1
|
Qin Y, Hu X, Zhao HL, Kurban N, Chen X, Yi JK, Zhang Y, Cui SY, Zhang YH. Inhibition of Indoleamine 2,3-Dioxygenase Exerts Antidepressant-like Effects through Distinct Pathways in Prelimbic and Infralimbic Cortices in Rats under Intracerebroventricular Injection with Streptozotocin. Int J Mol Sci 2024; 25:7496. [PMID: 39000602 PMCID: PMC11242124 DOI: 10.3390/ijms25137496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
The application of intracerebroventricular injection of streptozotocin (ICV-STZ) is considered a useful animal model to mimic the onset and progression of sporadic Alzheimer's disease (sAD). In rodents, on day 7 of the experiment, the animals exhibit depression-like behaviors. Indoleamine 2,3-dioxygenase (IDO), a rate-limiting enzyme catalyzing the conversion of tryptophan (Trp) to kynurenine (Kyn), is closely related to depression and AD. The present study aimed to investigate the pathophysiological mechanisms of preliminary depression-like behaviors in ICV-STZ rats in two distinct cerebral regions of the medial prefrontal cortex, the prelimbic cortex (PrL) and infralimbic cortex (IL), both presumably involved in AD progression in this model, with a focus on IDO-related Kyn pathways. The results showed an increased Kyn/Trp ratio in both the PrL and IL of ICV-STZ rats, but, intriguingly, abnormalities in downstream metabolic pathways were different, being associated with distinct biological effects. In the PrL, the neuroprotective branch of the Kyn pathway was attenuated, as evidenced by a decrease in the kynurenic acid (KA) level and Kyn aminotransferase II (KAT II) expression, accompanied by astrocyte alterations, such as the decrease in glial fibrillary acidic protein (GFAP)-positive cells and increase in morphological damage. In the IL, the neurotoxicogenic branch of the Kyn pathway was enhanced, as evidenced by an increase in the 3-hydroxy-kynurenine (3-HK) level and kynurenine 3-monooxygenase (KMO) expression paralleled by the overactivation of microglia, reflected by an increase in ionized calcium-binding adaptor molecule 1 (Iba1)-positive cells and cytokines with morphological alterations. Synaptic plasticity was attenuated in both subregions. Additionally, microinjection of the selective IDO inhibitor 1-Methyl-DL-tryptophan (1-MT) in the PrL or IL alleviated depression-like behaviors by reversing these different abnormalities in the PrL and IL. These results suggest that the antidepressant-like effects linked to Trp metabolism changes induced by 1-MT in the PrL and IL occur through different pathways, specifically by enhancing the neuroprotective branch in the PrL and attenuating the neurotoxicogenic branch in the IL, involving distinct glial cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Su-Ying Cui
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Q.); (X.H.); (H.-L.Z.); (N.K.); (X.C.); (J.-K.Y.); (Y.Z.)
| | - Yong-He Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Q.); (X.H.); (H.-L.Z.); (N.K.); (X.C.); (J.-K.Y.); (Y.Z.)
| |
Collapse
|
2
|
Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer's disease: A systematic review and qualitative meta-analysis. Neurobiol Dis 2024; 196:106485. [PMID: 38643861 DOI: 10.1016/j.nbd.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/23/2024] Open
Abstract
Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry and Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Richard Killick
- Section of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Jackie Mitchell
- Department of Basic and Clinical Neurosciences, Maurice Wohl CIinical Neurosciences Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Paul W Caton
- Diabetes Research Group, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL, United Kingdom
| | - Pratik Choudhary
- Diabetes Research Group, Weston Education Centre, King's College London, 10 Cutcombe Road, London SE5 9RJ, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, Hodgkin Building, Guy's Campus, King's College London, Great Maze Pond, London SE1 1UL, United Kingdom
| |
Collapse
|
3
|
Yang YY, Ren YT, Jia MY, Bai CY, Liang XT, Gao HL, Zhong ML, Wang T, Guo C. The human islet amyloid polypeptide reduces hippocampal tauopathy and behavioral impairments in P301S mice without inducing neurotoxicity or seeding amyloid aggregation. Exp Neurol 2023; 362:114346. [PMID: 36750170 DOI: 10.1016/j.expneurol.2023.114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
Recent evidence suggests that human islet amyloid polypeptide (h-IAPP) accumulates in the brains of Alzheimer's disease (AD) patients and may interact with Aβ or microtubule associated protein tau to associate with the neurodegenerative process. Increasing evidence indicates a potential protective effect of h-IAPP against Aβ-induced neurotoxicity in AD mouse models. However, a direct therapeutic effect of h-IAPP supplementation on tauopathy has not been established. Here, we found that long-term h-IAPP treatment attenuated tau hyperphosphorylation levels and induced neuroinflammation and oxidative damage, prevented synaptic loss and neuronal degeneration in the hippocampus, and alleviated behavioral deficits in P301S transgenic mice (a mouse model of tauopathy). Restoration of insulin sensitization, glucose/energy metabolism, and activated BDNF signaling also contributed to the underlying mechanisms. These findings suggest that seemly h-IAPP has promise for the treatment of neurodegenerative disorders with tauopathy, such as AD.
Collapse
Affiliation(s)
- Ying-Ying Yang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; Liaoning Cheng Da Biotechnology Co., Ltd, Shenyang 110179, China
| | - Yan-Tao Ren
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Meng-Yu Jia
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Chen-Yang Bai
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Xiu-Ting Liang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Hui-Ling Gao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Man-Li Zhong
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Tao Wang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Chuang Guo
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| |
Collapse
|
4
|
Butterfield DA, Boyd-Kimball D, Reed TT. Cellular Stress Response (Hormesis) in Response to Bioactive Nutraceuticals with Relevance to Alzheimer Disease. Antioxid Redox Signal 2023; 38:643-669. [PMID: 36656673 PMCID: PMC10025851 DOI: 10.1089/ars.2022.0214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
Significance: Alzheimer's disease (AD) is the most common form of dementia associated with aging. As the large Baby Boomer population ages, risk of developing AD increases significantly, and this portion of the population will increase significantly over the next several decades. Recent Advances: Research suggests that a delay in the age of onset by 5 years can dramatically decrease both the incidence and cost of AD. In this review, the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in AD is examined in the context of heme oxygenase-1 (HO-1) and biliverdin reductase-A (BVR-A) and the beneficial potential of selected bioactive nutraceuticals. Critical Issues: Nrf2, a transcription factor that binds to enhancer sequences in antioxidant response elements (ARE) of DNA, is significantly decreased in AD brain. Downstream targets of Nrf2 include, among other proteins, HO-1. BVR-A is activated when biliverdin is produced. Both HO-1 and BVR-A also are oxidatively or nitrosatively modified in AD brain and in its earlier stage, amnestic mild cognitive impairment (MCI), contributing to the oxidative stress, altered insulin signaling, and cellular damage observed in the pathogenesis and progression of AD. Bioactive nutraceuticals exhibit anti-inflammatory, antioxidant, and neuroprotective properties and are potential topics of future clinical research. Specifically, ferulic acid ethyl ester, sulforaphane, epigallocatechin-3-gallate, and resveratrol target Nrf2 and have shown potential to delay the progression of AD in animal models and in some studies involving MCI patients. Future Directions: Understanding the regulation of Nrf2 and its downstream targets can potentially elucidate therapeutic options for delaying the progression of AD. Antioxid. Redox Signal. 38, 643-669.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Debra Boyd-Kimball
- Department of Biochemistry, Chemistry, and Physics, University of Mount Union, Alliance, Ohio, USA
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, Kentucky, USA
| |
Collapse
|
5
|
Liu QR, Zhu M, Chen Q, Mustapic M, Kapogiannis D, Egan JM. Novel Hominid-Specific IAPP Isoforms: Potential Biomarkers of Early Alzheimer's Disease and Inhibitors of Amyloid Formation. Biomolecules 2023; 13:167. [PMID: 36671553 PMCID: PMC9856209 DOI: 10.3390/biom13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
(1) Background and aims: Amyloidosis due to aggregation of amyloid-β (Aβ42) is a key pathogenic event in Alzheimer's disease (AD), whereas aggregation of mature islet amyloid polypeptide (IAPP37) in human islets leads to β-cell dysfunction. The aim of this study is to uncover potential biomarkers that might additionally point to therapy for early AD patients. (2) Methods: We used bioinformatic approach to uncover novel IAPP isoforms and developed a quantitative selective reaction monitoring (SRM) proteomic assay to measure their peptide levels in human plasma and CSF from individuals with early AD and controls, as well as postmortem cerebrum of clinical confirmed AD and controls. We used Thioflavin T amyloid reporter assay to measure the IAPP isoform fibrillation propensity and anti-amyloid potential against aggregation of Aβ42 and IAPP37. (3) Results: We uncovered hominid-specific IAPP isoforms: hIAPPβ, which encodes an elongated propeptide, and hIAPPγ, which is processed to mature IAPP25 instead of IAPP37. We found that hIAPPβ was significantly reduced in the plasma of AD patients with the accuracy of 89%. We uncovered that IAPP25 and a GDNF derived DNSP11 were nonaggregating peptides that inhibited the aggregation of IAPP37 and Aβ42. (4) Conclusions: The novel peptides derived from hIAPP isoforms have potential to serve as blood-derived biomarkers for early AD and be developed as peptide based anti-amyloid medicine.
