1
|
Savchenko A, Tarchokov S, Dravolina O, Lubec J, Lubec G, Sukhanov I. Reversal of the motivational effects of tetrabenazine by NMDA receptor blockade. Neuropharmacology 2024:110277. [PMID: 39710336 DOI: 10.1016/j.neuropharm.2024.110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/30/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Apathy is a syndrome of decreased goal-directed activity, one of the main features of different brain disorders. Despite its high prevalence and life-threatening potential, there are currently very few options for its pharmacological treatment, which may be related to the lack of valid animal models. AIMS The vesicular monoamine transporter 2 inhibitor tetrabenazine (TBZ) was used in this study to model apathy-related behavior in pathologies linked to a depletion of dopamine. The atypical dopamine transporter inhibitor CE-123 and the NMDA receptor antagonist MK-801 were evaluated for their effects on goal-directed activity in intact and TBZ-treated rats to compare dopamine and non-dopamine approaches. METHODS To assess goal-directed behavior, the progressive ratio 3 (PR3) operant schedule of food reinforcement was conducted in adult male rats. To assess the motivational changes underlying the schedule, a model analysis based on the mathematical principles of reinforcement was applied. RESULTS Treatment with TBZ (0.3 mg/kg) induced a decrease in response rate as the number of required responses increased. This effect was not accompanied by a decrease in the incentive value of the reinforcer or locomotor disturbances, suggesting that decreased tolerance to high effort demands was the underlying mechanism of the decrease in goal-directed activity. Treatment with MK-801 increased operant activity in both TBZ-treated and pharmacologically naïve rats. CONCLUSIONS Our results support the previously proposed view that the TBZ-treated rats can be a model of apathy-related behavior in pathologies linked to a depletion of dopamine and suggest that NMDA receptors are a potential therapeutic target for the development of novel approaches to the treatment of apathy in both dopamine-depleted and dopamine-intact states.
Collapse
Affiliation(s)
- Artem Savchenko
- - Department of Psychopharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Salim Tarchokov
- - Department of Psychopharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Olga Dravolina
- - Department of Psychopharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Jana Lubec
- - Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Gert Lubec
- - Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Ilya Sukhanov
- - Department of Psychopharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| |
Collapse
|
2
|
Ecevitoglu A, Meka N, Rotolo RA, Edelstein GA, Srinath S, Beard KR, Carratala-Ros C, Presby RE, Cao J, Okorom A, Newman AH, Correa M, Salamone JD. Potential therapeutics for effort-related motivational dysfunction: assessing novel atypical dopamine transport inhibitors. Neuropsychopharmacology 2024; 49:1309-1317. [PMID: 38429498 PMCID: PMC11224370 DOI: 10.1038/s41386-024-01826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
People with depression and other neuropsychiatric disorders can experience motivational dysfunctions such as fatigue and anergia, which involve reduced exertion of effort in goal-directed activity. To model effort-related motivational dysfunction, effort-based choice tasks can be used, in which rats can select between obtaining a preferred reinforcer by high exertion of effort vs. a low effort/less preferred option. Preclinical data indicate that dopamine transport (DAT) inhibitors can reverse pharmacologically-induced low-effort biases and increase selection of high-effort options in effort-based choice tasks. Although classical DAT blockers like cocaine can produce undesirable effects such as liability for misuse and psychotic reactions, not all DAT inhibitors have the same neurochemical profile. The current study characterized the effort-related effects of novel DAT inhibitors that are modafinil analogs and have a range of binding profiles and neurochemical actions (JJC8-088, JJC8-089, RDS3-094, and JJC8-091) by using two different effort-related choice behavior tasks in male Sprague-Dawley rats. JJC8-088, JJC8-089, and RDS3-094 significantly reversed the low-effort bias induced by the VMAT-2 inhibitor tetrabenazine, increasing selection of high-effort fixed ratio 5 lever pressing vs. chow intake. In addition, JJC8-089 reversed the effects of tetrabenazine in female rats. JJC8-088 and JJC8-089 also increased selection of high-effort progressive ratio responding in a choice task. However, JJC8-091 failed to produce these outcomes, potentially due to its unique pharmacological profile (i.e., binding to an occluded conformation of DAT). Assessment of a broad range of DAT inhibitors with different neurochemical characteristics may lead to the identification of compounds that are useful for treating motivational dysfunction in humans.
Collapse
Affiliation(s)
- Alev Ecevitoglu
- Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, USA
| | - Nicolette Meka
- Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, USA
| | - Renee A Rotolo
- Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, USA
| | - Gayle A Edelstein
- Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, USA
| | - Sonya Srinath
- Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, USA
| | - Kathryn R Beard
- Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, USA
| | - Carla Carratala-Ros
- Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, USA
- Area de Psicobiología. Universitat Jaume I, Castelló, Spain
| | - Rose E Presby
- Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, USA
| | - Jianjing Cao
- Medicinal Chemistry Section, NIDA-Intramural Research Program, Baltimore, MD, 21224, USA
| | - Amarachi Okorom
- Medicinal Chemistry Section, NIDA-Intramural Research Program, Baltimore, MD, 21224, USA
| | - Amy H Newman
- Medicinal Chemistry Section, NIDA-Intramural Research Program, Baltimore, MD, 21224, USA
| | - Mercè Correa
- Area de Psicobiología. Universitat Jaume I, Castelló, Spain
| | - John D Salamone
- Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, USA.
| |
Collapse
|
3
|
Savchenko A, Belozertseva I, Leo D, Sukhanov I. Hyperdopaminergia in rats is associated with reverse effort-cost dependent performance. J Psychopharmacol 2023; 37:1238-1248. [PMID: 37962090 DOI: 10.1177/02698811231211225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
BACKGROUND Dopamine is implicated in the effort-based control of motivational processes; however, whether tonic dopamine regulates the effort-cost impact on motivation, is still debated. AIMS The rats lacking the dopamine transporter (DAT), which have dramatically increased levels of the synaptic dopamine, were used in the present study to elucidate the role of the synaptic dopamine in motivational processes. METHODS To study the reward-related processes, the progressive ratio 3 (PR3) operant schedule of food reinforcement (the ratio increases by 3 after each earned reinforcer) was performed in adult male rats (DAT knockouts (DAT-KO), heterozygotes (DAT-HT) and wild-types (DAT-WT)). RESULTS During the PR3 session, the response rate of DAT-KO rats was gradually increased following the augmented required number of responses. In contrast, the local response rate of DAT-WT and DAT-HT decreased. d-Amphetamine sulfate salt (3 mg/kg, i.p.) altered the local response rate dynamics in DAT-WT, which became similar to that of DAT-KO. Interestingly, the reduction in response rate at low effort demands was associated with decreased rate of entries into the magazine tray in DAT-WT rats treated with amphetamine (3 mg/kg) but not in DAT-KO rats. CONCLUSIONS Our results suggest that the elevated tonic synaptic dopamine can strongly affect motivation/effort-cost relation in rodents.
Collapse
Affiliation(s)
- Artem Savchenko
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
- Department of Psychopharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Irina Belozertseva
- Department of Psychopharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Damiana Leo
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Ilya Sukhanov
- Department of Psychopharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| |
Collapse
|
4
|
Boyle CC, Bower JE, Eisenberger NI, Irwin MR. Stress to inflammation and anhedonia: Mechanistic insights from preclinical and clinical models. Neurosci Biobehav Rev 2023; 152:105307. [PMID: 37419230 DOI: 10.1016/j.neubiorev.2023.105307] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Anhedonia, as evidenced by impaired pleasurable response to reward, reduced reward motivation, and/or deficits in reward-related learning, is a common feature of depression. Such deficits in reward processing are also an important clinical target as a risk factor for depression onset. Unfortunately, reward-related deficits remain difficult to treat. To address this gap and inform the development of effective prevention and treatment strategies, it is critical to understand the mechanisms that drive impairments in reward function. Stress-induced inflammation is a plausible mechanism of reward deficits. The purpose of this paper is to review evidence for two components of this psychobiological pathway: 1) the effects of stress on reward function; and 2) the effects of inflammation on reward function. Within these two areas, we draw upon preclinical and clinical models, distinguish between acute and chronic effects of stress and inflammation, and address specific domains of reward dysregulation. By addressing these contextual factors, the review reveals a nuanced literature which might be targeted for additional scientific inquiry to inform the development of precise interventions.
Collapse
Affiliation(s)
- Chloe C Boyle
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA.
| | - Julienne E Bower
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA; Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | - Michael R Irwin
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA
| |
Collapse
|
5
|
Nunes EJ, Kebede N, Haight JL, Foster DJ, Lindsley CW, Conn PJ, Addy NA. Ventral Tegmental Area M5 Muscarinic Receptors Mediate Effort-Choice Responding and Nucleus Accumbens Dopamine in a Sex-Specific Manner . J Pharmacol Exp Ther 2023; 385:146-156. [PMID: 36828630 PMCID: PMC10108441 DOI: 10.1124/jpet.122.001438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Optimization of effort-related choices is impaired in depressive disorders. Acetylcholine (ACh) and dopamine (DA) are linked to depressive disorders, and modulation of ACh tone in the ventral tegmental area (VTA) affects mood-related behavioral responses in rats. However, it is unknown if VTA ACh mediates effort-choice behaviors. Using a task of effort-choice, rats can choose to lever press on a fixed-ratio 5 (FR5) schedule for a more-preferred food or consume freely available, less-preferred food. VTA administration of physostigmine (1 μg and 2 μg/side), a cholinesterase inhibitor, reduced FR5 responding for the more-preferred food while leaving consumption of the less-preferred food intact. VTA infusion of the M5 muscarinic receptor negative allosteric modulator VU6000181 (3 μM, 10 μM, 30 μM/side) did not affect lever pressing or chow consumption. However, VU6000181 (30 μM/side) coadministration with physostigmine (2 μg/side) attenuated physostigmine-induced decrease in lever pressing in female and male rats and significantly elevated lever pressing above vehicle baseline levels in male rats. In in vivo voltammetry experiments, VTA infusion of combined physostigmine and VU6000181 did not significantly alter evoked phasic DA release in the nucleus accumbens core (NAc) in female rats. In male rats, combined VTA infusion of physostigmine and VU6000181 increased phasic evoked DA release in the NAc compared with vehicle, physostigmine, or VU6000181 infusion alone. These data indicate a critical role and potential sex differences of VTA M5 receptors in mediating VTA cholinergic effects on effort choice behavior and regulation of DA release. SIGNIFICANCE STATEMENT: Effort-choice impairments are observed in depressive disorders, which are often treatment resistant to currently available thymoleptics. The role of ventral tegmental area (VTA) acetylcholine muscarinic M5 receptors, in a preclinical model of effort-choice behavior, is examined. Using the selective negative allosteric modulator of the M5 receptor VU6000181, we show the role of VTA M5 receptors on effort-choice and regulation of dopamine release in the nucleus accumbens core. This study supports M5 receptors as therapeutic targets for depression.
