1
|
Opwonya J, Kim K, Lee KH, Kim JI, Kim JU. Task-evoked pupillary responses as potential biomarkers of mild cognitive impairment. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70019. [PMID: 39391021 PMCID: PMC11465026 DOI: 10.1002/dad2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Eye movement alterations are effective biomarkers for Alzheimer's disease (AD). This study examines task-evoked pupillary responses (TEPRs) as potential biomarkers of the mild cognitive impairment (MCI), the symptomatic stage preceding AD. METHODS The prospective cohort study included 213 MCI patients and 514 cognitively normal controls (CNs). Participants performed a prosaccade (PS) or antisaccade (AS) task while their eye movements were tracked using a Tobii Pro Spectrum system. RESULTS The CNs showed unique TEPRs linked to better performance, characterized by larger baselines, greater PS target-onset variability, and smaller AS target-onset variability. Conversely, for MCI patients, better performance was linked to larger AS target-onset sizes. Furthermore, MCI patients displayed reduced dilation during the cue and target-onset periods compared to CNs. DISCUSSION MCI patients showed altered pupillary response patterns associated with cognitive task performance, highlighting the potential of oculomotor changes as a biomarker for early cognitive decline. Highlights MCI patients displayed markedly smaller pupil dilation than CNs in response to cue and target stimuli.For MCI patients, larger pupil size upon target appearance during antisaccades correlated with better performance.Faster and more consistent prosaccades were linked to better performance in both groups.For MCI patients, the association between longer AS latencies and better performance was more pronounced than in CNs.Combined analysis of TEPRs and saccade performances in a sizeable cohort strengthens the generalizability of our findings to the broader MCI population.
Collapse
Affiliation(s)
- Julius Opwonya
- Digital Health Research DivisionKorea Institute of Oriental MedicineDaejeonSouth Korea
- Korean Convergence Medical ScienceUniversity of Science and TechnologyDaejeonSouth Korea
| | - Kahye Kim
- Digital Health Research DivisionKorea Institute of Oriental MedicineDaejeonSouth Korea
| | - Kun Ho Lee
- Gwangju Alzheimer's Disease and Related Dementias (GARD) Cohort Research CenterChosun UniversityGwangjuSouth Korea
- Department of Biomedical ScienceChosun UniversityGwangjuSouth Korea
- Dementia Research GroupKorea Brain Research InstituteDaeguSouth Korea
| | - Joong Il Kim
- Digital Health Research DivisionKorea Institute of Oriental MedicineDaejeonSouth Korea
- Korean Convergence Medical ScienceUniversity of Science and TechnologyDaejeonSouth Korea
| | - Jaeuk U. Kim
- Digital Health Research DivisionKorea Institute of Oriental MedicineDaejeonSouth Korea
- Korean Convergence Medical ScienceUniversity of Science and TechnologyDaejeonSouth Korea
| |
Collapse
|
2
|
Lee YT, Chang YH, Tsai HJ, Chao SP, Chen DYT, Chen JT, Cherng YG, Wang CA. Altered pupil light and darkness reflex and eye-blink responses in late-life depression. BMC Geriatr 2024; 24:545. [PMID: 38914987 PMCID: PMC11194921 DOI: 10.1186/s12877-024-05034-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/02/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Late-life depression (LLD) is a prevalent neuropsychiatric disorder in the older population. While LLD exhibits high mortality rates, depressive symptoms in older adults are often masked by physical health conditions. In younger adults, depression is associated with deficits in pupil light reflex and eye blink rate, suggesting the potential use of these responses as biomarkers for LLD. METHODS We conducted a study using video-based eye-tracking to investigate pupil and blink responses in LLD patients (n = 25), older (OLD) healthy controls (n = 29), and younger (YOUNG) healthy controls (n = 25). The aim was to determine whether there were alterations in pupil and blink responses in LLD compared to both OLD and YOUNG groups. RESULTS LLD patients displayed significantly higher blink rates and dampened pupil constriction responses compared to OLD and YOUNG controls. While tonic pupil size in YOUNG differed from that of OLD, LLD patients did not exhibit a significant difference compared to OLD and YOUNG controls. GDS-15 scores in older adults correlated with light and darkness reflex response variability and blink rates. PHQ-15 scores showed a correlation with blink rates, while MoCA scores correlated with tonic pupil sizes. CONCLUSIONS The findings demonstrate that LLD patients display altered pupil and blink behavior compared to OLD and YOUNG controls. These altered responses correlated differently with the severity of depressive, somatic, and cognitive symptoms, indicating their potential as objective biomarkers for LLD.
Collapse
Affiliation(s)
- Yao-Tung Lee
- Department of Psychiatry, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsuan Chang
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan
| | - Hsu-Jung Tsai
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shu-Ping Chao
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City, Taiwan
- Dementia Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - David Yen-Ting Chen
- Department of Medical Image, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Jui-Tai Chen
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yih-Giun Cherng
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chin-An Wang
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
3
|
Pitigoi IC, Coe BC, Calancie OG, Brien DC, Yep R, Riek HC, Kirkpatrick RH, Noyes BK, White BJ, Blohm G, Munoz DP. Attentional modulation of eye blinking is altered by sex, age, and task structure. eNeuro 2024; 11:ENEURO.0296-23.2024. [PMID: 38331578 PMCID: PMC10915461 DOI: 10.1523/eneuro.0296-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024] Open
Abstract
Spontaneous eye blinking is gaining popularity as a proxy for higher cognitive functions, as it is readily modulated by both environmental demands and internal processes. Prior studies were impoverished in sample size, sex representation and age distribution, making it difficult to establish a complete picture of the behavior. Here we present eye-tracking data from a large cohort of normative participants (n=604, 393 F, aged 5-93 years) performing two tasks: one with structured, discrete trials (interleaved pro/anti-saccade task; IPAST) and one with a less structured, continuous organization in which participants watch movies (free-viewing; FV). Sex- and age-based analyses revealed that females had higher blink rates between the ages of 22 and 58 years in the IPAST, and 22 and 34 years in FV. We derived a continuous measure of blink probability to reveal behavioral changes driven by stimulus appearance in both paradigms. In the IPAST, blinks were suppressed near stimulus appearance, particularly on correct anti-saccade trials, which we attribute to the stronger inhibitory control required for anti-saccades compared to pro-saccades. In FV, blink suppression occurred immediately after scene changes, and the effect was sustained on scenes where gaze clustered among participants (indicating engagement of attention). Females were more likely than males to blink during appearance of novel stimuli in both tasks, but only within the age bin of 18-44 years. The consistency of blink patterns in each paradigm endorses blinking as a sensitive index for changes in visual processing and attention, while sex and age differences drive interindividual variability.Significance Statement Eye-tracking is becoming useful as a non-invasive tool for detecting preclinical markers of neurological and psychiatric disease. Blinks are understudied despite being an important supplement to saccade and pupil eye-tracking metrics. The present study is a crucial step in developing a healthy baseline for blink behavior to compare to clinical groups. While many prior blink studies suffered from small sample sizes with relatively low age- and sex-diversity (review by Jongkees & Colzato, 2016), our large cohort of healthy participants has permitted a more detailed analysis of sex and age effects in blink behavior. Furthermore, our analysis techniques are robust to temporal changes in blink probability, greatly clarifying the relationship between blinking, visual processing, and inhibitory control mechanisms on visual tasks.
Collapse
Affiliation(s)
- Isabell C Pitigoi
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Brian C Coe
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Olivia G Calancie
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Donald C Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Rachel Yep
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Heidi C Riek
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Ryan H Kirkpatrick
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Blake K Noyes
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Brian J White
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Gunnar Blohm
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
4
|
Antoniades CA, Spering M. Eye movements in Parkinson's disease: from neurophysiological mechanisms to diagnostic tools. Trends Neurosci 2024; 47:71-83. [PMID: 38042680 DOI: 10.1016/j.tins.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 12/04/2023]
Abstract
Movement disorders such as Parkinson's disease (PD) impact oculomotor function - the ability to move the eyes accurately and purposefully to serve a multitude of sensory, cognitive, and secondary motor tasks. Decades of neurophysiological research in monkeys and behavioral studies in humans have characterized the neural basis of healthy oculomotor control. This review links eye movement abnormalities in persons living with PD to the underlying neurophysiological mechanisms and pathways. Building on this foundation, we highlight recent progress in using eye movements to gauge symptom severity, assess treatment effects, and serve as potential precision biomarkers. We conclude that whereas eye movements provide insights into PD mechanisms, based on current evidence they appear to lack sufficient sensitivity and specificity to serve as a standalone diagnostic tool. Their full potential may be realized when combined with other disease indicators in big datasets.
Collapse
Affiliation(s)
- Chrystalina A Antoniades
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK.
| | - Miriam Spering
- Department of Ophthalmology & Visual Sciences and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
5
|
Huang J, Brien D, Coe BC, Longoni G, Mabbott DJ, Munoz DP, Yeh EA. Delayed oculomotor response associates with optic neuritis in youth with demyelinating disorders. Mult Scler Relat Disord 2023; 79:104969. [PMID: 37660456 DOI: 10.1016/j.msard.2023.104969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION Impairment in visual and cognitive functions occur in youth with demyelinating disorders such as multiple sclerosis, neuromyelitis optica spectrum disorder, and myelin oligodendrocyte glycoprotein antibody-associated disease. Quantitative behavioral assessment using eye-tracking and pupillometry can provide functional metrics for important prognostic and clinically relevant information at the bedside. METHODS Children and adolescents diagnosed with demyelinating disorders and healthy, age-matched controls completed an interleaved pro- and anti-saccade task using video-based eye-tracking and underwent spectral-domain optical coherence tomography examination for evaluation of retinal nerve fiber layer and ganglion cell inner plexiform layer thickness. Low-contrast visual acuity and Symbol Digit Modalities Test were performed for visual and cognitive functional assessments. We assessed saccade and pupil parameters including saccade reaction time, direction error rate, pupil response latency, peak constriction time, and peak constriction and dilation velocities. Generalized Estimating Equations were used to examine the association of eye-tracking parameters with optic neuritis history, structural metrics, and visual and cognitive scores. RESULTS The study included 36 demyelinating disorders patients, aged 8-18 yrs. (75% F; median = 15.22 yrs., SD = 2.8) and 34 age-matched controls (65% F; median = 15.26 yrs., SD = 2.3). Surprisingly, pro- and anti-saccade performance was comparable between patients and controls, whereas pupil control was altered in patients. Oculomotor latency measures were strongly associated with the number of optic neuritis episodes, including saccade reaction time, pupil response latency, and peak constriction time. Peak constriction time was associated with both retinal nerve fiber layer and ganglion cell inner plexiform layer thickness. Pupil response latency and peak constriction time were associated with visual acuity. Pupil velocity for both constriction and dilation was associated with Symbol Digit Modalities Test scores. CONCLUSION The strong associations between oculomotor measures with history of optic neuritis, structural, visual, and cognitive assessments in these cohorts demonstrates that quantitative eye-tracking can be useful for probing demyelinating injury of the brain and optic nerve. Future studies should evaluate their utility in discriminating between demyelinating disorders and tracking disease progression.