Collapse
Affiliation(s)
- Qing-Rong Liu
- Laboratory of Clinical Investigation, NIA-NIH, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | | | | | | | | | - Josephine M. Egan
- Laboratory of Clinical Investigation, NIA-NIH, 251 Bayview Blvd, Baltimore, MD 21224, USA
| |
Collapse
|
6
|
Corrigan RR, Labrador L, Grizzanti J, Mey M, Piontkivska H, Casadesús G. Neuroprotective Mechanisms of Amylin Receptor Activation, Not Antagonism, in the APP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2023; 91:1495-1514. [PMID: 36641678 DOI: 10.3233/jad-221057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Amylin, a pancreatic amyloid peptide involved in energy homeostasis, is increasingly studied in the context of Alzheimer's disease (AD) etiology. To date, conflicting pathogenic and neuroprotective roles for this peptide and its analogs for AD pathogenesis have been described. OBJECTIVE Whether the benefits of amylin are associated with peripheral improvement of metabolic tone/function or directly through the activation of central amylin receptors is also unknown and downstream signaling mechanisms of amylin receptors are major objectives of this study. METHODS To address these questions more directly we delivered the amylin analog pramlintide systemically (IP), at previously identified therapeutic doses, while centrally (ICV) inhibiting the receptor using an amylin receptor antagonist (AC187), at doses known to impact CNS function. RESULTS Here we show that pramlintide improved cognitive function independently of CNS receptor activation and provide transcriptomic data that highlights potential mechanisms. Furthermore, we show than inhibition of the amylin receptor increased amyloid-beta pathology in female APP/PS1 mice, an effect than was mitigated by peripheral delivery of pramlintide. Through transcriptomic analysis of pramlintide therapy in AD-modeled mice we found sexual dimorphic modulation of neuroprotective mechanisms: oxidative stress protection in females and membrane stability and reduced neuronal excitability markers in males. CONCLUSION These data suggest an uncoupling of functional and pathology-related events and highlighting a more complex receptor system and pharmacological relationship that must be carefully studied to clarify the role of amylin in CNS function and AD.
Collapse
Affiliation(s)
| | - Luis Labrador
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - John Grizzanti
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Megan Mey
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Gemma Casadesús
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Singh S, Yang F, Sivils A, Cegielski V, Chu XP. Amylin and Secretases in the Pathology and Treatment of Alzheimer's Disease. Biomolecules 2022; 12:996. [PMID: 35883551 PMCID: PMC9312829 DOI: 10.3390/biom12070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease remains a prevailing neurodegenerative condition which has an array physical, emotional, and financial consequences to patients and society. In the past decade, there has been a greater degree of investigation on therapeutic small peptides. This group of biomolecules have a profile of fundamentally sound characteristics which make them an intriguing area for drug development. Among these biomolecules, there are four modulatory mechanisms of interest in this review: alpha-, beta-, gamma-secretases, and amylin. These protease-based biomolecules all have a contributory role in the amyloid cascade hypothesis. Moreover, the involvement of various biochemical pathways intertwines these peptides to have shared regulators (i.e., retinoids). Further clinical and translational investigation must occur to gain a greater understanding of its potential application in patient care. The aim of this narrative review is to evaluate the contemporary literature on these protease biomolecule modulators and determine its utility in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri, Kansas City, MO 64108, USA; (S.S.); (F.Y.); (A.S.); (V.C.)
| |
Collapse
|
8
|
Dharmaraj GL, Arigo FD, Young KA, Martins R, Mancera RL, Bharadwaj P. Novel Amylin Analogues Reduce Amyloid-β Cross-Seeding Aggregation and Neurotoxicity. J Alzheimers Dis 2022; 87:373-390. [PMID: 35275530 DOI: 10.3233/jad-215339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Type 2 diabetes related human islet amyloid polypeptide (hIAPP) plays a dual role in Alzheimer's disease (AD). hIAPP has neuroprotective effects in AD mouse models whereas, high hIAPP concentrations can promote co-aggregation with amyloid-β (Aβ) to promote neurodegeneration. In fact, both low and high plasma hIAPP concentration has been associated with AD. Therefore, non-aggregating hIAPP analogues have garnered interest as a treatment for AD. The aromatic amino acids F23 and I26 in hIAPP have been identified as the key residues involved in self-aggregation and Aβ cross-seeding. OBJECTIVE Three novel IAPP analogues with single and double alanine mutations (A1 = F23, A2 = I26, and A3 = F23 + I26) were assessed for their ability to aggregate, modulate Aβ oligomer formation, and alter neurotoxicity. METHODS A range of biophysical methods including Thioflavin-T, gel electrophoresis, photo-crosslinking, circular dichroism combined with cell viability assays were utilized to assess protein aggregation and toxicity. RESULTS All IAPP analogues showed significantly less self-aggregation than hIAPP. Co-aggregated Aβ 42-A2 and A3 also showed reduced aggregation compared to Aβ 42-hIAPP mixtures. Self- and co-oligomerized A1, A2, and A3 exhibited random coil conformations with reduced beta sheet content compared to hIAPP and Aβ 42-hIAPP aggregates. A1 was toxic at high concentrations compared to A2 and A3. However, co-aggregated Aβ 42-A1, A2, or A3 showed reduced neurotoxicity compared to Aβ 42, hIAPP, and Aβ 42-hIAPP aggregates. CONCLUSION These findings confirm that hIAPP analogues with non-aromatic residues at positions 23 and 26 have reduced self-aggregation and the ability to neutralize Aβ 42 toxicity. This warrants further characterization of their protective effects in pre-clinical AD models.
Collapse
Affiliation(s)
| | - Fraulein Denise Arigo
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth WA, Australia
| | - Kimberly A Young
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth WA, Australia
| | - Ralph Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Perth WA, Australia.,School of Biomedical Science, Macquarie University, Sydney, NSW, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth WA, Australia
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Perth WA, Australia.,Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth WA, Australia
| |
Collapse
|
9
|
Corrigan RR, Piontkivska H, Casadesus G. Amylin Pharmacology in Alzheimer's Disease Pathogenesis and Treatment. Curr Neuropharmacol 2022; 20:1894-1907. [PMID: 34852745 PMCID: PMC9886804 DOI: 10.2174/1570159x19666211201093147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
The metabolic peptide hormone amylin, in concert with other metabolic peptides like insulin and leptin, has an important role in metabolic homeostasis and has been intimately linked to Alzheimer's disease (AD). Interestingly, this pancreatic amyloid peptide is known to self-aggregate much like amyloid-beta and has been reported to be a source of pathogenesis in both Type II diabetes mellitus (T2DM) and Alzheimer's disease. The traditional "gain of toxic function" properties assigned to amyloid proteins are, however, contrasted by several reports highlighting neuroprotective effects of amylin and a recombinant analog, pramlintide, in the context of these two diseases. This suggests that pharmacological therapies aimed at modulating the amylin receptor may be therapeutically beneficial for AD development, as they already are for T2DMM. However, the nature of amylin receptor signaling is highly complex and not well studied in the context of CNS function. Therefore, to begin to address this pharmacological paradox in amylin research, the goal of this review is to summarize the current research on amylin signaling and CNS functions and critically address the paradoxical nature of this hormone's signaling in the context of AD pathogenesis.
