1
|
Wang Q, Wang Y, Liao FF, Zhou FM. Dopaminergic inhibition of the inwardly rectifying potassium current in direct pathway medium spiny neurons in normal and parkinsonian striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.590632. [PMID: 38746264 PMCID: PMC11092482 DOI: 10.1101/2024.04.29.590632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Despite the profound behavioral effects of the striatal dopamine (DA) activity and the inwardly rectifying potassium channel ( Kir ) being a key determinant of striatal medium spiny neuron (MSN) activity that also profoundly affects behavior, previously reported DA regulations of Kir are conflicting and incompatible with MSN function in behavior. Here we show that in normal mice with an intact striatal DA system, the predominant effect of DA activation of D1Rs in D1-MSNs is to cause a modest depolarization and increase in input resistance by inhibiting Kir, thus moderately increasing the spike outputs from behavior-promoting D1-MSNs. In parkinsonian (DA-depleted) striatum, DA increases D1-MSN intrinsic excitability more strongly than in normal striatum, consequently strongly increasing D1-MSN spike firing that is behavior-promoting; this DA excitation of D1-MSNs is stronger when the DA depletion is more severe. The DA inhibition of Kir is occluded by the Kir blocker barium chloride (BaCl 2 ). In behaving parkinsonian mice, BaCl 2 microinjection into the dorsal striatum stimulates movement but occludes the motor stimulation of D1R agonism. Taken together, our results resolve the long-standing question about what D1R agonism does to D1-MSN excitability in normal and parkinsonian striatum and strongly indicate that D1R inhibition of Kir is a key ion channel mechanism that mediates D1R agonistic behavioral stimulation in normal and parkinsonian animals.
Collapse
|
2
|
Li C, Elabi OF, Fieblinger T, Cenci MA. Structural-functional properties of direct-pathway striatal neurons at early and chronic stages of dopamine denervation. Eur J Neurosci 2024; 59:1227-1241. [PMID: 37876330 DOI: 10.1111/ejn.16166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
The dendritic arbour of striatal projection neurons (SPNs) is the primary anatomical site where dopamine and glutamate inputs to the basal ganglia functionally interact to control movement. These dendritic arbourisations undergo atrophic changes in Parkinson's disease. A reduction in the dendritic complexity of SPNs is found also in animal models with severe striatal dopamine denervation. Using 6-hydroxydopamine (6-OHDA) lesions of the medial forebrain bundle as a model, we set out to compare morphological and electrophysiological properties of SPNs at an early versus a chronic stage of dopaminergic degeneration. Ex vivo recordings were performed in transgenic mice where SPNs forming the direct pathway (dSPNs) express a fluorescent reporter protein. At both the time points studied (5 and 28 days following 6-OHDA lesion), there was a complete loss of dopaminergic fibres through the dorsolateral striatum. A reduction in dSPN dendritic complexity and spine density was manifest at 28, but not 5 days post-lesion. At the late time point, dSPN also exhibited a marked increase in intrinsic excitability (reduced rheobase current, increased input resistance, more evoked action potentials in response to depolarising currents), which was not present at 5 days. The increase in neuronal excitability was accompanied by a marked reduction in inward-rectifying potassium (Kir) currents (which dampen the SPN response to depolarising stimuli). Our results show that dSPNs undergo delayed coordinate changes in dendritic morphology, intrinsic excitability and Kir conductance following dopamine denervation. These changes are predicted to interfere with the dSPN capacity to produce a normal movement-related output.
Collapse
Affiliation(s)
- Chang Li
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Osama F Elabi
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Tim Fieblinger
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- Evotec SE, Hamburg, Germany
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Fang LZ, Creed MC. Updating the striatal-pallidal wiring diagram. Nat Neurosci 2024; 27:15-27. [PMID: 38057614 DOI: 10.1038/s41593-023-01518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
The striatal and pallidal complexes are basal ganglia structures that orchestrate learning and execution of flexible behavior. Models of how the basal ganglia subserve these functions have evolved considerably, and the advent of optogenetic and molecular tools has shed light on the heterogeneity of subcircuits within these pathways. However, a synthesis of how molecularly diverse neurons integrate into existing models of basal ganglia function is lacking. Here, we provide an overview of the neurochemical and molecular diversity of striatal and pallidal neurons and synthesize recent circuit connectivity studies in rodents that takes this diversity into account. We also highlight anatomical organizational principles that distinguish the dorsal and ventral basal ganglia pathways in rodents. Future work integrating the molecular and anatomical properties of striatal and pallidal subpopulations may resolve controversies regarding basal ganglia network function.