Collapse
Affiliation(s)
- Jeff Huang
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Donald Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Brian C Coe
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Giulia Longoni
- Department of Pediatrics (Neurology), The Hospital for Sick Children, Division of Neuroscience and Mental Health, SickKids Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Donald J Mabbott
- Department of Psychology, The Hospital for Sick Children, Division of Neuroscience and Mental Health, SickKids Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - E Ann Yeh
- Department of Pediatrics (Neurology), The Hospital for Sick Children, Division of Neuroscience and Mental Health, SickKids Research Institute, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Sánchez-Sáez X, Ortuño-Lizarán I, Sánchez-Castillo C, Lax P, Cuenca N. Starburst amacrine cells, involved in visual motion perception, loose their synaptic input from dopaminergic amacrine cells and degenerate in Parkinson's disease patients. Transl Neurodegener 2023; 12:17. [PMID: 37013599 PMCID: PMC10071607 DOI: 10.1186/s40035-023-00348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The main clinical symptoms characteristic of Parkinson's disease (PD) are bradykinesia, tremor, and other motor deficits. However, non-motor symptoms, such as visual disturbances, can be identified at early stages of the disease. One of these symptoms is the impairment of visual motion perception. Hence, we sought to determine if the starburst amacrine cells, which are the main cellular type involved in motion direction selectivity, are degenerated in PD and if the dopaminergic system is related to this degeneration. METHODS Human eyes from control (n = 10) and PD (n = 9) donors were available for this study. Using immunohistochemistry and confocal microscopy, we quantified starburst amacrine cell density (choline acetyltransferase [ChAT]-positive cells) and the relationship between these cells and dopaminergic amacrine cells (tyrosine hydroxylase-positive cells and vesicular monoamine transporter-2-positive presynapses) in cross-sections and wholemount retinas. RESULTS First, we found two different ChAT amacrine populations in the human retina that presented different ChAT immunoreactivity intensity and different expression of calcium-binding proteins. Both populations are affected in PD and their density is reduced compared to controls. Also, we report, for the first time, synaptic contacts between dopaminergic amacrine cells and ChAT-positive cells in the human retina. We found that, in PD retinas, there is a reduction of the dopaminergic synaptic contacts into ChAT cells. CONCLUSIONS Taken together, this work indicates degeneration of starburst amacrine cells in PD related to dopaminergic degeneration and that dopaminergic amacrine cells could modulate the function of starburst amacrine cells. Since motion perception circuitries are affected in PD, their assessment using visual tests could provide new insights into the diagnosis of PD.
Collapse
Grants
- FEDER-PID 2019-106230RB-I00 Ministerio de Ciencia e Innovación
- FEDER-PID 2019-106230RB-I00 Ministerio de Ciencia e Innovación
- FPU16/04114 Ministerio de Universidades
- RETICS-FEDER RD16/0008/0016 Instituto de Salud Carlos III
- IDIFEDER/2017/064 Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana
- PROMETEO/2021/024 Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana
- PROMETEO/2021/024 Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana
- APOSTD/2020/245 Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana
- 2019/00286/001 Es Retina Asturias
- 2019/00286/001 Es Retina Asturias
Collapse
Affiliation(s)
- Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig, Spain
| | - Isabel Ortuño-Lizarán
- Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig, Spain
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig, Spain.
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain.
- Ramón Margalef Institute, University of Alicante, San Vicente del Raspeig, Spain.
| |
Collapse
|
7
|
Zeeman M, Figeys M, Brimmo T, Burnstad C, Hao J, Kim ES. Task-Evoked Pupillary Response as a Potential Biomarker of Dementia and Mild Cognitive Impairment: A Scoping Review. Am J Alzheimers Dis Other Demen 2023; 38:15333175231160010. [PMID: 36896819 PMCID: PMC10580717 DOI: 10.1177/15333175231160010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Pupil dilation functions as a proxy for cognitive effort and can be measured through automated pupillometry. The aim of this scoping review is to examine how individuals with cognitive impairment differ in task-evoked pupillary responses relative to cognitively healthy individuals. A systematic literature search across six databases was conducted to identify studies examining changes in pupillary responses evoked by cognitive tasks comparing patients with dementia to healthy controls. Eight articles met inclusion criteria and were included for review. Differences in task-evoked pupillary response between cognitively impaired and cognitively healthy participants were observed across studies. Pupil dilation is decreased in patients with Alzheimer's Disease compared to controls, with no difference observed in patients with mild cognitive impairment. A mild, non-significant trend towards reduced pupil dilation in patients with either Parkinson's Disease or Dementia with Lewy Bodies suggests a similar but less pronounced effect than in AD patients. Further research is required to examine the utility of task-evoked pupillary responses as a potential biomarker indexing cognitive decline in individuals transitioning to mild cognitive impairment and/or dementia.
Collapse
Affiliation(s)
- Michael Zeeman
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mathieu Figeys
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tolani Brimmo
- Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Cleo Burnstad
- Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Jasmine Hao
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Esther S Kim
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Communication Sciences and Disorders, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Pupil size as a robust marker of attentional bias toward nicotine-related stimuli in smokers. Psychon Bull Rev 2022; 30:596-607. [PMID: 36229711 PMCID: PMC9559544 DOI: 10.3758/s13423-022-02192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2022] [Indexed: 12/02/2022]
Abstract
Spatial attention can be magnetically attracted by behaviorally salient stimuli. This phenomenon occasionally conflicts with behavioral goals, leading to maladaptive consequences, as in the case of addiction, in which attentional biases have been described and linked with clinically meaningful variables, such as craving level or dependence intensity. Here, we sought to probe the markers of attentional priority in smokers through eye-tracking measures, by leveraging the established link between eye movements and spatial attention. We were particularly interested in potential markers related to pupil size, because pupil diameter reflects a range of autonomic, affective, and cognitive/attentional reactions to behaviorally significant stimuli and is a robust marker of appetitive and aversive learning. We found that changes in pupil size to nicotine-related visual stimuli could reliably predict, in cross-validated logistic regression, the smoking status of young smokers (showing pupil constriction) better than more traditional proxy measures. The possibility that pupil constriction may reflect a bias toward central vision, for example, attentional capture, is discussed in terms of sensory tuning with respect to nicotine-related stimuli. Pupil size was more sensitive at lower nicotine dependence levels, and at increased abstinence time (though these two variables were collinear). We conclude that pupillometry can provide a robust marker for attentional priority computation and useful indications regarding motivational states and individual attitudes toward conditioned stimuli.
Collapse
|
9
|
Karpouzian-Rogers T, Sweeney JA, Rubin LH, McDowell J, Clementz BA, Gershon E, Keshavan MS, Pearlson GD, Tamminga CA, Reilly JL. Reduced task-evoked pupillary response in preparation for an executive cognitive control response among individuals across the psychosis spectrum. Schizophr Res 2022; 248:79-88. [PMID: 35963057 DOI: 10.1016/j.schres.2022.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022]
Abstract
Task-evoked pupillary response (TEPR) is a measure of physiological arousal modulated by cognitive demand. Healthy individuals demonstrate greater TEPR prior to correct versus error antisaccade trials and correct antisaccade versus visually guided saccade (VGS) trials. The relationship between TEPR and antisaccade performance in individuals with psychotic disorders and their relatives has not been investigated. Probands with schizophrenia, schizoaffective disorder, psychotic bipolar disorder, their first-degree relatives, and controls from the B-SNIP study completed antisaccade and VGS tasks. TEPR prior to execution of responses on these tasks was evaluated among controls compared to probands and relatives according to diagnostic groups and neurobiologically defined subgroups (biotypes). Controls demonstrated greater TEPR on antisaccade correct versus error versus VGS trials. TEPR was not differentiated between antisaccade correct versus error trials in bipolar or schizophrenia probands, though was greater on antisaccade compared to prosaccade trials. There was no modulation of TEPR in schizoaffective probands. Relatives of schizophrenia and schizoaffective probands and those with elevated psychosis spectrum traits failed to demonstrate differential TEPR on antisaccade correct versus error trials. No proband or relative biotypes demonstrated differential TEPR on antisaccade correct versus error trials, and only proband biotype 3 and relative biotypes 3 and 2 demonstrated greater TEPR on antisaccade versus VGS trials. Our findings suggest that aberrant modulation of preparatory activity prior to saccade execution contributes to impaired executive cognitive control across the psychosis spectrum, including nonpsychotic relatives with elevated clinical risk. Reduced pupillary modulation under cognitive challenge may thus be a biomarker for the psychosis phenotype.
Collapse
Affiliation(s)
- Tatiana Karpouzian-Rogers
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Leah H Rubin
- Departments of Neurology and Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, United States of America; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Jennifer McDowell
- Department of Psychology, University of Georgia, Athens, GA, United States of America
| | - Brett A Clementz
- Department of Psychology, University of Georgia, Athens, GA, United States of America
| | - Elliot Gershon
- Psychiatry, University of Chicago, Chicago, IL, United States of America
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neurobiology, Yale University and Olin Neuropsychiatric Research Center, Hartford, CT, United States of America
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - James L Reilly
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America.
| |
Collapse
|
10
|
Ba F, Sang TT, He W, Fatehi J, Mostofi E, Zheng B. Stereopsis and Eye Movement Abnormalities in Parkinson’s Disease and Their Clinical Implications. Front Aging Neurosci 2022; 14:783773. [PMID: 35211005 PMCID: PMC8861359 DOI: 10.3389/fnagi.2022.783773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022] Open
Abstract
Background Parkinson’s disease (PD) is not exclusively a motor disorder. Among non-motor features, patients with PD possess sensory visual dysfunctions. Depth perception and oculomotor deficits can significantly impact patients’ motor performance. Stereopsis and eye behavioral study using 3D stimuli may help determine their implications in disease status. Objective The objective of this study is to investigate stereopsis and eye movement abnormalities in PD with reliable tools and their correlation with indicators of PD severity. We hypothesize that patients with PD exhibit different eye behaviors and that these differences may correlate to the severity of motor symptoms and cognitive status. Methods Control and PD participants were first evaluated for visual acuity, visual field, contrast acuity, and stereo perception with 2D and Titmus stereotests, followed by the assessment with a 3D active shutter system. Eye movement behaviors were assessed by a Tobii X2-60 eye tracker. Results Screening visual tests did not reveal any differences between the PD and control groups. With the 3D active shutter system, the PD group demonstrated significantly worse stereopsis. The preserved cognitive function was correlated to a more intact stereo function. Patients with PD had longer visual response times, with a higher number of fixations and bigger saccade amplitude, suggesting fixation stabilization difficulties. Such changes showed a positive correlation with the severity of motor symptoms and a negative correlation with normal cognitive status. Conclusion We assessed stereopsis with a 3D active shutter system and oculomotor behaviors with the Tobii eye tracker. Patients with PD exhibit poorer stereopsis and impaired oculomotor behaviors during response time. These deficits were correlated with PD motor and cognitive status. The visual parameters may potentially serve as the clinical biomarkers for PD.