Collapse
Affiliation(s)
| | | | - Gemma Casadesus
- Address correspondence to this author at the Department of Pharmacology and Therapeutics, University of Florida, PO Box 100495. Gainesville, FL32610 USA; Tel: 352-294-5346; E-mail:
| |
Collapse
|
10
|
Role of Receptors in Relation to Plaques and Tangles in Alzheimer's Disease Pathology. Int J Mol Sci 2021; 22:ijms222312987. [PMID: 34884789 PMCID: PMC8657621 DOI: 10.3390/ijms222312987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022] Open
Abstract
Despite the identification of Aβ plaques and NFTs as biomarkers for Alzheimer’s disease (AD) pathology, therapeutic interventions remain elusive, with neither an absolute prophylactic nor a curative medication available to impede the progression of AD presently available. Current approaches focus on symptomatic treatments to maintain AD patients’ mental stability and behavioral symptoms by decreasing neuronal degeneration; however, the complexity of AD pathology requires a wide range of therapeutic approaches for both preventive and curative treatments. In this regard, this review summarizes the role of receptors as a potential target for treating AD and focuses on the path of major receptors which are responsible for AD progression. This review gives an overall idea centering on major receptors, their agonist and antagonist and future prospects of viral mimicry in AD pathology. This article aims to provide researchers and developers a comprehensive idea about the different receptors involved in AD pathogenesis that may lead to finding a new therapeutic strategy to treat AD.
Collapse
|
11
|
Patel A, Kimura R, Fu W, Soudy R, MacTavish D, Westaway D, Yang J, Davey RA, Zajac JD, Jhamandas JH. Genetic Depletion of Amylin/Calcitonin Receptors Improves Memory and Learning in Transgenic Alzheimer's Disease Mouse Models. Mol Neurobiol 2021; 58:5369-5382. [PMID: 34312771 PMCID: PMC8497456 DOI: 10.1007/s12035-021-02490-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023]
Abstract
Based upon its interactions with amyloid β peptide (Aβ), the amylin receptor, a class B G protein-coupled receptor (GPCR), is a potential modulator of Alzheimer's disease (AD) pathogenesis. However, past pharmacological approaches have failed to resolve whether activation or blockade of this receptor would have greater therapeutic benefit. To address this issue, we generated compound mice expressing a human amyloid precursor protein gene with familial AD mutations in combination with deficiency of amylin receptors produced by hemizygosity for the critical calcitonin receptor subunit of this heterodimeric GPCR. These compound transgenic AD mice demonstrated attenuated responses to human amylin- and Aβ-induced depression of hippocampal long-term potentiation (LTP) in keeping with the genetic depletion of amylin receptors. Both the LTP responses and spatial memory (as measured with Morris water maze) in these mice were improved compared to AD mouse controls and, importantly, a reduction in both the amyloid plaque burden and markers of neuroinflammation was observed. Our data support the notion of further development of antagonists of the amylin receptor as AD-modifying therapies.
Collapse
Affiliation(s)
- Aarti Patel
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Ryoichi Kimura
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Center for Liberal Arts and Sciences, Sanyo-Onoda City University, Yamaguchi , 756-0884, Japan
| | - Wen Fu
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Rania Soudy
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - David MacTavish
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - David Westaway
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Jing Yang
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Rachel A Davey
- Department of Medicine, University of Melbourne, Austin HealthHeidelberg, VIC, 3074, Australia
| | - Jeffrey D Zajac
- Department of Medicine, University of Melbourne, Austin HealthHeidelberg, VIC, 3074, Australia
| | - Jack H Jhamandas
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
12
|
Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin Resistance and Diabetes Mellitus in Alzheimer's Disease. Cells 2021; 10:1236. [PMID: 34069890 PMCID: PMC8157600 DOI: 10.3390/cells10051236] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer's disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jesús Burillo
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Patricia Marqués
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos González-Blanco
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| |
Collapse
|
13
|
Targeting impaired nutrient sensing with repurposed therapeutics to prevent or treat age-related cognitive decline and dementia: A systematic review. Ageing Res Rev 2021; 67:101302. [PMID: 33609776 DOI: 10.1016/j.arr.2021.101302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dementia is a debilitating syndrome that significantly impacts individuals over the age of 65 years. There are currently no disease-modifying treatments for dementia. Impairment of nutrient sensing pathways has been implicated in the pathogenesis of dementia, and may offer a novel treatment approach for dementia. AIMS This systematic review collates all available evidence for Food and Drug Administration (FDA)-approved therapeutics that modify nutrient sensing in the context of preventing cognitive decline or improving cognition in ageing, mild cognitive impairment (MCI), and dementia populations. METHODS PubMed, Embase and Web of Science databases were searched using key search terms focusing on available therapeutics such as 'metformin', 'GLP1', 'insulin' and the dementias including 'Alzheimer's disease' and 'Parkinson's disease'. Articles were screened using Covidence systematic review software (Veritas Health Innovation, Melbourne, Australia). The risk of bias was assessed using the Cochrane Risk of Bias tool v 2.0 for human studies and SYRCLE's risk of bias tool for animal studies. RESULTS Out of 2619 articles, 114 were included describing 31 different 'modulation of nutrient sensing pathway' therapeutics, 13 of which specifically were utilized in human interventional trials for normal ageing or dementia. Growth hormone secretagogues improved cognitive outcomes in human mild cognitive impairment, and potentially normal ageing populations. In animals, all investigated therapeutic classes exhibited some cognitive benefits in dementia models. While the risk of bias was relatively low in human studies, this risk in animal studies was largely unclear. CONCLUSIONS Modulation of nutrient sensing pathway therapeutics, particularly growth hormone secretagogues, have the potential to improve cognitive outcomes. Overall, there is a clear lack of translation from animal models to human populations.
Collapse
|
14
|
Na H, Tian H, Zhang Z, Li Q, Yang JB, Mcparland L, Gan Q, Qiu WQ. Oral Amylin Treatment Reduces the Pathological Cascade of Alzheimer's Disease in a Mouse Model. Am J Alzheimers Dis Other Demen 2021; 36:15333175211012867. [PMID: 34137273 PMCID: PMC10623958 DOI: 10.1177/15333175211012867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 11/16/2022]
Abstract
Intraperitoneal injection of amylin or its analog reduces Alzheimer's disease (AD) pathology in the brains. However, self-injecting amylin analogs is difficult for patients due to cognitive deficits. This work aims to study the effects of amylin on the brain could be achieved by oral delivery as some study reported that amylin receptor may be present in the gastrointestinal tract. A 6-week course of oral amylin treatment reduced components of AD pathology, including the levels of amyloid-β, phosphorylated tau, and ionized calcium binding adaptor molecule 1. The treatment reduced active forms of cyclin-dependent kinase 5. Oral amylin treatment led to improvements in social deficit in AD mouse. Using immunofluorescence, we observed the amylin receptor complexed with the calcitonin receptor and receptor activity-modifying proteins in the enteric neurons. The study suggests the potential of the oral delivery of amylin analogs for the treatment of AD and other neurodegenerative diseases through enteric neurons.
