1
|
Kiseleva A, Rekow D, Schaal B, Leleu A. Olfactory facilitation of visual categorization in the 4-month-old brain depends on visual demand. Dev Sci 2024; 27:e13562. [PMID: 39188074 DOI: 10.1111/desc.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
To navigate their environment, infants rely on intersensory facilitation when unisensory perceptual demand is high, a principle known as inverse effectiveness. Given that this principle was mainly documented in the context of audiovisual stimulations, here we aim to determine whether it applies to olfactory-to-visual facilitation. We build on previous evidence that the mother's body odor facilitates face categorization in the 4-month-old brain, and investigate whether this effect depends on visual demand. Scalp electroencephalogram (EEG) was recorded in two groups of 4-month-old infants while they watched 6-Hz streams of visual stimuli with faces displayed every 6th stimulus to tag a face-selective response at 1 Hz. We used variable natural stimuli in one group (Nat Group), while stimuli were simplified in the other group (Simp Group) to reduce perceptual categorization demand. During visual stimulation, infants were alternatively exposed to their mother's versus a baseline odor. For both groups, we found an occipito-temporal face-selective response, but with a larger amplitude for the simplified stimuli, reflecting less demanding visual categorization. Importantly, the mother's body odor enhances the response to natural, but not to simplified, face stimuli, indicating that maternal odor improves face categorization when it is most demanding for the 4-month-old brain. Overall, this study demonstrates that the inverse effectiveness of intersensory facilitation applies to the sense of smell during early perceptual development. RESEARCH HIGHLIGHTS: Intersensory facilitation is a function of unisensory perceptual demand in infants (inverse effectiveness). This inverse relation between multisensory and unisensory perception has been mainly documented using audiovisual stimulations. Here we show that olfactory-to-visual facilitation depends on visual demand in 4-month-old infants. The inverse effectiveness of intersensory facilitation during early perceptual development applies to the sense of smell.
Collapse
Affiliation(s)
- Anna Kiseleva
- Development of Olfactory Communication and Cognition Lab, Centre des Sciences du Goût et de l'Alimentation, UBFC, CNRS, INRAe, Institut Agro, Université de Bourgogne, Dijon, France
| | - Diane Rekow
- Development of Olfactory Communication and Cognition Lab, Centre des Sciences du Goût et de l'Alimentation, UBFC, CNRS, INRAe, Institut Agro, Université de Bourgogne, Dijon, France
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Benoist Schaal
- Development of Olfactory Communication and Cognition Lab, Centre des Sciences du Goût et de l'Alimentation, UBFC, CNRS, INRAe, Institut Agro, Université de Bourgogne, Dijon, France
| | - Arnaud Leleu
- Development of Olfactory Communication and Cognition Lab, Centre des Sciences du Goût et de l'Alimentation, UBFC, CNRS, INRAe, Institut Agro, Université de Bourgogne, Dijon, France
| |
Collapse
|
2
|
Borne A, Perrone-Bertolotti M, Ferrand-Sorbets S, Bulteau C, Baciu M. Insights on cognitive reorganization after hemispherectomy in Rasmussen's encephalitis. A narrative review. Rev Neurosci 2024; 35:747-774. [PMID: 38749928 DOI: 10.1515/revneuro-2024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/26/2024] [Indexed: 05/24/2024]
Abstract
Rasmussen's encephalitis is a rare neurological pathology affecting one cerebral hemisphere, therefore, posing unique challenges. Patients may undergo hemispherectomy, a surgical procedure after which cognitive development occurs in the isolated contralateral hemisphere. This rare situation provides an excellent opportunity to evaluate brain plasticity and cognitive recovery at a hemispheric level. This literature review synthesizes the existing body of research on cognitive recovery following hemispherectomy in Rasmussen patients, considering cognitive domains and modulatory factors that influence cognitive outcomes. While language function has traditionally been the focus of postoperative assessments, there is a growing acknowledgment of the need to broaden the scope of language investigation in interaction with other cognitive domains and to consider cognitive scaffolding in development and recovery. By synthesizing findings reported in the literature, we delineate how language functions may find support from the right hemisphere after left hemispherectomy, but also how, beyond language, global cognitive functioning is affected. We highlight the critical influence of several factors on postoperative cognitive outcomes, including the timing of hemispherectomy and the baseline preoperative cognitive status, pointing to early surgical intervention as predictive of better cognitive outcomes. However, further specific studies are needed to confirm this correlation. This review aims to emphasize a better understanding of mechanisms underlying hemispheric specialization and plasticity in humans, which are particularly important for both clinical and research advancements. This narrative review underscores the need for an integrative approach based on cognitive scaffolding to provide a comprehensive understanding of mechanisms underlying the reorganization in Rasmussen patients after hemispherectomy.
