1
|
Hemlata, Sharma S, Vasudeva N, Hooda T. Neuroprotective effects of oleanolic acid against secondary cascades of traumatic brain injury in mice. BRAIN DISORDERS 2024; 16:100173. [DOI: 10.1016/j.dscb.2024.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
2
|
Pingale TD, Gupta GL. Oleanolic acid-based therapeutics ameliorate rotenone-induced motor and depressive behaviors in parkinsonian male mice via controlling neuroinflammation and activating Nrf2-BDNF-dopaminergic signaling pathways. Toxicol Mech Methods 2024; 34:335-349. [PMID: 38084769 DOI: 10.1080/15376516.2023.2288198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/21/2023] [Indexed: 04/20/2024]
Abstract
Parkinson's disease (PD) is often accompanied by depression, which may appear before motor signs. Oleanolic acid (OA), a pentacyclic triterpenoid substance, have many pharmacological properties. However, its efficacy in treating PD-related chronic unpredictable stress (CUS) is unknown. Our study used behavioral, biochemical, and immunohistochemical techniques to assess how OA affected PDrelated CUS. Rotenone (1 mg/kg i.p. for first 21 days) was used to induce Parkinsonism, and modest psychological & environmental stresses generated CUS (from day 22 to day 43) in animals. The study included daily i.p.administration of OA (5, 10, and 20 mg/kg) from day 1 to day 57 in male swiss albino mice. Animals were evaluated for behavioral, biochemical parameters, neurotransmitters, and immunohistochemical expression following the treatment. Results of the study revealed that treatment with OA at all doses alleviated the core symptoms of CUS linked to PD and improved motor and non-motor function. OA therapy significantly lowered IL-1β, TNF-α (p < 0.01, < 0.01, < 0.001), IL-6 (p < 0.05, < 0.01, < 0.001), oxidative stress (p < 0.05, < 0.01, < 0.01), and elevated norepinephrine (p < 0.05, < 0.01, < 0.01), dopamine, and serotonin (p < 0.05, < 0.01, < 0.001) levels. Moreover, OA therapy substantially reduced α-synuclein (p < 0.05, < 0.01, < 0.01) aggregation and increased BDNF (p < 0.05, < 0.01, < 0.001) & Nrf-2 (p < 0.05, < 0.01, < 0.01) levels, which boosts neuronal dopamine survival. The study's findings indicated that OA ameliorates depressive-like behavior persuaded by CUS in PD, decreases neuroinflammation, and improves neurotransmitter concentration via activating Nrf2-BDNF-dopaminergic pathway.
Collapse
Affiliation(s)
- Tanvi Dayanand Pingale
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai India
| | - Girdhari Lal Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai India
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur India
| |
Collapse
|
3
|
Kong CH, Cho K, Min JW, Kim JY, Park K, Kim DY, Jeon M, Kang WC, Jung SY, Lee JY, Ryu JH. Oleanolic acid alleviates the extrapyramidal symptoms and cognitive impairment induced by haloperidol through the striatal PKA signaling pathway in mice. Biomed Pharmacother 2023; 168:115639. [PMID: 37812895 DOI: 10.1016/j.biopha.2023.115639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
Haloperidol, one of the representative typical antipsychotics, is on the market for schizophrenia but shows severe adverse effects such as extrapyramidal symptoms (EPS) or cognitive impairments. Oleanolic acid (OA) is known to be effective for tardive dyskinesia which is induced by long-term treatment with L-DOPA. This study aimed to investigate whether OA could ameliorate EPS or cognitive impairment induced by haloperidol. The balance beam, catalepsy response, rotarod and vacuous chewing movement (VCM) tests were performed to measure EPS and the novel object recognition test was used to estimate haloperidol-induced cognitive impairment. Levels of dopamine and acetylcholine, the phosphorylation levels of c-AMP-dependent protein kinase A (PKA) and its downstream signaling molecules were measured in the striatum. OA significantly attenuated EPS and cognitive impairment induced by haloperidol without affecting its antipsychotic properties. Valbenazine only ameliorated VCM. Also, OA normalised the levels of dopamine and acetylcholine in the striatum which were increased by haloperidol. Furthermore, the increased phosphorylated PKA, extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) levels and c-FOS expression level induced by haloperidol were significantly decreased by OA in the striatum. In addition, cataleptic behaviour of haloperidol was reversed by sub-effective dose of H-89 with OA. These results suggest that OA can alleviate EPS and cognitive impairment induced by antipsychotics without interfering with antipsychotic properties via regulating neurotransmitter levels and the PKA signaling pathway in the striatum. Therefore, OA is a potential candidate for treating EPS and cognitive impairment induced by antipsychotics.
Collapse
Affiliation(s)
- Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyungnam Cho
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Won Min
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Youn Kim
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Do Yeon Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Yeol Lee
- Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Kong CH, Park K, Kim DY, Kim JY, Kang WC, Jeon M, Min JW, Lee WH, Jung SY, Ryu JH. Effects of oleanolic acid and ursolic acid on depression-like behaviors induced by maternal separation in mice. Eur J Pharmacol 2023; 956:175954. [PMID: 37541369 DOI: 10.1016/j.ejphar.2023.175954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Oleanolic acid (OA) and ursolic acid (UA) are structural isomeric triterpenoids. Both triterpenoids have been reported to be able to improve depression. However, no studies have compared their effects in the same system. Whether OA or UA could ameliorate depression-like behaviors in maternal separation (MS)-induced depression-like model was investigated. MS model is a well-accepted mouse model that can reflect the phenotype and pathogenesis of depression. Depression is a mental illness caused by neuroinflammation or changes in neuroplasticity in certain brain regions, such as the prefrontal cortex and hippocampus. Depression-like behaviors were measured using splash test or forced swimming test. In addition, anxiety-like behaviors were also measured using the open field test or elevated plus-maze test. MS-treated female mice showed greater depression-like behaviors than male mice, and that OA improved several depression-like behaviors, whereas UA only relieved anxiety-like behavior of MS-treated mice. Microglial activation, expression levels of TNF-α, and mRNA levels of IDO1 were increased in the hippocampi of MS-treated female mice. However, OA and UA treatments attenuated such increases. In addition, expression levels of synaptophysin and PSD-95 were decreased in the hippocampi of MS-treated female mice. These decreased expression levels of synaptophysin were reversed by both OA and UA treatments, although decreased PSD-95 expression levels were only reversed by OA treatment. Our findings suggest that MS cause depression-like behaviors through female-specific neuroinflammation, changes of tryptophan metabolism, and alterations of synaptic plasticity. Our findings also suggest that OA could reverse MS-induced depression-like behaviors more effectively than UA.
Collapse
Affiliation(s)
- Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Do Yeon Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae Youn Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ji Won Min
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Won Hyung Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
5
|
Bae HJ, Kim JY, Choi SH, Kim SY, Kim HJ, Cho YE, Choi YY, An JY, Cho SY, Ryu JH, Park SJ. Paeonol, the active component of Cynanchum paniculatum, ameliorated schizophrenia-like behaviors by regulating the PI3K-Akt-GSK3β-NF-κB signalling pathway in MK-801-treated mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116627. [PMID: 37164258 DOI: 10.1016/j.jep.2023.116627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cynanchum paniculatum (Bunge) Kitag. ex H. Hara (Asclepiadaceae) have been traditionally used in East Asia as analgesic or antiviral agents. Interestingly, some Chinese and Korean traditional medicinal books reported that the use of C. paniculatum in the treatment of psychotic symptoms, such as hallucinations and delusions. AIM OF THE STUDY In this study, we aimed to investigate whether C. paniculatum could improve sensorimotor gating disruption in mice with MK-801-induced schizophrenia-like behaviors. We also aimed to identify the active component of C. paniculatum that could potentially serve as a treatment for schizophrenia and found that paeonol, the major constituent compound of C. paniculatum, showed potential as a treatment for schizophrenia. MATERIALS AND METHODS To assess the effect of paeonol on mice with MK-801-induced schizophrenia-like behaviors, we carried out a series of behavioral tests related with symptoms of schizophrenia. In addition, we utilized Western blotting and ELISA techniques to investigate the antipsychotic actions of paeonol. RESULT C. paniculatum extract (100 or 300 mg/kg) and paenol (10 or 30 mg/kg) significantly reversed MK-801-induced prepulse deficits in acoustic startle response test. In addition, paeonol (10 or 30 mg/kg) attenuated social novelty preference and novel object recognition memory on MK-801-induced schizophrenia-like behaviour in mice. Furthermore, the phosphorylation levels of PI3K, Akt, GSK3β and NF-κB, as well as related pro-inflammatory cytokine, such as IL-1β and TNF-α, were significantly reversed by the administration of paeonol (10 or 30 mg/kg) in the prefrontal cortex of MK-801-treated mice. CONCLUSIONS Collectively, these data show that paeonol can potentially be used as an agent for treating sensorimotor gating deficits, negative symptoms, and cognitive deficits, such as those observed in schizophrenia with few adverse effects.
Collapse
Affiliation(s)
- Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jae Youn Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Seung-Hyuk Choi
- Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - So-Yeon Kim
- Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Hyun-Jeong Kim
- Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Ye Eun Cho
- Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yu-Yeong Choi
- Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Ju-Yeon An
- Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - So-Young Cho
- Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Se Jin Park
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, 24341, Republic of Korea; Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
6
|
Akünal Türel C, Yunusoğlu O. Oleanolic acid suppresses pentylenetetrazole-induced seizure in vivo. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:529-540. [PMID: 36812380 DOI: 10.1080/09603123.2023.2167947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to investigate the protective effects of triterpene oleanolic acid on the brain tissue of mice with pentylenetetrazole (PTZ)-induced epileptic seizures. Male Swiss albino mice were randomly separated into five groups as the PTZ, control, and oleanolic acid (10, 30, and 100 mg/kg) groups. PTZ injection was seen to cause significant seizures compared with the control group. Oleanolic acid significantly prolonged the latency to onset of myoclonic jerks and the duration of clonic convulsions, and decreased mean seizure scores following PTZ administration. Pretreatment with oleanolic acid also led to an increase in antioxidant enzyme activity (CAT and AChE) and levels (GSH and SOD) in the brain. The data obtained from this study support oleanolic acid may have anticonvulsant potential in PTZ-induced seizures, prevent oxidative stress and protect against cognitive disturbances. These results may provide useful information for the inclusion of oleanolic acid in epilepsy treatment.