Collapse
Affiliation(s)
- Hana Na
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Hua Tian
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhengrong Zhang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Qiang Li
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Nursing School, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jack B. Yang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Liam Mcparland
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Qini Gan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
15
|
Servizi S, Corrigan RR, Casadesus G. The Importance of Understanding Amylin Signaling Mechanisms for Therapeutic Development in the Treatment of Alzheimer's Disease. Curr Pharm Des 2020; 26:1345-1355. [PMID: 32188374 PMCID: PMC10088426 DOI: 10.2174/1381612826666200318151146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Type II Diabetes (T2D) is a major risk factor for Alzheimer's Disease (AD). These two diseases share several pathological features, including amyloid accumulation, inflammation, oxidative stress, cell death and cognitive decline. The metabolic hormone amylin and amyloid-beta are both amyloids known to self-aggregate in T2D and AD, respectively, and are thought to be the main pathogenic entities in their respective diseases. Furthermore, studies suggest amylin's ability to seed amyloid-beta aggregation, the activation of common signaling cascades in the pancreas and the brain, and the ability of amyloid beta to signal through amylin receptors (AMYR), at least in vitro. However, paradoxically, non-aggregating forms of amylin such as pramlintide are given to treat T2D and functional and neuroprotective benefits of amylin and pramlintide administration have been reported in AD transgenic mice. These paradoxical results beget a deeper study of the complex nature of amylin's signaling through the several AMYR subtypes and other receptors associated with amylin effects to be able to fully understand its potential role in mediating AD development and/or prevention. The goal of this review is to provide such critical insight to begin to elucidate how the complex nature of this hormone's signaling may explain its equally complex relationship with T2D and mechanisms of AD pathogenesis.
Collapse
Affiliation(s)
- Spencer Servizi
- School of Biomedical Sciences, Kent State University, Ohio, United States
| | - Rachel R Corrigan
- School of Biomedical Sciences, Kent State University, Ohio, United States
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Ohio, United States.,Department of Biological Sciences, Kent State University, Ohio, United States
| |
Collapse
|
16
|
Nassar SZ, Badae NM, Issa YA. Effect of amylin on memory and central insulin resistance in a rat model of Alzheimer's disease. Arch Physiol Biochem 2020; 126:326-334. [PMID: 30449203 DOI: 10.1080/13813455.2018.1534244] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Context: Alzheimer's disease is strongly associated with brain insulin signalling.Objective: Investigating the effect of amylin as a novel treatment in streptozotocin (STZ) rat model of AD.Materials and methods: Alzheimer's disease (AD) was induced in albino rats by intracerebroventricular injection of STZ (3 mg/kg). Rats received either amylin analogue (Pramlintide 200 μg/kg/day) or Metformin (30 mg/kg/day) for 5 weeks.Results: Both Pramlintide and Metformin improve learning and memory through enhancing insulin signalling (p-IR and p-PI3K) which lead to lowering level of CSF glucose, phosphorylated tau proteins, and amyloid-β peptide (Aβ) in hippocampus.Conclusions: Insulin sensitisers as Metformin and Pramlintide can improve learning and memory and decrease the pathological changes in STZ induced rat model of AD. However, Pramlintide is superior to Metformin in some memory tests which related to its action as an amylin analogue. Amylin improves learning and memory through an independent effect other than insulin sensitisation.
Collapse
Affiliation(s)
- Seham Zakaria Nassar
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mohamed Badae
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yasmine Amr Issa
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Watanabe-Nakayama T, Sahoo BR, Ramamoorthy A, Ono K. High-Speed Atomic Force Microscopy Reveals the Structural Dynamics of the Amyloid-β and Amylin Aggregation Pathways. Int J Mol Sci 2020; 21:E4287. [PMID: 32560229 PMCID: PMC7352471 DOI: 10.3390/ijms21124287] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022] Open
Abstract
Individual Alzheimer's disease (AD) patients have been shown to have structurally distinct amyloid-β (Aβ) aggregates, including fibrils, in their brain. These findings suggest the possibility of a relationship between AD progression and Aβ fibril structures. Thus, the characterization of the structural dynamics of Aβ could aid the development of novel therapeutic strategies and diagnosis. Protein structure and dynamics have typically been studied separately. Most of the commonly used biophysical approaches are limited in providing substantial details regarding the combination of both structure and dynamics. On the other hand, high-speed atomic force microscopy (HS-AFM), which simultaneously visualizes an individual protein structure and its dynamics in liquid in real time, can uniquely link the structure and the kinetic details, and it can also unveil novel insights. Although amyloidogenic proteins generate heterogeneously aggregated species, including transient unstable states during the aggregation process, HS-AFM elucidated the structural dynamics of individual aggregates in real time in liquid without purification and isolation. Here, we review and discuss the HS-AFM imaging of amyloid aggregation and strategies to optimize the experiments showing findings from Aβ and amylin, which is associated with type II diabetes, shares some common biological features with Aβ, and is reported to be involved in AD.
Collapse
Affiliation(s)
| | - Bikash R. Sahoo
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, and Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA;
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA;
| | - Kenjiro Ono
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Hatanodai, Shinagawa district, Tokyo 142-8666, Japan;
| |
Collapse
|
18
|
Mousa YM, Abdallah IM, Hwang M, Martin DR, Kaddoumi A. Amylin and pramlintide modulate γ-secretase level and APP processing in lipid rafts. Sci Rep 2020; 10:3751. [PMID: 32111883 PMCID: PMC7048857 DOI: 10.1038/s41598-020-60664-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
A major characteristic of Alzheimer's disease (AD) is the accumulation of misfolded amyloid-β (Aβ) peptide. Several studies linked AD with type 2 diabetes due to similarities between Aβ and human amylin. This study investigates the effect of amylin and pramlintide on Aβ pathogenesis and the predisposing molecular mechanism(s) behind the observed effects in TgSwDI mouse, a cerebral amyloid angiopathy (CAA) and AD model. Our findings showed that thirty days of intraperitoneal injection with amylin or pramlintide increased Aβ burden in mice brains. Mechanistic studies revealed both peptides altered the amyloidogenic pathway and increased Aβ production by modulating amyloid precursor protein (APP) and γ-secretase levels in lipid rafts. In addition, both peptides increased levels of B4GALNT1 enzyme and GM1 ganglioside, and only pramlintide increased the level of GM2 ganglioside. Increased levels of GM1 and GM2 gangliosides play an important role in regulating amyloidogenic pathway proteins in lipid rafts. Increased brain Aβ burden by amylin and pramlintide was associated with synaptic loss, apoptosis, and microglia activation. In conclusion, our findings showed amylin or pramlintide increase Aβ levels and related pathology in TgSwDI mice brains, and suggest that increased amylin levels or the therapeutic use of pramlintide could increase the risk of AD.
Collapse
Affiliation(s)
- Youssef M Mousa
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, USA
| | - Ihab M Abdallah
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, USA
| | - Misako Hwang
- Scott-Ritchey Research Center, Auburn University, Auburn, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University, Auburn, USA.,Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, USA.,Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, USA. .,Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA.
| |
Collapse
|
19
|
Na H, Gan Q, Mcparland L, Yang JB, Yao H, Tian H, Zhang Z, Qiu WQ. Characterization of the effects of calcitonin gene-related peptide receptor antagonist for Alzheimer's disease. Neuropharmacology 2020; 168:108017. [PMID: 32113968 DOI: 10.1016/j.neuropharm.2020.108017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 10/25/2022]
Abstract
Calcitonin gene-related peptide (cGRP) receptor antagonists effectively treat migraine through reducing neuroinflammation, vasoconstriction and possibly neruogenesis. Since neuroinflammation is also involved in the pathogenesis of Alzheimer's diseases (AD), we hypothesized and tested if a cGRP receptor antagonist, BIBN 4096 BS (BIBN), has effects on AD pathology. Using an AD mouse model, 5XFAD, with different ages, here we report that the BIBN treatment significantly increased the brain expression of PSD95, a postsynaptic protein, in both young and old AD mice. In parallel, BIBN improved learning and memory in the behavior test in the young, but not old, AD mice. The BIBN treatment reduced α-synuclein aggregation in both young and old AD mice. BIBN significantly decreased neuroinflammatory markers of ionized calcium binding adapter molecules-1 (Iba-1) and the p38 MAPK and NFκB signaling pathways in young, but not old, AD mice. The treatment also reduced the accumulation of amyloid-β (Aβ), and decreased tau phosphorylation through the pathway of CDK5/p25 in young mice only. Our study provides the evidence and suggests that the cGRP antagonists might be a therapeutic target to attenuate the pathological cascade and delay cognitive decline of AD in humans.
