing and validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gene expression analysis revealed 1202 DEGs; 1023 were upregulated and 179 were downregulated in the hippocampus of mice with EAE (p-value < 0.05 and fold change >1.5). Gene ontology (GO) analysis showed that the upregulated genes in the hippocampi of mice with EAE were associated with immune system processes, defense responses, immune responses, and regulation of immune responses, whereas the downregulated genes were related to learning or memory, behavior, and nervous system processes in the GO biological process. The expressions of hub genes from the search tool for the retrieval of interacting genes/proteins (STRING) analysis were validated by RT-qPCR. Additionally, gene set enrichment analysis showed that the upregulated genes in the hippocampus were associated with inflammatory responses: interferon-γ responses, allograft rejection, interferon-α responses, IL6_JAK_STAT3 signaling, inflammatory responses, complement, IL2_STAT5 signaling, TNF-α signaling via NF-κB, and apoptosis, whereas the downregulated genes were related to synaptic plasticity, dendritic development, and development of dendritic spine. This study characterized the transcriptome pattern in the hippocampi of mice with EAE and signaling pathways underpinning hippocampal dysfunction. However, further investigation is needed to determine the applicability of these findings from this rodent model to patients with MS. Collectively, these results indicate directions for further research to understand the mechanisms behind hippocampal dysfunction in EAE.
Collapse
|
3
|
CCL5 promotion of bioenergy metabolism is crucial for hippocampal synapse complex and memory formation. Mol Psychiatry 2021; 26:6451-6468. [PMID: 33931731 PMCID: PMC8760051 DOI: 10.1038/s41380-021-01103-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/10/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022]
Abstract
Glucoregulatory efficiency and ATP production are key regulators for neuronal plasticity and memory formation. Besides its chemotactic and neuroinflammatory functions, the CC chemokine--CCL5 displays neurotrophic activity. We found impaired learning-memory and cognition in CCL5-knockout mice at 4 months of age correlated with reduced hippocampal long-term potentiation and impaired synapse structure. Re-expressing CCL5 in knockout mouse hippocampus restored synaptic protein expression, neuronal connectivity and cognitive function. Using metabolomics coupled with FDG-PET imaging and seahorse analysis, we found that CCL5 participates in hippocampal fructose and mannose degradation, glycolysis, gluconeogenesis as well as glutamate and purine metabolism. CCL5 additionally supports mitochondrial structural integrity, purine synthesis, ATP generation, and subsequent aerobic glucose metabolism. Overexpressing CCL5 in WT mice also enhanced memory-cognition performance as well as hippocampal neuronal activity and connectivity through promotion of de novo purine and glutamate metabolism. Thus, CCL5 actions on glucose aerobic metabolism are critical for mitochondrial function which contribute to hippocampal spine and synapse formation, improving learning and memory.
Collapse
|
4
|
Sundaramoorthy V, Godde N, J. Farr R, Green D, M. Haynes J, Bingham J, O’Brien CM, Dearnley M. Modelling Lyssavirus Infections in Human Stem Cell-Derived Neural Cultures. Viruses 2020; 12:E359. [PMID: 32218146 PMCID: PMC7232326 DOI: 10.3390/v12040359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
Rabies is a zoonotic neurological infection caused by lyssavirus that continues to result in devastating loss of human life. Many aspects of rabies pathogenesis in human neurons are not well understood. Lack of appropriate ex-vivo models for studying rabies infection in human neurons has contributed to this knowledge gap. In this study, we utilize advances in stem cell technology to characterize rabies infection in human stem cell-derived neurons. We show key cellular features of rabies infection in our human neural cultures, including upregulation of inflammatory chemokines, lack of neuronal apoptosis, and axonal transmission of viruses in neuronal networks. In addition, we highlight specific differences in cellular pathogenesis between laboratory-adapted and field strain lyssavirus. This study therefore defines the first stem cell-derived ex-vivo model system to study rabies pathogenesis in human neurons. This new model system demonstrates the potential for enabling an increased understanding of molecular mechanisms in human rabies, which could lead to improved control methods.
Collapse
Affiliation(s)
- Vinod Sundaramoorthy
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| | - Nathan Godde
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| | - Ryan J. Farr
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| | - Diane Green
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| | - John M. Haynes
- Monash Institute of Pharmaceutical Sciences, 399 Royal Parade, Parkville, VIC 3052, Australia;
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| | - Carmel M. O’Brien
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Megan Dearnley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| |
Collapse
|
5
|
Bonifacino T, Rebosio C, Provenzano F, Torazza C, Balbi M, Milanese M, Raiteri L, Usai C, Fedele E, Bonanno G. Enhanced Function and Overexpression of Metabotropic Glutamate Receptors 1 and 5 in the Spinal Cord of the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis during Disease Progression. Int J Mol Sci 2019; 20:ijms20184552. [PMID: 31540330 PMCID: PMC6774337 DOI: 10.3390/ijms20184552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/26/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Glutamate (Glu)-mediated excitotoxicity is a major cause of amyotrophic lateral sclerosis (ALS) and our previous work highlighted that abnormal Glu release may represent a leading mechanism for excessive synaptic Glu. We demonstrated that group I metabotropic Glu receptors (mGluR1, mGluR5) produced abnormal Glu release in SOD1G93A mouse spinal cord at a late disease stage (120 days). Here, we studied this phenomenon in pre-symptomatic (30 and 60 days) and early-symptomatic (90 days) SOD1G93A mice. The mGluR1/5 agonist (S)-3,5-Dihydroxyphenylglycine (3,5-DHPG) concentration dependently stimulated the release of [3H]d-Aspartate ([3H]d-Asp), which was comparable in 30- and 60-day-old wild type mice and SOD1G93A mice. At variance, [3H]d-Asp release was significantly augmented in 90-day-old SOD1G93A mice and both mGluR1 and mGluR5 were involved. The 3,5-DHPG-induced [3H]d-Asp release was exocytotic, being of vesicular origin and mediated by intra-terminal Ca2+ release. mGluR1 and mGluR5 expression was increased in Glu spinal cord axon terminals of 90-day-old SOD1G93A mice, but not in the whole axon terminal population. Interestingly, mGluR1 and mGluR5 were significantly augmented in total spinal cord tissue already at 60 days. Thus, function and expression of group I mGluRs are enhanced in the early-symptomatic SOD1G93A mouse spinal cord, possibly participating in excessive Glu transmission and supporting their implication in ALS. Please define all abbreviations the first time they appear in the abstract, the main text, and the first figure or table caption.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Claudia Rebosio
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Francesca Provenzano
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Carola Torazza
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Matilde Balbi
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
| | - Luca Raiteri
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), 16149 Genova, Italy.