Collapse
Affiliation(s)
- Canan Akünal Türel
- Department of Neurology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Oruç Yunusoğlu
- Department of Pharmacology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
7
|
Chen C, Ai Q, Shi A, Wang N, Wang L, Wei Y. Oleanolic acid and ursolic acid: therapeutic potential in neurodegenerative diseases, neuropsychiatric diseases and other brain disorders. Nutr Neurosci 2023; 26:414-428. [PMID: 35311613 DOI: 10.1080/1028415x.2022.2051957] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brain disorders such as neurodegenerative diseases and neuropsychiatric diseases have become serious threatens to human health and quality of life. Oleanolic acid (OA) and ursolic acid (UA) are pentacyclic triterpenoid isomers widely distributed in various plant foods and Chinese herbal medicines. Accumulating evidence indicates that OA and UA exhibit neuroprotective effects on multiple brain disorders. Therefore, this paper reviews researches of OA and UA on neurodegenerative diseases, neuropsychiatric diseases and other brain disorders including ischemic stroke, epilepsy, etc, as well as the potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, People's Republic of China
| | - Axi Shi
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Nan Wang
- Department of General medicine, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Lina Wang
- Department of Pediatric surgery, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yuhui Wei
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
8
|
Wang Q, Wang MW, Sun YY, Hu XY, Geng PP, Shu H, Wang XN, Wang H, Zhang JF, Cheng HQ, Wang W, Jin XC. Nicotine pretreatment alleviates MK-801-induced behavioral and cognitive deficits in mice by regulating Pdlim5/CRTC1 in the PFC. Acta Pharmacol Sin 2023; 44:780-790. [PMID: 36038765 PMCID: PMC10042998 DOI: 10.1038/s41401-022-00974-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
Increasing evidence shows that smoking-obtained nicotine is indicated to improve cognition and mitigate certain symptoms of schizophrenia. In this study, we investigated whether chronic nicotine treatment alleviated MK-801-induced schizophrenia-like symptoms and cognitive impairment in mice. Mice were injected with MK-801 (0.2 mg/kg, i.p.), and the behavioral deficits were assessed using prepulse inhibition (PPI) and T-maze tests. We showed that MK-801 caused cognitive impairment accompanied by increased expression of PDZ and LIM domain 5 (Pdlim5), an adaptor protein that is critically associated with schizophrenia, in the prefrontal cortex (PFC). Pretreatment with nicotine (0.2 mg · kg-1 · d-1, s.c., for 2 weeks) significantly ameliorated MK-801-induced schizophrenia-like symptoms and cognitive impairment by reversing the increased Pdlim5 expression levels in the PFC. In addition, pretreatment with nicotine prevented the MK-801-induced decrease in CREB-regulated transcription coactivator 1 (CRTC1), a coactivator of CREB that plays an important role in cognition. Furthermore, MK-801 neither induced schizophrenia-like behaviors nor decreased CRTC1 levels in the PFC of Pdlim5-/- mice. Overexpression of Pdlim5 in the PFC through intra-PFC infusion of an adreno-associated virus AAV-Pdlim5 induced significant schizophrenia-like symptoms and cognitive impairment. In conclusion, chronic nicotine treatment alleviates schizophrenia-induced memory deficits in mice by regulating Pdlim5 and CRTC1 expression in the PFC.
Collapse
Affiliation(s)
- Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Meng-Wei Wang
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yan-Yun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xiao-Yan Hu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Pan-Pan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Hui Shu
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xiao-Na Wang
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Hao Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Jun-Fang Zhang
- School of Medicine, Ningbo University, Ningbo, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo, 315211, China
| | - Hong-Qiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, 100069, China.
| | - Xin-Chun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
9
|
Bae HJ, Bae HJ, Kim JY, Park K, Yang X, Jung SY, Park SJ, Kim DH, Shin CY, Ryu JH. The effect of lansoprazole on MK-801-induced schizophrenia-like behaviors in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110646. [PMID: 36191804 DOI: 10.1016/j.pnpbp.2022.110646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022]
Abstract
As a heterogeneous disorder, schizophrenia is known to be associated with neuroinflammation. A recent study showed that several cytokines are higher in the plasma and cerebrospinal fluid of schizophrenia patients. Lansoprazole, a proton pump inhibitor used for treating erosive esophagitis, has been reported to reduce INF-γ-induced neurotoxicity and decrease inflammatory cytokines including IL-1β, IL-6, and TNF-α. These findings persuaded us to examine whether lansoprazole ameliorates schizophrenia-like symptoms. The schizophrenia mouse model was induced by the acute administration of MK-801, an NMDA receptor antagonist. Sensorimotor gating, Barnes maze, and social novelty preference tests were conducted to evaluate schizophrenia-like behaviors. We found that lansoprazole (0.3, 1, or 3 mg/kg) ameliorated sensorimotor gating deficits, spatial learning, and social deficits caused by MK-801 treatment (0.2 mg/kg). The catalepsy test, balance beam test, and rotarod test were performed to reveal the adverse effects of lansoprazole on motor coordination. The behavioral results indicated that lansoprazole did not result in any motor function deficits. Moreover, lansoprazole decreased inflammatory cytokines including IL-6 and TNF-α only in the cortex, but not in the hippocampus. Collectively, these results suggest that lansoprazole could be a potential candidate for treating schizophrenia patients who suffer from sensorimotor gating deficits or social disability without any motor-related adverse effects.
Collapse
Affiliation(s)
- Hyo Jeoung Bae
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho Jung Bae
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae Youn Kim
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Xingquan Yang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Oriental Pharmaceutical Science College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
10
|
Mony TJ, Elahi F, Choi JW, Park SJ. Neuropharmacological Effects of Terpenoids on Preclinical Animal Models of Psychiatric Disorders: A Review. Antioxidants (Basel) 2022; 11:antiox11091834. [PMID: 36139909 PMCID: PMC9495487 DOI: 10.3390/antiox11091834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Terpenoids are widely distributed in nature, especially in the plant kingdom, and exhibit diverse pharmacological activities. In recent years, screening has revealed a wide variety of new terpenoids that are active against different psychiatric disorders. This review synthesized the current published preclinical studies of terpenoid use in psychiatric disorders. This review was extensively investigated to provide empirical evidence regarding the neuropharmacological effects of the vast group of terpenoids in translational models of psychiatric disorders, their relevant mechanisms of action, and treatment regimens with evidence of the safety and psychotropic efficacy. Therefore, we utilized nine (9) electronic databases and performed manual searches of each. The relevant data were retrieved from the articles published until present. We used the search terms "terpenoids" or "terpenes" and "psychiatric disorders" ("psychiatric disorders" OR "psychiatric diseases" OR "neuropsychiatric disorders" OR "psychosis" OR "psychiatric symptoms"). The efficacy of terpenoids or biosynthetic compounds in the terpenoid group was demonstrated in preclinical animal studies. Ginsenosides, bacosides, oleanolic acid, asiatic acid, boswellic acid, mono- and diterpenes, and different forms of saponins and triterpenoids were found to be important bioactive compounds in several preclinical studies of psychosis. Taken together, the findings of the present review indicate that natural terpenoids and their derivatives could achieve remarkable success as an alternative therapeutic option for alleviating the core or associated behavioral features of psychiatric disorders.
Collapse
Affiliation(s)
- Tamanna Jahan Mony
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| | - Ji Woong Choi
- College of Pharmacy, Gachon University, Incheon 21936, Korea
- Correspondence: (J.W.C.); (S.J.P.); Tel.: +82-32-820-4955 (J.W.C.); +82-33-250-6441 (S.J.P.); Fax: +82-32-820-4829 (J.W.C.); +82-33-259-5563 (S.J.P.)
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences and Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (J.W.C.); (S.J.P.); Tel.: +82-32-820-4955 (J.W.C.); +82-33-250-6441 (S.J.P.); Fax: +82-32-820-4829 (J.W.C.); +82-33-259-5563 (S.J.P.)
