1
|
Dehhaghi M, Heydari M, Panahi HKS, Lewin SR, Heng B, Brew BJ, Guillemin GJ. The roles of the kynurenine pathway in COVID-19 neuropathogenesis. Infection 2024; 52:2043-2059. [PMID: 38802702 PMCID: PMC11499433 DOI: 10.1007/s15010-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the highly contagious respiratory disease Corona Virus Disease 2019 (COVID-19) that may lead to various neurological and psychological disorders that can be acute, lasting days to weeks or months and possibly longer. The latter is known as long-COVID or more recently post-acute sequelae of COVID (PASC). During acute COVID-19 infection, a strong inflammatory response, known as the cytokine storm, occurs in some patients. The levels of interferon-γ (IFN-γ), interferon-β (IFN-β), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are particularly increased. These cytokines are known to activate the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), catalysing the first step of tryptophan (Trp) catabolism through the kynurenine pathway (KP) leading to the production of several neurotoxic and immunosuppressive metabolites. There is already data showing elevation in KP metabolites both acutely and in PASC, especially regarding cognitive impairment. Thus, it is likely that KP involvement is significant in SARS-CoV-2 pathogenesis especially neurologically.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Bruce J Brew
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia.
- Departments of Neurology and Immunology, St. Vincent's Hospital, Sydney, NSW, Australia.
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia.
| | - Gilles J Guillemin
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor University, Bogor, Indonesia
| |
Collapse
|
2
|
Chan BWGL, Lynch NB, Tran W, Joyce JM, Savage GP, Meutermans W, Montgomery AP, Kassiou M. Fragment-based drug discovery for disorders of the central nervous system: designing better drugs piece by piece. Front Chem 2024; 12:1379518. [PMID: 38698940 PMCID: PMC11063241 DOI: 10.3389/fchem.2024.1379518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/12/2024] [Indexed: 05/05/2024] Open
Abstract
Fragment-based drug discovery (FBDD) has emerged as a powerful strategy to confront the challenges faced by conventional drug development approaches, particularly in the context of central nervous system (CNS) disorders. FBDD involves the screening of libraries that comprise thousands of small molecular fragments, each no greater than 300 Da in size. Unlike the generally larger molecules from high-throughput screening that limit customisation, fragments offer a more strategic starting point. These fragments are inherently compact, providing a strong foundation with good binding affinity for the development of drug candidates. The minimal elaboration required to transition the hit into a drug-like molecule is not only accelerated, but also it allows for precise modifications to enhance both their activity and pharmacokinetic properties. This shift towards a fragment-centric approach has seen commercial success and holds considerable promise in the continued streamlining of the drug discovery and development process. In this review, we highlight how FBDD can be integrated into the CNS drug discovery process to enhance the exploration of a target. Furthermore, we provide recent examples where FBDD has been an integral component in CNS drug discovery programs, enabling the improvement of pharmacokinetic properties that have previously proven challenging. The FBDD optimisation process provides a systematic approach to explore this vast chemical space, facilitating the discovery and design of compounds piece by piece that are capable of modulating crucial CNS targets.
Collapse
Affiliation(s)
| | - Nicholas B. Lynch
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Wendy Tran
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Jack M. Joyce
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Shen H, Xu X, Bai Y, Wang X, Wu Y, Zhong J, Wu Q, Luo Y, Shang T, Shen R, Xi M, Sun H. Therapeutic potential of targeting kynurenine pathway in neurodegenerative diseases. Eur J Med Chem 2023; 251:115258. [PMID: 36917881 DOI: 10.1016/j.ejmech.2023.115258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Kynurenine pathway (KP), the primary pathway of L-tryptophan (Trp) metabolism in mammals, contains several neuroactive metabolites such as kynurenic acid (KA) and quinolinic acid (QA). Its imbalance involved in aging and neurodegenerative diseases (NDs) has attracted much interest in therapeutically targeting KP enzymes and KP metabolite-associated receptors, especially kynurenine monooxygenase (KMO). Currently, many agents have been discovered with significant improvement in animal models but only one aryl hydrocarbon receptor (AHR) agonist 30 (laquinimod) has entered clinical trials for treating Huntington's disease (HD). In this review, we describe neuroactive KP metabolites, discuss the dysregulation of KP in aging and NDs and summarize the development of KP regulators in preclinical and clinical studies, offering an outlook of targeting KP for NDs treatment in future.
Collapse
Affiliation(s)
- Hualiang Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xinde Xu
- Zhejiang Medicine Co. Ltd., Shaoxing, 312500, China
| | - Yalong Bai
- Zhejiang Medicine Co. Ltd., Shaoxing, 312500, China
| | | | - Yibin Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jia Zhong
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Qiyi Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanjuan Luo
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Tianbo Shang
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Runpu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Martos D, Tuka B, Tanaka M, Vécsei L, Telegdy G. Memory Enhancement with Kynurenic Acid and Its Mechanisms in Neurotransmission. Biomedicines 2022; 10:biomedicines10040849. [PMID: 35453599 PMCID: PMC9027307 DOI: 10.3390/biomedicines10040849] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Kynurenic acid (KYNA) is an endogenous tryptophan (Trp) metabolite known to possess neuroprotective property. KYNA plays critical roles in nociception, neurodegeneration, and neuroinflammation. A lower level of KYNA is observed in patients with neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases or psychiatric disorders such as depression and autism spectrum disorders, whereas a higher level of KYNA is associated with the pathogenesis of schizophrenia. Little is known about the optimal concentration for neuroprotection and the threshold for neurotoxicity. In this study the effects of KYNA on memory functions were investigated by passive avoidance test in mice. Six different doses of KYNA were administered intracerebroventricularly to previously trained CFLP mice and they were observed for 24 h. High doses of KYNA (i.e., 20–40 μg/2 μL) significantly decreased the avoidance latency, whereas a low dose of KYNA (0.5 μg/2 μL) significantly elevated it compared with controls, suggesting that the low dose of KYNA enhanced memory function. Furthermore, six different receptor blockers were applied to reveal the mechanisms underlying the memory enhancement induced by KYNA. The series of tests revealed the possible involvement of the serotonergic, dopaminergic, α and β adrenergic, and opiate systems in the nootropic effect. This study confirmed that a low dose of KYNA improved a memory component of cognitive domain, which was mediated by, at least in part, four systems of neurotransmission in an animal model of learning and memory.
Collapse
Affiliation(s)
- Diána Martos
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary; (D.M.); (B.T.); (M.T.)
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary; (D.M.); (B.T.); (M.T.)
| | - Masaru Tanaka
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary; (D.M.); (B.T.); (M.T.)
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary; (D.M.); (B.T.); (M.T.)
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-342-361
| | - Gyula Telegdy
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 5, H-6725 Szeged, Hungary;
| |
Collapse
|
5
|
Liang Y, Xie S, He Y, Xu M, Qiao X, Zhu Y, Wu W. Kynurenine Pathway Metabolites as Biomarkers in Alzheimer's Disease. DISEASE MARKERS 2022; 2022:9484217. [PMID: 35096208 PMCID: PMC8791723 DOI: 10.1155/2022/9484217] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that deteriorates cognitive function. Patients with AD generally exhibit neuroinflammation, elevated beta-amyloid (Aβ), tau phosphorylation (p-tau), and other pathological changes in the brain. The kynurenine pathway (KP) and several of its metabolites, especially quinolinic acid (QA), are considered to be involved in the neuropathogenesis of AD. The important metabolites and key enzymes show significant importance in neuroinflammation and AD. Meanwhile, the discovery of changed levels of KP metabolites in patients with AD suggests that KP metabolites may have a prominent role in the pathogenesis of AD. Further, some KP metabolites exhibit other effects on the brain, such as oxidative stress regulation and neurotoxicity. Both analogs of the neuroprotective and antineuroinflammation metabolites and small molecule enzyme inhibitors preventing the formation of neurotoxic and neuroinflammation compounds may have potential therapeutic significance. This review focused on the KP metabolites through the relationship of neuroinflammation in AD, significant KP metabolites, and associated molecular mechanisms as well as the utility of these metabolites as biomarkers and therapeutic targets for AD. The objective is to provide references to find biomarkers and therapeutic targets for patients with AD.