Collapse
Affiliation(s)
- Lisa Z Fang
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Meaghan C Creed
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA.
- Departments of Psychiatry, Neuroscience and Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
4
|
Nieto AM, Catalfio AM, Papacostas Quintanilla H, Alonso‐Caraballo Y, Ferrario CR. Transient effects of junk food on NAc core MSN excitability and glutamatergic transmission in obesity-prone female rats. Obesity (Silver Spring) 2023; 31:434-445. [PMID: 36575127 PMCID: PMC9877139 DOI: 10.1002/oby.23613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/25/2022] [Accepted: 09/19/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The nucleus accumbens (NAc) plays critical roles in eating and food seeking in rodents and humans. Diets high in fats and sugars ("junk food") produce persistent increases in NAc function in male obesity-prone rats. This study examines effects of junk food and junk food deprivation on NAc core medium spiny neuron (MSN) excitability and glutamate transmission in females. METHODS Obesity-prone female rats were given access to ad libitum junk food for 10 days, and recordings were made from MSNs in the NAc core immediately or after a short (27-72 hours) or long (14-16 days) junk food deprivation period in which rats were returned to ad libitum standard chow. Controls remained on chow throughout. Whole-cell slice electrophysiology was used to examine MSN intrinsic membrane and firing properties and glutamatergic transmission. RESULTS The study found that intrinsic excitability was reduced, whereas glutamatergic transmission was enhanced, after the short, but not long, junk food deprivation period. A brief junk food deprivation period was necessary for increases in NAc calcium-permeable-AMPA receptor transmission and spontaneous excitatory postsynaptic current (sEPSC) frequency, but not for increases in sEPSC amplitude. CONCLUSIONS This study reveals that females are protected from long-lasting effects of sugary fatty foods on MSN neuronal function and provides evidence for sex-specific effects on plasticity in brain centers that influence food-seeking and feeding behavior.
Collapse
Affiliation(s)
- Allison M. Nieto
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Amanda M. Catalfio
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Helena Papacostas Quintanilla
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Biological SciencesUniversité du Québec à MontréalMontrealQuébecCanada
| | - Yanaira Alonso‐Caraballo
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Neuroscience DepartmentUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Carrie R. Ferrario
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Psychology, Biopsychology AreaUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
5
|
Allam SL, Rumbell TH, Hoang-Trong T, Parikh J, Kozloski JR. Neuronal population models reveal specific linear conductance controllers sufficient to rescue preclinical disease phenotypes. iScience 2021; 24:103279. [PMID: 34778727 PMCID: PMC8577087 DOI: 10.1016/j.isci.2021.103279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/05/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Preclinical drug candidates are screened for their ability to ameliorate in vitro neuronal electrophysiology, and go/no-go decisions progress drugs to clinical trials based on population means across cells and animals. However, these measures do not mitigate clinical endpoint risk. Population-based modeling captures variability across multiple electrophysiological measures from healthy, disease, and drug phenotypes. We pursued optimizing therapeutic targets by identifying coherent sets of ion channel target modulations for recovering heterogeneous wild-type (WT) population excitability profiles from a heterogeneous Huntington's disease (HD) population. Our approach combines mechanistic simulations with population modeling of striatal neurons using evolutionary optimization algorithms to design 'virtual drugs'. We introduce efficacy metrics to score populations and rank virtual drug candidates. We found virtual drugs using heuristic approaches that performed better than single target modulators and standard classification methods. We compare a real drug to virtual candidates and demonstrate a novel in silico triaging method.