| |
Collapse
|
11
|
Sun J, Zhang X, Cong Q, Chen D, Yi Z, Huang H, Wang C, Li M, Zeng R, Liu Y, Huai C, Chen L, Liu C, Zhang Y, Xu Y, Fan L, Wang G, Song C, Wei M, Du H, Zhu J, He L, Qin S. miR143-3p-Mediated NRG-1-Dependent Mitochondrial Dysfunction Contributes to Olanzapine Resistance in Refractory Schizophrenia. Biol Psychiatry 2022; 92:419-433. [PMID: 35662508 DOI: 10.1016/j.biopsych.2022.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/10/2021] [Accepted: 03/11/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Olanzapine is an effective antipsychotic medication for treatment-resistant schizophrenia (TRS); however, the therapeutic effectiveness of olanzapine has been found to vary in individual patients. It is imperative to unravel its resistance mechanisms and find reliable targets to develop novel precise therapeutic strategies. METHODS Unbiased RNA sequencing analysis was performed using homogeneous populations of neural stem cells derived from induced pluripotent stem cells in 3 olanzapine responder (reduction of Positive and Negative Syndrome Scale score ≥25%) and 4 nonresponder (reduction of Positive and Negative Syndrome Scale score <25%) inpatients with TRS. We also used a genotyping study from patients with TRS to assess the candidate genes associated with the olanzapine response. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9-mediated genome editing, neurologic behavioral tests, RNA silencing, and microRNA sequencing were used to investigate the phenotypic mechanisms of an olanzapine resistance gene in patients with TRS. RESULTS Neuregulin-1 (NRG-1) deficiency-induced mitochondrial dysfunction is associated with olanzapine treatment outcomes in TRS. NRG-1 knockout mice showed schizophrenia-relevant behavioral deficits and yielded olanzapine resistance. Notably, miR143-3p is a critical NRG-1 target related to mitochondrial dysfunction, and miR143-3p levels in neural stem cells associate with severity to olanzapine resistance in TRS. Meanwhile, olanzapine resistance in NRG-1 knockout mice could be rescued by treatment with miR143-3p agomir via intracerebral injection. CONCLUSIONS Our findings provide direct evidence of olanzapine resistance resulting from NRG-1 deficiency-induced mitochondrial dysfunction, and they link olanzapine resistance and NRG-1 deficiency-induced mitochondrial dysfunction to an NRG-1/miR143-3p axis, which constitutes a novel biomarker and target for TRS.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China; Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Xiaoya Zhang
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Qijie Cong
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Dong Chen
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhenghui Yi
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Cong Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Mo Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Rongsen Zeng
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yunxi Liu
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Cong Huai
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Luan Chen
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanxin Liu
- School of Mental Health, Jining Medical University, Jining, China
| | - Yan Zhang
- The Second People's Hospital of Lishui, Lishui, China
| | - Yong Xu
- Department of Psychiatry, First Hospital, First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Lingzi Fan
- Zhumadian Psychiatric Hospital, Zhumadian, China
| | - Guoqiang Wang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Chuanfu Song
- The Fourth People's Hospital of Wuhu, Wuhu, China
| | - Muyun Wei
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Huihui Du
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Jinhang Zhu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Lin He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Shengying Qin
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Ma Q, Wang D, Li Y, Yang H, Li Y, Wang J, Li J, Sun J, Liu J. Activation of A 2B adenosine receptor protects against demyelination in a mouse model of schizophrenia. Exp Ther Med 2022; 23:396. [PMID: 35495590 PMCID: PMC9047022 DOI: 10.3892/etm.2022.11323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/24/2022] [Indexed: 11/11/2022] Open
Abstract
The purpose of the present study was to explore the effects of A2B adenosine receptor (A2BAR) on learning, memory and demyelination in a dizocilpine maleate (MK-801)-induced mouse model of schizophrenia (SCZ). BAY 60-6583, an agonist of A2BAR, or PSB 603, an antagonist of A2BAR, was used to treat SCZ in this model. The Morris Water Maze (MWM) was utilized to determine changes in cognitive function. Moreover, western blotting, immunohistochemistry and immunofluorescence were conducted to investigate the myelination and oligodendrocyte (OL) alterations at differentiation and maturation stages. The MWM results showed that learning and memory were impaired in SCZ mice, while subsequent treatment with BAY 60-6583 alleviated these impairments. In addition, western blot analysis revealed that myelin basic protein (MBP) and chondroitin sulphate proteoglycan 4 (NG2) expression levels were significantly decreased in MK-801-induced mice, while the expression of G protein-coupled receptor 17 (GPR17) was increased. Additionally, the number of anti-adenomatous polyposis coli clone CC-1/OL transcription factor 2 (CC-1+/Olig2+) cells was also decreased. Notably, BAY 60-6583 administration could reverse these changes, resulting in a significant increase in MBP and NG2 protein expression, and in the number of CC-1+/Olig2+ cells, while GPR17 protein expression levels were decreased. The present study indicated that the selective activation of A2BAR using BAY 60-6583 could improve the impaired learning and memory of SCZ mice, as well as protect the myelin sheath from degeneration by regulating the survival and maturation of OLs.
Collapse
Affiliation(s)
- Quanrui Ma
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Dan Wang
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yunhong Li
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hao Yang
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yilu Li
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Junyan Wang
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jinxia Li
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jinping Sun
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Juan Liu
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
13
|
Jeong Y, Bae HJ, Park K, Bae HJ, Yang X, Cho YJ, Jung SY, Jang DS, Ryu JH. 4-Methoxycinnamic acid attenuates schizophrenia-like behaviors induced by MK-801 in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114864. [PMID: 34822958 DOI: 10.1016/j.jep.2021.114864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scrophularia buergeriana has been used for traditional medicine as an agent for reducing heat in the blood and for nourishing kidney 'Yin'. Therefore, S. buergeriana might be a potential treatment for mental illness, especially schizophrenia, which may be attenuated by supplying kidney Yin and reducing blood heat. In a pilot study, we found that S. buergeriana alleviated sensorimotor gating dysfunction induced by MK-801. AIM OF THE STUDY In the present study, we attempted to reveal the active component(s) of S. buergeriana as a candidate for treating sensorimotor gating dysfunction, and we identified 4-methoxycinnamic acid. We explored whether 4-methoxycinnamic acid could affect schizophrenia-like behaviors induced by hypofunction of the glutamatergic neurotransmitter system. MATERIALS AND METHODS Mice were treated with 4-methoxycinnamic acid (3, 10, or 30 mg/kg, i.g.) under MK-801-induced schizophrenia-like conditions. The effect of 4-methoxycinnamic acid on schizophrenia-like behaviors were explored using several behavioral tasks. We also used Western blotting to investigate which signaling pathway(s) is involved in the pharmacological activities of 4-methoxycinnamic acid. RESULTS 4-Methoxycinnamic acid ameliorated MK-801-induced prepulse inhibition deficits, social interaction disorders and cognitive impairment by regulating the phosphorylation levels of PI3K, Akt and GSK-3β signaling in the prefrontal cortex. And there were no adverse effects in terms of catalepsy and motor coordination impairments. CONCLUSION Collectively, 4-methoxycinnamic acid would be a potential candidate for treating schizophrenia with fewer adverse effects, especially the negative symptoms and cognitive dysfunctions.
Collapse
Affiliation(s)
- Yongwoo Jeong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ho Jung Bae
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyo Jeoung Bae
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Xingquan Yang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Young-Jin Cho
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
14
|
Shopit A, Li X, Wang S, Awsh M, Safi M, Chu P, Jia J, Al-Radhi M, Baldi S, Wang F, Fang J, Peng J, Ma X, Tang Z, Shu X. Enhancement of gemcitabine efficacy by K73-03 via epigenetically regulation of miR-421/SPINK1 in gemcitabine resistant pancreatic cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153711. [PMID: 34450377 DOI: 10.1016/j.phymed.2021.153711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Gemcitabine (GCB) is a first-line chemotherapeutic drug for pancreatic cancer (PCa). However, the resistance begins developing within weeks of chemotherapy. SPINK1 overexpression enhances resistance to chemotherapy. In a recent study, our laboratory established that the oleanolic acid (OA) derivative, K73-03, had a strong inhibitory effect on a SPINK1 overexpressed PCa cells. PURPOSE In our current study, we studied the enhancement of GCB inhibitory effect by K73-03, a new novel OA derivative, alone or in combination with GCB on the GCB-resistant PCa cells by mitochondrial damage through regulation of the miR-421/SPINK1. METHODS We detected the binding between miR-421 and SPINK1-3'-UTR in GCB-resistant PCa cells using Luciferase reporter assays. Cells viability, apoptosis, migration, and mitochondrial damage were investigated. RESULTS The results demonstrated that the combination of K73-03 and GCB suppressed the growth of AsPC-1 and MIA PaCa-2 cells synergistically, with or without GCB resistance. Mechanistic findings showed that a combination of K73-03 and GCB silences SPINK1 epigenetically by miR-421 up-regulating, which leads to mitochondrial damage and inducing apoptosis in GCB-resistant PCa cells. CONCLUSION We found an interesting finding that the 73-03 in combination with GCB can improve GCB efficacy and decrease PCa resistance, which induced apoptosis and mitochondrial damage through epigenetic inhibition of SPINK1 transcription by miR-421 up-regulation. This was the first study that used OA derivatives on GCB-resistant PCa cells, so this combined strategy warrants further investigation.
Collapse
Affiliation(s)
- Abdullah Shopit
- Academic Integrated Medicine & Collage of Pharmacy, School of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xiaodong Li
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shisheng Wang
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Mohammed Awsh
- Academic Integrated Medicine & Collage of Pharmacy, School of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Mohammed Safi
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peng Chu
- Academic Integrated Medicine & Collage of Pharmacy, School of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jianlong Jia
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mohammed Al-Radhi
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Salem Baldi
- Clinical Diagnostic Laboratory Department, Dalian Medical University, Dalian, China
| | - Fuhan Wang
- Academic Integrated Medicine & Collage of Pharmacy, School of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jiani Fang
- Academic Integrated Medicine & Collage of Pharmacy, School of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- Academic Integrated Medicine & Collage of Pharmacy, School of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Academic Integrated Medicine & Collage of Pharmacy, School of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zeyao Tang
- Academic Integrated Medicine & Collage of Pharmacy, School of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China.
| | - Xiaohong Shu
- Academic Integrated Medicine & Collage of Pharmacy, School of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China.
| |
Collapse
|
15
|
Shi Z, Pan S, Wang L, Li S. Oleanolic Acid Attenuates Morphine Withdrawal Symptoms in Rodents: Association with Regulation of Dopamine Function. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3685-3696. [PMID: 34465980 PMCID: PMC8402955 DOI: 10.2147/dddt.s326583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/09/2021] [Indexed: 01/13/2023]
Abstract
Introduction Oleanolic acid (OA) has been shown to be useful for the treatment of mental disorders. Methods In this study, we investigated the effects of OA in animal models of spontaneous withdrawal and naloxone-precipitated withdrawal and evaluated the effects of OA on the acquisition, extinction, and reinstatement of morphine-induced conditioned place preference (CPP). Results OA significantly improved symptoms of withdrawal, and significantly reduced the acquisition and reinstatement of morphine-induced conditioned place preference. Moreover, OA significantly reduced the serum content of 5-hydroxy tryptamine (5-HT) and dopamine (DA) in a dose-dependent manner, and reduced norepinephrine (NE) and 5-HT content in the frontal cortex (PFC), while significantly increasing endorphin content in rats. OA also significantly reduced serum DA content in mice. Conclusion These results indicate that OA can improve the withdrawal symptoms of rats and mice by regulating the DA system and suggest that OA may be useful in treatment of morphine addiction.
Collapse
Affiliation(s)
- Zhiqi Shi
- School of Pharmacy, Changzhou Institute of Industry and Technology, Changzhou, Jiangsu, People's Republic of China.,Longsha Medical Research Institute, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, People's Republic of China
| | - Shugang Pan
- School of Pharmacy, Changzhou Institute of Technology, Changzhou, 213022, People's Republic of China.,Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, Nanjing University of Science and Technology, Nanjing, People's Republic of China
| | - Luolin Wang
- Department of Pharmacy, Guangdong Provincial Institute of Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Sha Li
- Longsha Medical Research Institute, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
16
|
Decreased Brain pH and Pathophysiology in Schizophrenia. Int J Mol Sci 2021; 22:ijms22168358. [PMID: 34445065 PMCID: PMC8395078 DOI: 10.3390/ijms22168358] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Postmortem studies reveal that the brain pH in schizophrenia patients is lower than normal. The exact cause of this low pH is unclear, but increased lactate levels due to abnormal energy metabolism appear to be involved. Schizophrenia patients display distinct changes in mitochondria number, morphology, and function, and such changes promote anaerobic glycolysis, elevating lactate levels. pH can affect neuronal activity as H+ binds to numerous proteins in the nervous system and alters the structure and function of the bound proteins. There is growing evidence of pH change associated with cognition, emotion, and psychotic behaviors. Brain has delicate pH regulatory mechanisms to maintain normal pH in neurons/glia and extracellular fluid, and a change in these mechanisms can affect, or be affected by, neuronal activities associated with schizophrenia. In this review, we discuss the current understanding of the cause and effect of decreased brain pH in schizophrenia based on postmortem human brains, animal models, and cellular studies. The topic includes the factors causing decreased brain pH in schizophrenia, mitochondria dysfunction leading to altered energy metabolism, and pH effects on the pathophysiology of schizophrenia. We also review the acid/base transporters regulating pH in the nervous system and discuss the potential contribution of the major transporters, sodium hydrogen exchangers (NHEs), and sodium-coupled bicarbonate transporters (NCBTs), to schizophrenia.