Collapse
Affiliation(s)
- Fang Ba
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Fang Ba,
| | - Tina T. Sang
- Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Wenjing He
- Surgical Simulation Research Lab, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Jaleh Fatehi
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Emanuel Mostofi
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Bin Zheng
- Surgical Simulation Research Lab, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Kuraoka K, Nakamura K. Facial temperature and pupil size as indicators of internal state in primates. Neurosci Res 2022; 175:25-37. [PMID: 35026345 DOI: 10.1016/j.neures.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 11/15/2022]
Abstract
Studies in human subjects have revealed that autonomic responses provide objective and biologically relevant information about cognitive and affective states. Measures of autonomic responses can also be applied to studies of non-human primates, which are neuro-anatomically and physically similar to humans. Facial temperature and pupil size are measured remotely and can be applied to physiological experiments in primates, preferably in a head-fixed condition. However, detailed guidelines for the use of these measures in non-human primates is lacking. Here, we review the neuronal circuits and methodological considerations necessary for measuring and analyzing facial temperature and pupil size in non-human primates. Previous studies have shown that the modulation of these measures primarily reflects sympathetic reactions to cognitive and emotional processes, including alertness, attention, and mental effort, over different time scales. Integrated analyses of autonomic, behavioral, and neurophysiological data in primates are promising methods that reflect multiple dimensions of emotion and could potentially provide tools for understanding the mechanisms underlying neuropsychiatric disorders and vulnerabilities characterized by cognitive and affective disturbances.
Collapse
Affiliation(s)
- Koji Kuraoka
- Department of Physiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Kae Nakamura
- Department of Physiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
12
|
Waldthaler J, Stock L, Student J, Sommerkorn J, Dowiasch S, Timmermann L. Antisaccades in Parkinson's Disease: A Meta-Analysis. Neuropsychol Rev 2021; 31:628-642. [PMID: 33742354 PMCID: PMC8592977 DOI: 10.1007/s11065-021-09489-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/18/2021] [Indexed: 11/29/2022]
Abstract
The usefulness of eye-tracking tasks as potential biomarkers for motor or cognitive disease burden in Parkinson's disease (PD) has been subject of debate for many years. Several studies suggest that the performance in the antisaccade task may be altered in patients with PD and associated with motor disease severity or executive dysfunction. In this meta-analysis, random effects models were used to synthesize the existing evidence on antisaccade error rates and latency in PD. Furthermore, meta-regressions were performed to assess the role of motor and cognitive disease severity, dopaminergic medication and methodological factors. Additionally, the impact of acute levodopa administration and activation of deep brain stimulation was evaluated in two separate sub-analyses.This meta-analysis confirms that antisaccade latency and error rate are significantly increased in PD. Disease duration, Unified Parkinson's disease rating scale score and Hoehn and Yahr stage mediate the effect of PD on antisaccade latency with higher motor burden being associated with increased antisaccade latency.Acute administration of levodopa had no significant effects on antisaccade performance in a small number of eligible studies. Deep brain stimulation in the subthalamic nucleus, on the other hand, may alter the speed accuracy trade-off supporting an increase of impulsivity following deep brain stimulation in PD.According to the results of the meta-analysis, antisaccade latency may provide a potential marker for disease severity and progression in PD which needs further confirmation in longitudinal studies.
Collapse
Affiliation(s)
- Josefine Waldthaler
- Department of Neurology, University Hospital Marburg, 35033, Marburg, Germany.
- CMBB - Center for Mind, Brain and Behavior, Universities Gießen and Marburg, Marburg, Germany.
| | - Lena Stock
- Department of Neurology, University Hospital Marburg, 35033, Marburg, Germany
| | - Justus Student
- Department of Neurology, University Hospital Marburg, 35033, Marburg, Germany
| | - Johanna Sommerkorn
- Department of Neurology, University Hospital Marburg, 35033, Marburg, Germany
| | - Stefan Dowiasch
- CMBB - Center for Mind, Brain and Behavior, Universities Gießen and Marburg, Marburg, Germany
- Department of Neurophysics, University of Marburg, Marburg, Germany
- Thomas RECORDING GmbH, Giessen, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Marburg, 35033, Marburg, Germany
- CMBB - Center for Mind, Brain and Behavior, Universities Gießen and Marburg, Marburg, Germany
| |
Collapse
|
13
|
Wang CA, Nguyen KT, Juan CH. Linking Pupil Size Modulated by Global Luminance and Motor Preparation to Saccade Behavior. Neuroscience 2021; 476:90-101. [PMID: 34571085 DOI: 10.1016/j.neuroscience.2021.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 01/21/2023]
Abstract
Saccades are rapid eye movements that are used to move the high acuity fovea in a serial manner in the exploration of the visual scene. Stimulus contrast is known to modulate saccade latency and metrics possibly via changing visual activity in the superior colliculus (SC), a midbrain structure causally involved in saccade generation. However, the quality of visual signals should also be modulated by the amount of lights projected onto the retina, which is gated by the size of the pupil. Although absolute pupil size should modulate visual signals and in turn affect saccade responses, research examining this relationship is very limited. Besides, pupil size is associated with motor preparation. However, the role of pupil dilation in saccade metrics remains unexplored. Through varying peripheral background luminance level and target visual contrast in the saccade task, we investigated the role of absolute pupil size and baseline-corrected pupil dilation in saccade latency and metrics. Higher target detection accuracy was obtained with lower background luminance level, and larger absolute pupil diameter correlated with smaller saccade amplitude and higher saccade peak velocities. More interestingly, the comparable modulation between pupil dilation and stimulus contrast was obtained, showing larger pupil dilation (or higher contrast stimuli) correlating with faster saccade latencies, larger amplitude, higher peak velocities, and smaller endpoint deviation. Together, our results demonstrated the influence of absolute pupil size induced by global luminance level and baseline-corrected pupil dilation associated with motor preparation on saccade latency and metrics, implicating the role of the SC in this behavior.
Collapse
Affiliation(s)
- Chin-An Wang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan; Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan.
| | - Kien Trong Nguyen
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan; Faculty of Electronics Engineering, Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Viet Nam
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan; Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan; Department of Psychology, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|
14
|
Pandey P, Ray S. Pupil dynamics: A potential proxy of neural preparation for goal-directed eye movement. Eur J Neurosci 2021; 54:6587-6607. [PMID: 34510602 DOI: 10.1111/ejn.15453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023]
Abstract
The pupils reflexively constrict or dilate to regulate the influx of light on the retinae. Pupillary light reflex (PLR) is susceptible to many non-visual cognitive processes including covert orientation of attention and planning rapid saccadic eye movement. The frontal eye field (FEF) and superior colliculus (SC), which also send projections to the PLR pathway, are two important areas in primate's brain for planning saccade and orientation of attention. The saccadic reaction time (SRT) and the rate of increase in activity of movement neurons in these areas are inversely correlated. This study addressed how pupil dynamics, activity in the FEF and SC and SRT are related in a saccadic decision-making task. The rate of visually evoked pupil constriction was found inversely related to SRT. This was further verified by simulating a homeomorphic biomechanical model of pupillary muscle plants, wherein we projected signals similar to build-up activity in the FEF and SC to the parasympathetic (constriction) and sympathetic (dilation) division of the PLR pathway, respectively. A striking similarity between simulated and observed dynamics of pupil constriction suggests that PLR is a potential proxy of saccade planning by movement neurons in the FEF and SC. Indistinguishable pupil dynamics when planned saccades were elicited versus when they were cancelled eliminated the possibility that the obligatory pre-saccadic shift of attention alone influenced the rate of pupil constriction. Our study envisages a mechanism of how the oculomotor system influences the autonomic activity in an attempt to timely minimize saccadic visual transients by regulating the influx of light.
Collapse
Affiliation(s)
- Pragya Pandey
- Centre of Behavioural and Cognitive Sciences, University of Allahabad, Prayagraj, India
| | - Supriya Ray
- Centre of Behavioural and Cognitive Sciences, University of Allahabad, Prayagraj, India
| |
Collapse
|
15
|
Ayala N, Heath M. Pupillometry Reveals the Role of Arousal in a Postexercise Benefit to Executive Function. Brain Sci 2021; 11:1048. [PMID: 34439667 PMCID: PMC8394913 DOI: 10.3390/brainsci11081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/05/2022] Open
Abstract
A single bout of aerobic exercise improves executive function; however, the mechanism(s) underlying this improvement remains unclear. Here, we employed a 20-min bout of aerobic exercise, and at pre- and immediate post-exercise sessions examined executive function via pro- (i.e., saccade to veridical target location) and anti-saccade (i.e., saccade mirror symmetrical to a target) performance and pupillometry metrics. Notably, tonic and phasic pupillometry responses in oculomotor control provided a framework to determine the degree that arousal and/or executive resource recruitment influence behavior. Results demonstrated a pre- to post-exercise decrease in pro- and anti-saccade reaction times (p = 0.01) concurrent with a decrease and increase in tonic baseline pupil size and task-evoked pupil dilations, respectively (ps < 0.03). Such results demonstrate that an exercise-induced improvement in saccade performance is related to an executive-mediated "shift" in physiological and/or psychological arousal, supported by the locus coeruleus norepinephrine system to optimize task engagement.