| | - Ernesto Fedele
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16132 Genova, Italy.
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16132 Genova, Italy.
| |
Collapse
|
6
|
Pittaluga A. Acute Functional Adaptations in Isolated Presynaptic Terminals Unveil Synaptosomal Learning and Memory. Int J Mol Sci 2019; 20:ijms20153641. [PMID: 31349638 PMCID: PMC6696074 DOI: 10.3390/ijms20153641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/08/2019] [Accepted: 07/24/2019] [Indexed: 01/19/2023] Open
Abstract
Synaptosomes are used to decipher the mechanisms involved in chemical transmission, since they permit highlighting the mechanisms of transmitter release and confirming whether the activation of presynaptic receptors/enzymes can modulate this event. In the last two decades, important progress in the field came from the observations that synaptosomes retain changes elicited by both “in vivo” and “in vitro” acute chemical stimulation. The novelty of these studies is the finding that these adaptations persist beyond the washout of the triggering drug, emerging subsequently as functional modifications of synaptosomal performances, including release efficiency. These findings support the conclusion that synaptosomes are plastic entities that respond dynamically to ambient stimulation, but also that they “learn and memorize” the functional adaptation triggered by acute exposure to chemical agents. This work aims at reviewing the results so far available concerning this form of synaptosomal learning, also highlighting the role of these acute chemical adaptations in pathological conditions.
Collapse
Affiliation(s)
- Anna Pittaluga
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148 and Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132 University of Genoa, 16145 Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, 16145, Genova, Italy.
| |
Collapse
|
7
|
Bonfiglio T, Olivero G, Vergassola M, Di Cesare Mannelli L, Pacini A, Iannuzzi F, Summa M, Bertorelli R, Feligioni M, Ghelardini C, Pittaluga A. Environmental training is beneficial to clinical symptoms and cortical presynaptic defects in mice suffering from experimental autoimmune encephalomyelitis. Neuropharmacology 2018; 145:75-86. [PMID: 29402503 DOI: 10.1016/j.neuropharm.2018.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 01/08/2023]
Abstract
The effect of "prophylactic" environmental stimulation on clinical symptoms and presynaptic defects in mice suffering from the experimental autoimmune encephalomyelitis (EAE) at the acute stage of disease (21 ± 1 days post immunization, d.p.i.) was investigated. In EAE mice raised in an enriched environment (EE), the clinical score was reduced when compared to EAE mice raised in standard environment (SE).Concomitantly, gain of weight and increased spontaneous motor activity and curiosity were observed, suggesting increased well-being in mice. Impaired glutamate exocytosis and cyclic adenosine monophosphate (cAMP) production in cortical terminals of SE-EAE mice were evident at 21 ± 1 d.p.i.. Differently, the 12 mM KCl-evoked glutamate exocytosis from cortical synaptosomes of EE-EAE mice was comparable to that observed in SE and EE-control mice, but significantly higher than that in SE-EAE mice. Similarly, the 12 mM KCl-evoked cAMP production in EE-EAE mice cortical synaptosomes recovered to the level observed in SE and EE-control mice. MUNC-18 and SNAP25 contents, but not Syntaxin-1a and Synaptotagmin 1 levels, were increased in cortical synaptosomes from EE-EAE mice when compared to SE-EAE mice. Circulating IL-1β was increased in the spinal cord, but not in the cortex, of SE-EAE mice, and it did not recover in EE-EAE mice. Inflammatory infiltrates were reduced in the cortex but not in the spinal cord of EE-EAE mice. Demyelination was observed in the spinal cord; EE significantly diminished it. We conclude that "prophylactic" EE is beneficial to synaptic derangements and preserves glutamate transmission in the cortex of EAE mice. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
Affiliation(s)
- T Bonfiglio
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - G Olivero
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - M Vergassola
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - L Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Italy
| | - A Pacini
- Department of Experimental and Clinical Medicine, DMSC, Section of Anatomy and Histology, University of Florence, Italy
| | - F Iannuzzi
- EBRI-European Brain Research Institute, Rome, Italy
| | - M Summa
- D3. PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - R Bertorelli
- D3. PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - M Feligioni
- EBRI-European Brain Research Institute, Rome, Italy; Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - C Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Italy
| | - A Pittaluga
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132, Genoa, Italy.