Collapse
|
17
|
Sun ZY, Gu LH, Ma DL, Wang MY, Yang CC, Zhang L, Li XM, Zhang JW, Li L. Behavioral and neurobiological changes in a novel mouse model of schizophrenia induced by the combination of cuprizone and MK-801. Brain Res Bull 2021; 174:141-152. [PMID: 34119597 DOI: 10.1016/j.brainresbull.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
Schizophrenia is a mental illness characterized by episodes of psychosis, apathy, social withdrawal, and cognitive impairment. White matter lesions and glutamatergic hypofunction are reported to be the key pathogeneses underlying the multiple clinical symptoms of schizophrenia. Cuprizone (CPZ) is a copper chelator that selectively injures oligodendrocytes, and MK-801 is an antagonist of the N-methyl d-aspartate (NMDA) receptor. To better mimic the psychosis and complicated pathogenesis of schizophrenia, a novel possible mouse model was established by the combination of CPZ and MK-801. After exposure to CPZ for 5 weeks, the mice received a daily intraperitoneal injection of MK-801 for 2-weeks. Behavioral changes in the mouse model were evaluated using Y-maze, object recognition, and open field tests. Pathological changes were observed by transmission electron microscopy, oil red O staining, immunohistochemistry, and western blotting. The results showed that the novel mouse model induced by CPZ plus MK-801 exhibited severe spatial and recognition memory deficits, hyperactivity, and anxiety disorder. Moreover, the mice showed obvious demyelination and white matter damage and decreased expression levels of myelin basic protein (MBP) and 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) in the corpus callosum. Furthermore, the phosphorylation levels of Fyn and NMDA receptor 2B in the corpus callosum and NMDA receptor 1 in the cerebral cortex were noticeably decreased. Taken together, the novel mouse model induced by the combination of cuprizone and MK-801 showed comprehensive behavioral and neurobiological changes, which might make it a suitable animal model for schizophrenia.
Collapse
Affiliation(s)
- Zheng-Yu Sun
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, 450003, China
| | - Li-Hong Gu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Deng-Lei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Ming-Yang Wang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Cui-Cui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Xin-Min Li
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Jie-Wen Zhang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, 450003, China.
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
18
|
Goo N, Bae HJ, Park K, Kim J, Jeong Y, Cai M, Cho K, Jung SY, Kim DH, Ryu JH. The effect of fecal microbiota transplantation on autistic-like behaviors in Fmr1 KO mice. Life Sci 2020; 262:118497. [DOI: 10.1016/j.lfs.2020.118497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
|
19
|
Modirshanechi G, Eslampour MA, Abdolmaleki Z. Agonist and antagonist NMDA receptor effect on cell fate during germ cell differentiation and regulate apoptotic process in 3D organ culture. Andrologia 2020; 52:e13764. [PMID: 32920884 DOI: 10.1111/and.13764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 11/27/2022] Open
Abstract
In this work, agonist and antagonist N-methyl-D-aspartate (NMDA) receptor activation effect on cell fate during germ cell differentiation and regulate apoptotic process in 3D organ culture were studied. Afterwards, the effect of D-serine, retinoic acid (RA) and MK801 on spermatogenesis development was investigated. The animals were injected a single dose (40 mg/kg, intraperitoneal) of busulfan. After confirming the model, ten 5-day-old NMRI mice were used as spermatogonial stem cells (SSCs) transplantation donors. The SSCs were confirmed by detecting the promyelocytic leukaemia zinc finger (PLZF) protein. Then, tissue culture of the azoospermia model which had received SSCs was performed in various conditions (seven groups). The apoptosis markers levels of cells were significantly decreased in differentiation media containing RA and serine. In contrast, the expression of apoptotic markers including caspase 3, caspase 9 and Bax was increased in the presence of MK801. In conclusion, a new in vitro system capable of producing mature spermatozoa was developed that would be useful for investigating the medicinal effects of agents on the male reproductive system. Also, a comparison of spermatogenesis development in different media revealed that the presence of D-serine and RA (retinoic acid) in the culture medium has a positive effect on spermatogenesis.
Collapse
Affiliation(s)
- Ghazaleh Modirshanechi
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Eslampour
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Abdolmaleki
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
20
|
Shopit A, Li X, Tang Z, Awsh M, Shobet L, Niu M, Wang H, Mousa H, Alshwmi M, Tesfaldet T, Gamallat Y, Li H, Chu P, Ahmad N, Jamalat Y, Ai J, Qaed E, Almoiliqy M, Wang S, Tang Z. miR-421 up-regulation by the oleanolic acid derivative K73-03 regulates epigenetically SPINK1 transcription in pancreatic cancer cells leading to metabolic changes and enhanced apoptosis. Pharmacol Res 2020; 161:105130. [PMID: 32818653 DOI: 10.1016/j.phrs.2020.105130] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
Abstract
SPINK1 overexpression promotes cancer cell aggressiveness and confers chemo-resistance to multiple drugs in pancreatic cancer. Oleanolic acid (OA) derivatives possess active effects against different cancers. Here we report the effect of K73-03, a new novel OA derivative, against pancreatic cancer through mitochondrial dysfunction via miR-421/SPINK1 regulation. We examined the binding ability of miR-421 with SPINK1-3'UTR Luciferase reporter assays. Moreover, miR-421/SPINK1 expressions in pancreatic cancer, with or without K73-03 treatment, were evaluated. Cells viability, migration, autophagy, mitochondrial function and apoptosis were examined with or without K73-03 treatment. We established that the K73-03 effect on the miR-421 that plays a crucial role in the regulation of SPINK1 in pancreatic cancer. Our findings indicated that K73-03 inhibited the mitochondrial function that led to inducing autophagy and apoptosis through epigenetic SPINK1 down-regulation via miR-421 up-regulation in pancreatic cancer. Furthermore, the inhibition of miR-421 expression in pancreatic cancer cells abolished the efficacy of K73-03 against SPINK1 oncogenic properties. We found an interesting finding that the interaction between miR-421 and SPINK1 is related to mitochondrial function through the effect of K73-03. Further, SPINK1 appear to be the molecular targets of K73-03 especially more than gemcitabine.
Collapse
Affiliation(s)
- Abdullah Shopit
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xiaodong Li
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhongyuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, China
| | - Mohammed Awsh
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Loubna Shobet
- Department of Stomatology, Southern Medical University, Guangzhou, China
| | - Mengyue Niu
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Hongyan Wang
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Haithm Mousa
- Clinical Diagnostic Laboratory Department, Dalian Medical University, Dalian, China
| | - Mohammed Alshwmi
- Clinical Diagnostic Laboratory Department, Dalian Medical University, Dalian, China
| | - Tsehaye Tesfaldet
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Yaser Gamallat
- Department of Biochemistry, Dalian Medical University, Dalian, China
| | - Hailong Li
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Peng Chu
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Nisar Ahmad
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Yazeed Jamalat
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jie Ai
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Eskandar Qaed
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Marwan Almoiliqy
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Shisheng Wang
- College of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Zeyao Tang
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China.
| |
Collapse
|
21
|
The protective effects of Mogroside V and its metabolite 11-oxo-mogrol of intestinal microbiota against MK801-induced neuronal damages. Psychopharmacology (Berl) 2020; 237:1011-1026. [PMID: 31900523 DOI: 10.1007/s00213-019-05431-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
RATIONALE Animal models, notably with non-competitive NMDA receptor antagonist MK801, are commonly used to investigate the mechanisms of schizophrenia and to pursue its mechanism-related drug discoveries. OBJECTIVES In the current study, we have extensively examined the protective effects of MogrosideV (MogV), a plant-derived three terpene glucoside known to exhibit anti-oxidative and anti-inflammatory activities. METHODS AND RESULTS Here, we investigated its protective effects against neuronal damages elicited by MK-801 treatment. Our behavioral experimental results showed that MK-801-induced PPI deficits and social withdrawal were prevented by MogV treatment. Moreover, the cellular and neurochemical responses of MK-801 in medial prefrontal cortical cortex (mPFC) were also ameliorated by MogV treatment. Also, profiling metabolites assay through artificial intestinal microbiota was performed to identify bioactive components of MogV. An in vitro study of primary neuronal culture demonstrated that MogV and its metabolite 11-oxo-mogrol treatment prevented the MK-801-induced neuronal damages through the mechanisms of promoting neurite outgrowth, inhibiting cell apoptosis, and [Ca2+]i release. Additionally, 11-oxo-mogrol reversed inactivation of phosphorylation levels of AKT and mTOR induced by MK801. CONCLUSIONS These results suggest therapeutic potential of MogV for schizophrenia.