Collapse
Affiliation(s)
- Naila Ayala
- Department of Kinesiology, School of Kinesiology, University of Western Ontario, London, ON N6G 3K7, Canada;
- Graduate Program in Neuroscience, University of Western Ontario, London, ON N6G 3K7, Canada
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Matthew Heath
- Department of Kinesiology, School of Kinesiology, University of Western Ontario, London, ON N6G 3K7, Canada;
- Graduate Program in Neuroscience, University of Western Ontario, London, ON N6G 3K7, Canada
| |
Collapse
|
16
|
Walz JA, Mani R, Alnawmasi MM, Khuu SK. Visuospatial Attention Allocation as an Indicator of Cognitive Deficit in Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Front Hum Neurosci 2021; 15:675376. [PMID: 34354575 PMCID: PMC8329082 DOI: 10.3389/fnhum.2021.675376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/23/2021] [Indexed: 01/02/2023] Open
Abstract
Traumatic Brain Injury (TBI) is defined by changes in brain function resulting from external forces acting on the brain and is typically characterized by a host of physiological and functional changes such as cognitive deficits including attention problems. In the present study, we focused on the effect of TBI on the ability to allocate attention in vision (i.e., the use of endogenous and exogenous visual cues) by systematically reviewing previous literature on the topic. We conducted quantitative synthesis of 16 selected studies of visual attention following TBI, calculating 80 effect size estimates. The combined effect size was large (g = 0.79, p < 0.0001) with medium heterogeneity (I2 = 68.39%). Subgroup analyses revealed an increase in deficit with moderate-to-severe and severe TBI as compared to mild TBI [F(2, 76) = 24.14, p < 0.0001]. Task type was another key source of variability and subgroup analyses indicated that higher order attention processes were severely affected by TBI [F(2, 77) = 5.66, p = 0.0051). Meta-regression analyses revealed significant improvement in visual attention deficit with time [p(mild) = 0.031, p(moderate-to-severe) = 0.002, p(severe) < 0.0001]. Taken together, these results demonstrate that visual attention is affected by TBI and that regular assessment of visual attention, using a systematic attention allocation task, may provide a useful clinical measure of cognitive impairment and change after TBI.
Collapse
Affiliation(s)
- Jacinta A Walz
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
| | - Revathy Mani
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
| | - Mohammed M Alnawmasi
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
| | - Sieu K Khuu
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
17
|
Hsu TY, Hsu YF, Wang HY, Wang CA. Role of the frontal eye field in human pupil and saccade orienting responses. Eur J Neurosci 2021; 54:4283-4294. [PMID: 33901328 DOI: 10.1111/ejn.15253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/28/2022]
Abstract
The appearance of a salient stimulus evokes a series of orienting responses including saccades and pupil size to prepare the body for appropriate action. The midbrain superior colliculus (SC) that receives critical control signals from the frontal eye field (FEF) is hypothesized to coordinate all components of orienting. It has shown recently that the FEF, together with the SC, is also importantly involved in the control of pupil size, in addition to its well-documented role in eye movements. Although the role of the FEF in pupil size is demonstrated in monkeys, its role in human pupil responses and the coordination between pupil size and saccades remains to be established. Through applying continuous theta-burst stimulation over the right FEF and vertex, we investigated the role of the FEF in human pupil and saccade responses evoked by a salient stimulus, and the coordination between pupil size and saccades. Our results showed that neither saccade reaction times (SRT) nor pupil responses evoked by salient stimuli were modulated by FEF stimulation. In contrast, the correlation between pupil size and SRTs in the contralateral stimulus condition was diminished with FEF stimulation, but intact with vertex stimulation. Moreover, FEF stimulation effects between saccade and pupil responses associated with salient stimuli correlated across participants. This is the first transcranial magnetic stimulation (TMS) study on the pupil orienting response, and our findings suggest that human FEF was involved in coordinating pupil size and saccades, but not involved in the control of pupil orienting responses.
Collapse
Affiliation(s)
- Tzu-Yu Hsu
- Graduate Institute of Mind, Brain, and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Center (BCRC), TMU-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yu-Fan Hsu
- Graduate Institute of Mind, Brain, and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Center (BCRC), TMU-Shuang Ho Hospital, New Taipei City, Taiwan
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan City, Taiwan
| | - Hsin-Yi Wang
- Graduate Institute of Mind, Brain, and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Center (BCRC), TMU-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Chin-An Wang
- Graduate Institute of Mind, Brain, and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Center (BCRC), TMU-Shuang Ho Hospital, New Taipei City, Taiwan
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan City, Taiwan
- Department of Anesthesiology, TMU-Shuang Ho Hospital, New Taipei City, Taiwan
| |
Collapse
|
18
|
Perkins JE, Janzen A, Bernhard FP, Wilhelm K, Brien DC, Huang J, Coe BC, Vadasz D, Mayer G, Munoz DP, Oertel WH. Saccade, Pupil, and Blink Responses in Rapid Eye Movement Sleep Behavior Disorder. Mov Disord 2021; 36:1720-1726. [PMID: 33754406 PMCID: PMC8359943 DOI: 10.1002/mds.28585] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/30/2021] [Accepted: 03/02/2021] [Indexed: 02/03/2023] Open
Abstract
Background Parkinson's disease (PD) patients exhibit deficits in saccade performance, pupil function, and blink rate. Isolated REM (rapid eye movement) Sleep Behavior Disorder (RBD) is a harbinger to PD making them candidates to investigate for early oculomotor abnormalities as PD biomarkers. Objectives We tested whether saccade, pupillary, and blink responses in RBD were similar to PD. Methods RBD (n = 22), PD (n = 22) patients, and healthy controls (CTRL) (n = 74) were studied with video‐based eye‐tracking. Results RBD patients did not have significantly different saccadic behavior compared to CTRL, but PD patients differed from CTRL and RBD. Both patient groups had significantly lower blink rates, dampened pupil constriction, and dilation responses compared to CTRL. Conclusion RBD and PD patients had altered pupil and blink behavior compared to CTRL. Because RBD saccade parameters were comparable to CTRL, pupil and blink brain areas may be impacted before saccadic control areas, making them potential prodromal PD biomarkers. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Julia E Perkins
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Annette Janzen
- Department of Neurology, Philipps-University, Marburg, Germany
| | | | - Karén Wilhelm
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Donald C Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Jeff Huang
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Brian C Coe
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - David Vadasz
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Geert Mayer
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
19
|
Ba F, Pfeiffer RF. Connecting the visual deficit to motor improvement in Parkinson's via art therapy. Parkinsonism Relat Disord 2021; 84:146-147. [PMID: 33551314 DOI: 10.1016/j.parkreldis.2021.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Fang Ba
- Division of Neurology, Department of Medicine, University of Alberta, 7-112 Clinical Sciences Building, 11350 - 83 Avenue Edmonton, Alberta, Canada, T6G 2G3.
| | - Ronald F Pfeiffer
- OHSU Parkinson Center, Department of Neurology, Oregon Health and Science University Oregon Health and Science University, USA.
| |
Collapse
|
20
|
Abstract
Abstract
Verbal fluency tasks are widely used as a neuropsychological test of language production. We assessed pupil dilation during a verbal fluency task and during a control task. On the verbal fluency task, we asked 45 healthy participants (mean age = 23.55 years) to generate as many words as possible beginning with the letter “P,” whereas on the control task we asked them to count aloud. In both tasks we recorded pupil dilation with eye-tracking glasses. Results demonstrated that, compared with counting, verbal fluency resulted in a larger pupil dilation. The larger pupil dilation observed during verbal fluency compared with counting can be attributed to the cognitive load of verbal fluency, which involves both linguistic processing and executive function. By highlighting how verbal fluency can increase pupil dilation, our findings pave the way for the physiological assessment of verbal processing in healthy and pathological populations.
Collapse
|
21
|
Kelberman M, Keilholz S, Weinshenker D. What's That (Blue) Spot on my MRI? Multimodal Neuroimaging of the Locus Coeruleus in Neurodegenerative Disease. Front Neurosci 2020; 14:583421. [PMID: 33122996 PMCID: PMC7573566 DOI: 10.3389/fnins.2020.583421] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 01/04/2023] Open
Abstract
The locus coeruleus (LC) has long been underappreciated for its role in the pathophysiology of Alzheimer’s disease (AD), Parkinson’s disease (PD), and other neurodegenerative disorders. While AD and PD are distinct in clinical presentation, both are characterized by prodromal protein aggregation in the LC, late-stage degeneration of the LC, and comorbid conditions indicative of LC dysfunction. Many of these early studies were limited to post-mortem histological techniques due to the LC’s small size and location deep in the brainstem. Thus, there is a growing interest in utilizing in vivo imaging of the LC as a predictor of preclinical neurodegenerative processes and biomarker of disease progression. Simultaneously, neuroimaging in animal models of neurodegenerative disease holds promise for identifying early alterations to LC circuits, but has thus far been underutilized. While still in its infancy, a handful of studies have reported effects of single gene mutations and pathology on LC function in disease using various neuroimaging techniques. Furthermore, combining imaging and optogenetics or chemogenetics allows for interrogation of network connectivity in response to changes in LC activity. The purpose of this article is twofold: (1) to review what magnetic resonance imaging (MRI) and positron emission tomography (PET) have revealed about LC dysfunction in neurodegenerative disease and its potential as a biomarker in humans, and (2) to explore how animal models can be used to test hypotheses derived from clinical data and establish a mechanistic framework to inform LC-focused therapeutic interventions to alleviate symptoms and impede disease progression.
Collapse
Affiliation(s)
- Michael Kelberman
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Shella Keilholz
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| |
Collapse
|
22
|
Borderies N, Bornert P, Gilardeau S, Bouret S. Pharmacological evidence for the implication of noradrenaline in effort. PLoS Biol 2020; 18:e3000793. [PMID: 33044952 PMCID: PMC7580990 DOI: 10.1371/journal.pbio.3000793] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/22/2020] [Accepted: 09/02/2020] [Indexed: 01/16/2023] Open
Abstract
The trade-off between effort and reward is one of the main determinants of behavior, and its alteration is at the heart of major disorders such as depression or Parkinson's disease. Monoaminergic neuromodulators are thought to play a key role in this trade-off, but their relative contribution remains unclear. Rhesus monkeys (Macaca mulatta) performed a choice task requiring a trade-off between the volume of fluid reward and the amount of force to be exerted on a grip. In line with a causal role of noradrenaline in effort, decreasing noradrenaline levels with systemic clonidine injections (0.01 mg/kg) decreased exerted force and enhanced the weight of upcoming force on choices, without any effect on reward sensitivity. Using computational modeling, we showed that a single variable ("effort") could capture the amount of resources necessary for action and control both choices (as a variable for decision) and force production (as a driving force). Critically, the multiple effects of noradrenaline manipulation on behavior could be captured by a specific modulation of this single variable. Thus, our data strongly support noradrenaline's implication in effort processing.