| |
Collapse
|
8
|
Olivero G, Bonfiglio T, Vergassola M, Usai C, Riozzi B, Battaglia G, Nicoletti F, Pittaluga A. Immuno-pharmacological characterization of group II metabotropic glutamate receptors controlling glutamate exocytosis in mouse cortex and spinal cord. Br J Pharmacol 2017; 174:4785-4796. [PMID: 28967122 PMCID: PMC5727332 DOI: 10.1111/bph.14061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE We recently proposed the existence of mGlu3 -preferring autoreceptors in spinal cord terminals and of mGlu2 -preferring autoreceptors in cortical terminals. This study aims to verify our previous conclusions and to extend their pharmacological characterization. EXPERIMENTAL APPROACH We studied the effect of LY566332, an mGlu2 receptor positive allosteric modulator (PAM), and of LY2389575, a selective mGlu3 receptor negative allosteric (NAM) modulator, on the mGlu2/3 agonist LY379268-mediated inhibition of glutamate exocytosis [measured as KCl-evoked release of preloaded [3 H]-D-aspartate]. The mGlu2 PAM BINA and the mGlu3 NAM ML337, as well as selective antibodies recognizing the N-terminal of the receptor proteins, were used to confirm the pharmacological characterization of the native receptors. KEY RESULTS Cortical synaptosomes possess LY566332-sensitive autoreceptors that are slightly, although significantly, susceptible to LY2389575. In contrast, LY566332-insensitive and LY2389575-sensitive autoreceptors are present in spinal cord terminals. BINA and ML337 mimicked LY566332 and LY2389575, respectively, in controlling LY379268-mediated inhibition of glutamate exocytosis from both cortical and spinal cord synaptosomes. Incubation of cortical synaptosomes with anti-mGlu2 antibody prevented the LY379268-induced inhibition of glutamate exocytosis, and this response was partially reduced by the anti-mGlu3 antibody. Incubation of spinal cord synaptosomes with the anti-mGlu3 antibody abolished LY379268-mediated reduction of glutamate exocytosis from these terminals, while the anti-mGlu2 antibody was inactive. Western blot analysis and confocal microscopy data were largely consistent with these functional observations. CONCLUSIONS AND IMPLICATIONS We confirmed that mGlu3 -preferring autoreceptors exist in spinal cord terminals. Differently, cortical glutamatergic terminals possess mGlu2 /mGlu3 heterodimers, whose inhibitory effect is largely mediated by mGlu2 receptors.
Collapse
Affiliation(s)
| | | | | | - Cesare Usai
- National Research CouncilInstitute of BiophysicsGenoaItaly
| | | | | | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, Località CamerellePozzilliItaly
- Department of Physiology and PharmacologySapienza UniversityRomeItaly
| | - Anna Pittaluga
- Department of Pharmacy, DiFARUniversity of GenoaGenoaItaly
- Centre of Excellence for Biomedical ResearchUniversity of GenoaGenoaItaly
| |
Collapse
|
9
|
Florenzano F, Veronica C, Ciasca G, Ciotti MT, Pittaluga A, Olivero G, Feligioni M, Iannuzzi F, Latina V, Maria Sciacca MF, Sinopoli A, Milardi D, Pappalardo G, Marco DS, Papi M, Atlante A, Bobba A, Borreca A, Calissano P, Amadoro G. Extracellular truncated tau causes early presynaptic dysfunction associated with Alzheimer's disease and other tauopathies. Oncotarget 2017; 8:64745-64778. [PMID: 29029390 PMCID: PMC5630290 DOI: 10.18632/oncotarget.17371] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022] Open
Abstract
The largest part of tau secreted from AD nerve terminals and released in cerebral spinal fluid (CSF) is C-terminally truncated, soluble and unaggregated supporting potential extracellular role(s) of NH2 -derived fragments of protein on synaptic dysfunction underlying neurodegenerative tauopathies, including Alzheimer's disease (AD). Here we show that sub-toxic doses of extracellular-applied human NH2 tau 26-44 (aka NH 2 htau) -which is the minimal active moiety of neurotoxic 20-22kDa peptide accumulating in vivo at AD synapses and secreted into parenchyma- acutely provokes presynaptic deficit in K+ -evoked glutamate release on hippocampal synaptosomes along with alteration in local Ca2+ dynamics. Neuritic dystrophy, microtubules breakdown, deregulation in presynaptic proteins and loss of mitochondria located at nerve endings are detected in hippocampal cultures only after prolonged exposure to NH 2 htau. The specificity of these biological effects is supported by the lack of any significant change, either on neuronal activity or on cellular integrity, shown by administration of its reverse sequence counterpart which behaves as an inactive control, likely due to a poor conformational flexibility which makes it unable to dynamically perturb biomembrane-like environments. Our results demonstrate that one of the AD-relevant, soluble and secreted N-terminally truncated tau forms can early contribute to pathology outside of neurons causing alterations in synaptic activity at presynaptic level, independently of overt neurodegeneration.
Collapse
Affiliation(s)
| | | | - Gabriele Ciasca
- Institute of Physics, Catholic University of the Sacred Heart, Largo F Vito 1, Rome, Italy
| | - Maria Teresa Ciotti
- Institute of Cellular Biology and Neuroscience, CNR, IRCSS Santa Lucia Foundation, Rome, Italy
| | - Anna Pittaluga
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Viale Cembrano, Italy
| | - Gunedalina Olivero
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Viale Cembrano, Italy
| | - Marco Feligioni
- European Brain Research Institute, Rome, Italy
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | | | | | | | | | - Danilo Milardi
- Institute of Biostructures and Bioimaging, CNR, Catania, Italy
| | | | - De Spirito Marco
- Institute of Physics, Catholic University of the Sacred Heart, Largo F Vito 1, Rome, Italy
| | - Massimiliano Papi
- Institute of Physics, Catholic University of the Sacred Heart, Largo F Vito 1, Rome, Italy
| | - Anna Atlante
- Institute of Biomembranes and Bioenergetics, CNR, Bari, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Viale Benedetto XV, Italy
| | - Antonella Bobba
- Institute of Biomembranes and Bioenergetics, CNR, Bari, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Viale Benedetto XV, Italy
| | - Antonella Borreca
- Institute of Cellular Biology and Neuroscience, CNR, IRCSS Santa Lucia Foundation, Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute, Rome, Italy
- Institute of Translational Pharmacology, CNR, Rome, Italy
| |
Collapse
|
10
|
Pittaluga A. CCL5-Glutamate Cross-Talk in Astrocyte-Neuron Communication in Multiple Sclerosis. Front Immunol 2017; 8:1079. [PMID: 28928746 PMCID: PMC5591427 DOI: 10.3389/fimmu.2017.01079] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022] Open
Abstract
The immune system (IS) and the central nervous system (CNS) are functionally coupled, and a large number of endogenous molecules (i.e., the chemokines for the IS and the classic neurotransmitters for the CNS) are shared in common between the two systems. These interactions are key elements for the elucidation of the pathogenesis of central inflammatory diseases. In recent years, evidence has been provided supporting the role of chemokines as modulators of central neurotransmission. It is the case of the chemokines CCL2 and CXCL12 that control pre- and/or post-synaptically the chemical transmission. This article aims to review the functional cross-talk linking another endogenous pro-inflammatory factor released by glial cells, i.e., the chemokine Regulated upon Activation Normal T-cell Expressed and Secreted (CCL5) and the principal neurotransmitter in CNS (i.e., glutamate) in physiological and pathological conditions. In particular, the review discusses preclinical data concerning the role of CCL5 as a modulator of central glutamatergic transmission in healthy and demyelinating disorders. The CCL5-mediated control of glutamate release at chemical synapses could be relevant either to the onset of psychiatric symptoms that often accompany the development of multiple sclerosis (MS), but also it might indirectly give a rationale for the progression of inflammation and demyelination. The impact of disease-modifying therapies for the cure of MS on the endogenous availability of CCL5 in CNS will be also summarized. We apologize in advance for omission in our coverage of the existing literature.