Collapse
Affiliation(s)
- Eric J Nunes
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Nardos Kebede
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Joshua L Haight
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Daniel J Foster
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Craig W Lindsley
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - P Jeffrey Conn
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Nii A Addy
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| |
Collapse
|
6
|
Hervig MES, Toschi C, Petersen A, Vangkilde S, Gether U, Robbins TW. Theory of visual attention (TVA) applied to rats performing the 5-choice serial reaction time task: differential effects of dopaminergic and noradrenergic manipulations. Psychopharmacology (Berl) 2023; 240:41-58. [PMID: 36434307 PMCID: PMC9816296 DOI: 10.1007/s00213-022-06269-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
Abstract
RATIONALE Attention is compromised in many psychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). While dopamine and noradrenaline systems have been implicated in ADHD, their exact role in attentional processing is yet unknown. OBJECTIVES We applied the theory of visual attention (TVA) model, adapted from human research, to the rat 5-choice serial reaction time task (5CSRTT) to investigate catecholaminergic modulation of visual attentional processing in healthy subjects of high- and low-attention phenotypes. METHODS Rats trained on the standard 5CSRTT and tested with variable stimulus durations were treated systemically with noradrenergic and/or dopaminergic agents (atomoxetine, methylphenidate, amphetamine, phenylephrine and atipamezole). TVA modelling was applied to estimate visual processing speed for correct and incorrect visual perceptual categorisations, independent of motor reaction times, as measures of attentional capacity. RESULTS Atomoxetine and phenylephrine decreased response frequencies, including premature responses, increased omissions and slowed responding. In contrast, methylphenidate, amphetamine and atipamezole sped up responding and increased premature responses. Visual processing speed was also affected differentially. Atomoxetine and phenylephrine slowed, whereas methylphenidate and atipamezole sped up, visual processing, both for correct and incorrect categorisations. Amphetamine selectively improved visual processing for correct, though not incorrect, responses in high-attention rats only, possibly reflecting improved attention. CONCLUSIONS These data indicate that the application of TVA to the 5CSRTT provides an enhanced sensitivity to capturing attentional effects. Unexpectedly, we found overall slowing effects, including impaired visual processing, following drugs either increasing extracellular noradrenaline (atomoxetine) or activating the α1-adrenoceptor (phenylephrine), while also ameliorating premature responses (impulsivity). In contrast, amphetamine had potential pro-attentional effects by enhancing visual processing, probably due to central dopamine upregulation.
Collapse
Affiliation(s)
- Mona El-Sayed Hervig
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK. .,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| | - Chiara Toschi
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Anders Petersen
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Signe Vangkilde
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Trevor W. Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Critical review of RDoC approaches to the study of motivation with animal models: effort valuation/willingness to work. Emerg Top Life Sci 2022; 6:515-528. [PMID: 36218385 DOI: 10.1042/etls20220008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023]
Abstract
The NIMH research domain criteria (RDoC) approach was instigated to refocus mental health research on the neural circuits that mediate psychological functions, with the idea that this would foster an understanding of the neural basis of specific psychiatric dysfunctions (i.e. 'symptoms and circuits') and ultimately facilitate treatment. As a general idea, this attempt to go beyond traditional diagnostic categories and focus on neural circuit dysfunctions related to specific symptoms spanning multiple disorders has many advantages. For example, motivational dysfunctions are present in multiple disorders, including depression, schizophrenia, Parkinson's disease, and other conditions. A critical aspect of motivation is effort valuation/willingness to work, and several clinical studies have identified alterations in effort-based decision making in various patient groups. In parallel, formal animal models focusing on the exertion of effort and effort-based decision making have been developed. This paper reviews the literature on models of effort-based motivational function in the context of a discussion of the RDoC approach, with an emphasis on the dissociable nature of distinct aspects of motivation. For example, conditions associated with depression and schizophrenia blunt the selection of high-effort activities as measured by several tasks in animal models (e.g. lever pressing, barrier climbing, wheel running). Nevertheless, these manipulations also leave fundamental aspects of hedonic reactivity, food motivation, and reinforcement intact. This pattern of effects demonstrates that the general emphasis of the RDoC on the specificity of the neural circuits mediating behavioral pathologies, and the dissociative nature of these dysfunctions, is a valid concept. Nevertheless, the specific placement of effort-related processes as simply a 'sub-construct' of 'reward processing' is empirically and conceptually problematic. Thus, while the RDoC is an excellent general framework for new ways to approach research and therapeutics, it still needs further refinement.
Collapse
|
8
|
Treadway MT, Salamone JD. Vigor, Effort-Related Aspects of Motivation and Anhedonia. Curr Top Behav Neurosci 2022; 58:325-353. [PMID: 35505057 DOI: 10.1007/7854_2022_355] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this chapter we provide an overview of the pharmacological and circuit mechanisms that determine the willingness to expend effort in pursuit of rewards. A particular focus will be on the role of the mesolimbic dopamine system, as well the contributing roles of limbic and cortical brains areas involved in the evaluation, selection, and invigoration of goal-directed actions. We begin with a review of preclinical studies, which have provided key insights into the brain systems that are necessary and sufficient for effort-based decision-making and have characterized novel compounds that enhance selection of high-effort activities. Next, we summarize translational studies identifying and expanding this circuitry in humans. Finally, we discuss the relevance of this work for understanding common motivational impairments as part of the broader anhedonia symptom domain associated with mental illness, and the identification of new treatment targets within this circuitry to improve motivation and effort-expenditure.
Collapse
Affiliation(s)
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
9
|
Wang S, Guan YG, Zhu YH, Wang MZ. Role of high mobility group box protein 1 in depression: A mechanistic and therapeutic perspective. World J Psychiatry 2022; 12:779-786. [PMID: 35978968 PMCID: PMC9258272 DOI: 10.5498/wjp.v12.i6.779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/12/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
As a common and serious psychiatric disorder, depression significantly affects psychosocial functioning and quality of life. However, the mechanism of depression is still enigmatic and perplexing, which limits its precise and effective therapeutic methods. Recent studies demonstrated that neuroinflammation activation plays an important role in the pathophysiology of depression. In this respect, high mobility group box 1 (HMGB1) may be a possible signaling inducer of neuroinflammation and can be a potential mechanistic and therapeutic target for depression. Herein, we review recent studies on the mechanistic and therapeutic targets of HMGB1 in depression and propose potential perspectives on this topic.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yu-Guang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Beijing Key Laboratory of Epilepsy, Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100093, China
| | - Yan-Hua Zhu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Min-Zhong Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| |
Collapse
|
10
|
Ren N, Carratala-Ros C, Ecevitoglu A, Rotolo RA, Edelstein GA, Presby RE, Stevenson IH, Chrobak JJ, Salamone JD. Effects of the dopamine depleting agent tetrabenazine on detailed temporal parameters of effort-related choice responding. J Exp Anal Behav 2022; 117:331-345. [PMID: 35344599 PMCID: PMC9531143 DOI: 10.1002/jeab.754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
The dopamine-depleting agent tetrabenazine alters effort-based choice, suppressing food-reinforced behaviors with high response requirements, while increasing selection of low-cost options. In the present experiments, rats were tested on a concurrent fixed ratio 5/chow feeding choice task, in which high-carbohydrate Bio-serv pellets reinforced lever pressing and lab chow was concurrently available. Detailed timing of lever pressing was monitored with an event recording system, and the temporal characteristics of operant behavior seen after 1.0 mg/kg tetrabenazine or vehicle injections were analyzed. Tetrabenazine shifted choice, decreasing lever pressing but increasing chow intake. There was a small effect on the interresponse-time distribution within ratios, but marked increases in the total duration of pauses in responding. The postreinforcement-pause (PRP) distribution was bimodal, but tetrabenazine did not increase the duration of PRPs. Tetrabenazine increased time feeding and duration and number of feeding bouts, but did not affect feeding rate or total time spent lever pressing for pellets and consuming chow. Thus, TBZ appears to predominantly affect the relative allocation of lever pressing versus chow, with little alteration in consummatory motor acts involved in chow intake. Tetrabenazine is used to model motivational symptoms in psychopathology, and these effects in rats could have implications for psychiatric research.
Collapse
Affiliation(s)
- Naxin Ren
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT
| | - Carla Carratala-Ros
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT
- Area de Psicobiologia, Universitat Jaume I, Castelló, Spain
| | - Alev Ecevitoglu
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT
| | - Renee A. Rotolo
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT
| | | | - Rose E. Presby
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT
| | - Ian H. Stevenson
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT
| | - James J. Chrobak
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT
| | - John D. Salamone
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT
| |
Collapse
|
11
|
Nunes EJ, Kebede N, Bagdas D, Addy NA. Cholinergic and dopaminergic-mediated motivated behavior in healthy states and in substance use and mood disorders. J Exp Anal Behav 2022; 117:404-419. [PMID: 35286712 PMCID: PMC9743782 DOI: 10.1002/jeab.747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
Acetylcholine is an important neuromodulator of the mesolimbic dopamine (DA) system, which itself is a mediator of motivated behavior. Motivated behavior can be described by two primary components, termed directional and activational motivation, both of which can be examined and dissociated using effort-choice tasks. The directional component refers to motivated behavior directed towards reinforcing stimuli and away from aversive stimuli. Behaviors characterized by increased vigor, persistence, and work output are considered to reflect activational components of motivation. Disruption of DA signaling has been shown to decrease activational components of motivation, while leaving directional features intact. Facilitation of DA release promotes the activational aspects of motivated behavior. In this review, we discuss cholinergic and DA regulation of motivated behaviors. We place emphasis on effort-choice processes and the ability of effort-choice tasks to examine and dissociate changes of motivated behavior in the context of substance use and mood disorders. Furthermore, we consider how altered cholinergic transmission impacts motivated behavior across disease states, and the possible role of cholinergic dysregulation in the etiology of these illnesses. Finally, we suggest that treatments targeting cholinergic activity may be useful in ameliorating motivational disruptions associated with substance use and comorbid substance use and mood disorders.