Collapse
Affiliation(s)
- Nicolas Borderies
- Motivation, Brain and Behavior team, Institut du Cerveau et de la Moelle épinière (ICM), INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
| | - Pauline Bornert
- Motivation, Brain and Behavior team, Institut du Cerveau et de la Moelle épinière (ICM), INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
| | - Sophie Gilardeau
- Phenoparc PRIM’R, Institut du Cerveau et de la Moelle épinière (ICM), INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
| | - Sebastien Bouret
- Motivation, Brain and Behavior team, Institut du Cerveau et de la Moelle épinière (ICM), INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
23
|
Chen L, Liao HI. Microsaccadic Eye Movements but not Pupillary Dilation Response Characterizes the Crossmodal Freezing Effect. Cereb Cortex Commun 2020; 1:tgaa072. [PMID: 34296132 PMCID: PMC8153075 DOI: 10.1093/texcom/tgaa072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/14/2022] Open
Abstract
In typical spatial orienting tasks, the perception of crossmodal (e.g., audiovisual) stimuli evokes greater pupil dilation and microsaccade inhibition than unisensory stimuli (e.g., visual). The characteristic pupil dilation and microsaccade inhibition has been observed in response to "salient" events/stimuli. Although the "saliency" account is appealing in the spatial domain, whether this occurs in the temporal context remains largely unknown. Here, in a brief temporal scale (within 1 s) and with the working mechanism of involuntary temporal attention, we investigated how eye metric characteristics reflect the temporal dynamics of perceptual organization, with and without multisensory integration. We adopted the crossmodal freezing paradigm using the classical Ternus apparent motion. Results showed that synchronous beeps biased the perceptual report for group motion and triggered the prolonged sound-induced oculomotor inhibition (OMI), whereas the sound-induced OMI was not obvious in a crossmodal task-free scenario (visual localization without audiovisual integration). A general pupil dilation response was observed in the presence of sounds in both visual Ternus motion categorization and visual localization tasks. This study provides the first empirical account of crossmodal integration by capturing microsaccades within a brief temporal scale; OMI but not pupillary dilation response characterizes task-specific audiovisual integration (shown by the crossmodal freezing effect).
Collapse
Affiliation(s)
- Lihan Chen
- Department of Brain and Cognitive Sciences, Schools of Psychological and Cognitive Sciences, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, 100871, China
| | - Hsin-I Liao
- NTT Communication Science Laboratories, NTT Corporation, Atsugi, Kanagawa, 243-0198, Japan
| |
Collapse
|
24
|
Background luminance effects on pupil size associated with emotion and saccade preparation. Sci Rep 2020; 10:15718. [PMID: 32973283 PMCID: PMC7515892 DOI: 10.1038/s41598-020-72954-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022] Open
Abstract
Pupil dilation is consistently evoked by affective and cognitive processing, and this dilation can result from sympathetic activation or parasympathetic inhibition. The relative contributions of the sympathetic and parasympathetic systems on the pupillary response induced by emotion and cognition may be different. Sympathetic and parasympathetic activity is regulated by global luminance level. Higher luminance levels lead to greater activation of the parasympathetic system while lower luminance levels lead to greater activation of the sympathetic system. To understand the contributions of the sympathetic and parasympathetic nervous systems to pupillary responses associated with emotion and saccade preparation, emotional auditory stimuli were presented following the fixation cue whose color indicated instruction to perform a pro- or anti-saccade while varying the background luminance level. Pupil dilation was evoked by emotional auditory stimuli and modulated by arousal level. More importantly, greater pupil dilation was observed with a dark background, compared to a bright background. In contrast, pupil dilation responses associated with saccade preparation were larger with the bright background than the dark background. Together, these results suggest that arousal-induced pupil dilation was mainly mediated by sympathetic activation, but pupil dilation related to saccade preparation was primarily mediated by parasympathetic inhibition.
Collapse
|
25
|
Gupta VB, Chitranshi N, den Haan J, Mirzaei M, You Y, Lim JK, Basavarajappa D, Godinez A, Di Angelantonio S, Sachdev P, Salekdeh GH, Bouwman F, Graham S, Gupta V. Retinal changes in Alzheimer's disease- integrated prospects of imaging, functional and molecular advances. Prog Retin Eye Res 2020; 82:100899. [PMID: 32890742 DOI: 10.1016/j.preteyeres.2020.100899] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder of the brain, clinically characterised by cognitive deficits that gradually worsen over time. There is, at present, no established cure, or disease-modifying treatments for AD. As life expectancy increases globally, the number of individuals suffering from the disease is projected to increase substantially. Cumulative evidence indicates that AD neuropathological process is initiated several years, if not decades, before clinical signs are evident in patients, and diagnosis made. While several imaging, cognitive, CSF and blood-based biomarkers have been proposed for the early detection of AD; their sensitivity and specificity in the symptomatic stages is highly variable and it is difficult to justify their use in even earlier, pre-clinical stages of the disease. Research has identified potentially measurable functional, structural, metabolic and vascular changes in the retina during early stages of AD. Retina offers a distinctively accessible insight into brain pathology and current and developing ophthalmic technologies have provided us with the possibility of detecting and characterising subtle, disease-related changes. Recent human and animal model studies have further provided mechanistic insights into the biochemical pathways that are altered in the retina in disease, including amyloid and tau deposition. This information coupled with advances in molecular imaging has allowed attempts to monitor biochemical changes and protein aggregation pathology in the retina in AD. This review summarises the existing knowledge that informs our understanding of the impact of AD on the retina and highlights some of the gaps that need to be addressed. Future research will integrate molecular imaging innovation with functional and structural changes to enhance our knowledge of the AD pathophysiological mechanisms and establish the utility of monitoring retinal changes as a potential biomarker for AD.
Collapse
Affiliation(s)
- Veer B Gupta
- School of Medicine, Deakin University, VIC, Australia
| | - Nitin Chitranshi
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jurre den Haan
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Mehdi Mirzaei
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jeremiah Kh Lim
- Optometry and Vision Science, College of Nursing and Health Sciences, Bedford Park, South Australia, 5042, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Angela Godinez
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Perminder Sachdev
- Centre for Healthy Brain and Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Ghasem H Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan, Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Femke Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia.
| | - Vivek Gupta
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
26
|
Ayala N, Heath M. Executive Dysfunction after a Sport-Related Concussion Is Independent of Task-Based Symptom Burden. J Neurotrauma 2020; 37:2558-2568. [PMID: 32438897 DOI: 10.1089/neu.2019.6865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A sport-related concussion (SRC) results in short- and long-term deficits in oculomotor control; however, it is unclear whether this change reflects executive dysfunction and/or a performance decrement caused by an increase in task-based symptom burden. Here, individuals with a SRC - and age- and sex-matched controls - completed an antisaccade task (i.e., saccade mirror-symmetrical to a target) during the early (initial assessment ≤12 days) and later (follow-up assessment <30 days) stages of recovery. Antisaccades were used because they require top-down executive control and exhibit performance decrements following an SRC. Reaction time (RT) and directional errors were included with pupillometry, because pupil size in the antisaccade task has been shown to provide a neural proxy for executive control. In addition, the Sport-Concussion Assessment Tool (SCAT-5) symptom checklist was completed prior to and after each oculomotor assessment to identify a possible task-based increase in symptomology. The SRC group yielded longer initial assessment RTs, more directional errors, and larger task-evoked pupil dilations (TEPD) than the control group. At the follow-up assessment, RTs for the SRC and control group did not reliably differ; however, the former demonstrated more directional errors and larger TEPDs. SCAT-5 symptom severity scores did not vary from the pre- to post-oculomotor evaluation for either initial or follow-up assessments. Accordingly, an SRC imparts a persistent executive dysfunction to oculomotor planning independent of a task-based increase in symptom burden. These findings evince that antisaccades serve as an effective tool to identify subtle executive deficits during the early and later stages of SRC recovery.
Collapse
Affiliation(s)
- Naila Ayala
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Matthew Heath
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
27
|
Bonnet CT, Delval A, Singh T, Kechabia YR, Defebvre L. New insight into Parkinson's disease-related impairment of the automatic control of upright stance. Eur J Neurosci 2020; 52:4851-4862. [PMID: 32558964 DOI: 10.1111/ejn.14870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) affects the automatic control of body movements. In our study, we tested PD-related impairments in automatic postural control in quiet upright stance. Twenty PD patients (mean age: 60 ± 8 years; Hoehn and Yahr: 2.00 ± 0.32, on-drug) and twenty age-matched controls (61 ± 7 years) were recruited. We studied interrelations between center-of-pressure movements, body movements (head, neck, and lower back), eye movements and variability of pupil size. Participants performed two fixation tasks while standing, during which they looked at: (a) a cross surrounded by a white background; and (b) a cross surrounded by a structured visual background (images used: rooms in houses). PD patients exhibited stronger and weaker correlations between eye and center-of-pressure/body movement variables than age-matched controls in the white and structured fixation tasks, respectively. Partial correlations, controlling for variability of pupil size showed that PD patients used lower and greater attentional resources than age-matched controls to control their eye and center-of-pressure/body movements simultaneously in the white fixation and structured fixation tasks, respectively. In the white fixation task, PD patients used attentional resources to optimize visuomotor coupling between eye and body movements to control their posture. In the structured fixation task, the salient visual stimuli distracted PD patients' attention and that possibly affected postural control by deteriorating the automatic visuomotor coupling. In contrast, age-matched controls were able to use surrounding visual background to improve the automatic coupling between eye and center-of-pressure movements to control their posture. These results suggest that cluttered environments may distract PD patients and deteriorate their postural control.
Collapse
Affiliation(s)
- Cédrick T Bonnet
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, Lille, France
| | - Arnaud Delval
- Unité INSERM 1172, Service de Neurophysiologie Clinique, CHRU Lille, Hôpital Salengro, Lille, France
| | - Tarkeshwar Singh
- Department of Kinesiology, University of Georgia, Athens, GA, USA
| | - Yann-Romain Kechabia
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, Lille, France
| | - Luc Defebvre
- CHRU Lille, Unité INSERM 1172, Service de Neurophysiologie Clinique, Hôpital Salengro, Lille, France
| |
Collapse
|
28
|
Wang CA, Huang J, Brien DC, Munoz DP. Saliency and priority modulation in a pop-out paradigm: Pupil size and microsaccades. Biol Psychol 2020; 153:107901. [PMID: 32389837 DOI: 10.1016/j.biopsycho.2020.107901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022]
Abstract
A salient stimulus can trigger a coordinated orienting response consisting of a saccade, pupil, and microsaccadic responses. Saliency models predict that the degree of visual conspicuity of all visual stimuli guides visual orienting. By presenting a multiple-item array that included an oddball colored item (pop-out), randomly mixed colored items (mixed-color), or single-color items (single-color), we examined the effects of saliency and priority (saliency + relevancy) on pupil size and microsaccade responses. Larger pupil responses were produced in the pop-out compared to the mixed-color or single-color conditions after stimulus presentation. However, the saliency modulation on microsaccades was not significant. Furthermore, although goal-relevancy information did not modulate pupil responses and microsaccade rate, microsaccade direction was biased toward the pop-out item when it was the subsequent saccadic target. Together, our results demonstrate saliency modulation on pupil size and priority effects on microsaccade direction during visual pop-out.