Collapse
Affiliation(s)
- Anna Pittaluga
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
11
|
Stampanoni Bassi M, Mori F, Buttari F, Marfia GA, Sancesario A, Centonze D, Iezzi E. Neurophysiology of synaptic functioning in multiple sclerosis. Clin Neurophysiol 2017; 128:1148-1157. [DOI: 10.1016/j.clinph.2017.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 01/16/2023]
|
12
|
Lee PR, Johnson TP, Gnanapavan S, Giovannoni G, Wang T, Steiner JP, Medynets M, Vaal MJ, Gartner V, Nath A. Protease-activated receptor-1 activation by granzyme B causes neurotoxicity that is augmented by interleukin-1β. J Neuroinflammation 2017; 14:131. [PMID: 28655310 PMCID: PMC5488439 DOI: 10.1186/s12974-017-0901-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/14/2017] [Indexed: 12/05/2022] Open
Abstract
Background The cause of neurodegeneration in progressive forms of multiple sclerosis is unknown. We investigated the impact of specific neuroinflammatory markers on human neurons to identify potential therapeutic targets for neuroprotection against chronic inflammation. Methods Surface immunocytochemistry directly visualized protease-activated receptor-1 (PAR1) and interleukin-1 (IL-1) receptors on neurons in human postmortem cortex in patients with and without neuroinflammatory lesions. Viability of cultured neurons was determined after exposure to cerebrospinal fluid from patients with progressive multiple sclerosis or purified granzyme B and IL-1β. Inhibitors of PAR1 activation and of PAR1-associated second messenger signaling were used to elucidate a mechanism of neurotoxicity. Results Immunohistochemistry of human post-mortem brain tissue demonstrated cells expressing higher amounts of PAR1 near and within subcortical lesions in patients with multiple sclerosis compared to control tissue. Human cerebrospinal fluid samples containing granzyme B and IL-1β were toxic to human neuronal cultures. Granzyme B was neurotoxic through activation of PAR1 and subsequently the phospholipase Cβ-IP3 second messenger system. Inhibition of PAR1 or IP3 prevented granzyme B toxicity. IL-1β enhanced granzyme B-mediated neurotoxicity by increasing PAR1 expression. Conclusions Neurons within the inflamed central nervous system are imperiled because they express more PAR1 and are exposed to a neurotoxic combination of both granzyme B and IL-1β. The effects of these inflammatory mediators may be a contributing factor in the progressive brain atrophy associated with neuroinflammatory diseases. Knowledge of how exposure to IL-1β and granzyme B act synergistically to cause neuronal death yields potential novel neuroprotective treatments for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Paul R Lee
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room CRC 3-2563, Bethesda, MD, 20892, USA.
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room CRC 3-2563, Bethesda, MD, 20892, USA
| | - Sharmilee Gnanapavan
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Gavin Giovannoni
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Tongguang Wang
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room CRC 3-2563, Bethesda, MD, 20892, USA
| | - Joseph P Steiner
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marie Medynets
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room CRC 3-2563, Bethesda, MD, 20892, USA
| | - Mark J Vaal
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Valerie Gartner
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room CRC 3-2563, Bethesda, MD, 20892, USA
| |
Collapse
|
13
|
Bonifacino T, Cattaneo L, Gallia E, Puliti A, Melone M, Provenzano F, Bossi S, Musante I, Usai C, Conti F, Bonanno G, Milanese M. In-vivo effects of knocking-down metabotropic glutamate receptor 5 in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neuropharmacology 2017. [PMID: 28645622 DOI: 10.1016/j.neuropharm.2017.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder due to loss of upper and lower motor neurons (MNs). The mechanisms of neuronal death are largely unknown, thus prejudicing the successful pharmacological treatment. One major cause for MN degeneration in ALS is represented by glutamate(Glu)-mediated excitotoxicity. We have previously reported that activation of Group I metabotropic Glu receptors (mGluR1 and mGluR5) at glutamatergic spinal cord nerve terminals produces abnormal Glu release in the widely studied SOD1G93A mouse model of ALS. We also demonstrated that halving mGluR1 expression in the SOD1G93A mouse had a positive impact on survival, disease onset, disease progression, and on a number of cellular and biochemical readouts of ALS. We generated here SOD1G93A mice with reduced expression of mGluR5 (SOD1G93AGrm5-/+) by crossing the SOD1G93A mutant mouse with the mGluR5 heterozigous Grm5-/+ mouse. SOD1G93AGrm5-/+ mice showed prolonged survival probability and delayed pathology onset. These effects were associated to enhanced number of preserved MNs, decreased astrocyte and microglia activation, reduced cytosolic free Ca2+ concentration, and regularization of abnormal Glu release in the spinal cord of SOD1G93AGrm5-/+ mice. Unexpectedly, only male SOD1G93AGrm5-/+ mice showed improved motor skills during disease progression vs. SOD1G93A mice, while SOD1G93AGrm5-/+ females did not. These results demonstrate that a lower constitutive level of mGluR5 has a significant positive impact in mice with ALS and support the idea that blocking Group I mGluRs may represent a potentially effective pharmacological approach to the disease.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa Viale Cembrano, 4 - 16148, Genoa, Italy
| | - Luca Cattaneo
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa Viale Cembrano, 4 - 16148, Genoa, Italy
| | - Elena Gallia
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa Viale Cembrano, 4 - 16148, Genoa, Italy
| | - Aldamaria Puliti
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa Viale Cembrano, 4 - 16148, Genoa, Italy; Medical Genetics Unit, Istituto Giannina Gaslini, Via G. Gaslini, 5 - 16147, Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 9 - 16132, Genoa, Italy
| | - Marcello Melone
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Via Tronto 10/a - 60126, Torrette di Ancona, Ancona, Italy; Centre for Neurobiology of Aging, INRCA IRCCS, Via S.Margherita, 5 - 60124, Ancona, Italy
| | - Francesca Provenzano