Collapse
|
22
|
Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Takahashi Y, Matsumoto Y, Okamoto M, Ishihara T. Effects of haloperidol inhalation on MK-801- and memantine-induced locomotion in mice. Libyan J Med 2020; 15:1808361. [PMID: 32808583 PMCID: PMC7482641 DOI: 10.1080/19932820.2020.1808361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | | | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Okayama, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Okayama, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Okayama, Japan
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Okayama, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
23
|
Singh R, Bansal Y, Sodhi RK, Saroj P, Medhi B, Kuhad A. Modeling of antipsychotic-induced metabolic alterations in mice: An experimental approach precluding psychosis as a predisposing factor. Toxicol Appl Pharmacol 2019; 378:114643. [DOI: 10.1016/j.taap.2019.114643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023]
|
24
|
Attenuation Effects of Alpha-Pinene Inhalation on Mice with Dizocilpine-Induced Psychiatric-Like Behaviour. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2745453. [PMID: 31467573 PMCID: PMC6699265 DOI: 10.1155/2019/2745453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/11/2019] [Accepted: 07/04/2019] [Indexed: 12/26/2022]
Abstract
α-Pinene, an organic terpene compound found in coniferous trees, is used as a safe food additive and is contained in many essential oils. Moreover, some studies have shown that α-pinene suppresses neuronal activity. In this study, we investigated whether inhalation of α-pinene suppresses dizocilpine (MK-801-) induced schizophrenia-like behavioural abnormalities in mice. Mice inhaled α-pinene 1 h before the first MK-801 injection. Thirty minutes after MK-801 injection, the open field, spontaneous locomotor activity, elevated plus maze, Y-maze, tail suspension, hot plate, and grip strength tests were conducted as behavioural experiments. Inhalation of α-pinene suppressed the activity of mice in the spontaneous locomotor activity test and although it did not suppress the MK-801-induced increased locomotor activity in the open field test, it remarkably decreased the time that the mice remained in the central area. Inhalation of α-pinene suppressed the MK-801-induced increased total distance travelled in the Y-maze test, whereas it did not alter the MK-801-induced reduced threshold of antinociception in the hot plate test. In the tail suspension and grip strength tests, there was no effect on mouse behaviour by administration of MK-801 and inhalation of α-pinene. These results suggest that α-pinene acts to reduce MK-801-induced behavioural abnormalities resembling those seen in neuropsychiatric disorders. Therefore, both medicinal plants and essential oils containing α-pinene may have potential for therapeutic treatment of schizophrenia.
Collapse
|
25
|
Wang X, Luo C, Mao XY, Li X, Yin JY, Zhang W, Zhou HH, Liu ZQ. Metformin reverses the schizophrenia-like behaviors induced by MK-801 in rats. Brain Res 2019; 1719:30-39. [PMID: 31121159 DOI: 10.1016/j.brainres.2019.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/11/2022]
Abstract
Schizophrenia is known to be a complex and disabling psychiatric disorder. Dopamine receptor antagonists have a significant therapeutic effect in improving the positive symptoms that are associated with the illness. Therefore, dopamine receptor antagonists are commonly used in the treatment of schizophrenia; however, they do not achieve satisfactory results in improving negative symptoms and cognitive impairment. Metformin, widely known as an antidiabetic drug, has been found to enhance spatial memory formation and improve anxiety-like behaviors in rodents. Metformin's neuroprotective effect has been well documented in several neurological disorders including Alzheimer's disease, Parkinson's disease, strokes, Huntington's disease, and seizures. In the present study, we used a rat model to explore the effect of metformin on schizophrenia-like behaviors induced by MK-801 (dizocilpine), an N-methyl-D-aspartate (NMDA) receptor antagonist. We found that the pre-pulse inhibition (PPI) deficit caused by MK-801 could be alleviated by metformin. The hyperlocomotion in the open field test induced by chronic treatment of MK-801 was reversed by administration of metformin. Metformin has no effect on the baseline level of anxiety in normal naive rats, while metformin could relieve the anxiety-like behaviors in MK-801-treatment rats, though this effect is not reaching a significant level. Additionally, metformin could significantly ameliorate working memory impairments induced by MK-801. Moreover, the increased level of phosphorylation of Akt and GSK3β in the frontal cortex induced by MK-801 was normalized by metformin. In conclusion, our results demonstrate that metformin improved schizophrenia-like symptoms in rats, and is therefore a potential agent for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Xu Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Chao Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; School of Life Sciences, Central South University, Changsha, Hunan 410078, PR China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
26
|
Lee J, Lee S, Ryu YJ, Lee D, Kim S, Seo JY, Oh E, Paek SH, Kim SU, Ha CM, Choi SY, Kim KT. Vaccinia-related kinase 2 plays a critical role in microglia-mediated synapse elimination during neurodevelopment. Glia 2019; 67:1667-1679. [PMID: 31050055 DOI: 10.1002/glia.23638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
During postnatal neurodevelopment, excessive synapses must be eliminated by microglia to complete the establishment of neural circuits in the brain. The lack of synaptic regulation by microglia has been implicated in neurodevelopmental disorders such as autism, schizophrenia, and intellectual disability. Here we suggest that vaccinia-related kinase 2 (VRK2), which is expressed in microglia, may stimulate synaptic elimination by microglia. In VRK2-deficient mice (VRK2KO ), reduced numbers of presynaptic puncta within microglia were observed. Moreover, the numbers of presynaptic puncta and synapses were abnormally increased in VRK2KO mice by the second postnatal week. These differences did not persist into adulthood. Even though an increase in the number of synapses was normalized, adult VRK2KO mice showed behavioral defects in social behaviors, contextual fear memory, and spatial memory.
Collapse
Affiliation(s)
- Juhyun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seunghyun Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Young-Jae Ryu
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu, Republic of Korea
| | - Dohyun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sangjune Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ji-Young Seo
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Eunji Oh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung U Kim
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Chang-Man Ha
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Kyong-Tai Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea.,Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
27
|
Giampieri F, Afrin S, Forbes-Hernandez TY, Gasparrini M, Cianciosi D, Reboredo-Rodriguez P, Varela-Lopez A, Quiles JL, Battino M. Autophagy in Human Health and Disease: Novel Therapeutic Opportunities. Antioxid Redox Signal 2019; 30:577-634. [PMID: 29943652 DOI: 10.1089/ars.2017.7234] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE In eukaryotes, autophagy represents a highly evolutionary conserved process, through which macromolecules and cytoplasmic material are degraded into lysosomes and recycled for biosynthetic or energetic purposes. Dysfunction of the autophagic process has been associated with the onset and development of many human chronic pathologies, such as cardiovascular, metabolic, and neurodegenerative diseases as well as cancer. Recent Advances: Currently, comprehensive research is being carried out to discover new therapeutic agents that are able to modulate the autophagic process in vivo. Recent evidence has shown that a large number of natural bioactive compounds are involved in the regulation of autophagy by modulating several transcriptional factors and signaling pathways. CRITICAL ISSUES Critical issues that deserve particular attention are the inadequate understanding of the complex role of autophagy in disease pathogenesis, the limited availability of therapeutic drugs, and the lack of clinical trials. In this context, the effects that natural bioactive compounds exert on autophagic modulation should be clearly highlighted, since they depend on the type and stage of the pathological conditions of diseases. FUTURE DIRECTIONS Research efforts should now focus on understanding the survival-supporting and death-promoting roles of autophagy, how natural compounds interact exactly with the autophagic targets so as to induce or inhibit autophagy and on the evaluation of their pharmacological effects in a more in-depth and mechanistic way. In addition, clinical studies on autophagy-inducing natural products are strongly encouraged, also to highlight some fundamental aspects, such as the dose, the duration, and the possible synergistic action of these compounds with conventional therapy.
Collapse
Affiliation(s)
- Francesca Giampieri
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Sadia Afrin
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Tamara Y Forbes-Hernandez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,2 Area de Nutricion y Salud, Universidad Internacional Iberoamericana , Campeche, Mexico
| | - Massimiliano Gasparrini
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Danila Cianciosi
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Patricia Reboredo-Rodriguez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,3 Departamento de Quimica Analıtica y Alimentaria, Grupo de Nutricion y Bromatologıa, Universidade Vigo , Ourense, Spain
| | - Alfonso Varela-Lopez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Jose L Quiles
- 4 Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix," Biomedical Research Centre, University of Granada , Granada, Spain
| | - Maurizio Battino
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,5 Centre for Nutrition and Health, Universidad Europea del Atlantico (UEA) , Santander, Spain
| |
Collapse
|
28
|
Turkmen R, Akosman MS, Demirel HH. Protective effect of N-acetylcysteine on MK-801-induced testicular oxidative stress in mice. Biomed Pharmacother 2019; 109:1988-1993. [DOI: 10.1016/j.biopha.2018.09.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
|
29
|
Aucoin M, LaChance L, Cooley K, Kidd S. Diet and Psychosis: A Scoping Review. Neuropsychobiology 2018; 79:20-42. [PMID: 30359969 DOI: 10.1159/000493399] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Schizophrenia spectrum disorders (SSD) represent a cluster of severe mental illnesses. Diet has been identified as a modifiable risk factor and opportunity for intervention in many physical illnesses and more recently in mental illnesses such as unipolar depression; however, no dietary guidelines exist for patients with SSD. OBJECTIVE This review sought to systematically scope the existing literature in order to identify nutritional interventions for the prevention or treatment of mental health symptoms in SSD as well as gaps and opportunities for further research. METHODS This review followed established methodological approaches for scoping reviews including an extensive a priori search strategy and duplicate screening. Because of the large volume of results, an online program (Abstrackr) was used for screening and tagging. Data were extracted based on the dietary constituents and analyzed. RESULTS Of 55,330 results identified by the search, 822 studies met the criteria for inclusion. Observational evidence shows a connection between the presence of psychotic disorders and poorer quality dietary patterns, higher intake of refined carbohydrates and total fat, and lower intake or levels of fibre, ω-3 and ω-6 fatty acids, vegetables, fruit, and certain vitamins and minerals (vitamin B12 and B6, folate, vitamin C, zinc, and selenium). Evidence illustrates a role of food allergy and sensitivity as well as microbiome composition and specific phytonutrients (such as L-theanine, sulforaphane, and resveratrol). Experimental studies have demonstrated benefit using healthy diet patterns and specific vitamins and minerals (vitamin B12 and B6, folate, and zinc) and amino acids (serine, lysine, glycine, and tryptophan). DISCUSSION Overall, these findings were consistent with many other bodies of knowledge about healthy dietary patterns. Many limitations exist related to the design of the individual studies and the ability to extrapolate the results of studies using dietary supplements to dietary interventions (food). Dietary recommendations are presented as well as recommendations for further research including more prospective observational studies and intervention studies that modify diet constituents or entire dietary patterns with statistical power to detect mental health outcomes.