Collapse
Affiliation(s)
- Chin-An Wang
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Research Center of Brain and Consciousness, Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Jeff Huang
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Donald C Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
29
|
Hsu YF, Baird T, Wang CA. Investigating cognitive load modulation of distractor processing using pupillary luminance responses in the anti-saccade paradigm. Eur J Neurosci 2020; 52:3061-3073. [PMID: 32277727 DOI: 10.1111/ejn.14736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 12/24/2022]
Abstract
Observers must select goal-directed stimuli in lieu of distractors in the environment for preferential information processing. This selection, according to the load theory of attention, is modulated by cognitive load, involving the frontal cortices, with more significant distractor interference under high cognitive load, with strained executive control resources. Evidence in support of this theory exists; however, working memory tasks were predominately used in these investigations. The influence of other types of cognitive load on distractor processing is largely unknown. An interleaved pro- and anti-saccade task has often been used to investigate executive control in which subjects are instructed in advance to either automatically look at the peripheral stimulus (pro-saccade), or to suppress the automatic response and voluntarily look in the direction opposite of the stimulus (anti-saccade). Distinct frontal preparatory activity has been clearly characterized during preparation for pro- and anti-saccades, with higher inhibition-related activity in preparation for anti-saccades than pro-saccades. Here, we used an interleaved pro- and anti-saccade paradigm to investigate the modulation of distractor interference by cognitive load in a group of 24 healthy young adults. Luminant distractors were used to evoke automatic pupillary responses to evaluate distractor processing. Greater pupillary dilation following dark distractor presentation was observed in the anti-saccade than the pro-saccade preparation. These effects, however, were absent in pupillary constriction following bright distractors. Together, our results support the load theory of attention, importantly highlighting the potential of using involuntary changes in pupil size to objectively investigate attentional selection under load.
Collapse
Affiliation(s)
- Yu-Fan Hsu
- Research Center of Brain and Consciousness, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Talia Baird
- Schulich School and Medicine and Dentistry, Western University, London, ON, Canada
| | - Chin-An Wang
- Research Center of Brain and Consciousness, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| |
Collapse
|
30
|
Moon S, Kahya M, Lyons KE, Pahwa R, Akinwuntan AE, Devos H. Cognitive workload during verbal abstract reasoning in Parkinson's disease: a pilot study. Int J Neurosci 2020; 131:504-510. [PMID: 32202180 DOI: 10.1080/00207454.2020.1746309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pupillary response reflects cognitive workload during processing speed, working memory, and arithmetic tasks in Parkinson's disease (PD). Abstract reasoning, a higher-order cognitive function that relates different objects, events, or thoughts in a similar manner, may also be compromised in PD. The aim of this study was to compare pupillary response as a measure of cognitive workload while completing a verbal abstract reasoning test between patients with PD and age-matched controls. METHODS Nineteen non-demented individuals with PD (66.6 ± 8.9 years) and 10 healthy controls (65.3 ± 7.3 years) were recruited. A remote eye tracker recorded the pupillary response at 60 Hz, while the participants were performing the Similarities test of Wechsler Adult Intelligence Scale-IV. Outcome measures included pupillary response, evaluated by the Index of Cognitive Activity (ICA), and behavioral responses of the Similarities test. RESULTS The PD group (scaled scores = 8.9 ± 2.2) did not show impairment in behavioral performance on Similarities test compared with healthy controls (scaled scores = 8.8 ± 2.3; p = .91). However, the PD group (ICA = .32 ± .09) demonstrated significantly greater cognitive workload during the Similarities test compared to controls (ICA = .24 ± .08; p = .03). CONCLUSIONS Non-demented individuals with PD exerted greater cognitive workload to complete a verbal abstract reasoning task despite similar behavioral performance compared to healthy controls. Clinical utilities of pupillary response to detect and monitor early impairment in higher-order executive function will be the subject of further study in the PD population.
Collapse
Affiliation(s)
- Sanghee Moon
- Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA
| | - Melike Kahya
- Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kelly E Lyons
- Department of Neurology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Rajesh Pahwa
- Department of Neurology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Abiodun E Akinwuntan
- Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA.,Office of the Dean, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hannes Devos
- Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
31
|
Myers JS, Alissa N, Mitchell M, Dai J, He J, Moon S, O'Dea A, Klemp J, Kurylo M, Akinwuntan A, Devos H. Pilot Feasibility Study Examining Pupillary Response During Driving Simulation as a Measure of Cognitive Load in Breast Cancer Survivors. Oncol Nurs Forum 2020; 47:203-212. [PMID: 32078618 DOI: 10.1188/20.onf.203-212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To test the feasibility of adding driving simulation tasks to measure visuospatial ability and processing speed to an existing neurocognitive battery for breast cancer survivors (BCSs). SAMPLE & SETTING 38 BCSs and 17 healthy controls from a cross-sectional pilot study conducted at the University of Kansas Medical Center. METHODS & VARIABLES Exploratory substudy measuring pupillary response, visuospatial ability, and processing speed during two 10-minute driving simulations (with or without n-back testing) in a sample of BCSs with self-reported cognitive complaints and healthy controls. RESULTS Feasibility of measurement of pupillary response during driving simulation was demonstrated. No between-group differences were noted for pupillary response during driving simulation. BCSs had greater visuospatial ability and processing speed performance difficulties than healthy controls during driving simulation without n-back testing and slower n-back response time. IMPLICATIONS FOR NURSING Preliminary evidence showed a possible link between cancer/treatment on visuospatial ability and processing speed in BCSs.
Collapse
|
32
|
Abstract
Pupillometry has been one of the most widely used response systems in psychophysiology. Changes in pupil size can reflect diverse cognitive and emotional states, ranging from arousal, interest and effort to social decisions, but they are also widely used in clinical practice to assess patients’ brain functioning. As a result, research involving pupil size measurements has been reported in practically all psychology, psychiatry, and psychophysiological research journals, and now it has found its way into the primatology literature as well as into more practical applications, such as using pupil size as a measure of fatigue or a safety index during driving. The different systems used for recording pupil size are almost as variable as its applications, and all yield, as with many measurement techniques, a substantial amount of noise in addition to the real pupillometry data. Before analyzing pupil size, it is therefore of crucial importance first to detect this noise and deal with it appropriately, even prior to (if need be) resampling and baseline-correcting the data. In this article we first provide a short review of the literature on pupil size measurements, then we highlight the most important sources of noise and show how these can be detected. Finally, we provide step-by-step guidelines that will help those interested in pupil size to preprocess their data correctly. These guidelines are accompanied by an open source MATLAB script (available at https://github.com/ElioS-S/pupil-size). Given that pupil diameter is easily measured by standard eyetracking technologies and can provide fundamental insights into cognitive and emotional processes, it is hoped that this article will further motivate scholars from different disciplines to study pupil size.
Collapse
|
33
|
Abstract
Pupil dilation is an effective indicator of cognitive and affective processes. Although several eyetracker systems on the market can provide effective solutions for pupil dilation measurement, there is a lack of tools for processing and analyzing the data provided by these systems. For this reason, we developed CHAP: open-source software written in MATLAB. This software provides a user-friendly graphical user interface for processing and analyzing pupillometry data. Our software creates uniform conventions for the preprocessing and analysis of pupillometry data and provides a quick and easy-to-use tool for researchers interested in pupillometry. To download CHAP or join our mailing list, please visit CHAP's website: http://in.bgu.ac.il/en/Labs/CNL/chap .
Collapse
|
34
|
DiNuzzo M, Mascali D, Moraschi M, Bussu G, Maugeri L, Mangini F, Fratini M, Giove F. Brain Networks Underlying Eye's Pupil Dynamics. Front Neurosci 2019; 13:965. [PMID: 31619948 PMCID: PMC6759985 DOI: 10.3389/fnins.2019.00965] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/28/2019] [Indexed: 01/07/2023] Open
Abstract
Phasic changes in eye’s pupil diameter have been repeatedly observed during cognitive, emotional and behavioral activity in mammals. Although pupil diameter is known to be associated with noradrenergic firing in the pontine Locus Coeruleus (LC), thus far the causal chain coupling spontaneous pupil dynamics to specific cortical brain networks remains unknown. In the present study, we acquired steady-state blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) data combined with eye-tracking pupillometry from fifteen healthy subjects that were trained to maintain a constant attentional load. Regression analysis revealed widespread visual and sensorimotor BOLD-fMRI deactivations correlated with pupil diameter. Furthermore, we found BOLD-fMRI activations correlated with pupil diameter change rate within a set of brain regions known to be implicated in selective attention, salience, error-detection and decision-making. These regions included LC, thalamus, posterior cingulate cortex (PCC), dorsal anterior cingulate and paracingulate cortex (dACC/PaCC), orbitofrontal cortex (OFC), and right anterior insular cortex (rAIC). Granger-causality analysis performed on these regions yielded a complex pattern of interdependence, wherein LC and pupil dynamics were far apart in the network and separated by several cortical stages. Functional connectivity (FC) analysis revealed the ubiquitous presence of the superior frontal gyrus (SFG) in the networks identified by the brain regions correlated to the pupil diameter change rate. No significant correlations were observed between pupil dynamics, regional activation and behavioral performance. Based on the involved brain regions, we speculate that pupil dynamics reflects brain processing implicated in changes between self- and environment-directed awareness.