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa Viale Cembrano, 4 - 16148, Genoa, Italy
| | - Simone Bossi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, L.go P. Daneo, 3 - 16132, Genoa, Italy
| | - Ilaria Musante
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, L.go P. Daneo, 3 - 16132, Genoa, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), Via Darini, 6 - Torre di Francia, 16149, Genoa, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Via Tronto 10/a - 60126, Torrette di Ancona, Ancona, Italy; Centre for Neurobiology of Aging, INRCA IRCCS, Via S.Margherita, 5 - 60124, Ancona, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa Viale Cembrano, 4 - 16148, Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 9 - 16132, Genoa, Italy.
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa Viale Cembrano, 4 - 16148, Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 9 - 16132, Genoa, Italy
| |
Collapse
|
14
|
Bonfiglio T, Olivero G, Merega E, Di Prisco S, Padolecchia C, Grilli M, Milanese M, Di Cesare Mannelli L, Ghelardini C, Bonanno G, Marchi M, Pittaluga A. Prophylactic versus Therapeutic Fingolimod: Restoration of Presynaptic Defects in Mice Suffering from Experimental Autoimmune Encephalomyelitis. PLoS One 2017; 12:e0170825. [PMID: 28125677 PMCID: PMC5268435 DOI: 10.1371/journal.pone.0170825] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/11/2017] [Indexed: 11/18/2022] Open
Abstract
Fingolimod, the first oral, disease-modifying therapy for MS, has been recently proposed to modulate glutamate transmission in the central nervous system (CNS) of mice suffering from Experimental Autoimmune Encephalomyelitis (EAE) and in MS patients. Our study aims at investigating whether oral fingolimod recovers presynaptic defects that occur at different stages of disease in the CNS of EAE mice. In vivo prophylactic (0.3 mg/kg for 14 days, from the 7th day post immunization, d.p.i, the drug dissolved in the drinking water) fingolimod significantly reduced the clinical symptoms and the anxiety-related behaviour in EAE mice. Spinal cord inflammation, demyelination and glial cell activation are markers of EAE progression. These signs were ameliorated following oral fingolimod administration. Glutamate exocytosis was shown to be impaired in cortical and spinal cord terminals isolated from EAE mice at 21 ± 1 d.p.i., while GABA alteration emerged only at the spinal cord level. Prophylactic fingolimod recovered these presynaptic defects, restoring altered glutamate and GABA release efficiency. The beneficial effect occurred in a dose-dependent, region-specific manner, since lower (0.1-0.03 mg/kg) doses restored, although to a different extent, synaptic defects in cortical but not spinal cord terminals. A delayed reduction of glutamate, but not of GABA, exocytosis was observed in hippocampal terminals of EAE mice at 35 d.p.i. Therapeutic (0.3 mg/kg, from 21 d.p.i. for 14 days) fingolimod restored glutamate exocytosis in the cortex and in the hippocampus of EAE mice at 35 ± 1 d.p.i. but not in the spinal cord, where also GABAergic defects remained unmodified. These results improve our knowledge of the molecular events accounting for the beneficial effects elicited by fingolimod in demyelinating disorders.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Cerebral Cortex/drug effects
- Cerebral Cortex/immunology
- Cerebral Cortex/pathology
- Dose-Response Relationship, Drug
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Exocytosis/drug effects
- Female
- Fingolimod Hydrochloride/pharmacology
- Glutamic Acid/metabolism
- Glutamic Acid/pharmacology
- Hippocampus/drug effects
- Hippocampus/immunology
- Hippocampus/pathology
- Immunosuppressive Agents/pharmacology
- Mice
- Mice, Inbred C57BL
- Neuroglia/drug effects
- Neuroglia/immunology
- Neuroglia/pathology
- Organ Specificity
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/pathology
- Synapses/drug effects
- Synapses/immunology
- Synapses/pathology
- gamma-Aminobutyric Acid/metabolism
- gamma-Aminobutyric Acid/pharmacology
Collapse
Affiliation(s)
- Tommaso Bonfiglio
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Guendalina Olivero
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Elisa Merega
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Silvia Di Prisco
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Cristina Padolecchia
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology section, University of Florence, Florence, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Mario Marchi
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
15
|
Brindisi M, Maramai S, Gemma S, Brogi S, Grillo A, Di Cesare Mannelli L, Gabellieri E, Lamponi S, Saponara S, Gorelli B, Tedesco D, Bonfiglio T, Landry C, Jung KM, Armirotti A, Luongo L, Ligresti A, Piscitelli F, Bertucci C, Dehouck MP, Campiani G, Maione S, Ghelardini C, Pittaluga A, Piomelli D, Di Marzo V, Butini S. Development and Pharmacological Characterization of Selective Blockers of 2-Arachidonoyl Glycerol Degradation with Efficacy in Rodent Models of Multiple Sclerosis and Pain. J Med Chem 2016; 59:2612-32. [PMID: 26888301 DOI: 10.1021/acs.jmedchem.5b01812] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the discovery of compound 4a, a potent β-lactam-based monoacylglycerol lipase (MGL) inhibitor characterized by an irreversible and stereoselective mechanism of action, high membrane permeability, high brain penetration evaluated using a human in vitro blood-brain barrier model, high selectivity in binding and affinity-based proteomic profiling assays, and low in vitro toxicity. Mode-of-action studies demonstrate that 4a, by blocking MGL, increases 2-arachidonoylglycerol and behaves as a cannabinoid (CB1/CB2) receptor indirect agonist. Administration of 4a in mice suffering from experimental autoimmune encephalitis ameliorates the severity of the clinical symptoms in a CB1/CB2-dependent manner. Moreover, 4a produced analgesic effects in a rodent model of acute inflammatory pain, which was antagonized by CB1 and CB2 receptor antagonists/inverse agonists. 4a also relieves the neuropathic hypersensitivity induced by oxaliplatin. Given these evidence, 4a, as MGL selective inhibitor, could represent a valuable lead for the future development of therapeutic options for multiple sclerosis and chronic pain.