Collapse
Affiliation(s)
- Eric J. Nunes
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Nardos Kebede
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Deniz Bagdas
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine,Department of Cellular and Molecular Physiology, Yale School of Medicine,Interdepartmental Neuroscience Program, Yale University,Wu Tsai Institute, Yale University
| |
Collapse
|
12
|
Babaev O, Cruces Solis H, Arban R. Dopamine modulating agents alter individual subdomains of motivation-related behavior assessed by touchscreen procedures. Neuropharmacology 2022; 211:109056. [DOI: 10.1016/j.neuropharm.2022.109056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
|
13
|
Salamone J, Ecevitoglu A, Carratala-Ros C, Presby R, Edelstein G, Fleeher R, Rotolo R, Meka N, Srinath S, Masthay JC, Correa M. Complexities and Paradoxes in Understanding the Role of Dopamine in Incentive Motivation and Instrumental Action: Exertion of Effort vs. Anhedonia. Brain Res Bull 2022; 182:57-66. [DOI: 10.1016/j.brainresbull.2022.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 02/08/2023]
|
14
|
McLauchlan DJ, Lancaster T, Craufurd D, Linden DEJ, Rosser AE. Different depression: motivational anhedonia governs antidepressant efficacy in Huntington's disease. Brain Commun 2022; 4:fcac278. [PMID: 36440100 PMCID: PMC9683390 DOI: 10.1093/braincomms/fcac278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/13/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Depression is more common in neurodegenerative diseases such as Huntington's disease than the general population. Antidepressant efficacy is well-established for depression within the general population: a recent meta-analysis showed serotonin norepinephrine reuptake inhibitors, tricyclic antidepressants and mirtazapine outperformed other antidepressants. Despite the severe morbidity, antidepressant choice in Huntington's disease is based on Class IV evidence. We used complementary approaches to determine treatment choice for depression in Huntington's disease: propensity score analyses of antidepressant treatment outcome using the ENROLL-HD data set, and a dissection of the cognitive mechanisms underlying depression in Huntington's disease using a cognitive battery based on the Research Domain Criteria for Depression. Study 1 included ENROLL-HD 5486 gene-positive adult patients started on an antidepressant medication for depression. Our outcome measures were depression (Hospital Anxiety and Depression Scale or Problem Behaviours Assessment 'Depressed Mood' item) at first follow-up (primary outcome) and all follow-ups (secondary outcome). The intervention was antidepressant class. We used Svyglm&Twang in R to perform propensity scoring, using known variables (disease progression, medical comorbidity, psychiatric morbidity, sedatives, number of antidepressants, demographics and antidepressant contraindications) to determine the probability of receiving different antidepressants (propensity score) and then included the propensity score in a model of treatment efficacy. Study 2 recruited 51 gene-positive adult patients and 26 controls from the South Wales Huntington's Disease Management Service. Participants completed a motor assessment, in addition to measures of depression and apathy, followed by tasks measuring consummatory anhedonia, motivational anhedonia, learning from reward and punishment and reaction to negative outcome. We used generalised linear models to determine the association between task performance and depression scores. Study 1 showed selective serotonin reuptake inhibitors outperformed serotonin norepinephrine reuptake inhibitors on the primary outcome (P = 0.048), whilst both selective serotonin reuptake inhibitors (P = 0.00069) and bupropion (P = 0.0045) were superior to serotonin norepinephrine reuptake inhibitors on the secondary outcome. Study 2 demonstrated an association between depression score and effort for reward that was not explained by apathy. No other mechanisms were associated with depression score. We found that selective serotonin reuptake inhibitors and bupropion outperform serotonin norepinephrine reuptake inhibitors at alleviating depression in Huntington's disease. Moreover, motivational anhedonia appears the most significant mechanism underlying depression in Huntington's disease. Bupropion is improves motivational anhedonia and has a synergistic effect with selective serotonin reuptake inhibitors. This work provides the first large-scale, objective evidence to determine treatment choice for depression in Huntington's disease, and provides a model for determining antidepressant efficacy in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Duncan James McLauchlan
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK.,Department of Neurology, Morriston Hospital, Swansea Bay University Health Board, Swansea SA6 6NL, UK
| | - Thomas Lancaster
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK.,Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff CF24 4HQ, UK.,Department of Psychology, University of Bath, Bath BA2 7AY, UK
| | - David Craufurd
- Manchester Center for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Center, Manchester M13 9PL, UK.,St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Center, Manchester M13 9WL, UK
| | - David E J Linden
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK.,Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff CF24 4HQ, UK.,Department of Psychology, University of Bath, Bath BA2 7AY, UK.,School for Mental Health and Neuroscience, Fac. Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Anne E Rosser
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK.,Department of Neurology, Morriston Hospital, Swansea Bay University Health Board, Swansea SA6 6NL, UK.,School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
15
|
Increased elasticity of sucrose demand during hyperdopaminergic states in rats. Psychopharmacology (Berl) 2022; 239:773-794. [PMID: 35102422 PMCID: PMC8891210 DOI: 10.1007/s00213-022-06068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/17/2022] [Indexed: 10/29/2022]
Abstract
RATIONALE Deficits in cost-benefit decision-making are a core feature of several psychiatric disorders, including substance addiction, eating disorders and bipolar disorder. Mesocorticolimbic dopamine signalling has been implicated in various processes related to cognition and reward, but its precise role in reward valuation and cost-benefit trade-off decisions remains incompletely understood. OBJECTIVES We assessed the role of mesocorticolimbic dopamine signalling in the relationship between price and consumption of sucrose, to better understand its role in cost-benefit decisions. METHODS Dopamine neurons in the ventral tegmental area (VTA) were chemogenetically activated in rats, and a behavioural economics approach was used to quantify the relationship between price and consumption of sucrose. Motivation for sucrose was also assessed under a progressive ratio (PR) schedule of reinforcement. To further gauge the role of dopamine in cost-benefit trade-offs for sucrose, the effects of treatment with D-amphetamine and the dopamine receptor antagonist alpha-flupentixol were assessed. RESULTS Chemogenetic activation of VTA dopamine neurons increased demand elasticity, while responding for sucrose under a PR schedule of reinforcement was augmented upon stimulation of VTA dopamine neurons. Treatment with amphetamine partially replicated the effects of chemogenetic dopamine neuron activation, whereas treatment with alpha-flupentixol reduced free consumption of sucrose and had mixed effects on demand elasticity. CONCLUSIONS Stimulation of mesocorticolimbic dopaminergic neurotransmission altered cost-benefit trade-offs in a complex manner. It reduced the essential value of palatable food, increased incentive motivation and left free consumption unaltered. Together, these findings imply that mesocorticolimbic dopamine signalling differentially influences distinct components of cost expenditure processes aimed at obtaining rewards.
Collapse
|
16
|
Abstract
Addictive drugs are habit-forming. Addiction is a learned behavior; repeated exposure to addictive drugs can stamp in learning. Dopamine-depleted or dopamine-deleted animals have only unlearned reflexes; they lack learned seeking and learned avoidance. Burst-firing of dopamine neurons enables learning-long-term potentiation (LTP)-of search and avoidance responses. It sets the stage for learning that occurs between glutamatergic sensory inputs and GABAergic motor-related outputs of the striatum; this learning establishes the ability to search and avoid. Independent of burst-firing, the rate of single-spiking-or "pacemaker firing"-of dopaminergic neurons mediates motivational arousal. Motivational arousal increases during need states and its level determines the responsiveness of the animal to established predictive stimuli. Addictive drugs, while usually not serving as an external stimulus, have varying abilities to activate the dopamine system; the comparative abilities of different addictive drugs to facilitate LTP is something that might be studied in the future.
Collapse
Affiliation(s)
- Roy A Wise
- Intramural Research Program, National Institute on Drug Abuse, 250 Mason Lord Drive, Baltimore, MD, USA.
- Behavior Genetics Laboratory, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA.
| | - Chloe J Jordan
- Division of Alcohol, Drugs and Addiction, Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| |
Collapse
|
17
|
Toschi C, Hervig MES, Moazen P, Parker MG, Dalley JW, Gether U, Robbins TW. Adaptive aspects of impulsivity and interactions with effects of catecholaminergic agents in the 5-choice serial reaction time task: implications for ADHD. Psychopharmacology (Berl) 2021; 238:2601-2615. [PMID: 34104987 PMCID: PMC8373759 DOI: 10.1007/s00213-021-05883-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/21/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Work in humans has shown that impulsivity can be advantageous in certain settings. However, evidence for so-called functional impulsivity is lacking in experimental animals. AIMS This study investigated the contexts in which high impulsive (HI) rats show an advantage in performance compared with mid- (MI) and low impulsive (LI) rats. We also assessed the effects of dopaminergic and noradrenergic agents to investigate underlying neurotransmitter mechanisms. METHODS We tested rats on a variable inter-trial interval (ITI) version of the 5-choice serial reaction time task (5CSRTT). Rats received systemic injections of methylphenidate (MPH, 1 mg/kg and 3 mg/kg), atomoxetine (ATO, 0.3 mg/kg and 1 mg/kg), amphetamine (AMPH, 0.2 mg/kg), the alpha-2a adrenoceptor antagonist atipamezole (ATI, 0.3 mg/kg) and the alpha-1 adrenoceptor agonist phenylephrine (PHEN, 1 mg/kg) prior to behavioural testing. RESULTS Unlike LI rats, HI rats exhibited superior performance, earning more reinforcers, on short ITI trials, when the task required rapid responding. MPH, AMPH and ATI improved performance on short ITI trials and increased impulsivity in long ITI trials, recapitulating the behavioural profile of HI. In contrast, ATO and PHEN impaired performance on short ITI trials and decreased impulsivity, thus mimicking the behavioural profile of LI rats. The effects of ATO were greater on MI rats and LI rats. CONCLUSIONS These findings indicate that impulsivity can be advantageous when rapid focusing and actions are required, an effect that may depend on increased dopamine neurotransmission. Conversely, activation of the noradrenergic system, with ATO and PHEN, led to a general inhibition of responding.
Collapse
Affiliation(s)
- Chiara Toschi
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St., CB2 3EB, Cambridge, UK.
| | - Mona El-Sayed Hervig
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St., CB2 3EB, Cambridge, UK
- Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Parisa Moazen
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St., CB2 3EB, Cambridge, UK
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maximilian G Parker
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St., CB2 3EB, Cambridge, UK
| | - Jeffrey W Dalley
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St., CB2 3EB, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Ulrik Gether
- Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Trevor W Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St., CB2 3EB, Cambridge, UK
| |
Collapse
|
18
|
Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110289. [PMID: 33631251 DOI: 10.1016/j.pnpbp.2021.110289] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Anhedonia is one of the core symptoms of major depressive disorder (MDD), which is often inadequately treated by traditional antidepressants. The modern framework of anhedonia extends the definition from impaired consummatory pleasure or interest in rewards to a broad spectrum of deficits that impact functions such as reward anticipation, approach motivation, effort expenditure, reward valuation, expectation, and reward-cue association learning. Substantial preclinical and clinical research has explored the neural basis of reward deficits in the context of depression, and has implicated mesocorticolimbic reward circuitry comprising the nucleus accumbens, ventral pallidum, ventral tegmental area, amygdala, hippocampus, anterior cingulate, insula, orbitofrontal cortex, and other prefrontal cortex regions. Dopamine modulates several reward facets including anticipation, motivation, effort, and learning. As well, serotonin, norepinephrine, opioids, glutamate, Gamma aminobutyric acid (GABA), and acetylcholine are also involved in anhedonia, and medications targeting these systems may also potentially normalize reward processing in depression. Unfortunately, whereas reward anticipation and reward outcome are extensively explored by both preclinical and clinical studies, translational gaps remain in reward motivation, effort, valuation, and learning, where clinical neuroimaging studies are in the early stages. This review aims to synthesize the neurobiological mechanisms underlying anhedonia in MDD uncovered by preclinical and clinical research. The translational difficulties in studying the neural basis of reward are also discussed.