Collapse
Affiliation(s)
- Yuqing Liang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Shan Xie
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yanyun He
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Manru Xu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Xi Qiao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yue Zhu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Wenbin Wu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| |
Collapse
|
6
|
Maryška M, Svobodová L, Dehaen W, Hrabinová M, Rumlová M, Soukup O, Kuchař M. Heterocyclic Cathinones as Inhibitors of Kynurenine Aminotransferase II-Design, Synthesis, and Evaluation. Pharmaceuticals (Basel) 2021; 14:ph14121291. [PMID: 34959692 PMCID: PMC8708382 DOI: 10.3390/ph14121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Kynurenic acid is a neuroprotective metabolite of tryptophan formed by kynurenine aminotransferase (KAT) catalyzed transformation of kynurenine. However, its high brain levels are associated with cognitive deficit and with the pathophysiology of schizophrenia. Although several classes of KAT inhibitors have been published, the search for new inhibitor chemotypes is crucial for the process of finding suitable clinical candidates. Therefore, we used pharmacophore modeling and molecular docking, which predicted derivatives of heterocyclic amino ketones as new potential irreversible inhibitors of kynurenine aminotransferase II. Thiazole and triazole-based amino ketones were synthesized within a SAR study and their inhibitory activities were evaluated in vitro. The observed activities confirmed our computational model and, moreover, the best compounds showed sub-micromolar inhibitory activity with 2-alaninoyl-5-(4-fluorophenyl)thiazole having IC50 = 0.097 µM.
Collapse
Affiliation(s)
- Michal Maryška
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (M.M.); (L.S.)
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Lucie Svobodová
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (M.M.); (L.S.)
| | - Wim Dehaen
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic;
| | - Martina Hrabinová
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Kralové, Czech Republic; (M.H.); (O.S.)
- Department of Toxicology and Military Pharmacy, University of Defense, Třebešská 1575, 50005 Hradec Králové, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic;
| | - Ondřej Soukup
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Kralové, Czech Republic; (M.H.); (O.S.)
- Department of Toxicology and Military Pharmacy, University of Defense, Třebešská 1575, 50005 Hradec Králové, Czech Republic
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (M.M.); (L.S.)
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
- Correspondence: ; Tel.: +420-220-444-431
| |
Collapse
|
7
|
Siddiqui T, Bhattarai P, Popova S, Cosacak MI, Sariya S, Zhang Y, Mayeux R, Tosto G, Kizil C. KYNA/Ahr Signaling Suppresses Neural Stem Cell Plasticity and Neurogenesis in Adult Zebrafish Model of Alzheimer's Disease. Cells 2021; 10:2748. [PMID: 34685728 PMCID: PMC8534484 DOI: 10.3390/cells10102748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Neurogenesis decreases in Alzheimer's disease (AD) patients, suggesting that restoring the normal neurogenic response could be a disease modifying intervention. To study the mechanisms of pathology-induced neuro-regeneration in vertebrate brains, zebrafish is an excellent model due to its extensive neural regeneration capacity. Here, we report that Kynurenic acid (KYNA), a metabolite of the amino acid tryptophan, negatively regulates neural stem cell (NSC) plasticity in adult zebrafish brain through its receptor, aryl hydrocarbon receptor 2 (Ahr2). The production of KYNA is suppressed after amyloid-toxicity through reduction of the levels of Kynurenine amino transferase 2 (KAT2), the key enzyme producing KYNA. NSC proliferation is enhanced by an antagonist for Ahr2 and is reduced with Ahr2 agonists or KYNA. A subset of Ahr2-expressing zebrafish NSCs do not express other regulatory receptors such as il4r or ngfra, indicating that ahr2-positive NSCs constitute a new subset of neural progenitors that are responsive to amyloid-toxicity. By performing transcriptome-wide association studies (TWAS) in three late onset Alzheimer disease (LOAD) brain autopsy cohorts, we also found that several genes that are components of KYNA metabolism or AHR signaling are differentially expressed in LOAD, suggesting a strong link between KYNA/Ahr2 signaling axis to neurogenesis in LOAD.
Collapse
Affiliation(s)
- Tohid Siddiqui
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany; (T.S.); (P.B.); (S.P.); (M.I.C.)
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany; (T.S.); (P.B.); (S.P.); (M.I.C.)
| | - Stanislava Popova
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany; (T.S.); (P.B.); (S.P.); (M.I.C.)
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany; (T.S.); (P.B.); (S.P.); (M.I.C.)
| | - Sanjeev Sariya
- The Department of Neurology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; (S.S.); (R.M.); (G.T.)
| | - Yixin Zhang
- B-CUBE, Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany;
| | - Richard Mayeux
- The Department of Neurology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; (S.S.); (R.M.); (G.T.)
| | - Giuseppe Tosto
- The Department of Neurology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; (S.S.); (R.M.); (G.T.)
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany; (T.S.); (P.B.); (S.P.); (M.I.C.)
- The Department of Neurology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; (S.S.); (R.M.); (G.T.)
| |
Collapse
|
8
|
Büki A, Kekesi G, Horvath G, Vécsei L. A Potential Interface between the Kynurenine Pathway and Autonomic Imbalance in Schizophrenia. Int J Mol Sci 2021; 22:10016. [PMID: 34576179 PMCID: PMC8467675 DOI: 10.3390/ijms221810016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by various symptoms including autonomic imbalance. These disturbances involve almost all autonomic functions and might contribute to poor medication compliance, worsened quality of life and increased mortality. Therefore, it has a great importance to find a potential therapeutic solution to improve the autonomic disturbances. The altered level of kynurenines (e.g., kynurenic acid), as tryptophan metabolites, is almost the most consistently found biochemical abnormality in schizophrenia. Kynurenic acid influences different types of receptors, most of them involved in the pathophysiology of schizophrenia. Only few data suggest that kynurenines might have effects on multiple autonomic functions. Publications so far have discussed the implication of kynurenines and the alteration of the autonomic nervous system in schizophrenia independently from each other. Thus, the coupling between them has not yet been addressed in schizophrenia, although their direct common points, potential interfaces indicate the consideration of their interaction. The present review gathers autonomic disturbances, the impaired kynurenine pathway in schizophrenia, and the effects of kynurenine pathway on autonomic functions. In the last part of the review, the potential interaction between the two systems in schizophrenia, and the possible therapeutic options are discussed.
Collapse
Affiliation(s)
- Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
| |
Collapse
|
9
|
Bai MY, Lovejoy DB, Guillemin GJ, Kozak R, Stone TW, Koola MM. Galantamine-Memantine Combination and Kynurenine Pathway Enzyme Inhibitors in the Treatment of Neuropsychiatric Disorders. Complex Psychiatry 2021; 7:19-33. [PMID: 35141700 PMCID: PMC8443947 DOI: 10.1159/000515066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022] Open
Abstract
The kynurenine pathway (KP) is a major route for L-tryptophan (L-TRP) metabolism, yielding a variety of bioactive compounds including kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and picolinic acid (PIC). These tryptophan catabolites are involved in the pathogenesis of many neuropsychiatric disorders, particularly when the KP becomes dysregulated. Accordingly, the enzymes that regulate the KP such as indoleamine 2,3-dioxygenase (IDO)/tryptophan 2,3-dioxygenase, kynurenine aminotransferases (KATs), and kynurenine 3-monooxygenase (KMO) represent potential drug targets as enzymatic inhibition can favorably rebalance KP metabolite concentrations. In addition, the galantamine-memantine combination, through its modulatory effects at the alpha7 nicotinic acetylcholine receptors and N-methyl-D-aspartate receptors, may counteract the effects of KYNA. The aim of this review is to highlight the effectiveness of IDO-1, KAT II, and KMO inhibitors, as well as the galantamine-memantine combination in the modulation of different KP metabolites. KAT II inhibitors are capable of decreasing the KYNA levels in the rat brain by a maximum of 80%. KMO inhibitors effectively reduce the central nervous system (CNS) levels of 3-HK, while markedly boosting the brain concentration of KYNA. Emerging data suggest that the galantamine-memantine combination also lowers L-TRP, kynurenine, KYNA, and PIC levels in humans. Presently, there are only 2 pathophysiological mechanisms (cholinergic and glutamatergic) that are FDA approved for the treatment of cognitive dysfunction for which purpose the galantamine-memantine combination has been designed for clinical use against Alzheimer's disease. The alpha7 nicotinic-NMDA hypothesis targeted by the galantamine-memantine combination has been implicated in the pathophysiology of various CNS diseases. Similarly, KYNA is well capable of modulating the neuropathophysiology of these disorders. This is known as the KYNA-centric hypothesis, which may be implicated in the management of certain neuropsychiatric conditions. In line with this hypothesis, KYNA may be considered as the "conductor of the orchestra" for the major pathophysiological mechanisms underlying CNS disorders. Therefore, there is great opportunity to further explore and compare the biological effects of these therapeutic modalities in animal models with a special focus on their effects on KP metabolites in the CNS and with the ultimate goal of progressing to clinical trials for many neuropsychiatric diseases.