Collapse
Affiliation(s)
- Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Samuele Maramai
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Alessandro Grillo
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Firenze , V.le G. Pieraccini 6, 50139 Firenze, Italy
| | - Emanuele Gabellieri
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Stefania Lamponi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Beatrice Gorelli
- Department of Life Sciences, University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Daniele Tedesco
- Department of Pharmacy and Biotechnology Alma Mater Studiorum, University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| | - Tommaso Bonfiglio
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova , Viale Cembrano 4, Genova, 16148, Italy
| | - Christophe Landry
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University of Artois , EA 2465, F62300 Lens, France
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California , Irvine, California 92617, United States
| | - Andrea Armirotti
- Drug Discovery and Development, Istituto Italiano di Tecnologia , 16163 Genova, Italy
| | - Livio Luongo
- Endocannabinoid Research Group, Department of Experimental Medicine, Division of Pharmacology "L. Donatelli", Second University of Napoli , 80138 Napoli, Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR , 80078 Pozzuoli (Napoli), Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR , 80078 Pozzuoli (Napoli), Italy
| | - Carlo Bertucci
- Department of Pharmacy and Biotechnology Alma Mater Studiorum, University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| | - Marie-Pierre Dehouck
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University of Artois , EA 2465, F62300 Lens, France
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Sabatino Maione
- Endocannabinoid Research Group, Department of Experimental Medicine, Division of Pharmacology "L. Donatelli", Second University of Napoli , 80138 Napoli, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Firenze , V.le G. Pieraccini 6, 50139 Firenze, Italy
| | - Anna Pittaluga
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova , Viale Cembrano 4, Genova, 16148, Italy.,Center of Excellence for Biomedical Research, University of Genova , Viale Benedetto XV, 16132 Genova, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California , Irvine, California 92617, United States
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR , 80078 Pozzuoli (Napoli), Italy
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|
16
|
Di Prisco S, Merega E, Bonfiglio T, Olivero G, Cervetto C, Grilli M, Usai C, Marchi M, Pittaluga A. Presynaptic, release-regulating mGlu2 -preferring and mGlu3 -preferring autoreceptors in CNS: pharmacological profiles and functional roles in demyelinating disease. Br J Pharmacol 2016; 173:1465-77. [PMID: 26791341 DOI: 10.1111/bph.13442] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/08/2016] [Accepted: 01/17/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Presynaptic, release-regulating metabotropic glutamate 2 and 3 (mGlu2/3) autoreceptors exist in the CNS. They represent suitable targets for therapeutic approaches to central diseases that are typified by hyperglutamatergicity. The availability of specific ligands able to differentiate between mGlu2 and mGlu3 subunits allows us to further characterize these autoreceptors. In this study we investigated the pharmacological profile of mGlu2/3 receptors in selected CNS regions and evaluated their functions in mice with experimental autoimmune encephalomyelitis (EAE). EXPERIMENTAL APPROACH The comparative analysis of presynaptic mGlu2/3 autoreceptors was performed by determining the effect of selective mGlu2/3 receptor agonist(s) and antagonist(s) on the release of [(3)H]-D-aspartate from cortical and spinal cord synaptosomes in superfusion. In EAE mice, mGlu2/3 autoreceptor-mediated release functions were investigated and effects of in vivo LY379268 administration on impaired glutamate release examined ex vivo. KEY RESULTS Western blot analysis and confocal microscopy confirmed the presence of presynaptic mGlu2/3 receptor proteins. Cortical synaptosomes possessed LY541850-sensitive, NAAG-insensitive autoreceptors having low affinity for LY379268, while LY541850-insensitive, NAAG-sensitive autoreceptors with high affinity for LY379268 existed in spinal cord terminals. In EAE mice, mGlu2/3 autoreceptors completely lost their inhibitory activity in cortical, but not in spinal cord synaptosomes. In vivo LY379268 administration restored the glutamate exocytosis capability in spinal cord but not in cortical terminals in EAE mice. CONCLUSIONS AND IMPLICATIONS We propose the existence of mGlu2-preferring and mGlu3-preferring autoreceptors in mouse cortex and spinal cord respectively. The mGlu3 -preferring autoreceptors could represent a target for new pharmacological approaches for treating demyelinating diseases.