Collapse
Affiliation(s)
- Shijing Wang
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Ontario, Canada
| | - Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Carratalá-Ros C, López-Cruz L, Martínez-Verdú A, Olivares-García R, Salamone JD, Correa M. Impact of Fluoxetine on Behavioral Invigoration of Appetitive and Aversively Motivated Responses: Interaction With Dopamine Depletion. Front Behav Neurosci 2021; 15:700182. [PMID: 34305547 PMCID: PMC8298758 DOI: 10.3389/fnbeh.2021.700182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/21/2021] [Indexed: 12/04/2022] Open
Abstract
Impaired behavioral activation and effort-related motivational dysfunctions like fatigue and anergia are debilitating treatment-resistant symptoms of depression. Depressed people show a bias towards the selection of low effort activities. To determine if the broadly used antidepressant fluoxetine can improve behavioral activation and reverse dopamine (DA) depletion-induced anergia, male CD1 mice were evaluated for vigorous escape behaviors in an aversive context (forced swim test, FST), and also with an exercise preference choice task [running wheel (RW)-T-maze choice task]. In the FST, fluoxetine increased active behaviors (swimming, climbing) while reducing passive ones (immobility). However, fluoxetine was not effective at reducing anergia induced by the DA-depleting agent tetrabenazine, further decreasing vigorous climbing and increasing immobility. In the T-maze, fluoxetine alone produced the same pattern of effects as tetrabenazine. Moreover, fluoxetine did not reverse tetrabenazine-induced suppression of RW time but it reduced sucrose intake duration. This pattern of effects produced by fluoxetine in DA-depleted mice was dissimilar from devaluing food reinforcement by pre-feeding or making the food bitter since in both cases sucrose intake time was reduced but animals compensated by increasing time in the RW. Thus, fluoxetine improved escape in an aversive context but decreased relative preference for active reinforcement. Moreover, fluoxetine did not reverse the anergic effects of DA depletion. These results have implications for the use of fluoxetine for treating motivational symptoms such as anergia in depressed patients.
Collapse
Affiliation(s)
| | | | | | | | - John D Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castelló, Spain
| |
Collapse
|
20
|
Differentiating effort-related aspects of motivation from reinforcement learning: commentary on Soder et al. "Dose-response effects of d-amphetamine on effort-based decision-making and reinforcement learning". Neuropsychopharmacology 2021; 46:1066-1067. [PMID: 33623107 PMCID: PMC8115634 DOI: 10.1038/s41386-020-00930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 11/08/2022]
|
21
|
Dose-response effects of d-amphetamine on effort-based decision-making and reinforcement learning. Neuropsychopharmacology 2021; 46:1078-1085. [PMID: 32722661 PMCID: PMC8115674 DOI: 10.1038/s41386-020-0779-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Effort-related decision-making and reward learning are both dopamine-dependent, but preclinical research suggests they depend on different dopamine signaling dynamics. Therefore, the same dose of a dopaminergic medication could have differential effects on effort for reward vs. reward learning. However, no study has tested how effort and reward learning respond to the same dopaminergic medication within subjects. The current study aimed to test the effect of therapeutic doses of d-amphetamine on effort for reward and reward learning in the same healthy volunteers. Participants (n = 30) completed the Effort Expenditure for Reward Task (EEfRT) measure of effort-related decision-making, and the Probabilistic Reward Task (PRT) measure of reward learning, under placebo and two doses of d-amphetamine (10 mg, and 20 mg). Secondarily, we examined whether the individual characteristics of baseline working memory and willingness to exert effort for reward moderated the effects of d-amphetamine. d-Amphetamine increased willingness to exert effort, particularly at low to intermediate expected values of reward. Computational modeling analyses suggested this was due to decreased effort discounting rather than probability discounting or decision consistency. Both baseline effort and working memory emerged as moderators of this effect, such that d-amphetamine increased effort more in individuals with lower working memory and lower baseline effort, also primarily at low to intermediate expected values of reward. In contrast, d-amphetamine had no significant effect on reward learning. These results have implications for treatment of neuropsychiatric disorders, which may be characterized by multiple underlying reward dysfunctions.
Collapse
|
22
|
Presby RE, Rotolo RA, Hurley EM, Ferrigno SM, Murphy CE, McMullen HP, Desai PA, Zorda EM, Kuperwasser FB, Carratala-Ros C, Correa M, Salamone JD. Sex differences in lever pressing and running wheel tasks of effort-based choice behavior in rats: Suppression of high effort activity by the serotonin transport inhibitor fluoxetine. Pharmacol Biochem Behav 2021; 202:173115. [PMID: 33493546 DOI: 10.1016/j.pbb.2021.173115] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 12/25/2022]
Abstract
Selective serotonin transport (SERT) inhibitors such as fluoxetine are the most commonly prescribed treatments for depression. Although efficacious for many symptoms of depression, motivational impairments such as psychomotor retardation, anergia, fatigue and amotivation are relatively resistant to treatment with SERT inhibitors, and these drugs have been reported to exacerbate motivational deficits in some people. In order to study motivational dysfunctions in animal models, procedures have been developed to measure effort-related decision making, which offer animals a choice between high effort actions leading to highly valued reinforcers, or low effort/low reward options. In the present studies, male and female rats were tested on two different tests of effort-based choice: a fixed ratio 5 (FR5)/chow feeding choice procedure and a running wheel (RW)/chow feeding choice task. The baseline pattern of choice differed across tasks for males and females, with males pressing the lever more than females on the operant task, and females running more than males on the RW task. Administration of the SERT inhibitor and antidepressant fluoxetine suppressed the higher effort activity on each task (lever pressing and wheel running) in both males and females. The serotonin receptor mediating the suppressive effects of fluoxetine is uncertain, because serotonin antagonists with different patterns of receptor selectivity failed to reverse the effects of fluoxetine. Nevertheless, these studies uncovered important sex differences, and demonstrated that the suppressive effects of fluoxetine on high effort activities are not limited to tasks involving food reinforced behavior or appetite suppressive effects. It is possible that this line of research will contribute to an understanding of the neurochemical factors regulating selection of voluntary physical activity vs. sedentary behaviors, which could be relevant for understanding the role of physical activity in psychiatric disorders.
Collapse
Affiliation(s)
- Rose E Presby
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Renee A Rotolo
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Erin M Hurley
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Sarah M Ferrigno
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Cayla E Murphy
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Haley P McMullen
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Pranally A Desai
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Emma M Zorda
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Felicita B Kuperwasser
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Carla Carratala-Ros
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA; Area de Psicobiologia, Universitat Jaume I, Castelló, Spain
| | - Merce Correa
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA; Area de Psicobiologia, Universitat Jaume I, Castelló, Spain
| | - John D Salamone
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA.
| |
Collapse
|
23
|
Carratalá-Ros C, Olivares-García R, Martínez-Verdú A, Arias-Sandoval E, Salamone JD, Correa M. Energizing effects of bupropion on effortful behaviors in mice under positive and negative test conditions: modulation of DARPP-32 phosphorylation patterns. Psychopharmacology (Berl) 2021; 238:3357-3373. [PMID: 34498115 PMCID: PMC8629809 DOI: 10.1007/s00213-021-05950-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Motivational symptoms such as anergia, fatigue, and reduced exertion of effort are seen in depressed people. To model this, nucleus accumbens (Nacb) dopamine (DA) depletions are used to induce a low-effort bias in rodents tested on effort-based decision-making. We evaluated the effect of the catecholamine uptake blocker bupropion on its own, and after administration of tetrabenazine (TBZ), which blocks vesicular storage, depletes DA, and induces depressive symptoms in humans. Male CD1 mice were tested on a 3-choice-T-maze task that assessed preference between a reinforcer involving voluntary physical activity (running wheel, RW) vs. sedentary activities (sweet food pellet intake or a neutral non-social odor). Mice also were tested on the forced swim test (FST), two anxiety-related measures (dark-light box (DL), and elevated plus maze (EPM)). Expression of phosphorylated DARPP-32 (Thr34 and Thr75) was evaluated by immunohistochemistry as a marker of DA-related signal transduction. Bupropion increased selection of RW activity on the T-maze. TBZ reduced time running, but increased time-consuming sucrose, indicating an induction of a low-effort bias, but not an effect on primary sucrose motivation. In the FST, bupropion reduced immobility, increasing swimming and climbing, and TBZ produced the opposite effects. Bupropion reversed the effects of TBZ on the T-maze and the FST, and also on pDARPP32-Thr34 expression in Nacb core. None of these manipulations affected anxiety-related parameters. Thus, bupropion improved active behaviors, which were negatively motivated in the FST, and active behaviors that were positively motivated in the T-maze task, which has implications for using catecholamine uptake inhibitors for treating anergia and fatigue-like symptoms.
Collapse
Affiliation(s)
- Carla Carratalá-Ros
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | | | - Andrea Martínez-Verdú
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | - Edgar Arias-Sandoval
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | - John D. Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT 06269-1020 USA
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071, Castelló, Spain.
| |
Collapse
|
24
|
Liu CM, Hsu TM, Suarez AN, Subramanian KS, Fatemi RA, Cortella AM, Noble EE, Roitman MF, Kanoski SE. Central oxytocin signaling inhibits food reward-motivated behaviors and VTA dopamine responses to food-predictive cues in male rats. Horm Behav 2020; 126:104855. [PMID: 32991888 PMCID: PMC7757852 DOI: 10.1016/j.yhbeh.2020.104855] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/02/2020] [Accepted: 08/23/2020] [Indexed: 01/08/2023]
Abstract
Oxytocin potently reduces food intake and is a potential target system for obesity treatment. A better understanding of the behavioral and neurobiological mechanisms mediating oxytocin's anorexigenic effects may guide more effective obesity pharmacotherapy development. The present study examined the effects of central (lateral intracerebroventricular [ICV]) administration of oxytocin in rats on motivated responding for palatable food. Various conditioning procedures were employed to measure distinct appetitive behavioral domains, including food seeking in the absence of consumption (conditioned place preference expression), impulsive responding for food (differential reinforcement of low rates of responding), effort-based appetitive decision making (high-effort palatable vs. low-effort bland food), and sucrose reward value encoding following a motivational shift (incentive learning). Results reveal that ICV oxytocin potently reduces food-seeking behavior, impulsivity, and effort-based palatable food choice, yet does not influence encoding of sucrose reward value in the incentive learning task. To investigate a potential neurobiological mechanism mediating these behavioral outcomes, we utilized in vivo fiber photometry in ventral tegmental area (VTA) dopamine neurons to examine oxytocin's effect on phasic dopamine neuron responses to sucrose-predictive Pavlovian cues. Results reveal that ICV oxytocin significantly reduced food cue-evoked dopamine neuron activity. Collectively, these data reveal that central oxytocin signaling inhibits various obesity-relevant conditioned appetitive behaviors, potentially via reductions in food cue-driven phasic dopamine neural responses in the VTA.