Collapse
Affiliation(s)
- Hana Na
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Qini Gan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Liam Mcparland
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Jack B Yang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Hongbo Yao
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Department of Histology and Embriology, Qiqihaer Medical University, China
| | - Hua Tian
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Department of Histology and Embriology, Qiqihaer Medical University, China
| | - Zhengrong Zhang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
20
|
Grizzanti J, Corrigan R, Casadesus G. Neuroprotective Effects of Amylin Analogues on Alzheimer's Disease Pathogenesis and Cognition. J Alzheimers Dis 2019; 66:11-23. [PMID: 30282360 DOI: 10.3233/jad-180433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type II diabetes (T2D) has been identified as a major risk factor for the development of Alzheimer's disease (AD). Interestingly, both AD and T2D have similar characteristics including amyloid peptide aggregation, decreased metabolism, and increased oxidative stress and inflammation. Despite their prevalence, therapies for these diseases are limited. To date, most therapies for AD have targeted amyloid-β or tau. Unfortunately, most of these clinical trials have been largely unsuccessful, creating a crucial need for novel therapies. A number of studies have shown that metabolic hormone therapies are effective at ameliorating high blood glucose levels in diabetics as well as improving cognitive function in AD and mild cognitive impairment patients. Pramlintide, a synthetic analogue of the pancreatic hormone amylin, has been developed and used for years now as a treatment for both type I diabetes and T2D due to the loss of β-islet cells responsible for producing amylin. Importantly, recent data demonstrates its potential therapeutic role for AD as well. This review aims at addressing parallels between T2D and AD at a pathological and functional level, focusing on amylin signaling as a key, overlapping mediator in both diseases. The potential therapeutic use of this hormone to treat AD will also be explored from a mechanistic viewpoint.
Collapse
Affiliation(s)
- John Grizzanti
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Rachel Corrigan
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
21
|
Zhu H, Tao Q, Ang TFA, Massaro J, Gan Q, Salim S, Zhu RY, Kolachalama VB, Zhang X, Devine S, Auerbach SH, DeCarli C, Au R, Qiu WQ. Association of Plasma Amylin Concentration With Alzheimer Disease and Brain Structure in Older Adults. JAMA Netw Open 2019; 2:e199826. [PMID: 31433485 PMCID: PMC6707010 DOI: 10.1001/jamanetworkopen.2019.9826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPORTANCE Preclinical studies suggest that amylin has a U-shaped dose-response association with risk of Alzheimer disease (AD). The association of plasma amylin with AD in humans is unknown. OBJECTIVES To measure amylin concentration in plasma by using enzyme-linked immunosorbent assay and to study the association between plasma amylin, incidence of AD, and brain structure in humans. DESIGN, SETTING, AND PARTICIPANTS This cohort study used data from the Framingham Heart Study offspring cohort from 1998 to 2015. Using a Monte Carlo approach, participants were divided into 3 plasma amylin concentration groups: (1) low (<75 pmol/L), (2) high (75-2800 pmol/L), and (3) extremely high (≥2800 pmol/L). Data analyses were conducted October 5, 2017, to December 18, 2018. EXPOSURES Baseline plasma amylin concentrations at examination 7. MAIN OUTCOMES AND MEASURES Incidence of dementia or AD and brain volumetric measures from structural magnetic resonance imaging data. RESULTS From the Framingham Heart Study offspring cohort, 3061 participants (mean [SD] age at baseline, 61.0 [9.5] years; 1653 [54.0%] women) who had plasma amylin measurements, dementia incidence, and brain volume measurements on record were included in this study. The distribution of plasma amylin concentrations was highly skewed (median [interquartile range], 7.5 [4.6-18.9] pmol/L; mean [SD], 302.3 [1941.0] pmol/L; range, 0.03-44 623.7 pmol/L). Compared with the low plasma amylin concentration group, the high plasma amylin concentration group had a lower rate of AD incidence (2.3% vs 5.6%; P = .04), but the extremely high plasma amylin concentration group had a higher rate of AD incidence (14.3%; P < .001). After adjusting for age, sex, education, body mass index, diabetes, cardiovascular disease, high-density lipoprotein level, and APOE4, high plasma amylin was not associated with decreased AD risk (hazard ratio, 0.42 [95% CI, 0.16-1.14]; P = .09) but was positively associated with volume of gray matter in the temporal lobe (β = 0.17 [SE, 0.05]; P < .001). In contrast, extremely high plasma amylin concentration was associated with a higher AD risk (hazard ratio, 2.51 [95% CI, 1.38-4.57]; P = .003) but not associated with temporal lobe volume (β = 0.02 [SE, 0.07]; P = .82). CONCLUSIONS AND RELEVANCE This study found that plasma amylin concentration was associated with AD incidence and brain structure with a U-shaped pattern. These findings are consistent with preclinical findings that suggest amylin is a neuropeptide that is physiological; however, at extremely high concentrations, it may lead to amylin aggregation and therefore may be a risk factor for AD.
Collapse
Affiliation(s)
- Haihao Zhu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Qiushan Tao
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Ting Fang Alvin Ang
- Department of Epidemiology, School of Public Health, Boston University School of Medicine, Boston, Massachusetts
- Framingham Heart Study, Boston University School of Medicine, Boston, Massachusetts
| | - Joseph Massaro
- Department of Epidemiology, School of Public Health, Boston University School of Medicine, Boston, Massachusetts
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Qini Gan
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Saraf Salim
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Rui-ying Zhu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | | | - Xiaoling Zhang
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Sheral Devine
- Department of Epidemiology, School of Public Health, Boston University School of Medicine, Boston, Massachusetts
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Sanford H. Auerbach
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Charles DeCarli
- Alzheimer’s Disease Center, University of California Davis Medical Center, Sacramento
| | - Rhoda Au
- Department of Epidemiology, School of Public Health, Boston University School of Medicine, Boston, Massachusetts
- Framingham Heart Study, Boston University School of Medicine, Boston, Massachusetts
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Wei Qiao Qiu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
22
|
Schultz N, Janelidze S, Byman E, Minthon L, Nägga K, Hansson O, Wennström M. Levels of islet amyloid polypeptide in cerebrospinal fluid and plasma from patients with Alzheimer's disease. PLoS One 2019; 14:e0218561. [PMID: 31206565 PMCID: PMC6576764 DOI: 10.1371/journal.pone.0218561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/03/2019] [Indexed: 12/30/2022] Open
Abstract
The biologically active pancreatic hormone peptide islet amyloid polypeptide (IAPP) regulates brain functions such as appetite and cognition. It also plays a role in clearance of amyloid beta (Aβ), a peptide implicated in the dementia disorder Alzheimer’s disease (AD). If IAPP becomes modified, it loses its biological activity and starts to aggregate. Such aggregations have been found in the AD brain and decreased plasma levels of the unmodified IAPP (uIAPP) have been shown in the same patients. In the current study, we analyze levels of uIAPP and total IAPP (unmodified and modified) in cerebrospinal fluid (CSF) to investigate its potential as a biomarker for AD. We found no differences in neither CSF nor plasma levels of uIAPP or total IAPP in AD patients compared to cognitive healthy individuals (NC). The levels of uIAPP in CSF of NC were positively correlated with uIAPP in plasma, Q-albumin and albumin levels in CSF, but negatively correlated with CSF levels of t-tau and p-tau. These findings were not seen in AD patients. Levels of total CSF IAPP correlated positively with total Q-albumin and albumin levels in CSF in both AD and NC. In addition, total plasma IAPP correlated positively with CSF t-tau and p-tau in NC and negatively with CSF Aβ42 in AD patients. To conclude, our studies did not find evidence supporting the use of CSF IAPP as an AD biomarker. However, our findings, indicating a compromised translocation of uIAPP in and out of the brain in AD patients as well as the correlations between total plasma IAPP and AD biomarkers, encourage further research on the role for IAPP in AD.