Collapse
Affiliation(s)
- Silvia Di Prisco
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Elisa Merega
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Guendalina Olivero
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Chiara Cervetto
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council, Genoa, Italy
| | - Mario Marchi
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
17
|
Mori F, Nisticò R, Nicoletti CG, Zagaglia S, Mandolesi G, Piccinin S, Martino G, Finardi A, Rossini PM, Marfia GA, Furlan R, Centonze D. RANTES correlates with inflammatory activity and synaptic excitability in multiple sclerosis. Mult Scler 2016; 22:1405-1412. [PMID: 26733422 DOI: 10.1177/1352458515621796] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/18/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alterations of synaptic transmission induced by inflammatory activity have been linked to the pathogenic mechanisms of multiple sclerosis (MS). Regulated upon activation, normal T-cell expressed, and secreted (RANTES) is a pro-inflammatory chemokine involved in MS pathophysiology, potentially able to regulate glutamate release and plasticity in MS brains, with relevant consequences on the clinical manifestations of the disease. OBJECTIVE To assess the role of RANTES in the regulation of cortical excitability. METHODS We explored the association of RANTES levels in the cerebrospinal fluid (CSF) of newly diagnosed MS patients with magnetic resonance imaging (MRI) and laboratory measures of inflammatory activity, as well its role in the control of cortical excitability and plasticity explored by means of transcranial magnetic stimulation (TMS), and in hippocampal mouse slices in vitro. RESULTS CSF levels of RANTES were remarkably high only in active MS patients and were correlated with the concentrations of interleukin-1β. RANTES levels were associated with TMS measures of cortical synaptic excitability, but not with long-term potentiation (LTP)-like plasticity. Similar findings were obtained in mouse hippocampal slices in vitro, where we observed that RANTES enhanced basal excitatory synaptic transmission with no effect on LTP. CONCLUSION RANTES correlates with inflammation and synaptic excitability in MS brains.
Collapse
Affiliation(s)
- Francesco Mori
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Robert Nisticò
- Dipartimento di Biologia, Università degli Studi di Roma Tor Vergata, Roma, Italy/Laboratorio di Farmacologia della Plasticità Sinaptica, EBRI-European Brain Research Institute, Roma, Italy
| | - Carolina G Nicoletti
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Sara Zagaglia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/Clinica di Neurologia, Università Politecnica delle Marche, Ancona, Italy
| | | | - Sonia Piccinin
- Laboratorio di Farmacologia della Plasticità Sinaptica, EBRI-European Brain Research Institute, Roma, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Annamaria Finardi
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Paolo M Rossini
- Institute of Neurology, Catholic University, Rome, Italy/Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Girolama A Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Roberto Furlan
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Diego Centonze
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| |
Collapse
|
18
|
Ślusarczyk J, Trojan E, Chwastek J, Głombik K, Basta-Kaim A. A Potential Contribution of Chemokine Network Dysfunction to the Depressive Disorders. Curr Neuropharmacol 2016; 14:705-20. [PMID: 26893168 PMCID: PMC5050392 DOI: 10.2174/1570159x14666160219131357] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/19/2015] [Accepted: 11/03/2015] [Indexed: 02/08/2023] Open
Abstract
In spite of many years of research, the pathomechanism of depression has not yet been elucidated. Among many hypotheses, the immune theory has generated a substantial interest. Up till now, it has been thought that depression is accompanied by the activation of inflammatory response and increase in pro-inflammatory cytokine levels. However, recently this view has become controversial, mainly due to the family of small proteins called chemokines. They play a key role in the modulation of peripheral function of the immune system by controlling immune reactions, mediating immune cell communication, and regulating chemotaxis and cell adhesion. Last studies underline significance of chemokines in the central nervous system, not only in the neuromodulation but also in the regulation of neurodevelopmental processes, neuroendocrine functions and in mediating the action of classical neurotransmitters. Moreover, it was demonstrated that these proteins are responsible for maintaining interactions between neuronal and glial cells both in the developing and adult brain also in the course of diseases. This review outlines the role of chemokine in the central nervous system under physiological and pathological conditions and their involvement in processes underlying depressive disorder. It summarizes the most important data from experimental and clinical studies.
Collapse
Affiliation(s)
| | | | | | | | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Polish Academy of Sciences, 12 Smętna St. 31-343 Kraków, Poland.
| |
Collapse
|
19
|
Merega E, Prisco SD, Severi P, Kalfas F, Pittaluga A. Antibody/receptor protein immunocomplex in human and mouse cortical nerve endings amplifies complement-induced glutamate release. Neurosci Lett 2015; 600:50-5. [PMID: 26049008 DOI: 10.1016/j.neulet.2015.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
Previous studies have demonstrated that complement alone releases glutamate from human and mouse cortical terminals in an antibody-independent manner. In order to expand our knowledge on complement-mediated effects, we investigated whether the presence of an antigen-antibody complex in synaptosomal plasmamembranes could also trigger complement-induced functional responses that might affect neurotransmitter release. To this aim, we focused on the chemokine 5 receptor (CCR5) expressed in human and mouse cortical glutamate terminals, whose activation by CCL5 elicits [(3)H]D-aspartate ([(3)H]D-ASP) release. Preincubating synaptosomes with an antibody recognizing the NH2 terminus of the CCR5 protein (anti-NH2-CCR5 antibody) abolished the CCL5-induced [(3)H]D-ASP release. Similarly, enriching synaptosomes with an antibody recognizing the COOH terminus of CCR5 (anti-COOH-CCR5 antibody) prevented the CCL5-induced [(3)H]D-ASP release. The antagonist-like activity of the anti-NH2-CCR5 antibody turned to facilitation when anti-NH2-CCR5-treated synaptosomes were exposed to complement. In these terminals, the releasing effect was significantly higher than that elicited by complement in untreated synaptosomes. On the contrary, the complement-induced [(3)H]D-ASP release from anti-COOH-CCR5 antibody-entrapped synaptosomes did not differ from that from untreated synaptosomes. Preincubating synaptosomes with anti-beta tubulin III antibody, used as negative control, neither prevented the CCL5-induced releasing effect nor it amplified the complement-induced [(3)H]D-ASP release. Finally, serum lacking the C1q protein, i.e. the protein essential to promote the antibody-mediated activation of complement, elicited a comparable [(3)H]D-ASP release from both untreated and anti-NH2-CCR5 antibody-treated synaptosomes. Thus, we propose that antibodies raised against the outer sequence of a receptor protein can trigger the activation of the complement through the classic, C1q-mediated antibody-dependent pathway, which results in an abnormal release of glutamate that could be deleterious to central nervous system.