Collapse
Affiliation(s)
- Clarissa M Liu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States; Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA 90089, United States
| | - Ted M Hsu
- Department of Psychology, University of Illinois at Chicago, 1007 W. Harrison St., Chicago, IL 60607-7137, United States
| | - Andrea N Suarez
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA 90089, United States
| | - Keshav S Subramanian
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States; Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA 90089, United States
| | - Ryan A Fatemi
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA 90089, United States
| | - Alyssa M Cortella
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA 90089, United States
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, 129 Barrow Hall, Athens, GA 30602, United States
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, 1007 W. Harrison St., Chicago, IL 60607-7137, United States
| | - Scott E Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States; Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA 90089, United States.
| |
Collapse
|
25
|
Rotolo RA, Kalaba P, Dragacevic V, Presby RE, Neri J, Robertson E, Yang JH, Correa M, Bakulev V, Volkova NN, Pifl C, Lubec G, Salamone JD. Behavioral and dopamine transporter binding properties of the modafinil analog (S, S)-CE-158: reversal of the motivational effects of tetrabenazine and enhancement of progressive ratio responding. Psychopharmacology (Berl) 2020; 237:3459-3470. [PMID: 32770257 PMCID: PMC7572767 DOI: 10.1007/s00213-020-05625-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Atypical dopamine (DA) transport blockers such as modafinil and its analogs may be useful for treating motivational symptoms of depression and other disorders. Previous research has shown that the DA depleting agent tetrabenazine can reliably induce motivational deficits in rats, as evidenced by a shift towards a low-effort bias in effort-based choice tasks. This is consistent with human studies showing that people with major depression show a bias towards low-effort activities. OBJECTIVES Recent studies demonstrated that the atypical DA transport (DAT) inhibitor (S)-CE-123 reversed tetrabenazine-induced motivational deficits, increased progressive ratio (PROG) lever pressing, and increased extracellular DA in the nucleus accumbens. In the present studies, a recently synthesized modafinil analog, (S, S)-CE-158, was assessed in a series of neurochemical and behavioral studies in rats. RESULTS (S, S)-CE-158 demonstrated the ability to reverse the effort-related effects of tetrabenazine and increase selection of high-effort PROG lever pressing in rats tested on PROG/chow feeding choice task. (S, S)-CE-158 showed a high selectivity for inhibiting DAT compared with other monoamine transporters, and systemic administration of (S, S)-CE-158 increased extracellular DA in the nucleus accumbens during the behaviorally active time course, which is consistent with the effects of (S)-CE-123 and other DAT inhibitors that enhance high-effort responding. CONCLUSIONS These studies provide an initial neurochemical characterization of a novel atypical DAT inhibitor, and demonstrate that this compound is active in models of effort-related choice. This research could contribute to the development of novel compounds for the treatment of motivational dysfunctions in humans.
Collapse
Affiliation(s)
- Renee A. Rotolo
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria,Department of Neuroproteomics, Paracelsus Medical University, Salzburg, Austria
| | - Vladimir Dragacevic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Rose E. Presby
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Julia Neri
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Emily Robertson
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Jen-Hau Yang
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Merce Correa
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - Vasiliy Bakulev
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Natalia N. Volkova
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Christian Pifl
- Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, Salzburg, Austria.
| | - John D. Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Corresponding authors: John D. Salamone () and Gert Lubec ()
| |
Collapse
|
26
|
Abstract
Addiction is commonly identified with habitual nonmedical self-administration of drugs. It is usually defined by characteristics of intoxication or by characteristics of withdrawal symptoms. Such addictions can also be defined in terms of the brain mechanisms they activate; most addictive drugs cause elevations in extracellular levels of the neurotransmitter dopamine. Animals unable to synthesize or use dopamine lack the conditioned reflexes discussed by Pavlov or the appetitive behavior discussed by Craig; they have only unconditioned consummatory reflexes. Burst discharges (phasic firing) of dopamine-containing neurons are necessary to establish long-term memories associating predictive stimuli with rewards and punishers. Independent discharges of dopamine neurons (tonic or pacemaker firing) determine the motivation to respond to such cues. As a result of habitual intake of addictive drugs, dopamine receptors expressed in the brain are decreased, thereby reducing interest in activities not already stamped in by habitual rewards.
Collapse
Affiliation(s)
- Roy A Wise
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA; .,Behavioral Genetics Laboratory, McLean Hospital, Belmont, Massachusetts 02478, USA;
| | - Mykel A Robble
- Behavioral Genetics Laboratory, McLean Hospital, Belmont, Massachusetts 02478, USA;
| |
Collapse
|
27
|
Molecular insights into the therapeutic promise of targeting HMGB1 in depression. Pharmacol Rep 2020; 73:31-42. [PMID: 33015736 DOI: 10.1007/s43440-020-00163-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022]
Abstract
Depression is a common psychiatric disorder, the exact pathogenesis of which is still elusive. Studies have proposed that immunity disproportion and enhancement in proinflammatory cytokines might be linked with the development of depression. HMGB1 (High-mobility group box (1) protein has obtained more interest as an essential factor in inherent immune reactions and a regulating factor in various inflammation-related diseases. HMGB1 is a ubiquitous chromatin protein and is constitutively expressed in nucleated mammalian cells. HMGB1 is released by glial cells and neurons upon inflammasome activation and act as a pro-inflammatory cytokine. HMGB1 is a late mediator of inflammation and has been indicated as a major mediator in various neuroinflammatory diseases. Microglia, which is the brain immune cell, is stimulated by HMGB1 and released inflammatory mediators and induces chronic neurodegeneration in the CNS (central nervous system). In the current review, we aimed to investigate the role of HMGB1 in the pathogenesis of depression. The studies found that HMGB1 functions as proinflammatory cytokines primarily via binding receptors like RAGE (receptor for advanced glycation end product), TLR2 and TLR4 (Toll-like receptor 2 and 4). Further, HMGB1 added to the preparing impacts of stress-pretreatment and assumed a major function in neurodegenerative conditions through moderating neuroinflammation. Studies demonstrated that neuroinflammation played a major role in the development of depression. The patients of depression generally exhibited an elevated amount of proinflammatory cytokines in the serum, microglia activation and neuronal deficit in the CNS.
Collapse
|
28
|
Rotolo RA, Presby RE, Tracy O, Asar S, Yang JH, Correa M, Murray F, Salamone JD. The novel atypical dopamine transport inhibitor CT-005404 has pro-motivational effects in neurochemical and inflammatory models of effort-based dysfunctions related to psychopathology. Neuropharmacology 2020; 183:108325. [PMID: 32956676 DOI: 10.1016/j.neuropharm.2020.108325] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/23/2023]
Abstract
Depressed individuals suffer from effort-related motivational symptoms such as anergia and fatigue, which are resistant to treatment with many common antidepressants. While drugs that block dopamine transport (DAT) reportedly have positive motivational effects, DAT inhibitors such as cocaine and amphetamines produce undesirable side effects. Thus, there is a need to develop and characterize novel atypical DAT inhibitors with unique and selective binding profiles. Rodent effort-based choice tasks provide useful models of motivational dysfunctions. With these tasks, animals choose between a high-effort instrumental action leading to highly valued reinforcement vs. a low effort/low reward option. The present studies focused on the initial characterization of a novel atypical DAT inhibitor, CT-005404, which binds to DAT with high selectivity relative to serotonin and norepinephrine transport, and produces long-term elevations of extracellular DA. CT-005404 was assessed for its ability to attenuate the effort-related motivational effects of the DA depleting agent tetrabenazine and the pro-inflammatory cytokine interleukin-1β (IL-1β) using a fixed ratio 5/chow feeding choice test. Tetrabenazine (1.0 mg/kg i.p.) shifted choice behavior, decreasing lever pressing and increasing chow intake. IL-1β (4.0 μg/kg i.p.) also decreased lever pressing. CT-005404 was co-administered (7.5-30.0 mg/kg p.o.) with either tetrabenazine or IL-1β, and the 15.0 and 30.0 mg/kg doses significantly reversed the effects of tetrabenazine and IL-1β. CT-005404 administered alone produced a dose-related increase in lever pressing in rats tested on a progressive ratio/chow feeding choice task. Atypical DAT inhibitors such as CT-005404 offer potential as a new avenue for drug treatment of motivational dysfunctions in humans.
Collapse
Affiliation(s)
- Renee A Rotolo
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Rose E Presby
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Olivia Tracy
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Sokaina Asar
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Jen-Hau Yang
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Merce Correa
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA; Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071, Castelló, Spain
| | - Fraser Murray
- Chronos Therapeutics, The Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA, UK
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA.
| |
Collapse
|
29
|
Yang JH, Presby RE, Rotolo RA, Quiles T, Okifo K, Zorda E, Fitch RH, Correa M, Salamone JD. The dopamine depleting agent tetrabenazine alters effort-related decision making as assessed by mouse touchscreen procedures. Psychopharmacology (Berl) 2020; 237:2845-2854. [PMID: 32561947 DOI: 10.1007/s00213-020-05578-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Effort-based decision-making tasks allow animals to choose between preferred reinforcers that require high effort to obtain vs. low-effort/low reward options. Mesolimbic dopamine (DA) and related neural systems regulate effort-based choice. Tetrabenazine (TBZ) is a vesicular monoamine transport type-2 inhibitor that blocks DA storage and depletes DA. In humans, TBZ induces motivational dysfunction and depression. TBZ has been shown reliably to induce a low-effort bias in rats, but there are fewer mouse studies. OBJECTIVES The present studies used touchscreen operant procedures (Bussey-Saksida chambers) to assess the effects of TBZ on effort-based choice in mice. METHODS C57BL6 mice were trained to press an elevated lit panel on the touchscreen on a fixed ratio 1 schedule reinforced by strawberry milkshake, vs. approaching and consuming a concurrently available but less preferred food pellets (Bio-serv). RESULTS TBZ (2.0-8.0 mg/kg IP) shifted choice, producing a dose-related decrease in panel pressing but an increase in pellet intake. In contrast, reinforcer devaluation by pre-feeding substantially decreased both panel pressing and pellet intake. In free-feeding choice tests, mice strongly preferred the milkshake vs. the pellets, and TBZ had no effect on milkshake intake or preference, indicating that the TBZ-induced low-effort bias was not due to changes in primary food motivation or preference. TBZ significantly decreased tissue levels of nucleus accumbens DA. CONCLUSION The DA depleting agent TBZ induced an effort-related motivational dysfunction in mice, which may have clinical relevance for assessing novel drug targets for their potential use as therapeutic agents in patients with motivation impairments.