Collapse
Affiliation(s)
- Sushmita L. Allam
- IBM T.J. Watson Research Center, 13-158B, P.O. Box 218, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
| | - Timothy H. Rumbell
- IBM T.J. Watson Research Center, 13-158B, P.O. Box 218, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
| | - Tuan Hoang-Trong
- IBM T.J. Watson Research Center, 13-158B, P.O. Box 218, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
| | - Jaimit Parikh
- IBM T.J. Watson Research Center, 13-158B, P.O. Box 218, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
| | - James R. Kozloski
- IBM T.J. Watson Research Center, 13-158B, P.O. Box 218, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
| |
Collapse
|
6
|
Reynolds LM, Flores C. Mesocorticolimbic Dopamine Pathways Across Adolescence: Diversity in Development. Front Neural Circuits 2021; 15:735625. [PMID: 34566584 PMCID: PMC8456011 DOI: 10.3389/fncir.2021.735625] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Mesocorticolimbic dopamine circuity undergoes a protracted maturation during adolescent life. Stable adult levels of behavioral functioning in reward, motivational, and cognitive domains are established as these pathways are refined, however, their extended developmental window also leaves them vulnerable to perturbation by environmental factors. In this review, we highlight recent advances in understanding the mechanisms underlying dopamine pathway development in the adolescent brain, and how the environment influences these processes to establish or disrupt neurocircuit diversity. We further integrate these recent studies into the larger historical framework of anatomical and neurochemical changes occurring during adolescence in the mesocorticolimbic dopamine system. While dopamine neuron heterogeneity is increasingly appreciated at molecular, physiological, and anatomical levels, we suggest that a developmental facet may play a key role in establishing vulnerability or resilience to environmental stimuli and experience in distinct dopamine circuits, shifting the balance between healthy brain development and susceptibility to psychiatric disease.
Collapse
Affiliation(s)
- Lauren M Reynolds
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France.,Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, QC, Canada
| |
Collapse
|
7
|
Ferrario CR. Why did I eat that? Contributions of individual differences in incentive motivation and nucleus accumbens plasticity to obesity. Physiol Behav 2020; 227:113114. [DOI: 10.1016/j.physbeh.2020.113114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 02/02/2023]
|
8
|
Hashimoto K. Mechanisms for the resonant property in rodent neurons. Neurosci Res 2020; 156:5-13. [DOI: 10.1016/j.neures.2019.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 01/18/2023]
|
9
|
Lahiri AK, Bevan MD. Dopaminergic Transmission Rapidly and Persistently Enhances Excitability of D1 Receptor-Expressing Striatal Projection Neurons. Neuron 2020; 106:277-290.e6. [PMID: 32075716 PMCID: PMC7182485 DOI: 10.1016/j.neuron.2020.01.028] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/26/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Substantia nigra dopamine neurons have been implicated in the initiation and invigoration of movement, presumably through their modulation of striatal projection neuron (SPN) activity. However, the impact of native dopaminergic transmission on SPN excitability has not been directly demonstrated. Using perforated patch-clamp recording, we found that optogenetic stimulation of nigrostriatal dopamine axons rapidly and persistently elevated the excitability of D1 receptor-expressing SPNs (D1-SPNs). The evoked firing of D1-SPNs increased within hundreds of milliseconds of stimulation and remained elevated for ≥ 10 min. Consistent with the negative modulation of depolarization- and Ca2+-activated K+ currents, dopaminergic transmission accelerated subthreshold depolarization in response to current injection, reduced the latency to fire, and transiently diminished action potential afterhyperpolarization. Persistent modulation was protein kinase A dependent and associated with a reduction in action potential threshold. Together, these data demonstrate that dopaminergic transmission potently increases D1-SPN excitability with a time course that could support subsecond and sustained behavioral control.
Collapse
Affiliation(s)
- Asha K Lahiri
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Lieberman OJ, Frier MD, McGuirt AF, Griffey CJ, Rafikian E, Yang M, Yamamoto A, Borgkvist A, Santini E, Sulzer D. Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy. eLife 2020; 9:e50843. [PMID: 31913125 PMCID: PMC6984822 DOI: 10.7554/elife.50843] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 01/07/2020] [Indexed: 12/28/2022] Open
Abstract
The basal ganglia are a group of subcortical nuclei that contribute to action selection and reinforcement learning. The principal neurons of the striatum, spiny projection neurons of the direct (dSPN) and indirect (iSPN) pathways, maintain low intrinsic excitability, requiring convergent excitatory inputs to fire. Here, we examined the role of autophagy in mouse SPN physiology and animal behavior by generating conditional knockouts of Atg7 in either dSPNs or iSPNs. Loss of autophagy in either SPN population led to changes in motor learning but distinct effects on cellular physiology. dSPNs, but not iSPNs, required autophagy for normal dendritic structure and synaptic input. In contrast, iSPNs, but not dSPNs, were intrinsically hyperexcitable due to reduced function of the inwardly rectifying potassium channel, Kir2. These findings define a novel mechanism by which autophagy regulates neuronal activity: control of intrinsic excitability via the regulation of potassium channel function.