Collapse
Affiliation(s)
- Monique Aucoin
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada,
| | - Laura LaChance
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Kieran Cooley
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
- Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, New South Wales, Australia
| | - Sean Kidd
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Song Y, Gao L, Tang Z, Li H, Sun B, Chu P, Qaed E, Ma X, Peng J, Wang S, Hu M, Tang Z. Anticancer effect of SZC015 on pancreatic cancer via mitochondria-dependent apoptosis and the constitutive suppression of activated nuclear factor κB and STAT3 in vitro and in vivo. J Cell Physiol 2018; 234:777-788. [PMID: 30078206 DOI: 10.1002/jcp.26892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related death worldwide. Advances in therapeutic strategies such as chemotherapy have improved the clinical outcomes for pancreatic cancer patients. However, developing new therapeutic compounds against pancreatic cancer is still urgent due to the poor prognosis. Here, we show that SZC015, an oleanolic acid derivative, exhibits potent inhibitory effect on both pancreatic cancer cells in vitro and the corresponding xenograft tumors in vivo. Mechanistically, the activation of intrinsic apoptosis and G1 phase arrest resulting from mitochondria damage caused by SZC015 contribute significantly to the anticancer effects of SZC015. SZC015 also has remarkably inhibitory effects on the transcription factors that are extensively activated in pancreatic cancer tissues. As a constitutively activated transcription factor in pancreatic cancer, the nuclear factor κB is highly suppressed after SZC015 treatment in vitro or administration in vivo. Based on the bioinformatics analysis of microarray data, we validate that JAK2/STAT3 signaling is indeed activated in the human pancreatic cancer tissues and SZC015 also shows inhibitory effect on this signaling both in vitro and in vivo. These data suggest the potent effects of SZC015 on pancreatic cancer and also provided novel insights into the mechanisms of SZC015 as a new potent candidate for treating pancreatic cancer.
Collapse
Affiliation(s)
- Yanlin Song
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Lei Gao
- Research Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongyuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, China
| | - Hailong Li
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Bin Sun
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Peng Chu
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Eskandar Qaed
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Shisheng Wang
- Pharmaceutical Engineering Department, College of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Min Hu
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, China
| | - Zeyao Tang
- Pharmacology Department, Dalian Medical University, Dalian, China
| |
Collapse
|
31
|
Kwon Y, Liao Y, Koo B, Bae H, Zhang J, Han EH, Yun SM, Lim MK, Lee SH, Jung SY, Ryu JH. Ethanolic Extract of Opuntia ficus-indica var. saboten Ameliorates Cognitive Dysfunction Induced by Cholinergic Blockade in Mice. J Med Food 2018; 21:971-978. [PMID: 30044674 DOI: 10.1089/jmf.2017.4131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The stem of Opuntia ficus-indica var. saboten is edible and has been used as a medicinal herb on Jeju Island in Korea. We previously reported that the butanolic extract of O. ficus-indica var. saboten exerts the enhancement of long-term memory in mice. However, the antiamnesic effects of O. ficus-indica var. saboten and its mode of action has not been clearly elucidated. In the present study, we explored the effects of the ethanolic extract of stems of O. ficus-indica var. saboten (EOFS) on cognitive performance in mouse and attempted to delineate its mechanism of action. We used the passive avoidance, Y-maze, and novel object recognition tests to assess its effects on cognitive functions in scopolamine-induced memory-impaired mice. We observed that EOFS (100, 200, and 400 mg/kg) ameliorated scopolamine-induced cognitive dysfunction. We also explored its mechanism of action by conducting an acetylcholinesterase (AChE) activity assay using the mouse whole brain and Western blot using the mouse hippocampal tissue. Western blot analysis and the ex vivo study revealed that EOFS increased the levels of phosphorylated extracellular signal-regulated kinase and cAMP response element-binding protein (CREB) and the levels of brain-derived neurotrophic factor (BDNF) expression in the hippocampus. It also inhibited AChE activity in the brain. Our findings suggest that EOFS would be useful for the treatment of cholinergic blockade-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Yubeen Kwon
- 1 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea.,2 Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University , Seoul, Korea
| | - Yulan Liao
- 1 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea.,2 Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University , Seoul, Korea
| | - Bokyung Koo
- 1 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea.,2 Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University , Seoul, Korea
| | - Hojung Bae
- 1 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea.,2 Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University , Seoul, Korea
| | - Jiabao Zhang
- 1 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea.,2 Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University , Seoul, Korea
| | - Eun Hye Han
- 3 R&D Center, Koreaeundan Co. LTD. , Seongnam-si, Gyeonggi-do, Korea
| | - Su Min Yun
- 3 R&D Center, Koreaeundan Co. LTD. , Seongnam-si, Gyeonggi-do, Korea
| | - Mi Kyung Lim
- 3 R&D Center, Koreaeundan Co. LTD. , Seongnam-si, Gyeonggi-do, Korea
| | - Sang Ho Lee
- 3 R&D Center, Koreaeundan Co. LTD. , Seongnam-si, Gyeonggi-do, Korea
| | - Seo Yun Jung
- 1 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea
| | - Jong Hoon Ryu
- 1 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea.,2 Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University , Seoul, Korea
| |
Collapse
|
32
|
Zhou D, Lv D, Wang Z, Zhang Y, Chen Z, Wang C. GLYX-13 Ameliorates Schizophrenia-Like Phenotype Induced by MK-801 in Mice: Role of Hippocampal NR2B and DISC1. Front Mol Neurosci 2018; 11:121. [PMID: 29695955 PMCID: PMC5904356 DOI: 10.3389/fnmol.2018.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/28/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Evidence supports that the hypofunction of N-methyl-D-aspartate receptor (NMDAR) and downregulation of disrupted-in-schizophrenia 1 (DISC1) contribute to the pathophysiology of schizophrenia. N-Methyl D-aspartate receptor subtype 2B (NR2B)-containing NMDAR are associated with cognitive dysfunction in schizophrenia. GLYX-13 is an NMDAR glycine-site functional partial agonist and cognitive enhancer that does not induce psychotomimetic side effects. However, it remains unclear whether NR2B plays a critical role in the GLYX-13-induced alleviation of schizophrenia-like behaviors in mice. Methods: The effect of GLYX-13 was tested by observing changes in locomotor activity, novel object recognition ability, and prepulse inhibition (PPI) induced by dizocilpine (known as MK-801) in mice. Lentivirus-mediated NR2B knockdown in the hippocampus was assessed to confirm the role of NR2B in GLYX-13 pathophysiology, using Western blots and immunohistochemistry. Results: The systemic administration of GLYX-13 (0.5 and 1 mg/kg, i.p.) ameliorates MK-801 (0.5 mg/kg, i.p.)-induced hyperlocomotion, deficits in memory, and PPI in mice. Additionally, GLYX-13 normalized the MK-801-induced alterations in signaling molecules, including NR2B and DISC1 in the hippocampus. Furthermore, we found that NR2B knockdown produced memory and PPI deficits without any changes in locomotor activity. Notably, DISC1 levels significantly decreased by NR2B knockdown. However, the effective dose of GLYX-13 did not alleviate the memory and PPI dysfunctions or downregulation of DISC1 induced by NR2B knockdown. Conclusion: Our results suggest GLYX-13 as a candidate for schizophrenia treatment, and NR2B and DISC1 in the hippocampus may account for the molecular mechanisms of GLYX-13.
Collapse
Affiliation(s)
- Dongsheng Zhou
- Ningbo Kangning Hospital, Ningbo, China.,Ningbo Key Laboratory of Behavioral Neuroscience, School of Medicine, Ningbo University, Ningbo, China
| | - Dan Lv
- Ningbo Key Laboratory of Behavioral Neuroscience, School of Medicine, Ningbo University, Ningbo, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China.,Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Ningbo, China
| | - Zhen Wang
- Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yanhua Zhang
- Ningbo Key Laboratory of Behavioral Neuroscience, School of Medicine, Ningbo University, Ningbo, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China.,Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Ningbo, China
| | | | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, School of Medicine, Ningbo University, Ningbo, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China.,Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
33
|
Paderin NM, Popov SV. The effect of dietary pectins on object recognition memory, depression-like behaviour, and il-6 in mouse hippocampi. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
34
|
Eclalbasaponin II Ameliorates the Cognitive Impairment Induced by Cholinergic Blockade in Mice. Neurochem Res 2017; 43:351-362. [DOI: 10.1007/s11064-017-2430-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
|
35
|
Jeon SJ, Kim E, Lee JS, Oh HK, Zhang J, Kwon Y, Jang DS, Ryu JH. Maslinic acid ameliorates NMDA receptor blockade-induced schizophrenia-like behaviors in mice. Neuropharmacology 2017; 126:168-178. [DOI: 10.1016/j.neuropharm.2017.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
|
36
|
Xue F, Chen YC, Zhou CH, Wang Y, Cai M, Yan WJ, Wu R, Wang HN, Peng ZW. Risperidone ameliorates cognitive deficits, promotes hippocampal proliferation, and enhances Notch signaling in a murine model of schizophrenia. Pharmacol Biochem Behav 2017; 163:101-109. [PMID: 29037878 DOI: 10.1016/j.pbb.2017.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
Antipsychotic agents have been reported to promote hippocampal neurogenesis and improve cognitive deficits; yet, the molecular mechanisms underlying these actions remain unclear. In the present study, we used a murine model of schizophrenia induced by 5-day intraperitoneal injection with the non-competitive N-methyl-d-aspartate receptor antagonist MK801 (0.3mg/kg/day) to assess cognitive behavioral deficits, changes in Notch signaling, and cellular proliferation in the hippocampus of adult male C57BL/6 mice after 2-week administration of risperidone (Rip, 0.2mg/kg/day) or vehicle. We then utilized in vivo stereotaxic injections of a lentivirus expressing a short hairpin RNA (shRNA) for Notch1 into the dentate gyrus to examine the role of Notch1 in the observed actions of Rip. We found that Rip ameliorated cognitive deficits and restored cell proliferation in MK801-treated mice in a manner associated with the up-regulation of Notch signaling molecules, including Notch1, Hes1, and Hes5. Moreover, these effects were abolished by pretreatment with Notch1 shRNA. Our results suggest that the ability of Rip to improve cognitive function in schizophrenia is mediated in part by Notch signaling.