Collapse
Affiliation(s)
- Michael Y. Bai
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - David B. Lovejoy
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gilles J. Guillemin
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rouba Kozak
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals International Co, Cambridge, Massachusetts, USA
| | - Trevor W. Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
10
|
Role of Kynurenine Pathway in Oxidative Stress during Neurodegenerative Disorders. Cells 2021; 10:cells10071603. [PMID: 34206739 PMCID: PMC8306609 DOI: 10.3390/cells10071603] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are chronic and life-threatening conditions negatively affecting the quality of patients’ lives. They often have a genetic background, but oxidative stress and mitochondrial damage seem to be at least partly responsible for their development. Recent reports indicate that the activation of the kynurenine pathway (KP), caused by an activation of proinflammatory factors accompanying neurodegenerative processes, leads to the accumulation of its neuroactive and pro-oxidative metabolites. This leads to an increase in the oxidative stress level, which increases mitochondrial damage, and disrupts the cellular energy metabolism. This significantly reduces viability and impairs the proper functioning of central nervous system cells and may aggravate symptoms of many psychiatric and neurodegenerative disorders. This suggests that the modulation of KP activity could be effective in alleviating these symptoms. Numerous reports indicate that tryptophan supplementation, inhibition of KP enzymes, and administration or analogs of KP metabolites show promising results in the management of neurodegenerative disorders in animal models. This review gathers and systematizes the knowledge concerning the role of metabolites and enzymes of the KP in the development of oxidative damage within brain cells during neurodegenerative disorders and potential strategies that could reduce the severity of this process.
Collapse
|
11
|
Mithaiwala MN, Santana-Coelho D, Porter GA, O’Connor JC. Neuroinflammation and the Kynurenine Pathway in CNS Disease: Molecular Mechanisms and Therapeutic Implications. Cells 2021; 10:1548. [PMID: 34205235 PMCID: PMC8235708 DOI: 10.3390/cells10061548] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Diseases of the central nervous system (CNS) remain a significant health, social and economic problem around the globe. The development of therapeutic strategies for CNS conditions has suffered due to a poor understanding of the underlying pathologies that manifest them. Understanding common etiological origins at the cellular and molecular level is essential to enhance the development of efficacious and targeted treatment options. Over the years, neuroinflammation has been posited as a common link between multiple neurological, neurodegenerative and neuropsychiatric disorders. Processes that precipitate neuroinflammatory conditions including genetics, infections, physical injury and psychosocial factors, like stress and trauma, closely link dysregulation in kynurenine pathway (KP) of tryptophan metabolism as a possible pathophysiological factor that 'fuel the fire' in CNS diseases. In this study, we aim to review emerging evidence that provide mechanistic insights between different CNS disorders, neuroinflammation and the KP. We provide a thorough overview of the different branches of the KP pertinent to CNS disease pathology that have therapeutic implications for the development of selected and efficacious treatment strategies.
Collapse
Affiliation(s)
- Mustafa N. Mithaiwala
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Danielle Santana-Coelho
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Grace A. Porter
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Jason C. O’Connor
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
- Department of Research, Audie L. Murphy VA Hospital, South Texas Veterans Heath System, San Antonio, TX 78229, USA
| |
Collapse
|
12
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
13
|
Noorbakhsh A, Hosseininezhadian Koushki E, Farshadfar C, Ardalan N. Designing a natural inhibitor against human kynurenine aminotransferase type II and a comparison with PF-04859989: a computational effort against schizophrenia. J Biomol Struct Dyn 2021; 40:7038-7051. [PMID: 33645449 DOI: 10.1080/07391102.2021.1893817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Kynurenine aminotransferase II (KATII) enzyme has an essential role in L-kynurenine transmission to kynurenic acid (KYNA). High concentration of kynurenic acid associates with schizophrenia and some neurocognitive disorders. Decreasing KYNA production via inhibiting KATII would be an effective method for treating and understanding the related central nervous system (CNS) diseases. This study aimed to discover a potent inhibitor against human KATII (hKATII) in comparison with PF-04859989. We utilized the computational methods of molecular dynamics, virtual screening, docking, and binding free-energy calculations. Initially, the 58722 compounds from three drug libraries, including IBS library, DrugBank library, and Analyticon library, were obtained. At the next stage, these sets of compounds were screened by AutoDock Vina software, and a potent inhibitor (ZINC35466084) was selected. Following the screening, molecular dynamics simulations for both ZINC35466084 and PF-04859989 were performed by GROMACS software. MM-PBSA analysis showed that the amount of binding free energy for ZINC35466084 (-61.26 KJ mol-1) is more potent than PF-04859989 (-43.14 KJ mol-1). Furthermore, the ADME analysis results revealed that the pharmacokinetic parameters of ZINC35466084 are acceptable for human use. Eventually, our data demonstrated that ZINC35466084 is suitable for hKATII inhibition, and it is an appropriate candidate for further studies in the laboratory. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akbar Noorbakhsh
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Elnaz Hosseininezhadian Koushki
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Chiako Farshadfar
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Noeman Ardalan
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Mori Y, Mouri A, Kunisawa K, Hirakawa M, Kubota H, Kosuge A, Niijima M, Hasegawa M, Kurahashi H, Murakami R, Hoshi M, Nakano T, Fujigaki S, Fujigaki H, Yamamoto Y, Nabeshima T, Saito K. Kynurenine 3-monooxygenase deficiency induces depression-like behavior via enhanced antagonism of α7 nicotinic acetylcholine receptors by kynurenic acid. Behav Brain Res 2021; 405:113191. [PMID: 33607168 DOI: 10.1016/j.bbr.2021.113191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 01/09/2023]
Abstract
Tryptophan (TRP) is metabolized via the kynurenine (KYN) pathway, which is related to the pathogenesis of major depressive disorder (MDD). Kynurenine 3-monooxygenase (KMO) is a pivotal enzyme in the metabolism of KYN to 3-hydroxykynurenine. In rodents, KMO deficiency induces a depression-like behavior and increases the levels of kynurenic acid (KA), a KYN metabolite formed by kynurenine aminotransferases (KATs). KA antagonizes α7 nicotinic acetylcholine receptor (α7nAChR). Here, we investigated the involvement of KA in depression-like behavior in KMO knockout (KO) mice. KYN, KA, and anthranilic acid but not TRP or 3-hydroxyanthranilic acid were elevated in the prefrontal cortex of KMO KO mice. The mRNA levels of KAT1 and α7nAChR but not KAT2-4, α4nAChR, or β2nAChR were elevated in the prefrontal cortex of KMO KO mice. Nicotine blocked increase in locomotor activity, decrease in social interaction time, and prolonged immobility in a forced swimming test, but it did not decrease sucrose preference in the KMO KO mice. Methyllycaconitine (an α7nAChR antagonist) antagonized the effect of nicotine on decreased social interaction time and prolonged immobility in the forced swimming test, but not increased locomotor activity. Galantamine (an α7nAChR allosteric agonist) blocked the increased locomotor activity and prolonged immobility in the forced swimming test, but not the decreased social interaction time in the KMO KO mice. In conclusion, elevation of KA levels contributes to depression-like behaviors in KMO KO mice by α7nAChR antagonism. The ameliorating effects of nicotine and galantamine on depression-like behaviors in KMO KO mice are associated with the activation of α7nAChR.
Collapse
Affiliation(s)
- Yuko Mori
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan.