Collapse
Affiliation(s)
- Ori J Lieberman
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Micah D Frier
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Avery F McGuirt
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Christopher J Griffey
- Department of NeurologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Elizabeth Rafikian
- Mouse NeuroBehavior Core, Institute for Genomic MedicineColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Mu Yang
- Mouse NeuroBehavior Core, Institute for Genomic MedicineColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Ai Yamamoto
- Department of NeurologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | | | | | - David Sulzer
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
- Department of NeurologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
- Department of PharmacologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
- Division of Molecular TherapeuticsNew York State Psychiatric InstituteNew YorkUnited States
| |
Collapse
|
11
|
Alonso-Caraballo Y, Ferrario CR. Effects of the estrous cycle and ovarian hormones on cue-triggered motivation and intrinsic excitability of medium spiny neurons in the Nucleus Accumbens core of female rats. Horm Behav 2019; 116:104583. [PMID: 31454509 PMCID: PMC7256930 DOI: 10.1016/j.yhbeh.2019.104583] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 11/08/2022]
Abstract
Naturally occurring alterations in estradiol influence food intake in females. However, how motivational responses to food cues are affected by the estrous cycle or ovarian hormones is unknown. In addition, while individual susceptibility to obesity is accompanied by enhanced incentive motivational responses to food cues and increased NAc intrinsic excitability in males, studies in females are absent. Therefore, we examined basal differences in intrinsic NAc excitability of obesity-prone vs. obesity-resistant females and determined how conditioned approach (a measure of cue-triggered motivation), food intake, and motivation for food vary with the cycle in naturally cycling female obesity-prone, obesity-resistant, and outbred Sprague-Dawley rats. Finally, we used ovariectomy followed by hormone treatment to determine the role of ovarian hormones in cue-triggered motivation in selectively-bred and outbred female rats. We found that intrinsic excitability of NAc MSNs and conditioned approach are enhanced in female obesity-prone vs. obesity-resistant rats. These effects were driven by greater MSN excitability and conditioned approach behavior during metestrus/diestrus vs. proestrus/estrus in obesity-prone but not obesity-resistant rats, despite similar regulation of food intake and food motivation by the cycle in these groups. Furthermore, estradiol and progesterone treatment reduced conditioned approach behavior in obesity-prone and outbred Sprague-Dawley females. To our knowledge, these data are the first to demonstrate cycle- and hormone-dependent effects on the motivational response to a food cue, and the only studies to date to determine how individual susceptibility to obesity influences NAc excitability, cue-triggered food-seeking, and differences in the regulation of these neurobehavioral responses by the estrous cycle.