Collapse
Affiliation(s)
- Jen-Hau Yang
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Rose E Presby
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Renee A Rotolo
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Taina Quiles
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Kevin Okifo
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Emma Zorda
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Roslyn Holly Fitch
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Mercè Correa
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA.,Area de Psicobiologia, Universitat Jaume I, Castelló, Spain
| | - John D Salamone
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
30
|
Yang JH, Presby RE, Cayer S, Rotolo RA, Perrino PA, Fitch RH, Correa M, Chesler EJ, Salamone JD. Effort-related decision making in humanized COMT mice: Effects of Val 158Met polymorphisms and possible implications for negative symptoms in humans. Pharmacol Biochem Behav 2020; 196:172975. [PMID: 32593787 DOI: 10.1016/j.pbb.2020.172975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/05/2020] [Accepted: 06/21/2020] [Indexed: 01/05/2023]
Abstract
Catechol-o-methyltransferase (COMT) is an enzyme that metabolizes catecholamines, and is crucial for clearance of dopamine (DA) in prefrontal cortex. Val158Met polymorphism, which causes a valine (Val) to methionine (Met) substitution at codon 158, is reported to be associated with human psychopathologies in some studies. The Val/Val variant of the enzyme results in higher dopamine metabolism, which results in reduced dopamine transmission. Thus, it is important to investigate the relation between Val158Met polymorphisms using rodent models of psychiatric symptoms, including negative symptoms such as motivational dysfunction. In the present study, humanized COMT transgenic mice with two genotype groups (Val/Val (Val) and Met/Met (Met) homozygotes) and wild-type (WT) mice from the S129 background were tested using a touchscreen effort-based choice paradigm. Mice were trained to choose between delivery of a preferred liquid diet that reinforced panel pressing on various fixed ratio (FR) schedules (high-effort alternative), vs. intake of pellets concurrently available in the chamber (low-effort alternative). Panel pressing requirements were controlled by varying the FR levels (FR1, 2, 4, 8, 16) in ascending and descending sequences across weeks of testing. All mice were able to acquire the initial touchscreen operant training, and there was an inverse relationship between the number of reinforcers delivered by panel pressing and pellet intake across different FR levels. There was a significant group x FR level interaction in the ascending limb, with panel presses in the Val group being significantly lower than the WT group in FR1-8, and lower than Met in FR4. These findings indicate that the humanized Val allele in mice modulates FR/pellet-choice performance, as marked by lower levels of panel pressing in the Val group when the ratio requirement was moderately high. These studies may contribute to the understanding of the role of COMT polymorphisms in negative symptoms such as motivational dysfunctions in schizophrenic patients.
Collapse
Affiliation(s)
- Jen-Hau Yang
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA; Present address: Dept. of Psychiatry, Yale University, New Haven, CT, USA
| | - Rose E Presby
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Suzanne Cayer
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Renee A Rotolo
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Peter A Perrino
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - R Holly Fitch
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Merce Correa
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA; Area de Psicobiologia, Universitat Jaume I, Castelló, Spain
| | | | - John D Salamone
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
31
|
Chemogenetic Modulation and Single-Photon Calcium Imaging in Anterior Cingulate Cortex Reveal a Mechanism for Effort-Based Decisions. J Neurosci 2020; 40:5628-5643. [PMID: 32527984 PMCID: PMC7363467 DOI: 10.1523/jneurosci.2548-19.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 11/25/2022] Open
Abstract
The ACC is implicated in effort exertion and choices based on effort cost, but it is still unclear how it mediates this cost-benefit evaluation. Here, male rats were trained to exert effort for a high-value reward (sucrose pellets) in a progressive ratio lever-pressing task. Trained rats were then tested in two conditions: a no-choice condition where lever-pressing for sucrose was the only available food option, and a choice condition where a low-value reward (lab chow) was freely available as an alternative to pressing for sucrose. Disruption of ACC, via either chemogenetic inhibition or excitation, reduced lever-pressing in the choice, but not in the no-choice, condition. We next looked for value coding cells in ACC during effortful behavior and reward consumption phases during choice and no-choice conditions. For this, we used in vivo miniaturized fluorescence microscopy to reliably track responses of the same cells and compare how ACC neurons respond during the same effortful behavior where there was a choice versus when there was no-choice. We found that lever-press and sucrose-evoked responses were significantly weaker during choice compared with no-choice sessions, which may have rendered them more susceptible to chemogenetic disruption. Together, findings from our interference experiments and neural recordings suggest that a mechanism by which ACC mediates effortful decisions is in the discrimination of the utility of available options. ACC regulates these choices by providing a stable population code for the relative value of different options. SIGNIFICANCE STATEMENT The ACC is implicated in effort-based decision-making. Here, we used chemogenetics and in vivo calcium imaging to explore its mechanism. Rats were trained to lever press for a high-value reward and tested in two conditions: a no-choice condition where lever-pressing for the high-value reward was the only option, and a choice condition where a low-value reward was also available. Inhibition or excitation of ACC reduced effort toward the high-value option, but only in the choice condition. Neural responses in ACC were weaker in the choice compared with the no-choice condition. A mechanism by which ACC regulates effortful decisions is in providing a stable population code for the discrimination of the utility of available options.
Collapse
|
32
|
Jahn CI, Varazzani C, Sallet J, Walton ME, Bouret S. Noradrenergic But Not Dopaminergic Neurons Signal Task State Changes and Predict Reengagement After a Failure. Cereb Cortex 2020; 30:4979-4994. [PMID: 32390051 DOI: 10.1093/cercor/bhaa089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
The two catecholamines, noradrenaline and dopamine, have been shown to play comparable roles in behavior. Both noradrenergic and dopaminergic neurons respond to cues predicting reward availability and novelty. However, even though both are thought to be involved in motivating actions, their roles in motivation have seldom been directly compared. We therefore examined the activity of putative noradrenergic neurons in the locus coeruleus and putative midbrain dopaminergic neurons in monkeys cued to perform effortful actions for rewards. The activity in both regions correlated with engagement with a presented option. By contrast, only noradrenaline neurons were also (i) predictive of engagement in a subsequent trial following a failure to engage and (ii) more strongly activated in nonrepeated trials, when cues indicated a new task condition. This suggests that while both catecholaminergic neurons are involved in promoting action, noradrenergic neurons are sensitive to task state changes, and their influence on behavior extends beyond the immediately rewarded action.
Collapse
Affiliation(s)
- Caroline I Jahn
- Motivation, Brain and Behavior Team, Institut du Cerveau et de la Moelle Épinière, 75013 Paris, France.,Sorbonne Paris Cité universités, Université Paris Descartes, Frontières du Vivant, 75005 Paris, France.,Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX13SR, UK
| | - Chiara Varazzani
- Motivation, Brain and Behavior Team, Institut du Cerveau et de la Moelle Épinière, 75013 Paris, France.,Sorbonne Paris Cité universités, Université Paris Descartes, Frontières du Vivant, 75005 Paris, France
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX13SR, UK.,Inserm, Stem Cell and Brain Research Institute U1208, Université Lyon, Université Lyon 1, 69500 Bron, France
| | - Mark E Walton
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX13SR, UK
| | - Sébastien Bouret
- Motivation, Brain and Behavior Team, Institut du Cerveau et de la Moelle Épinière, 75013 Paris, France
| |
Collapse
|
33
|
Higgins GA, Silenieks LB, MacMillan C, Thevarkunnel S, Parachikova AI, Mombereau C, Lindgren H, Bastlund JF. Characterization of Amphetamine, Methylphenidate, Nicotine, and Atomoxetine on Measures of Attention, Impulsive Action, and Motivation in the Rat: Implications for Translational Research. Front Pharmacol 2020; 11:427. [PMID: 32390829 PMCID: PMC7193984 DOI: 10.3389/fphar.2020.00427] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
Abstract
Amphetamine (AMP), methylphenidate (MPH), and atomoxetine (ATX) are approved treatments for ADHD, and together with nicotine (NIC), represent pharmacological agents widely studied on cognitive domains including attention and impulsive action in humans. These agents thus represent opportunities for clinical observation to be reinvestigated in the preclinical setting, i.e., reverse translation. The present study investigated each drug in male, Long Evans rats trained to perform either (1) the five-choice serial reaction time task (5-CSRTT), (2) Go/NoGo task, or (3) a progressive ratio (PR) task, for the purpose of studying each drug on attention, impulsive action and motivation. Specific challenges were adopted in the 5-CSRTT designed to tax attention and impulsivity, i.e., high frequency of stimulus presentation (sITI), variable reduction in stimulus duration (sSD), and extended delay to stimulus presentation (10-s ITI). Initially, performance of a large (> 80) cohort of rats in each task variant was conducted to examine performance stability over repeated challenge sessions, and to identify subgroups of "high" and "low" attentive rats (sITI and sSD schedules), and "high" and "low" impulsives (10-s ITI). Using an adaptive sequential study design, the effects of AMP, MPH, ATX, and NIC were examined and contrasting profiles noted across the tests. Both AMP (0.03-0.3 mg/kg) and MPH (1-6 mg/kg) improved attentional performance in the sITI but not sSD or 10-s ITI condition, NIC (0.05-0.2 mg/kg) improved accuracy across all conditions. ATX (0.1-1 mg/kg) detrimentally affected performance in the sITI and sSD condition, notably in "high" performers. In tests of impulsive action, ATX reduced premature responses notably in the 10-s ITI condition, and also reduced false alarms in Go/NoGo. Both AMP and NIC increased premature responses in all task variants, although AMP reduced false alarms highlighting differences between these two measures of impulsive action. The effect of MPH was mixed and appeared baseline dependent. ATX reduced break point for food reinforcement suggesting a detrimental effect on motivation for primary reward. Taken together these studies highlight differences between AMP, MPH, and ATX which may translate to their clinical profiles. NIC had the most reliable effect on attentional accuracy, whereas ATX was reliably effective against all tests of impulsive action.
Collapse
Affiliation(s)
- Guy A Higgins
- Intervivo Solutions, Toronto, ON, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | - Hanna Lindgren
- Discovery Research, H. Lundbeck A/S, Copenhagen, Denmark
| | | |
Collapse
|
34
|
Silveira MM, Wittekindt SN, Mortazavi L, Hathaway BA, Winstanley CA. Investigating serotonergic contributions to cognitive effort allocation, attention, and impulsive action in female rats. J Psychopharmacol 2020; 34:452-466. [PMID: 31913079 DOI: 10.1177/0269881119896043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Individuals must frequently evaluate whether it is worth allocating cognitive effort for desired outcomes. Motivational deficits are a common feature of psychiatric illness such as major depression. Selective serotonin reuptake inhibitors are commonly used to treat this disorder, yet some data suggest these compounds are ineffective at treating amotivation, and may even exacerbate it. AIMS Here we used the rodent Cognitive Effort Task (rCET) to assess serotonergic (5-hydroxytryptamine, 5-HT) contributions to decision-making with cognitive effort costs. METHODS The rCET is a modified version of the 5-choice serial reaction time task, a well-validated test of visuospatial attention and impulse control. At the start of each rCET trial, rats chose one of two levers, which set the difficulty of an attentional challenge, namely the localization of a visual stimulus illuminated for 0.2 or 1 s on hard versus easy trials. Successful completion of hard trials was rewarded with double the sugar pellets. Twenty-four female Long-Evans rats were trained on the rCET and systemically administered the 5-HT1A agonist 8-OH-DPAT, the 5-HT2A antagonist M100907, the 5-HT2C agonist Ro-60-0175, as well as the 5-HT2C antagonist SB 242, 084. RESULTS 5-HT2A antagonism dose-dependently reduced premature responding, while 5-HT2C antagonism had the opposite effect. 8-OH-DPAT impaired accuracy of target detection at higher doses, while Ro-60-0175 dose-dependently improved accuracy on difficult trials. However, none of the drugs affected the rats' choice of the harder option. CONCLUSION When considered with existing work evaluating decision-making with physical effort costs, it appears that serotonergic signalling plays a minor role in guiding effort allocation.