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan; Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Mami Hirakawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Hisayoshi Kubota
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Aika Kosuge
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Moe Niijima
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Masaya Hasegawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Hitomi Kurahashi
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Reiko Murakami
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Masato Hoshi
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Takashi Nakano
- Department of Computational Biology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Suwako Fujigaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Hidetsugu Fujigaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| |
Collapse
|
15
|
Morales-Puerto N, Giménez-Gómez P, Pérez-Hernández M, Abuin-Martínez C, Gil de Biedma-Elduayen L, Vidal R, Gutiérrez-López MD, O'Shea E, Colado MI. Addiction and the kynurenine pathway: A new dancing couple? Pharmacol Ther 2021; 223:107807. [PMID: 33476641 DOI: 10.1016/j.pharmthera.2021.107807] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Drug use poses a serious threat to health systems throughout the world and the number of consumers rises relentlessly every year. The kynurenine pathway, main pathway of tryptophan degradation, has drawn interest in this field due to its relationship with addictive behaviour. Recently it has been confirmed that modulation of kynurenine metabolism at certain stages of the pathway can reduce, prevent or abolish drug seeking-like behaviours in studies with several different drugs. In this review, we present an up-to-date summary of the evidences of a relationship between drug use and the kynurenine pathway, both the alterations of the pathway due to drug use as well as modulation of the pathway as a potential approach to treat drug addiction. The review discusses ethanol, nicotine, cannabis, amphetamines, cocaine and opioids and new prospects in the drug research field are proposed.
Collapse
Affiliation(s)
- Nuria Morales-Puerto
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Pablo Giménez-Gómez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Mercedes Pérez-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Cristina Abuin-Martínez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Leticia Gil de Biedma-Elduayen
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Rebeca Vidal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - María Dolores Gutiérrez-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Esther O'Shea
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain.
| | - María Isabel Colado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
16
|
Wright CJ, Rentschler KM, Wagner NTJ, Lewis AM, Beggiato S, Pocivavsek A. Time of Day-Dependent Alterations in Hippocampal Kynurenic Acid, Glutamate, and GABA in Adult Rats Exposed to Elevated Kynurenic Acid During Neurodevelopment. Front Psychiatry 2021; 12:734984. [PMID: 34603109 PMCID: PMC8484637 DOI: 10.3389/fpsyt.2021.734984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
Hypofunction of glutamatergic signaling is causally linked to neurodevelopmental disorders, including psychotic disorders like schizophrenia and bipolar disorder. Kynurenic acid (KYNA) has been found to be elevated in postmortem brain tissue and cerebrospinal fluid of patients with psychotic illnesses and may be involved in the hypoglutamatergia and cognitive dysfunction experienced by these patients. As insults during the prenatal period are hypothesized to be linked to the pathophysiology of psychotic disorders, we presently utilized the embryonic kynurenine (EKyn) paradigm to induce a prenatal hit. Pregnant Wistar dams were fed chow laced with kynurenine to stimulate fetal brain KYNA elevation from embryonic day 15 to embryonic day 22. Control dams (ECon) were fed unlaced chow. Plasma and hippocampal tissue from young adult (postnatal day 56) ECon and EKyn male and female offspring were collected at the beginning of the light (Zeitgeber time, ZT 0) and dark (ZT 12) phases to assess kynurenine pathway metabolites. Hippocampal tissue was also collected at ZT 6 and ZT 18. In separate animals, in vivo microdialysis was conducted in the dorsal hippocampus to assess extracellular KYNA, glutamate, and γ-aminobutyric acid (GABA). Biochemical analyses revealed no changes in peripheral metabolites, yet hippocampal tissue KYNA levels were significantly impacted by EKyn treatment, and increased in male EKyn offspring at ZT 6. Interestingly, extracellular hippocampal KYNA levels were only elevated in male EKyn offspring during the light phase. Decreases in extracellular glutamate levels were found in the dorsal hippocampus of EKyn male and female offspring, while decreased GABA levels were present only in males during the dark phase. The current findings suggest that the EKyn paradigm may be a useful tool for investigation of sex- and time-dependent changes in hippocampal neuromodulation elicited by prenatal KYNA elevation, which may influence behavioral phenotypes and have translational relevance to psychotic disorders.
Collapse
Affiliation(s)
- Courtney J Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Katherine M Rentschler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Nathan T J Wagner
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Ashley M Lewis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
17
|
Galantamine-Memantine combination in the treatment of Alzheimer's disease and beyond. Psychiatry Res 2020; 293:113409. [PMID: 32829072 DOI: 10.1016/j.psychres.2020.113409] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly population worldwide. Despite the major unmet clinical need, no new medications for the treatment of AD have been approved since 2003. Galantamine is an acetylcholinesterase inhibitor that is also a positive allosteric modulator at the α4β2 and α7nACh receptors. Memantine is an N-methyl-d-aspartate receptor modulator/agonist. Both galantamine and memantine are FDA-approved medications for the treatment of AD. The objective of this review is to highlight the potential of the galantamine-memantine combination to conduct randomized controlled trials (RCTs) in AD. Several studies have shown the combination to be effective. Neurodegenerative diseases involve multiple pathologies; therefore, combination treatment appears to be a rational approach. Although underutilized, the galantamine-memantine combination is the standard of care in the treatment of AD. Positive RCTs with the combination with concurrent improvement in symptoms and biomarkers may lead to FDA approval, which may lead to greater utilization of this combination in clinical practice.
Collapse
|
18
|
Kynurenines and the Endocannabinoid System in Schizophrenia: Common Points and Potential Interactions. Molecules 2019; 24:molecules24203709. [PMID: 31619006 PMCID: PMC6832375 DOI: 10.3390/molecules24203709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia, which affects around 1% of the world’s population, has been described as a complex set of symptoms triggered by multiple factors. However, the exact background mechanisms remain to be explored, whereas therapeutic agents with excellent effectivity and safety profiles have yet to be developed. Kynurenines and the endocannabinoid system (ECS) play significant roles in both the development and manifestation of schizophrenia, which have been extensively studied and reviewed previously. Accordingly, kynurenines and the ECS share multiple features and mechanisms in schizophrenia, which have yet to be reviewed. Thus, the present study focuses on the main common points and potential interactions between kynurenines and the ECS in schizophrenia, which include (i) the regulation of glutamatergic/dopaminergic/γ-aminobutyric acidergic neurotransmission, (ii) their presence in astrocytes, and (iii) their role in inflammatory mechanisms. Additionally, promising pharmaceutical approaches involving the kynurenine pathway and the ECS will be reviewed herein.
Collapse
|
19
|
Zheng X, Hu M, Zang X, Fan Q, Liu Y, Che Y, Guan X, Hou Y, Wang G, Hao H. Kynurenic acid/GPR35 axis restricts NLRP3 inflammasome activation and exacerbates colitis in mice with social stress. Brain Behav Immun 2019; 79:244-255. [PMID: 30790702 DOI: 10.1016/j.bbi.2019.02.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
Psychological stress is well known to increase colitis susceptibility and promote relapse. Metabolic changes are commonly observed under psychological stress, but little is known how this relates to the progression of colitis. Here we show that kynurenic acid (KA) is an endogenous driver of social stress-exacerbated colitis via regulating the magnitude of NLRP3 inflammasome. Chronic social defeat stress (CSDS) in mice induced colonic accumulation of KA, and mice receiving KA during CSDS had defects in colonic NLRP3 inflammasome activation. Mechanistically, KA activated GPR35 signaling to induce autophagy-dependent degradation of NLRP3 in macrophages, thereby suppressing IL-1β production. Socially defeated mice with KA treatment displayed enhanced vulnerability to subsequent dextran sulphate sodium (DSS)-induced colonic injury and inflammatory disturbance, and this effect was reversed by autophagic inhibition that blocked the NLRP3-suppressive effect of KA. Thus, our research describes a mechanism by which KA/GPR35 signaling represses adaptive NLRP3 inflammasome activation to increase colitis susceptibility and suggests a potential metabolic target for the intervention of stress-related colonic disorder.