Collapse
Affiliation(s)
| | - Carrie R Ferrario
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States of America; Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
12
|
Oginsky MF, Ferrario CR. Eating "junk food" has opposite effects on intrinsic excitability of nucleus accumbens core neurons in obesity-susceptible versus -resistant rats. J Neurophysiol 2019; 122:1264-1273. [PMID: 31365322 DOI: 10.1152/jn.00361.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nucleus accumbens (NAc) plays critical roles in motivated behaviors, including food seeking and feeding. Differences in NAc function contribute to overeating that drives obesity, but the underlying mechanisms are poorly understood. In addition, there is a fair degree of variation in individual susceptibility versus resistance to obesity that is due in part to differences in NAc function. For example, using selectively bred obesity-prone and obesity-resistant rats, we have found that excitability of medium spiny neurons (MSNs) within the NAc core is enhanced in obesity-prone versus -resistant populations, before any diet manipulation. However, it is unknown whether consumption of sugary, fatty "junk food" alters MSN excitability. Here whole cell patch-clamp recordings were conducted to examine MSN intrinsic excitability in adult male obesity-prone and obesity-resistant rats with and without exposure to a sugary, fatty junk food diet. We replicated our initial finding that basal excitability is enhanced in obesity-prone versus obesity-resistant rats and determined that this is due to a lower fast transient potassium current (IA) in prone versus resistant groups. In addition, the junk food diet had opposite effects on excitability in obesity-prone versus obesity-resistant rats. Specifically, junk food enhanced excitability in MSNs of obesity-resistant rats; this was mediated by a reduction in IA. In contrast, junk food reduced excitability in MSNs from obesity-prone rats; this was mediated by an increase in inward-rectifying potassium current. Thus individual differences in obesity susceptibility influence both basal excitability and how MSN excitability adapts to junk food consumption.NEW & NOTEWORTHY Medium spiny neurons (MSNs) in the nucleus accumbens of obesity-prone rats are hyperexcitable compared with MSNs from obesity-resistant rats. We found that 10 days of "junk food" exposure reduces MSN excitability in obesity-prone rats by increasing inward-rectifying potassium current and increases MSN excitability in obesity-resistant rats by decreasing fast transient potassium current. These data show that there are basal and junk food diet-induced differences in MSN excitability in obesity-prone and obesity-resistant individuals; this may contribute to previously observed differences in incentive motivation.
Collapse
Affiliation(s)
- Max F Oginsky
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
13
|
Dystonia: Are animal models relevant in therapeutics? Rev Neurol (Paris) 2018; 174:608-614. [DOI: 10.1016/j.neurol.2018.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023]
|
14
|
Dopamine Triggers the Maturation of Striatal Spiny Projection Neuron Excitability during a Critical Period. Neuron 2018; 99:540-554.e4. [PMID: 30057204 DOI: 10.1016/j.neuron.2018.06.044] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/20/2018] [Accepted: 06/29/2018] [Indexed: 01/11/2023]
Abstract
Neural circuits are formed and refined during childhood, including via critical changes in neuronal excitability. Here, we investigated the ontogeny of striatal intrinsic excitability. We found that dopamine neurotransmission increases from the first to the third postnatal week in mice and precedes the reduction in spiny projection neuron (SPN) intrinsic excitability during the fourth postnatal week. In mice developmentally deficient for striatal dopamine, direct pathway D1-SPNs failed to undergo maturation of excitability past P18 and maintained hyperexcitability into adulthood. We found that the absence of D1-SPN maturation was due to altered phosphatidylinositol 4,5-biphosphate dynamics and a consequent lack of normal ontogenetic increases in Kir2 currents. Dopamine replacement corrected these deficits in SPN excitability when provided from birth or during a specific period of juvenile development (P18-P28), but not during adulthood. These results identify a sensitive period of dopamine-dependent striatal maturation, with implications for the pathophysiology and treatment of neurodevelopmental disorders.
Collapse
|
15
|
Zhang Y, Wang H, Ke J, Wei Y, Ji H, Qian Z, Liu L, Tao J. Inhibition of A-Type K+ Channels by Urotensin-II Induces Sensory Neuronal Hyperexcitability Through the PKCα-ERK Pathway. Endocrinology 2018; 159:2253-2263. [PMID: 29648633 DOI: 10.1210/en.2018-00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Previous studies have implicated urotensin-II in the nociception of sensory neurons. However, to date the relevant mechanisms remain unknown. In the current study we determined the role of urotensin-II in the regulation of transient outward A-type potassium currents (IA) and neuronal excitability in trigeminal ganglion (TG) neurons. We found that application of urotensin-II to small-diameter TG neurons decreased IA in a dose-dependent manner, whereas the delayed rectifier potassium current was unaffected. The IA decrease induced by urotensin-II depended on the urotensin-II receptor (UT-R) and was associated with a hyperpolarizing shift in the steady-state inactivation curve. Exposure of TG cells to urotensin-II markedly increased protein kinase C (PKC) activity, and PKC inhibition eliminated the UT-R-mediated IA decrease. Antagonism of PKCα, either pharmacologically or genetically, but not of PKCβ prevented the decrease in IA induced by urotensin-II. Analysis of phospho-extracellular signal-regulated kinase (p-ERK) revealed that urotensin-II significantly increased the expression level of p-ERK, whereas p-p38 and p-c-Jun N-terminal kinase remained unchanged. Inhibition of mitogen-activated protein kinase/ERK signaling by the kinase antagonist U0126 and PD98059 completely abolished the UT-R-mediated IA decrease. Moreover, urotensin-II significantly increased the action potential firing rate of small TG neurons; pretreatment with 4-aminopyridine prevented this effect. In summary, our findings suggest that urotensin-II selectively attenuated IA through stimulation of the PKCα-dependent ERK1/2 signaling pathway. This UT-R-dependent mechanism might contribute to neuronal hyperexcitability in TG neurons.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
- Department of Geriatrics & Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Hua Wang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
- Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Jin Ke
- Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yuan Wei
- Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Heyi Ji
- Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Zhiyuan Qian
- Department of Geriatrics & Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Li Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jin Tao
- Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
16
|
Lindroos R, Dorst MC, Du K, Filipović M, Keller D, Ketzef M, Kozlov AK, Kumar A, Lindahl M, Nair AG, Pérez-Fernández J, Grillner S, Silberberg G, Hellgren Kotaleski J. Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Front Neural Circuits 2018; 12:3. [PMID: 29467627 PMCID: PMC5808142 DOI: 10.3389/fncir.2018.00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models.