Collapse
Affiliation(s)
- Mason M Silveira
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Sebastian N Wittekindt
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Leili Mortazavi
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Brett A Hathaway
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Lisdexamfetamine suppresses instrumental and consummatory behaviors supported by foods with varying degrees of palatability: Exploration of a binge-like eating model. Pharmacol Biochem Behav 2020; 189:172851. [DOI: 10.1016/j.pbb.2020.172851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/26/2019] [Accepted: 01/09/2020] [Indexed: 01/05/2023]
|
36
|
Pharmacological studies of effort-related decision making using mouse touchscreen procedures: effects of dopamine antagonism do not resemble reinforcer devaluation by removal of food restriction. Psychopharmacology (Berl) 2020; 237:33-43. [PMID: 31392358 DOI: 10.1007/s00213-019-05343-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/25/2019] [Indexed: 01/14/2023]
Abstract
RATIONALE Effort-based decision-making tasks offer animals choices between preferred reinforcers that require high effort to obtain vs. low effort/low reward options. The neural mechanisms of effort-based choice are widely studied in rats, and evidence indicates that mesolimbic dopamine (DA) and related neural systems play a key role. Fewer studies of effort-based choice have been performed in mice. OBJECTIVES The present studies used touchscreen operant procedures (Bussey-Saksida boxes) to assess effort-based choice in mice. METHODS CD1 mice were assessed on a concurrent fixed ratio 1 panel pressing/choice procedure. Mice were allowed to choose between rearing to press an elevated panel on the touchscreen for a preferred food (strawberry milkshake) vs. consuming a concurrently available less preferred alternative (high carbohydrate pellets). RESULTS The DA D2 antagonist haloperidol (0.05-0.15 mg/kg IP) produced a dose-related decrease in panel pressing. Intake of food pellets was not reduced by haloperidol, and in fact, there was a significant quadratic trend, indicating a tendency for pellet intake to increase at low/moderate doses. In contrast, reinforcer devaluation by removing food restriction substantially decreased both panel pressing and pellet intake. In free-feeding choice tests, mice strongly preferred milkshake vs. pellets. Haloperidol did not affect food intake or preference. CONCLUSION Haloperidol reduced the tendency to work for food, but this reduction was not due to decreases in primary food motivation or preference. Mouse touchscreen procedures demonstrate effects of haloperidol that are similar but not identical to those shown in rats. These rodent studies may be relevant for understanding motivational dysfunctions in humans.
Collapse
|
37
|
Roman M, Irwin MR. Novel neuroimmunologic therapeutics in depression: A clinical perspective on what we know so far. Brain Behav Immun 2020; 83:7-21. [PMID: 31550500 PMCID: PMC6940145 DOI: 10.1016/j.bbi.2019.09.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022] Open
Abstract
Depression, one of the most common mental health disorders, is among the leading causes of health-related disability worldwide. Although antidepressant treatment has been available for decades, depression remains largely refractory to the prevailing limited treatment approach of monoamine transmission modulation. Fortunately, recent evidence points to a link between depression and inflammatory factors within the innate and the adaptive immune system. The purpose of this review is to evaluate current and potential clinical immunotherapies for depression, as contextually focused by an immunologic lens of the pathophysiologic mechanisms of depression. The utility of pro-inflammatory cytokines (primarily interleukin-1β, interleukin -6 and tumor necrosis factor-α) is considered in their role as screening biomarkers in prediction of treatment response or nonresponse. The evidence base of numerous recent clinical studies is discussed as related to their antidepressant efficacy and favorable safety profile, with consideration of multiple agents that target inflammatory mechanisms linked to depression including nonsteroidal anti-inflammatory pathways (i.e., aspirin, celecoxib), cytokine antagonism (i.e., etanercept, infliximab), N-methyl-D-aspartate receptor (NMDA) receptor antagonism (i.e., ketamine), and modulation of kynurenine pathways (i.e., minocycline). Additionally, new and exciting directions in targeting inflammatory mechanisms in the treatment of depression are underway, and future investigation is also warranted to explore the utility of inflammation in diagnosing depression, guiding clinical treatment decision-making, and monitoring disease burden and relapse risk.
Collapse
Affiliation(s)
- Michael Roman
- University of Pennsylvania, Psychiatry Residency Program, Philadelphia, PA, United States
| | - Michael R Irwin
- Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Los Angeles, CA, United States.
| |
Collapse
|
38
|
Dunn DP, Bastacky JM, Gray CC, Abtahi S, Currie PJ. Role of mesolimbic ghrelin in the acquisition of cocaine reward. Neurosci Lett 2019; 709:134367. [DOI: 10.1016/j.neulet.2019.134367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022]
|
39
|
Zhang H, Ding L, Shen T, Peng D. HMGB1 involved in stress-induced depression and its neuroinflammatory priming role: a systematic review. Gen Psychiatr 2019; 32:e100084. [PMID: 31552388 PMCID: PMC6738663 DOI: 10.1136/gpsych-2019-100084] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Background Evidence from clinical and preclinical studies has demonstrated that stress can cause depressive-like symptoms including anhedonia and psychomotor retardation, namely, the manifestation of motivational deficits in depression. The proximate mediator of linking social-environmental stress with internal motivational deficits remains elusive, although substantial studies proposed neural endocrine mechanisms. As an endogenous danger-associated molecule, high mobility group box-1 (HMGB1) is necessary and sufficient for stress-induced sensitization of innate immune cells and subsequent (neuro)inflammation. Aim This review aims to provide evidence to unveil the potential mechanism of the relationship between motivational deficits and stress in depression. Methods We reviewed original case-control studies investigating the association between HMGB1-mediated inflammation and stress-induced depression. The literature search of Pubmed and Web of Science electronic database from inception up to March 28th, 2019 were conducted by two independent authors. We performed a qualitative systematic review approach to explore the correlation between HMGB1-mediated inflammation and anhedonia/psychomotor retardation in depression. Results A total of 69 studies based on search strategy were retrieved and seven eligible studies met the inclusion criteria. Studies showed that HMGB1 was implicated with depressive-like behaviors, which are similar with motivational deficits. Furthermore, HMGB1-mediated inflammation in depressive-like behaviors may be involved in Nod-like receptor family pyrin domain containing three (NLRP3) inflammasome and proinflammatory cytokines, abnormal kynurenine pathway and imbalance between neuroprotective and neurotoxic factors. Conclusions We found that stress-induced inflammation mediated by HMGB1 may affect motivational deficits through regulating dopamine pathway in corticostriatal neurocircuitry. The systematic review may shed light on the novel neurobiological underpinning for treatment of motivation deficits in depression.
Collapse
Affiliation(s)
- Huifeng Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Ding
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Shen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Rotolo RA, Dragacevic V, Kalaba P, Urban E, Zehl M, Roller A, Wackerlig J, Langer T, Pistis M, De Luca MA, Caria F, Schwartz R, Presby RE, Yang JH, Samels S, Correa M, Lubec G, Salamone JD. The Novel Atypical Dopamine Uptake Inhibitor (S)-CE-123 Partially Reverses the Effort-Related Effects of the Dopamine Depleting Agent Tetrabenazine and Increases Progressive Ratio Responding. Front Pharmacol 2019; 10:682. [PMID: 31316379 PMCID: PMC6611521 DOI: 10.3389/fphar.2019.00682] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
Animal studies of effort-based choice behavior are being used to model effort-related motivational dysfunctions in humans. With these procedures, animals are offered a choice between high-effort instrumental actions leading to highly valued reinforcers vs. low effort/low reward options. Several previous studies have shown that dopamine (DA) uptake inhibitors, including GBR12909, lisdexamfetamine, methylphenidate, and PRX-14040, can reverse the effort-related effects of the vesicular monoamine transport blocker tetrabenazine, which inhibits DA storage. Because many drugs that block DA transport act as major stimulants that also release DA, and produce a number of undesirable side effects, there is a need to develop and characterize novel atypical DA transport inhibitors. (S)-CE-123 ((S)-5-((benzhydrylsulfinyl) methyl)thiazole) is a recently developed analog of modafinil with the biochemical characteristics of an atypical DA transport blocker. The present paper describes the enantioselective synthesis and initial chemical characterization of (S)-CE-123, as well as behavioral experiments involving effort-based choice and microdialysis studies of extracellular DA. Rats were assessed using the fixed ratio 5/chow feeding choice test. Tetrabenazine (1.0 mg/kg) shifted choice behavior, decreasing lever pressing and increasing chow intake. (S)-CE-123 was coadministered at doses ranging from 6.0 to 24.0 mg/kg, and the highest dose partially but significantly reversed the effects of tetrabenazine, although this dose had no effect on fixed ratio responding when administered alone. Additional experiments showed that (S)-CE-123 significantly increased lever pressing on a progressive ratio/chow feeding choice task and that the effective dose (24.0 mg/kg) increased extracellular DA in nucleus accumbens core. In summary, (S)-CE-123 has the behavioral and neurochemical profile of a compound that can block DA transport, reverse the effort-related effects of tetrabenazine, and increase selection of high-effort progressive ratio responding. This suggests that (S)-CE-123 or a similar compound could be useful as a treatment for effort-related motivational dysfunction in humans.
Collapse
Affiliation(s)
- Renee A Rotolo
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Vladimir Dragacevic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Alexander Roller
- X-ray Structure Analysis Centre, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Judith Wackerlig
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Marco Pistis
- Department of Biomedical Sciences, University of Cagliari, National Institute of Neuroscience (INN), Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, National Institute of Neuroscience (INN), Cagliari, Italy
| | - Francesca Caria
- Department of Biomedical Sciences, University of Cagliari, National Institute of Neuroscience (INN), Cagliari, Italy
| | - Rebecca Schwartz
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Rose E Presby
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Jen-Hau Yang
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Shanna Samels
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Merce Correa
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States.,Àrea de Psicobiologia, Universitat Jaume I, Castelló, Spain
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, Salzburg, Austria
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
41
|
Klaus A, Alves da Silva J, Costa RM. What, If, and When to Move: Basal Ganglia Circuits and Self-Paced Action Initiation. Annu Rev Neurosci 2019; 42:459-483. [PMID: 31018098 DOI: 10.1146/annurev-neuro-072116-031033] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deciding what to do and when to move is vital to our survival. Clinical and fundamental studies have identified basal ganglia circuits as critical for this process. The main input nucleus of the basal ganglia, the striatum, receives inputs from frontal, sensory, and motor cortices and interconnected thalamic areas that provide information about potential goals, context, and actions and directly or indirectly modulates basal ganglia outputs. The striatum also receives dopaminergic inputs that can signal reward prediction errors and also behavioral transitions and movement initiation. Here we review studies and models of how direct and indirect pathways can modulate basal ganglia outputs to facilitate movement initiation, and we discuss the role of cortical and dopaminergic inputs to the striatum in determining what to do and if and when to do it. Complex but exciting scenarios emerge that shed new light on how basal ganglia circuits modulate self-paced movement initiation.