Collapse
Affiliation(s)
| | - Daniele Mascali
- Fondazione Santa Lucia (IRCCS), Rome, Italy.,Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Marta Moraschi
- Fondazione Santa Lucia (IRCCS), Rome, Italy.,Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Giorgia Bussu
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | | | | | - Michela Fratini
- Fondazione Santa Lucia (IRCCS), Rome, Italy.,CNR Nanotec, Rome, Italy
| | - Federico Giove
- Fondazione Santa Lucia (IRCCS), Rome, Italy.,Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| |
Collapse
|
35
|
Bueno APA, Sato JR, Hornberger M. Eye tracking - The overlooked method to measure cognition in neurodegeneration? Neuropsychologia 2019; 133:107191. [PMID: 31521634 DOI: 10.1016/j.neuropsychologia.2019.107191] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/26/2019] [Accepted: 09/08/2019] [Indexed: 12/11/2022]
Abstract
Eye tracking (ET) studies are becoming increasingly popular due to rapid methodological and technological advances as well as the development of cost efficient and portable eye trackers. Although historically ET has been mostly employed in psychophysics or developmental cognition studies, there is also promising scope to use ET for movement disorders and measuring cognitive processes in neurodegeneration. Particularly, ET can be a powerful tool for cognitive and neuropsychological assessments of patients with pathologies affecting motor and verbal abilities, as tasks can be adapted without requiring motor (except eye movements) or verbal responses. In this review, we will examine the existing evidence of ET methods in neurodegenerative conditions and its potential clinical impact for cognitive assessment. We highlight that current evidence for ET is mostly focused on diagnostics of cognitive impairments in neurodegenerative disorders, where it is debatable whether it has any more sensitivity or specificity than existing cognitive assessments. By contrast, there is currently a lack of ET studies in more advanced disease stages, when patients' motor and verbal functions can be significantly affected, and standard cognitive assessments are challenging or often not possible. We conclude that ET is a promising method not only for cognitive diagnostics but more importantly, for potential cognitive disease tracking in progressive neurodegenerative conditions.
Collapse
Affiliation(s)
- A P A Bueno
- - Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André, Brazil; - Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, UK.
| | - J R Sato
- - Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - M Hornberger
- - Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, UK; - Norfolk and Suffolk NHS Foundation Trust, Norwich, UK
| |
Collapse
|
36
|
Lax P, Ortuño-Lizarán I, Maneu V, Vidal-Sanz M, Cuenca N. Photosensitive Melanopsin-Containing Retinal Ganglion Cells in Health and Disease: Implications for Circadian Rhythms. Int J Mol Sci 2019; 20:E3164. [PMID: 31261700 PMCID: PMC6651433 DOI: 10.3390/ijms20133164] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022] Open
Abstract
Melanopsin-containing retinal ganglion cells (mRGCs) represent a third class of retinal photoreceptors involved in regulating the pupillary light reflex and circadian photoentrainment, among other things. The functional integrity of the circadian system and melanopsin cells is an essential component of well-being and health, being both impaired in aging and disease. Here we review evidence of melanopsin-expressing cell alterations in aging and neurodegenerative diseases and their correlation with the development of circadian rhythm disorders. In healthy humans, the average density of melanopsin-positive cells falls after age 70, accompanied by age-dependent atrophy of dendritic arborization. In addition to aging, inner and outer retinal diseases also involve progressive deterioration and loss of mRGCs that positively correlates with progressive alterations in circadian rhythms. Among others, mRGC number and plexus complexity are impaired in Parkinson's disease patients; changes that may explain sleep and circadian rhythm disorders in this pathology. The key role of mRGCs in circadian photoentrainment and their loss in age and disease endorse the importance of eye care, even if vision is lost, to preserve melanopsin ganglion cells and their essential functions in the maintenance of an adequate quality of life.
Collapse
Affiliation(s)
- Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Isabel Ortuño-Lizarán
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, University of Murcia, 30120 Murcia, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain.
- Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, 03690 Alicante, Spain.
| |
Collapse
|
37
|
Abstract
Pupillometry research has experienced an enormous revival in the last two decades. Here we briefly review the surge of recent studies on task-evoked pupil dilation in the context of cognitive control tasks with the primary aim being to evaluate the feasibility of using pupil dilation as an index of effort exertion, rather than task demand or difficulty. Our review shows that across the three cognitive control domains of updating, switching, and inhibition, increases in task demands typically leads to increases in pupil dilation. Studies show a diverging pattern with respect to the relationship between pupil dilation and performance and we show how an effort account of pupil dilation can provide an explanation of these findings. We also discuss future directions to further corroborate this account in the context of recent theories on cognitive control and effort and their potential neurobiological substrates.
Collapse
|
38
|
Wang CA, Tworzyanski L, Huang J, Munoz DP. Response anisocoria in the pupillary light and darkness reflex. Eur J Neurosci 2018; 48:3379-3388. [DOI: 10.1111/ejn.14195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/10/2018] [Accepted: 09/25/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Chin-An Wang
- Centre for Neuroscience Studies; Queen's University; Kingston Ontario Canada
- Graduate Institute of Humanities in Medicine; Taipei Medical University; Taipei Taiwan
- Research Center of Brain and Consciousness; Taipei Medical University-Shuang Ho Hospital; New Taipei City Taiwan
| | - Leanne Tworzyanski
- Centre for Neuroscience Studies; Queen's University; Kingston Ontario Canada
| | - Jeff Huang
- Centre for Neuroscience Studies; Queen's University; Kingston Ontario Canada
| | - Douglas P. Munoz
- Centre for Neuroscience Studies; Queen's University; Kingston Ontario Canada
| |
Collapse
|
39
|
Guo L, Normando EM, Shah PA, De Groef L, Cordeiro MF. Oculo-visual abnormalities in Parkinson's disease: Possible value as biomarkers. Mov Disord 2018; 33:1390-1406. [DOI: 10.1002/mds.27454] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Li Guo
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
| | - Eduardo M. Normando
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
- Western Eye Hospital, Imperial College Healthcare National Health Service Trust; London UK
- Imperial College Ophthalmology Research Group, Department of Surgery and Cancer, Imperial College London; London UK
| | - Parth Arvind Shah
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
| | - Lies De Groef
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
- Neural Circuit Development and Regeneration Research Group, Department of Biology; University of Leuven; Leuven Belgium
| | - M. Francesca Cordeiro
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
- Western Eye Hospital, Imperial College Healthcare National Health Service Trust; London UK
- Imperial College Ophthalmology Research Group, Department of Surgery and Cancer, Imperial College London; London UK
| |
Collapse
|
40
|
Ortuño-Lizarán I, Esquiva G, Beach TG, Serrano GE, Adler CH, Lax P, Cuenca N. Degeneration of human photosensitive retinal ganglion cells may explain sleep and circadian rhythms disorders in Parkinson's disease. Acta Neuropathol Commun 2018; 6:90. [PMID: 30201049 PMCID: PMC6130068 DOI: 10.1186/s40478-018-0596-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/03/2018] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) patients often suffer from non-motor symptoms like sleep dysregulation, mood disturbances or circadian rhythms dysfunction. The melanopsin-containing retinal ganglion cells are involved in the control and regulation of these processes and may be affected in PD, as other retinal and visual implications have been described in the disease. Number and morphology of human melanopsin-containing retinal ganglion cells were evaluated by immunohistochemistry in eyes from donors with PD or control. The Sholl number of intersections, the number of branches, and the number of terminals from the Sholl analysis were significantly reduced in PD melanopsin ganglion cells. Also, the density of these cells significantly decreased in PD compared to controls. Degeneration and impairment of the retinal melanopsin system may affect to sleep and circadian dysfunction reported in PD pathology, and its protection or stimulation may lead to better disease prospect and global quality of life of patients.
Collapse
Affiliation(s)
- Isabel Ortuño-Lizarán
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690, San Vicente del Raspeig, Spain
| | - Gema Esquiva
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690, San Vicente del Raspeig, Spain
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | | | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690, San Vicente del Raspeig, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690, San Vicente del Raspeig, Spain.
| |
Collapse
|
41
|
Myers JS, Kahya M, Mitchell M, Dai J, He J, Moon S, Hamilton K, Valla M, O'Dea A, Klemp J, Kurylo M, Akinwuntan A, Devos H. Pupillary response: cognitive effort for breast cancer survivors. Support Care Cancer 2018; 27:1121-1128. [PMID: 30097791 DOI: 10.1007/s00520-018-4401-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023]
Abstract
PURPOSE The purpose of this cross-sectional comparative pilot study was to evaluate cognitive effort, indexed by pupillary response (PR), for breast cancer survivors (BCS) with complaints of cognitive dysfunction following chemotherapy. STUDY AIMS Compare the cognitive effort employed by BCS to healthy controls (HC) during neuropsychological tests (NPT) for memory, sustained attention, verbal fluency, visuospatial ability, processing speed and executive function; and Investigate the relationship between PR-indexed cognitive effort and participants' self-report of cognitive function. METHODS Self-report of cognitive function was collected from 23 BCS and 23 HC. PR was measured during NPT. Independent two-sample t tests or Wilcoxon rank sum tests were used to compare group scores. Between-group effect size (Cohen's d) was calculated for each outcome. Correlation between mean self-report scores and PR values, as well as 95% confidence intervals, was calculated. RESULTS No group differences were demonstrated for NPT performance. BCS reported more issues with cognitive function than HC (p < .0001). A group effect for BCS was seen with PR-indexed cognitive effort for components of most NPT (p < .05). PR was correlated with most self-report measures of cognitive function (r = 0.33-0.45). CONCLUSIONS PR sensitivity to cognitive effort across a variety of NPT and correlation with self-report of cognitive function was demonstrated. The portability, affordability, and "real-time" aspects of PR are attractive for potential use in the clinic setting to assess cognitive function. A larger study is needed to confirm these results. Prospective investigation of PR in BCS is needed to demonstrate sensitivity to cognitive function changes over time.
Collapse
Affiliation(s)
- Jamie S Myers
- Office of Grants and Research, University of Kansas School of Nursing, MS 4043, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| | - Melike Kahya
- Department of Physical Therapy and Rehabilitation Science, University of Kansas School of Health Professions, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Melissa Mitchell
- Department of Radiation Oncology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Junqiang Dai
- Department of Biostatistics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Jianghua He
- Department of Biostatistics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Sanghee Moon
- Department of Physical Therapy and Rehabilitation Science, University of Kansas School of Health Professions, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Kevin Hamilton
- Department of Physical Therapy and Rehabilitation Science, University of Kansas School of Health Professions, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Mary Valla
- North Kansas City Hospital, 2750 Clay Edwards Drive, North Kansas City, MO, 64116, USA
| | - Anne O'Dea
- Department of Medical Oncology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Jennifer Klemp
- University of Kansas Cancer Center, 2650 Shawnee Mission Pkwy, Westwood, KS, 66205, USA
| | - Monica Kurylo
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Abiodun Akinwuntan
- Department of Physical Therapy and Rehabilitation Science, University of Kansas School of Health Professions, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Hannes Devos
- Department of Physical Therapy and Rehabilitation Science, University of Kansas School of Health Professions, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| |
Collapse
|
42
|
Abstract
The signature of spatial attention effects has been demonstrated through saccade planning and working memory. Although saccade planning and working memory have been commonly linked to attention, the comparison of effects resulting from saccade planning and working memory is less explored. It has recently been shown that spatial attention interacts with local luminance at the attended location. When bright and dark patch stimuli are presented simultaneously in the periphery, thereby producing no change in global luminance, pupil size is nonetheless smaller when the locus of attention overlaps with the bright, compared to the dark patch stimulus (referred to as the local luminance modulation). Here, we used the local luminance modulation to directly compare the effects of saccade planning and spatial working memory. Participants were required to make a saccade towards a visual target location (visual-delay) or a remembered target location (memory-delay) after a variable delay, and the bright and dark patch stimuli were presented during the delay period between target onset and go signal. Greater pupil constriction was observed when the bright patch, compared to the dark patch, was spatially aligned with the target location in both tasks. However, the effects were diminished when there was no contingency implemented between the patch and target locations, particularly in the memory-delay task. Together, our results suggest the involvement of similar, but not identical, attentional mechanisms through saccade planning and working memory, and highlight a promising potential of local pupil luminance responses for probing visuospatial processing.