Collapse
Affiliation(s)
- Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Miaomiao Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaojie Zang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qiling Fan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yali Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuan Che
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaojing Guan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanlong Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
20
|
The ‘Yin’ and the ‘Yang’ of the kynurenine pathway: excitotoxicity and neuroprotection imbalance in stress-induced disorders. Behav Pharmacol 2019; 30:163-186. [DOI: 10.1097/fbp.0000000000000477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Effect of substituents on 3(S)-amino-1-hydroxy-3,4-dihydroquinolin-2(1H)-one: a DFT study. Theor Chem Acc 2019. [DOI: 10.1007/s00214-018-2403-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Chang CH, Lane HY, Liu CY, Cheng PC, Chen SJ, Lin CH. C-reactive protein is associated with severity of thought and language dysfunction in patients with schizophrenia. Neuropsychiatr Dis Treat 2019; 15:2621-2627. [PMID: 31571879 PMCID: PMC6750161 DOI: 10.2147/ndt.s223278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Numerous studies have demonstrated an association between C-reactive protein (CRP) levels and schizophrenia. However, the findings on psychotic severity and cognition remain inconsistent. The relationship between CRP and formal thought disorder in subdomains remains unclear. METHODS We enrolled stable patients (defined as those who had no treatment changes during the 4-week period before evaluation) with a diagnosis of schizophrenia or schizoaffective disorder, according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. We used the 30-item Thought and Language Disorder (TALD) scale to evaluate thought and language dysfunction over four subscales. We assessed psychotic symptoms using the Positive and Negative Syndrome Scale (PANSS). We collected fasting venous blood and measured plasma CRP levels. RESULTS We enrolled 60 patients with schizophrenia. All patients received TALD and PANSS evaluation, and 33 of them had their CRP levels checked. The multivariate regression analysis indicated that CRP levels were significantly associated with the total score on the TALD (t=2.757, P=0.010) and the TALD Objective Positive subscale (t=2.749, P=0.011), after sex, age, duration of illness (in years), and use of atypical antipsychotics were adjusted for. Additionally, CRP was significantly associated with the PANSS positive subscale (t=2.102, P=0.045). A significantly positive correlation was observed between the total scores on the TALD scale and PANSS (ρ =0.751, P<0.001). CONCLUSION Our results suggest that abnormal CRP levels are significantly associated with formal thought and language dysfunction in the Objective Positive subdomain and positive psychotic symptoms.
Collapse
Affiliation(s)
- Chun-Hung Chang
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Hsien-Yuan Lane
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Chieh-Yu Liu
- Biostatistical Consulting Laboratory, Department of Speech Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Po-Chih Cheng
- Biostatistical Consulting Laboratory, Department of Speech Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Shaw-Ji Chen
- Department of Psychiatry, Mackay Memorial Hospital Taitung Branch, Taitung, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chieh-Hsin Lin
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Badawy AAB. Tryptophan Metabolism: A Versatile Area Providing Multiple Targets for Pharmacological Intervention. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2019; 9:10.32527/2019/101415. [PMID: 31105983 PMCID: PMC6520243 DOI: 10.32527/2019/101415] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The essential amino acid L-tryptophan (Trp) undergoes extensive metabolism along several pathways, resulting in production of many biologically active metabolites which exert profound effects on physiological processes. The disturbance in Trp metabolism and disposition in many disease states provides a basis for exploring multiple targets for pharmaco-therapeutic interventions. In particular, the kynurenine pathway of Trp degradation is currently at the forefront of immunological research and immunotherapy. In this review, I shall consider mammalian Trp metabolism in health and disease and outline the intervention targets. It is hoped that this account will provide a stimulus for pharmacologists and others to conduct further studies in this rich area of biomedical research and therapeutics.
Collapse
|
24
|
Salivary kynurenic acid response to psychological stress: inverse relationship to cortical glutamate in schizophrenia. Neuropsychopharmacology 2018; 43:1706-1711. [PMID: 29728648 PMCID: PMC6006286 DOI: 10.1038/s41386-018-0072-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
Frontal glutamatergic synapses are thought to be critical for adaptive, long-term stress responses. Prefrontal cortices, including the anterior cingulate cortex (ACC) contribute to stress perception and regulation, and are involved in top-down regulation of peripheral glucocorticoid and inflammatory responses to stress. Levels of kynurenic acid (KYNA) in saliva increase in response to psychological stress, and this stress-induced effect may be abnormal in people with schizophrenia. Here we test the hypothesis that ACC glutamatergic functioning may contribute to the stress-induced salivary KYNA response in schizophrenia. In 56 patients with schizophrenia and 58 healthy controls, our results confirm that levels of KYNA in saliva increase following psychological stress. The magnitude of the effect correlated negatively with proton magnetic resonance spectroscopy (MRS) glutamate + glutamine (r = -.31, p = .017) and glutamate (r = -0.27, p = .047) levels in the ACC in patients but not in the controls (all p ≥ .45). Although, a causal relationship cannot be ascertained in this cross-sectional study, these findings suggest a potentially meaningful link between central glutamate levels and kynurenine pathway response to stress in individuals with schizophrenia.
Collapse
|
25
|
Chang C, Fonseca KR, Li C, Horner W, Zawadzke LE, Salafia MA, Welch KA, Strick CA, Campbell BM, Gernhardt SS, Rong H, Sawant-Basak A, Liras J, Dounay A, Tuttle JB, Verhoest P, Maurer TS. Quantitative Translational Analysis of Brain Kynurenic Acid Modulation via Irreversible Kynurenine Aminotransferase II Inhibition. Mol Pharmacol 2018; 94:823-833. [PMID: 29853495 DOI: 10.1124/mol.118.111625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022] Open
Abstract
Kynurenic acid (KYNA) plays a significant role in maintaining normal brain function, and abnormalities in KYNA levels have been associated with various central nervous system disorders. Confirmation of its causality in human diseases requires safe and effective modulation of central KYNA levels in the clinic. The kynurenine aminotransferases (KAT) II enzyme represents an attractive target for pharmacologic modulation of central KYNA levels; however, KAT II and KYNA turnover kinetics, which could contribute to the duration of pharmacologic effect, have not been reported. In this study, the kinetics of central KYNA-lowering effect in rats and nonhuman primates (NHPs, Cynomolgus macaques) was investigated using multiple KAT II irreversible inhibitors as pharmacologic probes. Mechanistic pharmacokinetic-pharmacodynamic analysis of in vivo responses to irreversible inhibition quantitatively revealed that 1) KAT II turnover is relatively slow [16-76 hours' half-life (t1/2)], whereas KYNA is cleared more rapidly from the brain (<1 hour t1/2) in both rats and NHPs, 2) KAT II turnover is slower in NHPs than in rats (76 hours vs. 16 hours t1/2, respectively), and 3) the percent contribution of KAT II to KYNA formation is constant (∼80%) across rats and NHPs. Additionally, modeling results enabled establishment of in vitro-in vivo correlation for both enzyme turnover rates and drug potencies. In summary, quantitative translational analysis confirmed the feasibility of central KYNA modulation in humans. Model-based analysis, where system-specific properties and drug-specific properties are mechanistically separated from in vivo responses, enabled quantitative understanding of the KAT II-KYNA pathway, as well as assisted development of promising candidates to test KYNA hypothesis in humans.
Collapse
Affiliation(s)
- Cheng Chang
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Kari R Fonseca
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Cheryl Li
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Weldon Horner
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Laura E Zawadzke
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Michelle A Salafia
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Kathryn A Welch
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Christine A Strick
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Brian M Campbell
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Steve S Gernhardt
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Haojing Rong
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Aarti Sawant-Basak
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Jennifer Liras
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Amy Dounay
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Jamison B Tuttle
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Patrick Verhoest
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Tristan S Maurer
- Systems Modeling and Simulation Group, Pharmacokinetics, Dynamics and Metabolism, Medicine Design (C.C., C.L., T.S.M.), Neuroscience and Pain Research Unit (W.H., L.E.Z., M.A.S., K.A.W., C.A.S., B.M.C., A.D., J.B.T., P.V.), and Pharmacokinetics, Dynamics and Metabolism, Medicine Design (K.R.F., S.S.G., H.R., A.S.-B., J.L.), Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| |
Collapse
|
26
|
Jacobs KR, Castellano-Gonzalez G, Guillemin GJ, Lovejoy DB. Major Developments in the Design of Inhibitors along the Kynurenine Pathway. Curr Med Chem 2017; 24:2471-2495. [PMID: 28464785 PMCID: PMC5748880 DOI: 10.2174/0929867324666170502123114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/13/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Abstract
Disrupted kynurenine pathway (KP) metabolism has been implicated in the progression of neurodegenerative disease, psychiatric disorders and cancer. Modulation of enzyme activity along this pathway may therefore offer potential new therapeutic strategies for these conditions. Considering their prominent positions in the KP, the enzymes indoleamine 2,3-dioxygenase, kynurenine 3-monooxygenase and kynurenine aminotransferase, appear the most attractive targets. Already, increasing interest in this pathway has led to the identification of a number of potent and selective enzyme inhibitors with promising pre-clinical data and the elucidation of several enzyme crystal structures provides scope to rationalize the molecular mechanisms of inhibitor activity. The field seems poised to yield one or more inhibitors that should find clinical utility.