Collapse
Affiliation(s)
- Nina Schultz
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Elin Byman
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Lennart Minthon
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Katarina Nägga
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.,Department of Acute Internal Medicine and Geriatrics, Linköping University, Linköping, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Malin Wennström
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| |
Collapse
|
23
|
Kalafateli AL, Vallöf D, Jerlhag E. Activation of amylin receptors attenuates alcohol-mediated behaviours in rodents. Addict Biol 2019; 24:388-402. [PMID: 29405517 PMCID: PMC6585842 DOI: 10.1111/adb.12603] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/14/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Alcohol expresses its reinforcing properties by activating areas of the mesolimbic dopamine system, which consists of dopaminergic neurons projecting from the ventral tegmental area to the nucleus accumbens. The findings that reward induced by food and addictive drugs involve common mechanisms raise the possibility that gut-brain hormones, which control appetite, such as amylin, could be involved in reward regulation. Amylin decreases food intake, and despite its implication in the regulation of natural rewards, tenuous evidence support amylinergic mediation of artificial rewards, such as alcohol. Therefore, the present experiments were designed to investigate the effect of salmon calcitonin (sCT), an amylin receptor agonist and analogue of endogenous amylin, on various alcohol-related behaviours in rodents. We showed that acute sCT administration attenuated the established effects of alcohol on the mesolimbic dopamine system, particularly alcohol-induced locomotor stimulation and accumbal dopamine release. Using the conditioned place preference model, we demonstrated that repeated sCT administration prevented the expression of alcohol's rewarding properties and that acute sCT administration blocked the reward-dependent memory consolidation. In addition, sCT pre-treatment attenuated alcohol intake in low alcohol-consuming rats, with a more evident decrease in high alcohol consumers in the intermittent alcohol access model. Lastly, sCT did not alter peanut butter intake, blood alcohol concentration and plasma corticosterone levels in mice. Taken together, the present data support that amylin signalling is involved in the expression of alcohol reinforcement and that amylin receptor agonists could be considered for the treatment of alcohol use disorder in humans.
Collapse
Affiliation(s)
- Aimilia Lydia Kalafateli
- Department of Pharmacology, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| | - Daniel Vallöf
- Department of Pharmacology, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| |
Collapse
|
24
|
Grizzanti J, Corrigan R, Servizi S, Casadesus G. Amylin Signaling in Diabetes and Alzheimer's Disease: Therapy or Pathology? JOURNAL OF NEUROLOGY & NEUROMEDICINE 2019; 4:12-16. [PMID: 31511851 PMCID: PMC6738967 DOI: 10.29245/2572.942x/2019/1.1212] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Growing evidence highlights the intimate relationship between type II diabetes (T2D) and Alzheimer's disease (AD). Importantly, these two diseases share a number of pathological similarities, including amyloid accumulation, oxidative stress, inflammation, and cell death. To date, drug therapies for AD and T2D are lacking and there is a crucial need for the discovery and development of novel therapeutics for these diseases. A number of human and rodent studies have given evidence that metabolic hormone supplementation is highly valuable for improving cognitive function and overall metabolic health in both T2D and AD. The pancreatic hormone amylin has arisen as a crucial component of the disease etiology of both T2D and AD, though the exact role that amylin plays in these diseases is not yet well understood. Here, we critically review the current literature that utilizes human amylin or its synthetic analogue, pramlintide, as well as amylin receptor antagonists for the treatment of AD.
Collapse
Affiliation(s)
- John Grizzanti
- School of Biomedical Sciences, Kent State University, Ohio, USA
| | - Rachel Corrigan
- School of Biomedical Sciences, Kent State University, Ohio, USA
| | - Spencer Servizi
- School of Biomedical Sciences, Kent State University, Ohio, USA
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Ohio, USA
- Department of Biological Sciences, Kent State University, Ohio, USA
| |
Collapse
|
25
|
Maletínská L, Popelová A, Železná B, Bencze M, Kuneš J. The impact of anorexigenic peptides in experimental models of Alzheimer's disease pathology. J Endocrinol 2019; 240:R47-R72. [PMID: 30475219 DOI: 10.1530/joe-18-0532] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in the elderly population. Numerous epidemiological and experimental studies have demonstrated that patients who suffer from obesity or type 2 diabetes mellitus have a higher risk of cognitive dysfunction and AD. Several recent studies demonstrated that food intake-lowering (anorexigenic) peptides have the potential to improve metabolic disorders and that they may also potentially be useful in the treatment of neurodegenerative diseases. In this review, the neuroprotective effects of anorexigenic peptides of both peripheral and central origins are discussed. Moreover, the role of leptin as a key modulator of energy homeostasis is discussed in relation to its interaction with anorexigenic peptides and their analogs in AD-like pathology. Although there is no perfect experimental model of human AD pathology, animal studies have already proven that anorexigenic peptides exhibit neuroprotective properties. This phenomenon is extremely important for the potential development of new drugs in view of the aging of the human population and of the significantly increasing incidence of AD.
Collapse
Affiliation(s)
- Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Andrea Popelová
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Michal Bencze
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
- Institute of Physiology AS CR, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
- Institute of Physiology AS CR, Prague, Czech Republic
| |
Collapse
|
26
|
Gan Q, Yao H, Na H, Ballance H, Tao Q, Leung L, Tian H, Zhu H, Wolozin B, Qiu WQ. Effects of Amylin Against Amyloid-β-Induced Tauopathy and Synapse Loss in Primary Neurons. J Alzheimers Dis 2019; 70:1025-1040. [PMID: 31306122 PMCID: PMC6833957 DOI: 10.3233/jad-190161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent studies demonstrate that peripheral amylin treatment reduces pathology in mouse models of Alzheimer's disease (AD). However, soluble and aggregated amylin are distinct species; while amylin is a physiological neuropeptide, amylin aggregation is a pathological factor for diabetes. We thus hypothesized that because of their similarity in secondary structures, amylin antagonizes amyloid-β peptide (Aβ)-induced AD pathology in neurons with a dose-dependent pattern. To test the hypothesis, we conducted both in vitro and in vivo experiments with different doses of amylin and with its analog, pramlintide. Here we report that a high concentration of either Aβ or amylin alone induced tau phosphorylation (pTau) in primary neurons. Interestingly, with a low concentration, amylin had direct effects to reverse the Aβ-induced pTau, as well as damaged neuronal synapses and neurite disorganization. However, when the concentration was high (10.24 μM), amylin lost the effects against the Aβ-induced cellular AD pathology and, together with Aβ, worsened tauopathy in neurons. In the 5XFAD AD mouse model, daily peripheral amylin treatment with a low dose (200 μg/kg) more effectively reduced amyloid burden, and increased synapse, but with a high dose (800 μg/kg), it more effectively reduced tauopathy. Correspondingly, amylin treatment improved learning and memory in these mice. It demonstrates that amylin has a dose-dependent U-shape effect against AD pathogenesis. Within a physiological range, amylin is a neuroprotective hormone against AD in neurons; but when both Aβ and amylin concentrations are elevated, imbalance of Aβ and amylin may contribute to brain AD pathogenesis.