Collapse
Affiliation(s)
- Andreas Klaus
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | - Rui M Costa
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
42
|
Salamone JD, Correa M, Ferrigno S, Yang JH, Rotolo RA, Presby RE. The Psychopharmacology of Effort-Related Decision Making: Dopamine, Adenosine, and Insights into the Neurochemistry of Motivation. Pharmacol Rev 2019; 70:747-762. [PMID: 30209181 DOI: 10.1124/pr.117.015107] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Effort-based decision making is studied using tasks that offer choices between high-effort options leading to more highly valued reinforcers versus low-effort/low-reward options. These tasks have been used to study the involvement of neural systems, including mesolimbic dopamine and related circuits, in effort-related aspects of motivation. Moreover, such tasks are useful as animal models of some of the motivational symptoms that are seen in people with depression, schizophrenia, Parkinson's disease, and other disorders. The present review will discuss the pharmacology of effort-related decision making and will focus on the use of these tasks for the development of drug treatments for motivational dysfunction. Research has identified pharmacological conditions that can alter effort-based choice and serve as models for depression-related symptoms (e.g., the vesicular monoamine transport-2 inhibitor tetrabenazine and proinflammatory cytokines). Furthermore, tests of effort-based choice have identified compounds that are particularly useful for stimulating high-effort work output and reversing the deficits induced by tetrabenazine and cytokines. These studies indicate that drugs that act by facilitating dopamine transmission, as well as adenosine A2A antagonists, are relatively effective at reversing effort-related impairments. Studies of effort-based choice may lead to the identification of drug targets that could be useful for treating motivational treatments that are resistant to commonly used antidepressants such as serotonin transport inhibitors.
Collapse
Affiliation(s)
- John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Mercè Correa
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Sarah Ferrigno
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Jen-Hau Yang
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Renee A Rotolo
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Rose E Presby
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| |
Collapse
|
43
|
Animal models of fatigue in major depressive disorder. Physiol Behav 2018; 199:300-305. [PMID: 30513290 DOI: 10.1016/j.physbeh.2018.11.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 02/08/2023]
Abstract
Fatigue is common in a host of neurological and psychiatric disorders including depression and often continues unabated even after primary symptoms of disease are treated. Its high estimated prevalence combined with the lack of effective medicines has engaged the preclinical research community to search for fatigue models. The present review briefly summarizes the most common animal models that have been brought forward along with some of the associated pharmacological validation data. Like all preclinical models, these models have issues that need to be appreciated in the generation and interpretation of data for the purposes of translation to human disease; specifically, there are deficiencies in construct validity, a lack of medicines that effectively address residual fatigue symptoms, and difficulties in defining specificity with respect to drug effects on fatigue per se. Nonetheless, existing animal models of fatigue arguably serve the valuable purpose of encouraging research in this large area of unmet medical need. Data from these models are predicted to engender human experimentation and the further development of improved model systems.
Collapse
|
44
|
Phillips BU, Lopez-Cruz L, Hailwood J, Heath CJ, Saksida LM, Bussey TJ. Translational approaches to evaluating motivation in laboratory rodents: conventional and touchscreen-based procedures. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Neurobiology and pharmacology of activational and effort-related aspects of motivation: rodent studies. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2018.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Vichaya EG, Dantzer R. Inflammation-induced motivational changes: Perspective gained by evaluating positive and negative valence systems. Curr Opin Behav Sci 2018; 22:90-95. [PMID: 29888301 PMCID: PMC5987547 DOI: 10.1016/j.cobeha.2018.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation can profoundly impact motivated behavior, as is the case with inflammation-induced depression. By evaluating objectively measurable basic neurobehavioral processes involved in motivation, recent research indicates that inflammation generally reduces approach motivation and enhances avoidance motivation. Increased effort valuation largely mediates the effects of inflammation on approach motivation. Changes in reward valuation are not uniformly observed in approach motivation. However, inflammation increases the averseness of negative stimuli. Within the context of both approach and avoidance motivation, inflammation appears to enhance the contrast between concurrently presented stimuli. While changes in both approach and avoidance motivation appear to be mediated by midbrain dopaminergic neurotransmission to the ventral striatum, it is unclear if the enhanced contrast is mediated by the same system.
Collapse
Affiliation(s)
- Elisabeth G. Vichaya
- Division of Internal Medicine, Department of Symptom Research,
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384,
Houston, TX 77030, USA
| | - Robert Dantzer
- Division of Internal Medicine, Department of Symptom Research,
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384,
Houston, TX 77030, USA
| |
Collapse
|
47
|
López-Cruz L, San Miguel N, Carratalá-Ros C, Monferrer L, Salamone JD, Correa M. Dopamine depletion shifts behavior from activity based reinforcers to more sedentary ones and adenosine receptor antagonism reverses that shift: Relation to ventral striatum DARPP32 phosphorylation patterns. Neuropharmacology 2018; 138:349-359. [PMID: 29408363 DOI: 10.1016/j.neuropharm.2018.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 01/18/2023]
Abstract
The mesolimbic dopamine (DA) system plays a critical role in behavioral activation and effort-based decision-making. DA depletion produces anergia (shifts to low effort options) in animals tested on effort-based decision-making tasks. Caffeine, the most consumed stimulant in the world, acts as an adenosine A1/A2A receptor antagonist, and in striatal areas DA D1 and D2 receptors are co-localized with adenosine A1 and A2A receptors respectively. In the present work, we evaluated the effect of caffeine on anergia induced by the VMAT-2 inhibitor tetrabenazine (TBZ), which depletes DA. Anergia was evaluated in a three-chamber T-maze task in which animals can chose between running on a wheel (RW) vs. sedentary activities such as consuming sucrose or sniffing a neutral odor. TBZ-caffeine interactions in ventral striatum were evaluated using DARPP-32 phosphorylation patterns as an intracellular marker of DA-adenosine receptor interaction. In the T-maze, control mice spent more time running and much less consuming sucrose or sniffing. TBZ (4.0 mg/kg) reduced ventral striatal DA tissue levels as measured by HPLC, and also shifted preferences in the T-maze, reducing selection of the reinforcer that involved vigorous activity (RW), but increasing consumption of a reinforcer that required little effort (sucrose), at doses that had no effect on independent measures of appetite or locomotion in a RW. Caffeine at doses that had no effect on their own reversed the effects of TBZ on T-maze performance, and also suppressed TBZ-induced pDARPP-32(Thr34) expression as measured by western blot, suggesting a role for D2-A2A interactions. These results support the idea that DA depletion produces anergia, but does not affect the primary motivational effects of sucrose. Caffeine, possibly by acting on A2A receptors in ventral striatum, reversed the DA depletion effects. It is possible that caffeine, like selective adenosine A2A antagonists, could have some therapeutic benefit for treating effort-related symptoms.
Collapse
Affiliation(s)
- Laura López-Cruz
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - Noemí San Miguel
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - Carla Carratalá-Ros
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - Lidón Monferrer
- Àrea de Didàctica Ciències Experimentals, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - John D Salamone
- Behavioral Neuroscience Div., University of Connecticut, Storrs, 06269-1020 CT, USA
| | - Mercè Correa
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain; Behavioral Neuroscience Div., University of Connecticut, Storrs, 06269-1020 CT, USA.
| |
Collapse
|
48
|
López-Cruz L, Salamone JD, Correa M. Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression. Front Pharmacol 2018; 9:526. [PMID: 29910727 PMCID: PMC5992708 DOI: 10.3389/fphar.2018.00526] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/01/2018] [Indexed: 01/06/2023] Open
Abstract
Major depressive disorder is one of the most common and debilitating psychiatric disorders. Some of the motivational symptoms of depression, such anergia (lack of self-reported energy) and fatigue are relatively resistant to traditional treatments such as serotonin uptake inhibitors. Thus, new pharmacological targets are being investigated. Epidemiological data suggest that caffeine consumption can have an impact on aspects of depressive symptomatology. Caffeine is a non-selective adenosine antagonist for A1/A2A receptors, and has been demonstrated to modulate behavior in classical animal models of depression. Moreover, selective adenosine receptor antagonists are being assessed for their antidepressant effects in animal studies. This review focuses on how caffeine and selective adenosine antagonists can improve different aspects of depression in humans, as well as in animal models. The effects on motivational symptoms of depression such as anergia, fatigue, and psychomotor slowing receive particular attention. Thus, the ability of adenosine receptor antagonists to reverse the anergia induced by dopamine antagonism or depletion is of special interest. In conclusion, although further studies are needed, it appears that caffeine and selective adenosine receptor antagonists could be therapeutic agents for the treatment of motivational dysfunction in depression.
Collapse
Affiliation(s)
- Laura López-Cruz
- Àrea de Psicobiologia, Universitat Jaume I, Castellón de la Plana, Spain
| | - John D. Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castellón de la Plana, Spain
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
49
|
Hutchison MA, Gu X, Adrover MF, Lee MR, Hnasko TS, Alvarez VA, Lu W. Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior. Mol Psychiatry 2018; 23:1213-1225. [PMID: 28194005 PMCID: PMC5555825 DOI: 10.1038/mp.2017.7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/29/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023]
Abstract
Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.
Collapse
Affiliation(s)
- M A Hutchison
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - X Gu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - M F Adrover
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - M R Lee
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - T S Hnasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - V A Alvarez
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - W Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA,Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 3C 1000, 35 Convent Drive, Bethesda, MD 20892, USA. E-mail:
| |
Collapse
|
50
|
SanMiguel N, Pardo M, Carratalá-Ros C, López-Cruz L, Salamone JD, Correa M. Individual differences in the energizing effects of caffeine on effort-based decision-making tests in rats. Pharmacol Biochem Behav 2018; 169:27-34. [PMID: 29655598 DOI: 10.1016/j.pbb.2018.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
Abstract
Motivated behavior is characterized by activation and high work output. Nucleus accumbens (Nacb) modulates behavioral activation and effort-based decision-making. Caffeine is widely consumed because of its energizing properties. This methylxanthine is a non-selective adenosine A1/A2A receptor antagonist. Adenosine receptors are highly concentrated in Nacb. Adenosine agonists injected into Nacb, shift preference towards low effort alternatives. The present studies characterized effort-related effects of caffeine in a concurrent progressive ratio (PROG)/free reinforcer choice procedure that requires high levels of work output, and generates great variability among different animals. Male Sprague-Dawley rats received an acute dose of caffeine (2.5-20.0 mg/kg, IP) and 30 min later were tested in operant boxes. One group was food-restricted and had to lever pressed for high carbohydrate pellets, another group was non-food-restricted and lever pressed for a high sucrose solution. Caffeine (2.5 and 5.0 mg/kg) increased lever pressing in food-restricted animals that were already high responders. However, in non-restricted animals, caffeine (5.0 and 10.0 mg/kg) increased work output only among low responders. In fact, caffeine (10.0 and 20.0 mg/kg) in non-restricted animals, reduced lever pressing among high responders in the PROG task, and also in a different group of animals lever pressing in an easy task (fixed ratio 7 schedule) that uniformly generates high levels of responding. Caffeine did not modify sucrose preference or consumption under free access conditions. Thus, when animals do not have a homeostatic need, caffeine can help those not very intrinsically motivated to work harder for a more palatable reward. However, caffeine can disrupt performance of animals intrinsically motivated to work hard for a better reward.
Collapse
Affiliation(s)
- Noemí SanMiguel
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - Marta Pardo
- Dept. of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Carla Carratalá-Ros
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - Laura López-Cruz
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - John D Salamone
- Behavioral Neuroscience Div., University of Connecticut, Storrs, CT 06269-1020, USA
| | - Mercè Correa
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain.
| |
Collapse
|