Collapse
Affiliation(s)
- Fen Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yun-Chun Chen
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China
| | - Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ying Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wen-Jun Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Rui Wu
- Xi'an Center for Disease Control and Prevention, Xi'an 710032, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
37
|
Torrisi SA, Salomone S, Geraci F, Caraci F, Bucolo C, Drago F, Leggio GM. Buspirone Counteracts MK-801-Induced Schizophrenia-Like Phenotypes through Dopamine D 3 Receptor Blockade. Front Pharmacol 2017; 8:710. [PMID: 29046641 PMCID: PMC5632784 DOI: 10.3389/fphar.2017.00710] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/21/2017] [Indexed: 12/30/2022] Open
Abstract
Background: Several efforts have been made to develop effective antipsychotic drugs. Currently, available antipsychotics are effective on positive symptoms, less on negative symptoms, but not on cognitive impairment, a clinically relevant dimension of schizophrenia. Drug repurposing offers great advantages over the long-lasting, risky and expensive, de novo drug discovery strategy. To our knowledge, the possible antipsychotic properties of buspirone, an azapirone anxiolytic drug marketed in 1986 as serotonin 5-HT1A receptor (5-HT1AR) partial agonist, have not been extensively investigated despite its intriguing pharmacodynamic profile, which includes dopamine D3 (D3R) and D4 receptor (D4R) antagonist activity. Multiple lines of evidence point to D3R as a valid therapeutic target for the treatment of several neuropsychiatric disorders including schizophrenia. In the present study, we tested the hypothesis that buspirone, behaving as dopamine D3R antagonist, may have antipsychotic-like activity. Materials and Methods: Effects of acute administration of buspirone was assessed on a wide-range of schizophrenia-relevant abnormalities induced by a single administration of the non-competitive NMDAR antagonist MK-801, in both wild-type mice (WT) and D3R-null mutant mice (D3R-/-). Results: Buspirone (3 mg⋅kg-1, i.p.) was devoid of cataleptogenic activity in itself, but resulted effective in counteracting disruption of prepulse inhibition (PPI), hyperlocomotion and deficit of temporal order recognition memory (TOR) induced by MK-801 (0.1 mg⋅kg-1, i.p.) in WT mice. Conversely, in D3R-/- mice, buspirone was ineffective in preventing MK-801-induced TOR deficit and it was only partially effective in blocking MK-801-stimulated hyperlocomotion. Conclusion: Taken together, these results indicate, for the first time, that buspirone, might be a potential therapeutic medication for the treatment of schizophrenia. In particular, buspirone, through its D3R antagonist activity, may be a useful tool for improving the treatment of cognitive deficits in schizophrenia that still represents an unmet need of this disease.
Collapse
Affiliation(s)
- Sebastiano Alfio Torrisi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Troina, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
38
|
Jiang J, Li S, Wang Y, Xiao X, Jin Y, Wang Y, Yang Z, Yan S, Li Y. Potential neurotoxicity of prenatal exposure to sevoflurane on offspring: Metabolomics investigation on neurodevelopment and underlying mechanism. Int J Dev Neurosci 2017; 62:46-53. [PMID: 28842206 DOI: 10.1016/j.ijdevneu.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/09/2017] [Accepted: 08/16/2017] [Indexed: 02/08/2023] Open
Affiliation(s)
- Jialong Jiang
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefei230022AnhuiPR China
| | - Shasha Li
- Guangdong Provincial Association of Chinese Medicine, Guangdong Provincial Hospital of Chinese MedicineNo. 111 Dade RoadGuangzhouGuangdong510120PR China
| | - Yiqiao Wang
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefei230022AnhuiPR China
| | - Xue Xiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical UniversityGuangzhou510006PR China
| | - Yi Jin
- Department of AnesthesiologyInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of MedicineShanghai200030PR China
| | - Yilong Wang
- Department of AnesthesiologyInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of MedicineShanghai200030PR China
| | - Zeyong Yang
- Department of AnesthesiologyInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of MedicineShanghai200030PR China
| | - Shikai Yan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical UniversityGuangzhou510006PR China
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai200240PR China
| | - Yuanhai Li
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefei230022AnhuiPR China
| |
Collapse
|
39
|
Saletti PG, Maior RS, Barros M, Nishijo H, Tomaz C. Cannabidiol Affects MK-801-Induced Changes in the PPI Learned Response of Capuchin Monkeys ( Sapajus spp.). Front Pharmacol 2017; 8:93. [PMID: 28289391 PMCID: PMC5326751 DOI: 10.3389/fphar.2017.00093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/13/2017] [Indexed: 12/05/2022] Open
Abstract
There are several lines of evidence indicating a possible therapeutic action of cannabidiol (CBD) in schizophrenia treatment. Studies with rodents have demonstrated that CBD reverses MK-801 effects in prepulse inhibition (PPI) disruption, which may indicate that CBD acts by improving sensorimotor gating deficits. In the present study, we investigated the effects of CBD on a PPI learned response of capuchin monkeys (Sapajus spp.). A total of seven monkeys were employed in this study. In Experiment 1, we evaluated the CBD (doses of 15, 30, 60 mg/kg, i.p.) effects on PPI. In Experiment 2, the effects of sub-chronic MK-801 (0.02 mg/kg, i.m.) on PPI were challenged by a CBD pre-treatment. No changes in PPI response were observed after CBD-alone administration. However, MK-801 increased the PPI response of our animals. CBD pre-treatment blocked the PPI increase induced by MK-801. Our findings suggest that CBD’s reversal of the MK-801 effects on PPI is unlikely to stem from a direct involvement on sensorimotor mechanisms, but may possibly reflect its anxiolytic properties.
Collapse
Affiliation(s)
- Patricia G Saletti
- Primate Center and Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia Brasilia, Brazil
| | - Rafael S Maior
- Primate Center and Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of BrasiliaBrasilia, Brazil; Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Karolinska University HospitalStockholm, Sweden
| | - Marilia Barros
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Brasilia Brasilia, Brazil
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Carlos Tomaz
- Primate Center and Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of BrasiliaBrasilia, Brazil; Neuroscience Research Group, University CEUMASão Luís, Brazil
| |
Collapse
|
40
|
Cognitive Ameliorating Effect ofAcanthopanax koreanumAgainst Scopolamine-Induced Memory Impairment in Mice. Phytother Res 2017; 31:425-432. [DOI: 10.1002/ptr.5764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 11/23/2016] [Accepted: 12/11/2016] [Indexed: 11/07/2022]
|
41
|
Oh HK, Jeon SJ, Lee S, Lee HE, Kim E, Park SJ, Kim HN, Jung WY, Cheong JH, Jang DS, Ryu JH. Swertisin ameliorates pre-pulse inhibition deficits and cognitive impairment induced by MK-801 in mice. J Psychopharmacol 2017; 31:250-259. [PMID: 27729563 DOI: 10.1177/0269881116672098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Swertisin, a plant-derived C-glucosylflavone, is known to have antidiabetic, anti-inflammatory and antioxidant effects. In the present study, we investigated in mice the effects of swertisin on glutamatergic dysfunction induced by dizocilpine (MK-801), a non-competitive N-methyl-D-aspartate receptor antagonist. In the Acoustic Startle Response test, their MK-801-induced (given 0.2 mg/kg i.p.) pre-pulse inhibition deficit was significantly attenuated by the administration of swertisin (30 mg/kg p.o.). In the Novel Object Recognition Test, the recognition memory impairments that were induced by MK-801 (0.2 mg/kg, given i.p.) were also reversed by administration of swertisin (30 mg/kg p.o.). In addition, swertisin normalized the MK-801-induced elevation of phosphorylation levels of Akt and GSK-3β signaling molecules in the prefrontal cortex. These results indicated that swertisin may be useful in managing the symptoms of schizophrenia, including sensorimotor gating disruption and cognitive impairment, and that these behavioral outcomes may be related to Akt-GSK-3β signaling in the prefrontal cortex.
Collapse
Affiliation(s)
- Hee Kyong Oh
- 1 Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.,4 Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Se Jin Jeon
- 2 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.,3 Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Sunhee Lee
- 2 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.,3 Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung Eun Lee
- 2 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.,3 Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Eunji Kim
- 2 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.,3 Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Se Jin Park
- 2 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.,3 Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Ha Neul Kim
- 2 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.,3 Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Won Yong Jung
- 1 Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Jae Hoon Cheong
- 5 Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Dae Sik Jang
- 2 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.,3 Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Hoon Ryu
- 1 Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.,2 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.,3 Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
42
|
Jeon SJ, Kim B, Park HJ, Zhang J, Kwon Y, Kim DH, Ryu JH. The ameliorating effect of 1-palmitoyl-2-linoleoyl-3-acetylglycerol on scopolamine-induced memory impairment via acetylcholinesterase inhibition and LTP activation. Behav Brain Res 2017; 324:58-65. [PMID: 28137622 DOI: 10.1016/j.bbr.2017.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 11/25/2022]
Abstract
In the present study, we investigated whether 1-palmitoyl-2-linoleoyl-3-acetylglycerol (PLAG), a component of antlers of Cervus nippon Temminck, would have memory-ameliorating properties against cholinergic blockade-induced memory impairment in mice. In the passive avoidance task to investigate the effects of PLAG on long-term memory, PLAG (10mg/kg, p.o.) administration ameliorated scopolamine-induced memory impairment. PLAG also reversed the impairments of working memory in the Y-maze task and spatial memory as shown in the Morris water maze. To identify the mechanism of the memory-ameliorating effect of PLAG, acetylcholinesterase (AChE) inhibition assay and the Western blot analysis were conducted. In the AChE inhibition assay, PLAG inhibited the AChE activity in mice and PLAG increased the expression levels of phosphorylated CaMKII, ERK, and CREB in the hippocampus. Additionally, long-term potentiation (LTP) of synaptic strength occurred by PLAG treatment in the hippocampal cultures. Overall, the present study suggests that PLAG reversed memory deficits in an animal model and that it affects biochemical pathways related to learning and memory.