Collapse
Affiliation(s)
- Robert Lindroos
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Matthijs C. Dorst
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Kai Du
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Marko Filipović
- Bernstein Center Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Keller
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Maya Ketzef
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Alexander K. Kozlov
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Arvind Kumar
- Bernstein Center Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
- Department Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael Lindahl
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Anu G. Nair
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Juan Pérez-Fernández
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Jeanette Hellgren Kotaleski
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
17
|
Szűcs A, Rátkai A, Schlett K, Huerta R. Frequency-dependent regulation of intrinsic excitability by voltage-activated membrane conductances, computational modeling and dynamic clamp. Eur J Neurosci 2017; 46:2429-2444. [PMID: 28921695 DOI: 10.1111/ejn.13708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/28/2022]
Abstract
As one of the most unique properties of nerve cells, their intrinsic excitability allows them to transform synaptic inputs into action potentials. This process reflects a complex interplay between the synaptic inputs and the voltage-dependent membrane currents of the postsynaptic neuron. While neurons in natural conditions mostly fire under the action of intense synaptic bombardment and receive fluctuating patterns of excitation and inhibition, conventional techniques to characterize intrinsic excitability mainly utilize static means of stimulation. Recently, we have shown that voltage-gated membrane currents regulate the firing responses under current step stimulation and under physiologically more realistic inputs in a differential manner. At the same time, a multitude of neuron types have been shown to exhibit some form of subthreshold resonance that potentially allows them to respond to synaptic inputs in a frequency-selective manner. In this study, we performed virtual experiments in computational models of neurons to examine how specific voltage-gated currents regulate their excitability under simulated frequency-modulated synaptic inputs. The model simulations and subsequent dynamic clamp experiments on mouse hippocampal pyramidal neurons revealed that the impact of voltage-gated currents in regulating the firing output is strongly frequency-dependent and mostly affecting the synaptic integration at theta frequencies. Notably, robust frequency-dependent regulation of intrinsic excitability was observed even when conventional analysis of membrane impedance suggested no such tendency. Consequently, plastic or homeostatic regulation of intrinsic membrane properties can tune the frequency selectivity of neuron populations in a way that is not readily expected from subthreshold impedance measurements.