Collapse
Affiliation(s)
- Kelly R Jacobs
- Neuroinflammation Group, Department of Biomedical Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney. Australia
| | - Gloria Castellano-Gonzalez
- Neuroinflammation Group, Department of Biomedical Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney. Australia
| | - Gilles J Guillemin
- Department of Biomedical Research, Faculty of Medicine and Health Science, Macquarie University, 2 Technology Place, Sydney. Australia
| | - David B Lovejoy
- Department of Biomedical Research, Faculty of Medicine and Health Science, Macquarie University, 2 Technology Place, Sydney. Australia
| |
Collapse
|
27
|
Bortz DM, Wu HQ, Schwarcz R, Bruno JP. Oral administration of a specific kynurenic acid synthesis (KAT II) inhibitor attenuates evoked glutamate release in rat prefrontal cortex. Neuropharmacology 2017; 121:69-78. [PMID: 28419874 PMCID: PMC5803791 DOI: 10.1016/j.neuropharm.2017.04.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/22/2017] [Accepted: 04/14/2017] [Indexed: 11/20/2022]
Abstract
Cognitive deficits represent core symptoms in schizophrenia (SZ) and predict patient outcome; however, they remain poorly treated by current antipsychotic drugs. Elevated levels of the endogenous alpha7 nicotinic receptor negative allosteric modulator and NMDA receptor antagonist, kynurenic acid (KYNA), are commonly seen in post-mortem tissue and cerebrospinal fluid of patients with SZ. When acutely or chronically elevated in rodents, KYNA produces cognitive deficits similar to those seen in the disease, making down-regulation of KYNA, via inhibition of kynurenine aminotransferase II (KAT II), a potential treatment strategy. We determined, in adult Wistar rats, if the orally available KAT II inhibitor BFF816 a) prevents KYNA elevations in prefrontal cortex (PFC) after a systemic kynurenine injection and b) reverses the kynurenine-induced attenuation of evoked prefrontal glutamate release caused by stimulation of the nucleus accumbens shell (NAcSh). Systemic injection of kynurenine (25 or 100 mg/kg, i.p.) increased KYNA levels in PFC (532% and 1104% of baseline, respectively). NMDA infusions (0.15 μg/0.5 μL) into NAcSh raised prefrontal glutamate levels more than 30-fold above baseline. The two doses of kynurenine reduced evoked glutamate release in PFC (by 43% and 94%, respectively, compared to NMDA alone). Co-administration of BFF816 (30 or 100 mg/kg, p.o.) with kynurenine (25 mg/kg, i.p.) attenuated the neosynthesis of KYNA and dose-dependently restored NMDA-stimulated glutamate release in the PFC (16% and 69%, respectively). The ability to prevent KYNA neosynthesis and to normalize evoked glutamate release in PFC justifies further development of KAT II inhibitors for the treatment of cognitive deficits in SZ.
Collapse
Affiliation(s)
- D M Bortz
- Dept. of Psychology, The Ohio State University, Columbus, OH, United States
| | - H-Q Wu
- Maryland Psychiatric Research Center, Dept. of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - R Schwarcz
- Maryland Psychiatric Research Center, Dept. of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - J P Bruno
- Dept. of Psychology, The Ohio State University, Columbus, OH, United States; Dept. of Neuroscience, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
28
|
Attenuating Nicotine Reinforcement and Relapse by Enhancing Endogenous Brain Levels of Kynurenic Acid in Rats and Squirrel Monkeys. Neuropsychopharmacology 2017; 42:1619-1629. [PMID: 28139681 PMCID: PMC5518900 DOI: 10.1038/npp.2017.21] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
The currently available antismoking medications have limited efficacy and often fail to prevent relapse. Thus, there is a pressing need for newer, more effective treatment strategies. Recently, we demonstrated that enhancing endogenous levels of kynurenic acid (KYNA, a neuroinhibitory product of tryptophan metabolism) counteracts the rewarding effects of cannabinoids by acting as a negative allosteric modulator of α7 nicotinic receptors (α7nAChRs). As the effects of KYNA on cannabinoid reward involve nicotinic receptors, in the present study we used rat and squirrel monkey models of reward and relapse to examine the possibility that enhancing KYNA can counteract the effects of nicotine. To assess specificity, we also examined models of cocaine reward and relapse in monkeys. KYNA levels were enhanced by administering the kynurenine 3-monooxygenase (KMO) inhibitor, Ro 61-8048. Treatment with Ro 61-8048 decreased nicotine self-administration in rats and monkeys, but did not affect cocaine self-administration. In rats, Ro 61-8048 reduced the ability of nicotine to induce dopamine release in the nucleus accumbens shell, a brain area believed to underlie nicotine reward. Perhaps most importantly, Ro 61-8048 prevented relapse-like behavior when abstinent rats or monkeys were reexposed to nicotine and/or cues that had previously been associated with nicotine. Ro 61-8048 was also effective in monkey models of cocaine relapse. All of these effects of Ro 61-8048 in monkeys, but not in rats, were reversed by pretreatment with a positive allosteric modulator of α7nAChRs. These findings suggest that KMO inhibition may be a promising new approach for the treatment of nicotine addiction.
Collapse
|
29
|
Badawy AAB. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int J Tryptophan Res 2017; 10:1178646917691938. [PMID: 28469468 PMCID: PMC5398323 DOI: 10.1177/1178646917691938] [Citation(s) in RCA: 665] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
Regulatory and functional aspects of the kynurenine (K) pathway (KP) of tryptophan (Trp) degradation are reviewed. The KP accounts for ~95% of dietary Trp degradation, of which 90% is attributed to the hepatic KP. During immune activation, the minor extrahepatic KP plays a more active role. The KP is rate-limited by its first enzyme, Trp 2,3-dioxygenase (TDO), in liver and indoleamine 2,3-dioxygenase (IDO) elsewhere. TDO is regulated by glucocorticoid induction, substrate activation and stabilization by Trp, cofactor activation by heme, and end-product inhibition by reduced nicotinamide adenine dinucleotide (phosphate). IDO is regulated by IFN-γ and other cytokines and by nitric oxide. The KP disposes of excess Trp, controls hepatic heme synthesis and Trp availability for cerebral serotonin synthesis, and produces immunoregulatory and neuroactive metabolites, the B3 “vitamin” nicotinic acid, and oxidized nicotinamide adenine dinucleotide. Various KP enzymes are undermined in disease and are targeted for therapy of conditions ranging from immunological, neurological, and neurodegenerative conditions to cancer.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
30
|
Fujigaki H, Yamamoto Y, Saito K. L-Tryptophan-kynurenine pathway enzymes are therapeutic target for neuropsychiatric diseases: Focus on cell type differences. Neuropharmacology 2017; 112:264-274. [DOI: 10.1016/j.neuropharm.2016.01.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022]
|
31
|
Astrocytic and neuronal localization of kynurenine aminotransferase-2 in the adult mouse brain. Brain Struct Funct 2016; 222:1663-1672. [PMID: 27568378 DOI: 10.1007/s00429-016-1299-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/21/2016] [Indexed: 10/21/2022]
Abstract
During catabolism of tryptophan through the kynurenine (KYN) pathway, several endogenous metabolites with neuromodulatory properties are produced, of which kynurenic acid (KYNA) is one of the highest significance. The causal role of altered KYNA production has been described in several neurodegenerative and neuropsychiatric disorders (e.g., Parkinson's disease, Huntington's disease, schizophrenia) and therefore kynurenergic manipulation with the aim of therapy has recently been proposed. Conventionally, KYNA is produced from its precursor L-KYN with the aid of the astrocytic kynurenine aminotransferase-2 (KAT-2) in the murine brain. Although the mouse is a standard therapeutic research organism, the presence of KAT-2 in mice has not been described in detail. This study demonstrates the presence of kat-2 mRNA and protein throughout the adult C57Bl6 mouse brain. In addition to the former expression data from the rat, we found prominent KAT-2 expression not only in the astrocyte, but also in neurons in several brain regions (e.g., hippocampus, substantia nigra, striatum, and prefrontal cortex). A significant number of the KAT-2 positive neurons were positive for GAD67; the presence of the KAT-2 enzyme we could also demonstrate in mice brain homogenate and in cells overexpressing recombinant mouse KAT-2 protein. This new finding attributes a new role to interneuron-derived KYNA in neuronal network operation. Furthermore, our results suggest that the thorough investigation of the spatio-temporal expression pattern of the relevant enzymes of the KYN pathway is a prerequisite for developing and understanding the pharmacological and transgenic murine models of kynurenergic manipulation.