Collapse
Affiliation(s)
- Se Jin Jeon
- Department of Life and Nanopharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Kyunghee-daero 26, Dongdeamun-gu, Seoul 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Kyunghee-daero 26, Dongdeamun-gu, Seoul 02447, Republic of Korea
| | - Boseong Kim
- Department of Life and Nanopharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Kyunghee-daero 26, Dongdeamun-gu, Seoul 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Kyunghee-daero 26, Dongdeamun-gu, Seoul 02447, Republic of Korea
| | - Hye Jin Park
- Department of Medicinal Biotechnology, College of Health Sciences, Busan 49315, Republic of Korea
| | - Jiabao Zhang
- Department of Life and Nanopharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Kyunghee-daero 26, Dongdeamun-gu, Seoul 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Kyunghee-daero 26, Dongdeamun-gu, Seoul 02447, Republic of Korea
| | - Yubeen Kwon
- Department of Life and Nanopharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Kyunghee-daero 26, Dongdeamun-gu, Seoul 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Kyunghee-daero 26, Dongdeamun-gu, Seoul 02447, Republic of Korea
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Busan 49315, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Kyunghee-daero 26, Dongdeamun-gu, Seoul 02447, Republic of Korea; Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Kyunghee-daero 26, Dongdeamun-gu, Seoul 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Kyunghee-daero 26, Dongdeamun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
43
|
Gu HS, Chen X, Zhang JW, Zhang L, Li L. Synthesis and biological evaluation of novel flavanone derivatives as potential antipsychotic agents. Chem Biol Drug Des 2016; 89:353-364. [DOI: 10.1111/cbdd.12843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/20/2016] [Accepted: 08/13/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Hong-shun Gu
- Department of Pharmacology; Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education; Beijing China
| | - Xi Chen
- Department of Pharmacology; Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education; Beijing China
| | - Jian-wei Zhang
- School of Chemical Biology and Pharmaceutical Sciences; Capital Medical University; Beijing China
| | - Lan Zhang
- Department of Pharmacology; Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education; Beijing China
| | - Lin Li
- Department of Pharmacology; Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education; Beijing China
| |
Collapse
|
44
|
Choy KHC, Shackleford DM, Malone DT, Mistry SN, Patil RT, Scammells PJ, Langmead CJ, Pantelis C, Sexton PM, Lane JR, Christopoulos A. Positive Allosteric Modulation of the Muscarinic M1 Receptor Improves Efficacy of Antipsychotics in Mouse Glutamatergic Deficit Models of Behavior. J Pharmacol Exp Ther 2016; 359:354-365. [PMID: 27630144 DOI: 10.1124/jpet.116.235788] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022] Open
Abstract
Current antipsychotics are effective in treating the positive symptoms associated with schizophrenia, but they remain suboptimal in targeting cognitive dysfunction. Recent studies have suggested that positive allosteric modulation of the M1 muscarinic acetylcholine receptor (mAChR) may provide a novel means of improving cognition. However, very little is known about the potential of combination therapies in extending coverage across schizophrenic symptom domains. This study investigated the effect of the M1 mAChR positive allosteric modulator BQCA [1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid], alone or in combination with haloperidol (a first-generation antipsychotic), clozapine (a second-generation atypical antipsychotic), or aripiprazole (a third-generation atypical antipsychotic), in reversing deficits in sensorimotor gating and spatial memory induced by the N-methyl-d-aspartate receptor antagonist, MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine]. Sensorimotor gating and spatial memory induction are two models that represent aspects of schizophrenia modeled in rodents. In prepulse inhibition (an operational measure of sensorimotor gating), BQCA alone had minimal effects but exhibited different levels of efficacy in reversing MK-801-induced prepulse inhibition disruptions when combined with a subeffective dose of each of the three (currently prescribed) antipsychotics. Furthermore, the combined effect of BQCA and clozapine was absent in M1-/- mice. Interestingly, although BQCA alone had no effect in reversing MK-801-induced memory impairments in a Y-maze spatial test, we observed a reversal upon the combination of BQCA with atypical antipsychotics, but not with haloperidol. These findings provide proof of concept that a judicious combination of existing antipsychotics with a selective M1 mAChR positive allosteric modulator can extend antipsychotic efficacy in glutamatergic deficit models of behavior.
Collapse
Affiliation(s)
- Kwok H C Choy
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - David M Shackleford
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Daniel T Malone
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Shailesh N Mistry
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Rahul T Patil
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Peter J Scammells
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Christopher J Langmead
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Christos Pantelis
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Patrick M Sexton
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Johnathan R Lane
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Arthur Christopoulos
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| |
Collapse
|
45
|
Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res 2016; 176:52-71. [PMID: 26589391 DOI: 10.1016/j.schres.2015.06.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
Oxidative stress is a well-recognized participant in the pathophysiology of multiple brain disorders, particularly neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. While not a dementia, a wide body of evidence has also been accumulating for aberrant reactive oxygen species and inflammation in schizophrenia. Here we highlight roles for oxidative stress as a common mechanism by which varied genetic and epidemiologic risk factors impact upon neurodevelopmental processes that underlie the schizophrenia syndrome. While there is longstanding evidence that schizophrenia may not have a single causative lesion, a common pathway involving oxidative stress opens the possibility for intervention at susceptible phases.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Anthony V Serritella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA.
| |
Collapse
|
46
|
Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity. ASIAN PAC J TROP MED 2016; 9:662-7. [DOI: 10.1016/j.apjtm.2016.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 11/23/2022] Open
|
47
|
Nie H, Wang Y, Qin Y, Gong XG. Oleanolic acid induces autophagic death in human gastric cancer cells in vitro and in vivo. Cell Biol Int 2016; 40:770-8. [PMID: 27079177 DOI: 10.1002/cbin.10612] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/15/2016] [Accepted: 04/10/2016] [Indexed: 12/13/2022]
Abstract
Oleanolic acid (OA), a plant-derived pentacyclic terpenoid, is known to have hepatoprotective effects. In this study, we found that OA induced autophagic cell death in multiple human gastric cancer cell lines. Moreover, OA-induced autophagy was shown for the first time in human gastric cancer cells, evidenced by the formation of GFP-RFP-LC3 puncta and autophagosomes. OA suppressed phospho-mTOR through inhibition of the PI3 K/AKT and ERK/p38 MAPK signalling pathways and through activation of the AMPK signalling pathway. Furthermore, we found that OA-induced cytotoxicity and autophagy could be blocked by the autophagy inhibitor 3-methyladenine or via siRNA targeting Beclin-1. Our in vivo research showed that OA delayed the formation of MGC-803 tumours in an autophagy-dependent manner. These results reveal a novel mechanism for OA in gastric cancer cells and suggest that OA could be a novel agent in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Hao Nie
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Room 345, Hangzhou 310058, China
| | - Yu Wang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Room 345, Hangzhou 310058, China
| | - Yong Qin
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Room 345, Hangzhou 310058, China
| | - Xing-Guo Gong
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Room 345, Hangzhou 310058, China
| |
Collapse
|
48
|
Chindo BA, Kahl E, Trzeczak D, Dehmel P, Becker A, Fendt M. Standardized extract of Ficus platyphylla reverses apomorphine-induced changes in prepulse inhibition and locomotor activity in rats. Behav Brain Res 2015; 293:74-80. [DOI: 10.1016/j.bbr.2015.06.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/22/2015] [Accepted: 06/25/2015] [Indexed: 12/29/2022]
|
49
|
Saletti PG, Maior RS, Hori E, Nishijo H, Tomaz C. Sensorimotor gating impairments induced by MK-801 treatment may be reduced by tolerance effect and by familiarization in monkeys. Front Pharmacol 2015; 6:204. [PMID: 26441660 PMCID: PMC4585034 DOI: 10.3389/fphar.2015.00204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/04/2015] [Indexed: 02/03/2023] Open
Abstract
Dizocilpine (MK-801) is a non-competitive NMDA antagonist that induces schizophreniclike effects. It is therefore widely used in experimental models of schizophrenia including prepulse inhibition (PPI) impairments in rodents. Nevertheless, MK-801 has never been tested in monkeys on a PPI paradigm. In order to evaluate MK-801 effects on monkeys’ PPI, we tested eight capuchin monkeys (Sapajus spp.) using three different doses of MK-801 (0.01; 0.02; 0.03 mg/kg). Results show PPI impairment in acute administration of the highest dose (0.03 mg/kg). PPI impairment induced by MK-801 was reversed by re-exposure to the PPI test throughout treatment trials, in contrast with rodent studies. These results indicate that tolerance effect and familiarization with PPI test may reduce the sensorimotor gating deficits induced by MK-801 in monkeys, suggesting a drug-training interaction.
Collapse
Affiliation(s)
- Patricia G Saletti
- Primate Center and Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia , Brasilia, Brazil
| | - Rafael S Maior
- Primate Center and Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia , Brasilia, Brazil
| | - Etsuro Hori
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama, Japan
| | - Carlos Tomaz
- Primate Center and Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia , Brasilia, Brazil ; Neurosciences Research Group, Universidade CEUMA , São Luís, Brazil
| |
Collapse
|
50
|
Yang SS, Huang CL, Chen HE, Tung CS, Shih HP, Liu YP. Effects of SPAK knockout on sensorimotor gating, novelty exploration, and brain area-dependent expressions of NKCC1 and KCC2 in a mouse model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2015; 61:30-6. [PMID: 25797415 DOI: 10.1016/j.pnpbp.2015.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/26/2022]
Abstract
SPAK (Sterile 20/SPS1-related proline/alanine-rich kinase) is a protein kinase belonging to the mitogen-activated protein kinase (MAPK) superfamily that has been found to be extensively distributed across the body. The SPAK downstream substrates NKCC1 and KCC2 in the central nervous system are important in the interpretation of developmental mental disorders. The present study aimed to clarify the role of SPAK-NKCC1/KCC2 using a rodent schizophrenia-like model. The mouse paradigm of isolation rearing (IR) was employed, as it simulates the sensorimotor gating abnormalities of schizophrenia. SPAK transgenic mice were used and were divided into four groups: social-wild type, social-SPAK(-/-), isolation-wild type, and isolation-SPAK(-/-). The prepulse inhibition (PPI) test and the novel object recognition test (NORT) were used to measure schizophrenia-associated dysfunctions in gating ability and the novelty recognition, respectively. Finally, the protein expressions of NKCC1/KCC2 in the prefrontal cortex and hippocampus were detected to determine correlations with the behavioral data. Our results demonstrated that SPAK-null mice had superior PPI and novelty recognition relative to wild type controls, with a concomitant increase in KCC2 in the prefrontal cortex. IR disrupted PPI and NORT performances with an associated increase in KCC2. Furthermore, rearing environment and gene manipulation had mutually interactive effects, as the IR-induced effects on PPI and NORT were reversed by SPAK knockout, and the increase in KCC2 and the decreased in the NKCC1/KCC2 ratio in the prefrontal cortex induced by SPAK knockout were reversed by IR. Our data supported the gene-environment hypothesis and demonstrated the potential value of SPAK manipulation in future schizophrenia studies.
Collapse
Affiliation(s)
- Sung-Sen Yang
- Department of Nephrology, Tri-Service General Hospital, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chuen-Lin Huang
- Medical Research Center, Cardinal Tien Hospital, New Taipei City, Taiwan; Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Huei-E Chen
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Che-Se Tung
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan; Division of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Han-Peng Shih
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Yia-Ping Liu
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan.
| |
Collapse
|