Collapse
Affiliation(s)
- Attila Szűcs
- BioCircuits Institute, University of California San Diego, La Jolla, CA, USA.,MTA-ELTE-NAP B Neuronal Cell Biology Research Group, Eötvös Loránd University, 1/C Pázmány Péter Street, Budapest, H-1117, Hungary.,Balaton Limnological Institute of the Center for Ecological Research, Tihany, Hungary
| | - Anikó Rátkai
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, Eötvös Loránd University, 1/C Pázmány Péter Street, Budapest, H-1117, Hungary
| | - Katalin Schlett
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, Eötvös Loránd University, 1/C Pázmány Péter Street, Budapest, H-1117, Hungary
| | - Ramon Huerta
- BioCircuits Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Ren K, Guo B, Dai C, Yao H, Sun T, Liu X, Bai Z, Wang W, Wu S. Striatal Distribution and Cytoarchitecture of Dopamine Receptor Subtype 1 and 2: Evidence from Double-Labeling Transgenic Mice. Front Neural Circuits 2017; 11:57. [PMID: 28860974 PMCID: PMC5562971 DOI: 10.3389/fncir.2017.00057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/03/2017] [Indexed: 11/17/2022] Open
Abstract
As the main input nucleus of the basal ganglion, the striatum executes different functions, including motivation, reward and attention. The functions of the striatum highly rely on its subregions that receive projections from various cortical areas and the distribution of striatonigral neurons that express D1 dopamine (DA) receptors (or D1 medium-sized spiny neurons, D1 MSNs) and striatopallidal neurons that express D2 DA receptors (or D2 MSNs). Using bacterial artificial chromosome (BAC) transgenic mice, several studies have recently been performed on the spatial distribution of D1 and D2 MSNs. However, these studies mainly focused on enumeration of either D1-enhanced fluorescent protein (eGFP) or D2-eGFP in mice. In the present work, we used Drd1a-tdTamato and Drd2-eGFP double BAC transgenic mice to evaluate the spatial pattern of D1 MSNs (red fluorescence) and D2 MSNs (green fluorescence) along the rostro-caudal axis of the dorsal striatum. The dorsal striatum was divided into three subregions: rostral caudoputamen (CPr), intermediate CP (CPi), and caudal CP (CPc) across the rostral–caudal extent of the striatum. The results demonstrate that D1 and D2 MSNs were intermingled with each other in most of these regions. The cell density of D1 MSNs was slightly higher than D2 MSNs through CPr, CPi, and CPc, though it did not reach significance. However, in CPi, the ratio of D1/D2 in the ventromedial CPi group was significantly higher than those in dorsolateral, dorsomedial, and ventrolateral CPi. There was similar proportion of cells that co-expressed D1 and D2 receptors. Moreover, we demonstrated a pathway-specific activation pattern of D1 MSNs and D2 MSNs in a manic like mouse model induced by D-Amphetamine by utilizing this double transgenic mice and c-fos immunoreactivity. Our results may provide a morphological basis for the function or pathophysiology of striatonigral and striatopallidal neurons with diverse cortical inputs to the dorsal striatum.
Collapse
Affiliation(s)
- Keke Ren
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical UniversityXi'an, China.,College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan UniversityYanan, China
| | - Baolin Guo
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical UniversityXi'an, China
| | - Chunqiu Dai
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical UniversityXi'an, China.,The Fifth Camp, The First Cadet Brigade, Fourth Military Medical UniversityXi'an, China
| | - Han Yao
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical UniversityXi'an, China
| | - Tangna Sun
- Department of Neurology, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Xia Liu
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan UniversityYanan, China
| | - Zhantao Bai
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan UniversityYanan, China
| | - Wenting Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical UniversityXi'an, China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical UniversityXi'an, China
| |
Collapse
|
19
|
Contestabile A, Magara S, Cancedda L. The GABAergic Hypothesis for Cognitive Disabilities in Down Syndrome. Front Cell Neurosci 2017; 11:54. [PMID: 28326014 PMCID: PMC5339239 DOI: 10.3389/fncel.2017.00054] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/14/2017] [Indexed: 12/04/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by the presence of a third copy of chromosome 21. DS affects multiple organs, but it invariably results in altered brain development and diverse degrees of intellectual disability. A large body of evidence has shown that synaptic deficits and memory impairment are largely determined by altered GABAergic signaling in trisomic mouse models of DS. These alterations arise during brain development while extending into adulthood, and include genesis of GABAergic neurons, variation of the inhibitory drive and modifications in the control of neural-network excitability. Accordingly, different pharmacological interventions targeting GABAergic signaling have proven promising preclinical approaches to rescue cognitive impairment in DS mouse models. In this review, we will discuss recent data regarding the complex scenario of GABAergic dysfunctions in the trisomic brain of DS mice and patients, and we will evaluate the state of current clinical research targeting GABAergic signaling in individuals with DS.
Collapse
Affiliation(s)
- Andrea Contestabile
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Salvatore Magara
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT)Genova, Italy; Dulbecco Telethon InstituteGenova, Italy
| |
Collapse
|