Collapse
Affiliation(s)
- Qini Gan
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Hongbo Yao
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
- Department of Histology and Embriology, Qiqihaer Medical University, China
| | - Hana Na
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Heather Ballance
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Qiushan Tao
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Lorene Leung
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Hua Tian
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
- Department of Histology and Embriology, Qiqihaer Medical University, China
| | - Haihao Zhu
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
27
|
Sub-Toxic Human Amylin Fragment Concentrations Promote the Survival and Proliferation of SH-SY5Y Cells via the Release of VEGF and HspB5 from Endothelial RBE4 Cells. Int J Mol Sci 2018; 19:ijms19113659. [PMID: 30463298 PMCID: PMC6274958 DOI: 10.3390/ijms19113659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Human amylin is a 37-residue peptide hormone (hA1-37) secreted by β-cells of the pancreas and, along with insulin, is directly associated with type 2 diabetes mellitus (T2DM). Amyloid deposits within the islets of the pancreas represent a hallmark of T2DM. Additionally, amylin aggregates have been found in blood vessels and/or brain of patients with Alzheimer’s disease, alone or co-deposited with β-amyloid. The purpose of this study was to investigate the neuroprotective potential of human amylin in the context of endothelial-neuronal “cross-talk”. We initially performed dose-response experiments to examine cellular toxicity (quantified by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay) of different hA17–29 concentrations in endothelial cells (RBE4). In the culture medium of these cells, we also measured heat shock protein B5 (HspB5) levels by ELISA, finding that even a sub-toxic concentration of hA17–29 (3 µM) produced an increase of HspB5. Using a cell medium of untreated and RBE4 challenged for 48 h with a sub-toxic concentration of hA17–29, we determined the potential beneficial effect of their addition to the medium of neuroblastoma SH-SY5Y cells. These cells were subsequently incubated for 48 h with a toxic concentration of hA17–29 (20 µM). We found a complete inhibition of hA17–29 toxicity, potentially related to the presence in the conditioned medium not only of HspB5, but also of vascular endothelial growth factor (VEGF). Pre-treating SH-SY5Y cells with the anti-Flk1 antibody, blocking the VEGF receptor 2 (VEGFR2), significantly decreased the protective effects of the conditioned RBE4 medium. These data, obtained by indirectly measuring VEGF activity, were strongly corroborated by the direct measurement of VEGF levels in conditioned RBE4 media as detected by ELISA. Altogether, these findings highlighted a novel role of sub-toxic concentrations of human amylin in promoting the secretion of proteic factors by endothelial cells (HspB5 and VEGF) that support the survival and proliferation of neuron-like cells.
Collapse
|
28
|
Mietlicki-Baase EG. Amylin in Alzheimer's disease: Pathological peptide or potential treatment? Neuropharmacology 2018; 136:287-297. [PMID: 29233636 PMCID: PMC5994175 DOI: 10.1016/j.neuropharm.2017.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease for which we currently lack effective treatments or a cure. The pancreatic peptide hormone amylin has recently garnered interest as a potential pharmacological target for the treatment of AD. A number of studies have demonstrated that amylin and amylin analogs like the FDA-approved diabetes drug pramlintide can reduce amyloid burden in the brain and improve cognitive symptoms of AD. However, other data suggest that amylin may have pathological effects in AD due to its propensity to misfold and aggregate under certain conditions. Here, the literature supporting a beneficial versus harmful role of amylin in AD is reviewed. Additionally, several critical gaps in the literature are discussed, such as our limited understanding of the amylin system during aging and in disease states, as well as complexities of amylin receptor signaling and of changing pathophysiology during AD progression that might underlie the seemingly conflicting or contradictory results in the amylin/AD literature. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
29
|
Hendrikse ER, Bower RL, Hay DL, Walker CS. Molecular studies of CGRP and the CGRP family of peptides in the central nervous system. Cephalalgia 2018; 39:403-419. [PMID: 29566540 DOI: 10.1177/0333102418765787] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide is an important target for migraine and other painful neurovascular conditions. Understanding the normal biological functions of calcitonin gene-related peptide is critical to understand the mechanisms of calcitonin gene-related peptide-blocking therapies as well as engineering improvements to these medications. Calcitonin gene-related peptide is closely related to other peptides in the calcitonin gene-related peptide family of peptides, including amylin. Relatedness in peptide sequence and in receptor biology makes it difficult to tease apart the contributions that each peptide and receptor makes to physiological processes and to disorders. SUMMARY The focus of this review is the expression of calcitonin gene-related peptide, related peptides and their receptors in the central nervous system. Calcitonin gene-related peptide is expressed throughout the nervous system, whereas amylin and adrenomedullin have only limited expression at discrete sites in the brain. The components of two receptors that respond to calcitonin gene-related peptide, the calcitonin gene-related peptide receptor (calcitonin receptor-like receptor with receptor activity-modifying protein 1) and the AMY1 receptor (calcitonin receptor with receptor activity-modifying protein 1), are expressed throughout the nervous system. Understanding expression of the peptides and their receptors lays the foundation for more deeply understanding their physiology, pathophysiology and therapeutic use.
Collapse
Affiliation(s)
- Erica R Hendrikse
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Rebekah L Bower
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand.,2 Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
30
|
Tofoleanu F, Yuan Y, Pickard FC, Tywoniuk B, Brooks BR, Buchete NV. Structural Modulation of Human Amylin Protofilaments by Naturally Occurring Mutations. J Phys Chem B 2018; 122:5657-5665. [PMID: 29406755 DOI: 10.1021/acs.jpcb.7b12083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37-amino-acid peptide, co-secreted with insulin, and widely found in fibril form in type-2 diabetes patients. By using all-atom molecular dynamics simulations, we study hIAPP fibril segments (i.e., fibrillar oligomers) formed with sequences of naturally occurring variants from cat, rat, and pig, presenting different aggregation propensities. We characterize the effect of mutations on the structural dynamics of solution-formed hIAPP fibril models built from solid-state NMR data. Results from this study are in agreement with experimental observations regarding their respective relative aggregation propensities. We analyze in detail the specific structural characteristics and infer mechanisms that modulate the conformational stability of amylin fibrils. Results provide a platform for further studies and the design of new drugs that could interfere with amylin aggregation and its cytotoxicity. One particular mutation, N31K, has fibril-destabilizing properties, and could potentially improve the solubility of therapeutic amylin analogs.
Collapse
Affiliation(s)
- Florentina Tofoleanu
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States.,Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Ye Yuan
- Institute for Discovery , University College Dublin , Belfield, Dublin 4 , Ireland.,School of Physics , University College Dublin , Dublin 4 , Ireland
| | - Frank C Pickard
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Bartłomiej Tywoniuk
- Institute for Discovery , University College Dublin , Belfield, Dublin 4 , Ireland.,School of Physics , University College Dublin , Dublin 4 , Ireland
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Nicolae-Viorel Buchete
- Institute for Discovery , University College Dublin , Belfield, Dublin 4 , Ireland.,School of Physics , University College Dublin , Dublin 4 , Ireland
| |
Collapse
|
31
|
Souza LC, Jesse CR, Del Fabbro L, de Gomes MG, Gomes NS, Filho CB, Goes ATR, Wilhelm EA, Luchese C, Roman SS, Boeira SP. Aging exacerbates cognitive and anxiety alterations induced by an intracerebroventricular injection of amyloid-β 1-42 peptide in mice. Mol Cell Neurosci 2018; 88:93-106. [PMID: 29369791 DOI: 10.1016/j.mcn.2018.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/25/2022] Open
Abstract
An increasing body of evidence indicates that the activation of indoleamine-2,3-dyoxigenase (IDO), a first and rate-limiting enzyme in the kynurenine (KYN) pathway, is involved in Aβ1-42-neurotoxicity and AD pathogenesis. We have reported for the first time that brain IDO activation is related to Aβ1-42 exposure in young mice. Because aging is characterized by a brain dyshomeostasis and because it remains the most dominant risk factor for AD, the purpose of this study was to determine whether aging is associated with a higher sensitivity to behavioural and neurochemical alterations elicited by an intracerebroventricular (i.c.v.) injection of Aβ1-42 (400 pmol/mice), and whether KYN pathway is involved in these effects. We confirmed that aged mice displayed higher cognitive deficit in the object recognition test and higher anxiety-like behaviour in the elevated plus-maze and open field tests after the Aβ1-42 administration. Aged mice also responded to Aβ1-42 with a higher deficiency of brain-derived neurotrophic factor, glutathione levels and total radical-trapping antioxidant capacity, a higher IDO activity, and a higher KYN and KYN/tryptophan ratio in the prefrontal cortex and hippocampus. These effects of Aβ1-42 were associated with a higher proinflammatory status, as measured by higher levels of interleukin-6, lower levels of interleukin-10 and higher expression of glial fibrillary acidic protein (GFAP) and allograft inflammatory factor 1 (Iba1) in the brain of aged mice. These results represent primary evidence suggesting that age-associated inflammatory signature and down-regulation of neuroprotectants in the brain render aged mice more vulnerable to Aβ1-42-induced memory loss, anxiety symptoms and KYN pathway dysregulation.