Collapse
|
32
|
Kynurenine pathway and cognitive impairments in schizophrenia: Pharmacogenetics of galantamine and memantine. SCHIZOPHRENIA RESEARCH-COGNITION 2016; 4:4-9. [PMID: 27069875 PMCID: PMC4824953 DOI: 10.1016/j.scog.2016.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) project designed to facilitate the development of new drugs for the treatment of cognitive impairments in people with schizophrenia, identified three drug mechanisms of particular interest: dopaminergic, cholinergic, and glutamatergic. Galantamine is an acetylcholinesterase inhibitor and a positive allosteric modulator of the α7 nicotinic receptors. Memantine is an N-methyl-D-aspartate (NMDA) receptor antagonist. There is evidence to suggest that the combination of galantamine and memantine may be effective in the treatment of cognitive impairments in schizophrenia. There is a growing body of evidence that excess kynurenic acid (KYNA) is associated with cognitive impairments in schizophrenia. The α-7 nicotinic and the NMDA receptors may counteract the effects of kynurenic acid (KYNA) resulting in cognitive enhancement. Galantamine and memantine through its α-7 nicotinic and NMDA receptors respectively may counteract the effects of KYNA thereby improving cognitive impairments. The Single Nucleotide Polymorphisms in the Cholinergic Receptor, Nicotinic, Alpha 7 gene (CHRNA7), Glutamate (NMDA) Receptor, Metabotropic 1 (GRM1) gene, Dystrobrevin Binding Protein 1 (DTNBP1) and kynurenine 3-monooxygenase (KMO) gene may predict treatment response to galantamine and memantine combination for cognitive impairments in schizophrenia in the kynurenine pathway.
Collapse
|
33
|
C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: meta-analysis and implications. Mol Psychiatry 2016; 21:554-64. [PMID: 26169974 DOI: 10.1038/mp.2015.87] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/01/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
Abstract
The inflammatory hypothesis of schizophrenia (SZ) posits that inflammatory processes and neural-immune interactions are involved in its pathogenesis, and may underpin some of its neurobiological correlates. SZ is the psychiatric disorder causing the most severe burden of illness, not just owing to its psychiatric impairment, but also owing to its significant medical comorbidity. C-reactive protein (CRP) is a commonly used biomarker of systemic inflammation worldwide. There are some conflicting results regarding the behaviour of CRP in SZ. The aims of this study were to verify whether peripheral CRP levels are indeed increased in SZ, whether different classes of antipsychotics divergently modulate CRP levels and whether its levels are correlated with positive and negative symptomatology. With that in mind, we performed a meta-analysis of all cross-sectional studies of serum and plasma CRP levels in SZ compared to healthy subjects. In addition, we evaluated longitudinal studies on CRP levels before and after antipsychotic use. Our meta-analyses of CRP in SZ included a total of 26 cross-sectional or longitudinal studies comprising 85 000 participants. CRP levels were moderately increased in persons with SZ regardless of the use of antipsychotics and did not change between the first episode of psychosis and with progression of SZ (g=0.66, 95% confidence interval (95% CI) 0.43 to 0.88, P<0.001, 24 between-group comparisons, n=82 962). The extent of the increase in peripheral CRP levels paralleled the increase in severity of positive symptoms, but was unrelated to the severity of negative symptoms. CRP levels were also aligned with an increased body mass index. Conversely, higher age correlated with a smaller difference in CRP levels between persons with SZ and controls. Furthermore, CRP levels did not increase after initiation of antipsychotic medication notwithstanding whether these were typical or atypical antipsychotics (g=0.01, 95% CI -0.20 to 0.22, P=0.803, 8 within-group comparisons, n=713). In summary, our study provides further evidence of the inflammatory hypothesis of SZ. Whether there is a causal relationship between higher CRP levels and the development of SZ and aggravation of psychotic symptoms, or whether they are solely a marker of systemic low-grade inflammation in SZ, remains to be clarified.
Collapse
|
34
|
Schwarcz R. Kynurenines and Glutamate: Multiple Links and Therapeutic Implications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:13-37. [PMID: 27288072 PMCID: PMC5803753 DOI: 10.1016/bs.apha.2016.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutamate is firmly established as the major excitatory neurotransmitter in the mammalian brain and is actively involved in most aspects of neurophysiology. Moreover, glutamatergic impairments are associated with a wide variety of dysfunctional states, and both hypo- and hyperfunction of glutamate have been plausibly linked to the pathophysiology of neurological and psychiatric diseases. Metabolites of the kynurenine pathway (KP), the major catabolic route of the essential amino acid tryptophan, influence glutamatergic activity in several distinct ways. This includes direct effects of these "kynurenines" on ionotropic and metabotropic glutamate receptors or vesicular glutamate transport, and indirect effects, which are initiated by actions at various other recognition sites. In addition, some KP metabolites affect glutamatergic functions by generating or scavenging highly reactive free radicals. This review summarizes these phenomena and discusses implications for brain physiology and pathology.
Collapse
Affiliation(s)
- R Schwarcz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
35
|
Sun G, Nematollahi A, Nadvi NA, Kwan AH, Jeffries CM, Church WB. Expression, purification and crystallization of human kynurenine aminotransferase 2 exploiting a highly optimized codon set. Protein Expr Purif 2016; 121:41-5. [PMID: 26773745 DOI: 10.1016/j.pep.2016.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
Kynurenine aminotransferase (KAT) is a pyridoxal-5'-phosphate (PLP) dependent enzyme that catalyses kynurenine (KYN) to kynurenic acid (KYNA), a neuroactive product in the tryptophan metabolic pathway. Evidence suggests that abnormal levels of KYNA are involved in many neurodegenerative diseases such as Parkinson's disease, Huntington's disease, Alzheimer's disease and schizophrenia. Reducing KYNA production through inhibiting kynurenine aminotransferase 2 (KAT2) would be a promising approach to understanding and treating the related neurological and mental disorders. In this study we used an optimized codon sequence to overexpress histidine-tagged human KAT2 (hKAT2) using an Escherichia coli expression system. After a single step of Ni-NTA based purification the purified protein (>95%) was confirmed to be active by an HPLC based activity assay and was crystallized using the hanging-drop vapour diffusion method. The crystal system represents a novel space group, and a complete X-ray diffraction data set was collected to 1.83 Å resolution, and higher resolution data than for any reported native human KAT2 structure. The optimised method of protein production provides a fast and reliable technique to generate large quantities of active human KAT2 suitable for future small-molecule lead compound screening and structural design work.
Collapse
Affiliation(s)
- Guanchen Sun
- Group in Biomolecular Structure and Informatics, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| | - Alireza Nematollahi
- Group in Biomolecular Structure and Informatics, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| | - Naveed A Nadvi
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | - Ann H Kwan
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | - Cy M Jeffries
- Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - W Bret Church
- Group in Biomolecular Structure and Informatics, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
36
|
Astrocytes as Pharmacological Targets in the Treatment of Schizophrenia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-800981-9.00025-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Abstract
The endocannabinoid system (ECS) comprises a complex of receptors, enzymes, and endogenous agonists that are widely distributed in the central nervous system of mammals and participates in a considerable number of neuromodulatory functions, including neurotransmission, immunological control, and cell signaling. In turn, the kynurenine pathway (KP) is the most relevant metabolic route for tryptophan degradation to form the metabolic precursor NAD(+). Recent studies demonstrate that the control exerted by the pharmacological manipulation of the ECS on the glutamatergic system in the brain may offer key information not only on the development of psychiatric disorders like psychosis and schizophrenia-like symptoms, but it also may constitute a solid basis for the development of therapeutic strategies to combat excitotoxic events occurring in neurological disorders like Huntington's disease (HD). Part of the evidence pointing to the last approach is based on experimental protocols demonstrating the efficacy of cannabinoids to prevent the deleterious actions of the endogenous neurotoxin and KP metabolite quinolinic acid (QUIN). These findings intuitively raise the question about what is the precise role of the ECS in tryptophan metabolism through KP and vice versa. In this chapter, we will review basic concepts on the physiology of both the ECS and the KP to finally describe those recent findings combining the components of these two systems and hypothesize the future course that the research in this emerging field will take in the next years.