Collapse
|
43
|
Kahya M, Moon S, Lyons KE, Pahwa R, Akinwuntan AE, Devos H. Pupillary Response to Cognitive Demand in Parkinson's Disease: A Pilot Study. Front Aging Neurosci 2018; 10:90. [PMID: 29692720 PMCID: PMC5902496 DOI: 10.3389/fnagi.2018.00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
Previous studies have shown that pupillary response, a physiological measure of cognitive workload, reflects cognitive demand in healthy younger and older adults. However, the relationship between cognitive workload and cognitive demand in Parkinson's disease (PD) remains unclear. The aim of this pilot study was to examine the pupillary response to cognitive demand in a letter-number sequencing (LNS) task between 16 non-demented individuals with PD (age, median (Q1-Q3): 68 (62-72); 10 males) and 10 control participants (age: 63 (59-67); 2 males), matched for age, education, and Montreal Cognitive Assessment (MOCA) scores. A mixed model analysis was employed to investigate cognitive workload changes as a result of incremental cognitive demand for both groups. As expected, no differences were found in cognitive scores on the LNS between groups. Cognitive workload, exemplified by greater pupil dilation, increased with incremental cognitive demand in both groups (p = 0.003). No significant between-group (p = 0.23) or interaction effects were found (p = 0.45). In addition, individuals who achieved to complete the task at higher letter-number (LN) load responded differently to increased cognitive demand compared with those who completed at lower LN load (p < 0.001), regardless of disease status. Overall, the findings indicated that pupillary response reflects incremental cognitive demand in non-demented people with PD and healthy controls. Further research is needed to investigate the pupillary response to incremental cognitive demand of PD patients with dementia compared to non-demented PD and healthy controls. Highlights -Pupillary response reflects cognitive demand in both non-demented people with PD and healthy controls-Although not significant due to insufficient power, non-demented individuals with PD had increased cognitive workload compared to the healthy controls throughout the testing-Pupillary response may be a valid measure of cognitive demand in non-demented individuals with PD-In future, pupillary response might be used to detect cognitive impairment in individuals with PD.
Collapse
Affiliation(s)
- Melike Kahya
- Laboratory for Advanced Rehabilitation Research in Simulation, Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sanghee Moon
- Laboratory for Advanced Rehabilitation Research in Simulation, Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States
| | - Kelly E Lyons
- Department of Neurology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajesh Pahwa
- Department of Neurology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Abiodun E Akinwuntan
- Laboratory for Advanced Rehabilitation Research in Simulation, Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States.,Office of the Dean, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States
| | - Hannes Devos
- Laboratory for Advanced Rehabilitation Research in Simulation, Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
44
|
Multisensory integration in orienting behavior: Pupil size, microsaccades, and saccades. Biol Psychol 2017; 129:36-44. [DOI: 10.1016/j.biopsycho.2017.07.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/26/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022]
|
45
|
Gangeddula V, Ranchet M, Akinwuntan AE, Bollinger K, Devos H. Effect of Cognitive Demand on Functional Visual Field Performance in Senior Drivers with Glaucoma. Front Aging Neurosci 2017; 9:286. [PMID: 28912712 PMCID: PMC5582159 DOI: 10.3389/fnagi.2017.00286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022] Open
Abstract
Purpose: To investigate the effect of cognitive demand on functional visual field performance in drivers with glaucoma. Method: This study included 20 drivers with open-angle glaucoma and 13 age- and sex-matched controls. Visual field performance was evaluated under different degrees of cognitive demand: a static visual field condition (C1), dynamic visual field condition (C2), and dynamic visual field condition with active driving (C3) using an interactive, desktop driving simulator. The number of correct responses (accuracy) and response times on the visual field task were compared between groups and between conditions using Kruskal–Wallis tests. General linear models were employed to compare cognitive workload, recorded in real-time through pupillometry, between groups and conditions. Results: Adding cognitive demand (C2 and C3) to the static visual field test (C1) adversely affected accuracy and response times, in both groups (p < 0.05). However, drivers with glaucoma performed worse than did control drivers when the static condition changed to a dynamic condition [C2 vs. C1 accuracy; glaucoma: median difference (Q1–Q3) 3 (2–6.50) vs. controls: 2 (0.50–2.50); p = 0.05] and to a dynamic condition with active driving [C3 vs. C1 accuracy; glaucoma: 2 (2–6) vs. controls: 1 (0.50–2); p = 0.02]. Overall, drivers with glaucoma exhibited greater cognitive workload than controls (p = 0.02). Conclusion: Cognitive demand disproportionately affects functional visual field performance in drivers with glaucoma. Our results may inform the development of a performance-based visual field test for drivers with glaucoma.
Collapse
Affiliation(s)
- Viswa Gangeddula
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas CityKS, United States
| | - Maud Ranchet
- Laboratoire Ergonomie et Sciences Cognitives pour les Transports (LESCOT), IFSTTAR, TS2, Université de LyonLyon, France
| | - Abiodun E Akinwuntan
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas CityKS, United States
| | - Kathryn Bollinger
- Department of Ophthalmology, Medical College of Georgia, Augusta University, AugustaGA, United States
| | - Hannes Devos
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas CityKS, United States
| |
Collapse
|
46
|
Ranchet M, Orlosky J, Morgan J, Qadir S, Akinwuntan AE, Devos H. Pupillary response to cognitive workload during saccadic tasks in Parkinson's disease. Behav Brain Res 2017; 327:162-166. [PMID: 28366772 DOI: 10.1016/j.bbr.2017.03.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 11/17/2022]
Abstract
The relationship between cognitive workload and cognitive impairments in Parkinson's disease (PD) is currently not well known. This study compared cognitive workload during saccadic tasks between patients with PD and controls. Sixteen controls, 11 patients with no obvious cognitive impairment (PD-NCI) (MOCA score≥26), and 10 PD patients with cognitive impairment (PD-CI) (MOCA score<26) performed prosaccade and antisaccade tasks. Cognitive workload, extracted via pupil recording, and other eye metrics were compared between the three groups. PD-NCI patients exhibited greater cognitive workload than controls in the prosaccade task. PD-CI patients also showed more cognitive workload in the prosaccade task than PD-NCI patients and controls. No other differences in eye metrics were found between the three groups. Cognitive workload could be used to differentiate between different cognitive states in PD. The causal relationship between increased cognitive workload and cognitive decline in PD-NCI should be the focus of future studies.
Collapse
Affiliation(s)
- M Ranchet
- Department of Physical Therapy, College of Allied Health Sciences, Augusta University, Augusta, GA, USA; University of Lyon, F-69000 Lyon, France; French Institute of Science and Technology for Transport, Development and Networks (IFSTTAR), TS2, LESCOT, F-69500 Bron, France.
| | - J Orlosky
- Cybermedia Center, Toyonaka Educational Research Center 5F, Osaka University, 1-32 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - J Morgan
- Movement and Cognitive Disorders Center, Department of Neurology, Augusta University, GA, USA
| | - S Qadir
- Medical College of Georgia, Augusta University, GA, USA
| | - A E Akinwuntan
- Department of Physical Therapy, College of Allied Health Sciences, Augusta University, Augusta, GA, USA; Dean's Office, School of Health Professions, The University of Kansas Medical Center, Kansas City, KS, USA
| | - H Devos
- Department of Physical Therapy, College of Allied Health Sciences, Augusta University, Augusta, GA, USA; Department of Physical Therapy and Rehabilitation Science, School of Health Professions, The University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
47
|
Muhammed K, Manohar S, Ben Yehuda M, Chong TTJ, Tofaris G, Lennox G, Bogdanovic M, Hu M, Husain M. Reward sensitivity deficits modulated by dopamine are associated with apathy in Parkinson's disease. Brain 2016; 139:2706-2721. [PMID: 27452600 PMCID: PMC5035817 DOI: 10.1093/brain/aww188] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Apathy is a debilitating and under-recognized condition that has a significant impact in many neurodegenerative disorders. In Parkinson's disease, it is now known to contribute to worse outcomes and a reduced quality of life for patients and carers, adding to health costs and extending disease burden. However, despite its clinical importance, there remains limited understanding of mechanisms underlying apathy. Here we investigated if insensitivity to reward might be a contributory factor and examined how this relates to severity of clinical symptoms. To do this we created novel ocular measures that indexed motivation level using pupillary and saccadic response to monetary incentives, allowing reward sensitivity to be evaluated objectively. This approach was tested in 40 patients with Parkinson's disease, 31 elderly age-matched control participants and 20 young healthy volunteers. Thirty patients were examined ON and OFF their dopaminergic medication in two counterbalanced sessions, so that the effect of dopamine on reward sensitivity could be assessed. Pupillary dilation to increasing levels of monetary reward on offer provided quantifiable metrics of motivation in healthy subjects as well as patients. Moreover, pupillary reward sensitivity declined with age. In Parkinson's disease, reduced pupillary modulation by incentives was predictive of apathy severity, and independent of motor impairment and autonomic dysfunction as assessed using overnight heart rate variability measures. Reward sensitivity was further modulated by dopaminergic state, with blunted sensitivity when patients were OFF dopaminergic drugs, both in pupillary response and saccadic peak velocity response to reward. These findings suggest that reward insensitivity may be a contributory mechanism to apathy and provide potential new clinical measures for improved diagnosis and monitoring of apathy.media-1vid110.1093/brain/aww188_video_abstractaww188_video_abstract.
Collapse
Affiliation(s)
- Kinan Muhammed
- 1 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK 2 Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sanjay Manohar
- 1 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK 2 Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Michael Ben Yehuda
- 2 Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Trevor T-J Chong
- 3 Department of Cognitive Science, Macquarie University, Sydney, Australia
| | - George Tofaris
- 1 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Graham Lennox
- 1 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Marko Bogdanovic
- 1 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Michele Hu
- 1 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Masud Husain
- 1 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK 2 Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|