Collapse
Affiliation(s)
- Leandro Cattelan Souza
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, Brazil.
| | - Cristiano R Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Lucian Del Fabbro
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Marcelo Gomes de Gomes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Nathalie Savedra Gomes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Carlos Borges Filho
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - André Tiago Rossito Goes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Ethel Antunes Wilhelm
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário, s/n, 96160-000 Capão do Leão, RS, Brazil
| | - Cristiane Luchese
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário, s/n, 96160-000 Capão do Leão, RS, Brazil
| | | | - Silvana Peterini Boeira
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, Brazil
| |
Collapse
|
32
|
Tao Q, Zhu H, Chen X, Stern RA, Kowall N, Au R, Blusztajn JK, Qiu WQ. Pramlintide: The Effects of a Single Drug Injection on Blood Phosphatidylcholine Profile for Alzheimer's Disease. J Alzheimers Dis 2018; 62:597-609. [PMID: 29480193 PMCID: PMC5956916 DOI: 10.3233/jad-170948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Studies suggest that a single injection of pramlintide, an amylin analog, induces changes in Alzheimer's disease (AD) biomarkers in the blood of AD mouse models and AD patients. The aim of this study was to examine whether a pramlintide challenge combined with a phosphatidylcholine (PC) profile diagnoses of AD and mild cognitive impairment (MCI) better than PC alone. Non-diabetic subjects with cognitive status were administered a single subcutaneous injection of 60 mcg of pramlintide under fasting condition. A total of 71 PCs, amyloid-β peptide (Aβ), and total tau (t-tau) in plasma at different time points were measured and treated as individual variables. A single injection of pramlintide altered the levels of 7 PCs in the blood, while a pramlintide injection plus food modulated the levels of 10 PCs in the blood (p < 0.05). The levels of 2 PCs in MCI and 12 PCs in AD in the pramlintide challenge were significantly lower than the ones in controls. We found that while some PCs were associated with only Aβ levels, other PCs were associated with both Aβ and t-tau levels. A receiver operating characteristic analysis of the PCs was combined with the Aβ and t-tau data to produce an area under the curve predictive value of 0.9799 between MCI subjects and controls, 0.9794 between AD subjects and controls, and 0.9490 between AD and MCI subjects. A combination of AD biomarkers and a group of PCs post a pramlintide challenge may provide a valuable diagnostic and prognostic test for AD and MCI.
Collapse
Affiliation(s)
- Qiushan Tao
- Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA
| | - Haihao Zhu
- Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA
| | - Xi Chen
- Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA
| | - Robert A. Stern
- Neurology, Boston University School of Medicine, Boston, MA
- Neurosurgery, Boston University School of Medicine, Boston, MA
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
| | - Neil Kowall
- Neurology, Boston University School of Medicine, Boston, MA
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
| | - Rhoda Au
- Neurology, Boston University School of Medicine, Boston, MA
- Departments of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA
| | - Jan Krzysztof Blusztajn
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Wei Qiao Qiu
- Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
- Departments of Psychiatry, Boston University School of Medicine, Boston, MA
| |
Collapse
|
33
|
Fu W, Vukojevic V, Patel A, Soudy R, MacTavish D, Westaway D, Kaur K, Goncharuk V, Jhamandas J. Role of microglial amylin receptors in mediating beta amyloid (Aβ)-induced inflammation. J Neuroinflammation 2017; 14:199. [PMID: 28985759 PMCID: PMC5639602 DOI: 10.1186/s12974-017-0972-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023] Open
Abstract
Background Neuroinflammation in the brain consequent to activation of microglia is viewed as an important component of Alzheimer’s disease (AD) pathology. Amyloid beta (Aβ) protein is known to activate microglia and unleash an inflammatory cascade that eventually results in neuronal dysfunction and death. In this study, we sought to identify the presence of amylin receptors on human fetal and murine microglia and determine whether Aβ activation of the inflammasome complex and subsequent release of cytokines is mediated through these receptors. Methods The presence of dimeric components of the amylin receptor (calcitonin receptor and receptor activity modifying protein 3) were first immunohistochemically identified on microglia. Purified human fetal microglial (HFM) cultures were incubated with an in vivo microglial marker, DyLight 594-conjugated tomato lectin, and loaded with the membrane-permeant green fluorescent dye, Fluo-8L-AM for measurements of intracellular calcium [Ca2+]i. HFM and BV-2 cells were primed with lipopolysaccharide and then exposed to either human amylin or soluble oligomeric Aβ1–42 prior to treatment with and without the amylin receptor antagonist, AC253. Changes in the inflammasome complex, NLRP3 and caspase-1, were examined in treated cell cultures with Western blot and fluorometric assays. RT-PCR measurements were performed to assess cytokine release. Finally, in vivo studies were performed in transgenic mouse model of AD (5xFAD) to examine the effects of systemic administration of AC253 on markers of neuroinflammation in the brain. Results Acute applications of human amylin or Aβ1–42 resulted in an increase in [Ca2+]i that could be blocked by the amylin receptor antagonist, AC253. Activation of the NLRP3 and caspase-1 and subsequent release of cytokines, TNFα and IL-1β, was diminished by AC253 pretreatment of HFMs and BV2 cells. In vivo, intraperitoneal administration of AC253 resulted in a reduction in microglial markers (Iba-1 and CD68), caspase-1, TNFα, and IL-1β. These reductions in inflammatory markers were accompanied by reduction in amyloid plaque and size in the brains of 5xFAD mice compared to controls. Conclusion Microglial amylin receptors mediate Aβ-evoked inflammation, and amylin receptor antagonists therefore offer an attractive therapeutic target for intervention in AD. Electronic supplementary material The online version of this article (10.1186/s12974-017-0972-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen Fu
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, 530 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - Vlatka Vukojevic
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, 530 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - Aarti Patel
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, 530 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - Rania Soudy
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, 530 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada.,Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - David MacTavish
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, 530 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - David Westaway
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, 530 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Kamaljit Kaur
- Chapman University School of Pharmacy, Irvine, CA, USA
| | | | - Jack Jhamandas
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, 530 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
34
|
Amylin and its G-protein-coupled receptor: A probable pathological process and drug target for Alzheimer's disease. Neuroscience 2017; 356:44-51. [PMID: 28528968 DOI: 10.1016/j.neuroscience.2017.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022]
Abstract
G-protein-coupled receptors (GPCRs) are shown to be involved in Alzheimer's disease (AD) pathogenesis. However, because GPCRs include a large family of membrane receptors, it is unclear which specific GPCR or pathway with rational ligands can become effective therapeutic targets for AD. Amylin receptor (AmR) is a GPCR that mediates several activities, such as improving glucose metabolism, relaxing cerebrovascular structure, modulating inflammatory reactions and potentially enhancing neural regeneration. Recent studies show that peripheral treatments with amylin or its clinical analog, pramlintide, reduced several components of AD pathology, including amyloid plaques, tauopathy, neuroinflammation and other components in the brain, corresponding with improved learning and memory in AD mouse models. Because amylin shares a similar secondary structure with amyloid-β peptide (Aβ), I propose that the AmR/GPCR pathway is disturbed by a large amount of Aβ in the AD brain, leading to tau phosphorylation, neuroinflammation and neuronal death in the pathological cascade. Amylin-type peptides, readily crossing the blood-brain barrier (BBB), are the rational ligands to enhance this GPCR pathway and may exhibit utility as novel therapeutic agents for treating AD.
Collapse
|