Collapse
|
38
|
O'Farrell K, Harkin A. Stress-related regulation of the kynurenine pathway: Relevance to neuropsychiatric and degenerative disorders. Neuropharmacology 2015; 112:307-323. [PMID: 26690895 DOI: 10.1016/j.neuropharm.2015.12.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 02/08/2023]
Abstract
The kynurenine pathway (KP), which is activated in times of stress and infection has been implicated in the pathophysiology of neurodegenerative and psychiatric disorders. Activation of this tryptophan metabolising pathway results in the production of neuroactive metabolites which have the potential to interfere with normal neuronal functioning which may contribute to altered neuronal transmission and the emergence of symptoms of these brain disorders. This review investigates the involvement of the KP in a range of neurological disorders, examining recent in vitro, in vivo and clinical discoveries highlights evidence to indicate that the KP is a potential therapeutic target in both neurodegenerative and stress-related neuropsychiatric disorders. Furthermore, this review identifies gaps in our knowledge with regard to this field which are yet to be examined to lead to a more comprehensive understanding of the role of KP activation in brain health and disease. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'.
Collapse
Affiliation(s)
- Katherine O'Farrell
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland; Neuroimmunology Research Group, Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| |
Collapse
|
39
|
Dounay AB, Tuttle JB, Verhoest PR. Challenges and Opportunities in the Discovery of New Therapeutics Targeting the Kynurenine Pathway. J Med Chem 2015. [DOI: 10.1021/acs.jmedchem.5b00461] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Amy B. Dounay
- Department
of Chemistry and Biochemistry, Colorado College, 14 E. Cache
La Poudre Street, Colorado Springs, Colorado 80903, United States
| | - Jamison B. Tuttle
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - Patrick R. Verhoest
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
40
|
Varga D, Herédi J, Kánvási Z, Ruszka M, Kis Z, Ono E, Iwamori N, Iwamori T, Takakuwa H, Vécsei L, Toldi J, Gellért L. Systemic L-Kynurenine sulfate administration disrupts object recognition memory, alters open field behavior and decreases c-Fos immunopositivity in C57Bl/6 mice. Front Behav Neurosci 2015; 9:157. [PMID: 26136670 PMCID: PMC4468612 DOI: 10.3389/fnbeh.2015.00157] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/01/2015] [Indexed: 01/31/2023] Open
Abstract
L-Kynurenine (L-KYN) is a central metabolite of tryptophan degradation through the kynurenine pathway (KP). The systemic administration of L-KYN sulfate (L-KYNs) leads to a rapid elevation of the neuroactive KP metabolite kynurenic acid (KYNA). An elevated level of KYNA may have multiple effects on the synaptic transmission, resulting in complex behavioral changes, such as hypoactivity or spatial working memory deficits. These results emerged from studies that focused on rats, after low-dose L-KYNs treatment. However, in several studies neuroprotection was achieved through the administration of high-dose L-KYNs. In the present study, our aim was to investigate whether the systemic administration of a high dose of L-KYNs (300 mg/bwkg; i.p.) would produce alterations in behavioral tasks (open field or object recognition) in C57Bl/6j mice. To evaluate the changes in neuronal activity after L-KYNs treatment, in a separate group of animals we estimated c-Fos expression levels in the corresponding subcortical brain areas. The L-KYNs treatment did not affect the general ambulatory activity of C57Bl/6j mice, whereas it altered their moving patterns, elevating the movement velocity and resting time. Additionally, it seemed to increase anxiety-like behavior, as peripheral zone preference of the open field arena emerged and the rearing activity was attenuated. The treatment also completely abolished the formation of object recognition memory and resulted in decreases in the number of c-Fos-immunopositive-cells in the dorsal part of the striatum and in the CA1 pyramidal cell layer of the hippocampus. We conclude that a single exposure to L-KYNs leads to behavioral disturbances, which might be related to the altered basal c-Fos protein expression in C57Bl/6j mice.
Collapse
Affiliation(s)
- Dániel Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged Szeged, Hungary
| | - Judit Herédi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged Szeged, Hungary
| | - Zita Kánvási
- Department of Physiology, Anatomy and Neuroscience, University of Szeged Szeged, Hungary
| | - Marian Ruszka
- Department of Physiology, Anatomy and Neuroscience, University of Szeged Szeged, Hungary ; Department of Neurology, Faculty of Medicine, MTA-SZTE Neuroscience Research Group, University of Szeged Szeged, Hungary
| | - Zsolt Kis
- Department of Physiology, Anatomy and Neuroscience, University of Szeged Szeged, Hungary
| | - Etsuro Ono
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan ; Center of Biomedical Research, Research Center for Human Disease Modeling, Department of Physiological Sciences, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan
| | - Naoki Iwamori
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan ; Center of Biomedical Research, Research Center for Human Disease Modeling, Department of Physiological Sciences, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan
| | - Tokuko Iwamori
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan ; Center of Biomedical Research, Research Center for Human Disease Modeling, Department of Physiological Sciences, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan
| | - Hiroki Takakuwa
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama Kita, Kyoto, Japan
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, MTA-SZTE Neuroscience Research Group, University of Szeged Szeged, Hungary ; Department of Neurology, University of Szeged, Hungary Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged Szeged, Hungary ; Department of Neurology, Faculty of Medicine, MTA-SZTE Neuroscience Research Group, University of Szeged Szeged, Hungary
| | - Levente Gellért
- Department of Physiology, Anatomy and Neuroscience, University of Szeged Szeged, Hungary ; Department of Neurology, Faculty of Medicine, MTA-SZTE Neuroscience Research Group, University of Szeged Szeged, Hungary
| |
Collapse
|
41
|
Kozak R, Campbell BM, Strick CA, Horner W, Hoffmann WE, Kiss T, Chapin DS, McGinnis D, Abbott AL, Roberts BM, Fonseca K, Guanowsky V, Young DA, Seymour PA, Dounay A, Hajos M, Williams GV, Castner SA. Reduction of brain kynurenic acid improves cognitive function. J Neurosci 2014; 34:10592-602. [PMID: 25100593 PMCID: PMC6802596 DOI: 10.1523/jneurosci.1107-14.2014] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 11/21/2022] Open
Abstract
The elevation of kynurenic acid (KYNA) observed in schizophrenic patients may contribute to core symptoms arising from glutamate hypofunction, including cognitive impairments. Although increased KYNA levels reduce excitatory neurotransmission, KYNA has been proposed to act as an endogenous antagonist at the glycine site of the glutamate NMDA receptor (NMDAR) and as a negative allosteric modulator at the α7 nicotinic acetylcholine receptor. Levels of KYNA are elevated in CSF and the postmortem brain of schizophrenia patients, and these elevated levels of KYNA could contribute to NMDAR hypofunction and the cognitive deficits and negative symptoms associated with this disease. However, the impact of endogenously produced KYNA on brain function and behavior is less well understood due to a paucity of pharmacological tools. To address this issue, we identified PF-04859989, a brain-penetrable inhibitor of kynurenine aminotransferase II (KAT II), the enzyme responsible for most brain KYNA synthesis. In rats, systemic administration of PF-04859989 dose-dependently reduced brain KYNA to as little as 28% of basal levels, and prevented amphetamine- and ketamine-induced disruption of auditory gating and improved performance in a sustained attention task. It also prevented ketamine-induced disruption of performance in a working memory task and a spatial memory task in rodents and nonhuman primates, respectively. Together, these findings support the hypotheses that endogenous KYNA impacts cognitive function and that inhibition of KAT II, and consequent lowering of endogenous brain KYNA levels, improves cognitive performance under conditions considered relevant for schizophrenia.
Collapse
Affiliation(s)
- Rouba Kozak
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139,
| | | | - Christine A Strick
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Weldon Horner
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - William E Hoffmann
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Tamas Kiss
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Douglas S Chapin
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Dina McGinnis
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Amanda L Abbott
- Departments of Psychiatry and VA Connecticut Healthcare System, West Haven, Connecticut 06519
| | - Brooke M Roberts
- Departments of Psychiatry and VA Connecticut Healthcare System, West Haven, Connecticut 06519
| | - Kari Fonseca
- Department of Pharmacokinetics, Pharmacodynamics and Metabolism, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Victor Guanowsky
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Damon A Young
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Patricia A Seymour
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Amy Dounay
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Mihaly Hajos
- Comparative Medicine, Yale School of Medicine, New Haven, Connecticut 06510
| | - Graham V Williams
- Departments of Psychiatry and VA Connecticut Healthcare System, West Haven, Connecticut 06519
| | - Stacy A Castner
- Departments of Psychiatry and VA Connecticut Healthcare System, West Haven, Connecticut 06519
| |
Collapse
|