Collapse
Affiliation(s)
- Elisa Merega
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Silvia Di Prisco
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Paolo Severi
- Division of Neurosurgery, Galliera Hospital, Genoa, Italy
| | - Fotios Kalfas
- Division of Neurosurgery, Galliera Hospital, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy; Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.
| |
Collapse
|
20
|
Di Prisco S, Merega E, Lanfranco M, Casazza S, Uccelli A, Pittaluga A. Acute desipramine restores presynaptic cortical defects in murine experimental autoimmune encephalomyelitis by suppressing central CCL5 overproduction. Br J Pharmacol 2014; 171:2457-67. [PMID: 24528439 DOI: 10.1111/bph.12631] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/14/2014] [Accepted: 02/05/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Altered glutamate exocytosis and cAMP production in cortical terminals of experimental autoimmune encephalomyelitis (EAE) mice occur at the early stage of disease (13 days post-immunization, d.p.i.). Neuronal defects were paralleled by overexpression of the central chemokine CCL5 (also known as RANTES), suggesting it has a role in presynaptic impairments. We propose that drugs able to restore CCL5 content to physiological levels could also restore presynaptic defects. Because of its efficacy in controlling CCL5 overexpression, desipramine (DMI) appeared to be a suitable candidate to test our hypothesis. EXPERIMENTAL APPROACH Control and EAE mice at 13 d.p.i. were acutely or chronically administered DMI and monitored for behaviour and clinical scores. Noradrenaline and glutamate release, cAMP, CCL5 and TNF-α production were quantified in cortical synaptosomes and homogenates. Peripheral cytokine production was also determined. KEY RESULTS Noradrenaline exocytosis and α₂ -adrenoeceptor-mediated activity were unmodified in EAE mice at 13 d.p.i. when compared with control. Acute, but not chronic, DMI reduced CCL5 levels in cortical homogenates of EAE mice at 13 d.p.i., but did not affect peripheral IL-17 and TNF-α contents or CCL5 plasma levels. Acute DMI caused a long-lasting restoration of glutamate exocytosis, restored endogenous cAMP production and impeded the shift from inhibition to facilitation of the CCL5-mediated control of glutamate exocytosis. Finally, DMI ameliorated anxiety-related behaviour but not motor activity or severity of clinical signs. CONCLUSIONS We propose DMI as an add-on therapy to normalize neuropsychiatric symptoms in multiple sclerosis patients at the early stage of the disease.
Collapse
Affiliation(s)
- Silvia Di Prisco
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Di Prisco S, Merega E, Pittaluga A. Functional adaptation of presynaptic chemokine receptors in EAE mouse central nervous system. Synapse 2014; 68:529-35. [DOI: 10.1002/syn.21774] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/18/2014] [Accepted: 07/25/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Silvia Di Prisco
- Department of Pharmacy; Section of Pharmacology and Toxicology, University of Genoa; Viale Cembrano 4 Genoa 16148 Italy
| | - Elisa Merega
- Department of Pharmacy; Section of Pharmacology and Toxicology, University of Genoa; Viale Cembrano 4 Genoa 16148 Italy
| | - Anna Pittaluga
- Department of Pharmacy; Section of Pharmacology and Toxicology, University of Genoa; Viale Cembrano 4 Genoa 16148 Italy
- Center of Excellence for Biomedical Research, University of Genoa; Viale Benedetto XV Genoa 16132 Italy
| |
Collapse
|
22
|
Chanaday NL, Vilcaes AA, de Paul AL, Torres AI, Degano AL, Roth GA. Glutamate Release Machinery Is Altered in the Frontal Cortex of Rats with Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2014; 51:1353-67. [DOI: 10.1007/s12035-014-8814-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/11/2014] [Indexed: 01/30/2023]
|
23
|
Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: a systematic review of biomarker studies. Neurosci Biobehav Rev 2014; 42:93-115. [PMID: 24513303 DOI: 10.1016/j.neubiorev.2014.02.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/22/2013] [Accepted: 02/02/2014] [Indexed: 12/24/2022]
Abstract
The search for immune biomarkers in psychiatric disorders has primarily focused on pro-inflammatory cytokines. Other immune proteins including chemokines have been relatively neglected in such studies. Recent evidence has implicated chemokines in many neurobiological processes potentially relevant to psychiatric disorders, beyond their classical chemotactic functions. These may include neuromodulator effects, neurotransmitter-like effects, and direct/indirect regulation of neurogenesis. This systematic review presents the existing early evidence which supports an association of many chemokines with the psychiatric disorders: depression, bipolar disorder, schizophrenia, mild cognitive impairment and Alzheimer's disease. The non-specific association of chemokines including CXCL8 (IL-8), CCL2 (MCP-1), CCL3 (MIP-1α) and CCL5 (RANTES) with these disorders across diagnostic categories implies a generalised involvement of many chemokine systemic with psychiatric disease. Additional chemokines with great mechanistic relevance including CXCL12 (SDF-1) and CX3CL1 (fractalkine) have been rarely reported in the existing human literature and should be included in future clinical studies. The potential utility of these proteins as pathologically relevant biomarkers or therapeutic targets should be considered by future clinical and translational research.
Collapse
|