Collapse
Affiliation(s)
- Anna Borne
- Univ. Grenoble Alpes, CNRS, LPNC, 38000 Grenoble, France
| | | | - Sarah Ferrand-Sorbets
- Hôpital Fondation Adolphe de Rothschild, Service de Neurochirurgie Pédiatrique, 75019 Paris, France
| | - Christine Bulteau
- Hôpital Fondation Adolphe de Rothschild, Service de Neurochirurgie Pédiatrique, 75019 Paris, France
- Université de Paris-Cité, MC2Lab EA 7536, Institut de Psychologie, F-92100 Boulogne-Billancourt, France
| | - Monica Baciu
- Univ. Grenoble Alpes, CNRS, LPNC, 38000 Grenoble, France
- Neurology Department, CMRR, University Hospital, 38000 Grenoble, France
| |
Collapse
|
3
|
Liu X, He D, Zhu M, Li Y, Lin L, Cai Q. Hemispheric dominance in reading system alters contribution to face processing lateralization across development. Dev Cogn Neurosci 2024; 69:101418. [PMID: 39059053 PMCID: PMC11331717 DOI: 10.1016/j.dcn.2024.101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/07/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Face processing dominates the right hemisphere. This lateralization can be affected by co-lateralization within the same system and influence between different systems, such as neural competition from reading acquisition. Yet, how the relationship pattern changes through development remains unknown. This study examined the lateralization of core face processing and word processing in different age groups. By comparing fMRI data from 36 school-aged children and 40 young adults, we investigated whether there are age and regional effects on lateralization, and how relationships between lateralization within and between systems change across development. Our results showed significant right hemispheric lateralization in the core face system and left hemispheric lateralization in reading-related areas for both age groups when viewing faces and texts passively. While all participants showed stronger lateralization in brain regions of higher functional hierarchy when viewing faces, only adults exhibited this lateralization when viewing texts. In both age cohorts, there was intra-system co-lateralization for face processing, whereas an inter-system relationship was only found in adults. Specifically, functional lateralization of Broca's area during reading negatively predicted functional asymmetry in the FFA during face perception. This study initially provides neuroimaging evidence for the reading-induced neural competition theory from a maturational perspective in Chinese cohorts.
Collapse
Affiliation(s)
- Xinyang Liu
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China.
| | - Danni He
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Miaomiao Zhu
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yinghui Li
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Longnian Lin
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Center for Brain Science and Brain-Inspired Technology, East China Normal University, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University, Shanghai, China; School of Life Science Department, East China Normal University, Shanghai 200062, China.
| | - Qing Cai
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China; Shanghai Center for Brain Science and Brain-Inspired Technology, East China Normal University, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University, Shanghai, China.
| |
Collapse
|
4
|
Rekow D, Baudouin JY, Kiseleva A, Rossion B, Durand K, Schaal B, Leleu A. Olfactory-to-visual facilitation in the infant brain declines gradually from 4 to 12 months. Child Dev 2024. [PMID: 39022837 DOI: 10.1111/cdev.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
During infancy, intersensory facilitation declines gradually as unisensory perception develops. However, this trade-off was mainly investigated using audiovisual stimulations. Here, fifty 4- to 12-month-old infants (26 females, predominately White) were tested in 2017-2020 to determine whether the facilitating effect of their mother's body odor on neural face categorization, as previously observed at 4 months, decreases with age. In a baseline odor context, the results revealed a face-selective electroencephalographic response that increases and changes qualitatively between 4 and 12 months, marking improved face categorization. At the same time, the benefit of adding maternal odor fades with age (R2 = .31), indicating an inverse relation with the amplitude of the visual response, and generalizing to olfactory-visual interactions previous evidence from the audiovisual domain.
Collapse
Affiliation(s)
- Diane Rekow
- Development of Olfactory Communication & Cognition Lab, Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS, INRAe, Institut Agro Dijon, Dijon, France
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Jean-Yves Baudouin
- Laboratoire "Développement, Individu, Processus, Handicap, Éducation" (DIPHE), Département Psychologie du Développement, de l'Éducation et des Vulnérabilités (PsyDÉV), Institut de Psychologie, Université de Lyon (Lumière Lyon 2), Bron, France
- Institut Universitaire de France, Paris, France
| | - Anna Kiseleva
- Development of Olfactory Communication & Cognition Lab, Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS, INRAe, Institut Agro Dijon, Dijon, France
| | - Bruno Rossion
- Université de Lorraine, CNRS, IMoPA, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy, France
| | - Karine Durand
- Development of Olfactory Communication & Cognition Lab, Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS, INRAe, Institut Agro Dijon, Dijon, France
| | - Benoist Schaal
- Development of Olfactory Communication & Cognition Lab, Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS, INRAe, Institut Agro Dijon, Dijon, France
| | - Arnaud Leleu
- Development of Olfactory Communication & Cognition Lab, Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS, INRAe, Institut Agro Dijon, Dijon, France
| |
Collapse
|
5
|
Tansey R, Graff K, Rai S, Merrikh D, Godfrey KJ, Vanderwal T, Bray S. Development of human visual cortical function: A scoping review of task- and naturalistic-fMRI studies through the interactive specialization and maturational frameworks. Neurosci Biobehav Rev 2024; 162:105729. [PMID: 38763178 DOI: 10.1016/j.neubiorev.2024.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Overarching theories such as the interactive specialization and maturational frameworks have been proposed to describe human functional brain development. However, these frameworks have not yet been systematically examined across the fMRI literature. Visual processing is one of the most well-studied fields in neuroimaging, and research in this area has recently expanded to include naturalistic paradigms that facilitate study in younger age ranges, allowing for an in-depth critical appraisal of these frameworks across childhood. To this end, we conducted a scoping review of 94 developmental visual fMRI studies, including both traditional experimental task and naturalistic studies, across multiple sub-domains (early visual processing, category-specific higher order processing, naturalistic visual processing). We found that across domains, many studies reported progressive development, but few studies describe regressive or emergent changes necessary to fit the maturational or interactive specialization frameworks. Our findings suggest a need for the expansion of developmental frameworks and clearer reporting of both progressive and regressive changes, along with well-powered, longitudinal studies.
Collapse
Affiliation(s)
- Ryann Tansey
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Kirk Graff
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Shefali Rai
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Daria Merrikh
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kate J Godfrey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Signe Bray
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Lochy A, Rossion B, Lambon Ralph M, Volfart A, Hauk O, Schiltz C. Linguistic and attentional factors - Not statistical regularities - Contribute to word-selective neural responses with FPVS-oddball paradigms. Cortex 2024; 173:339-354. [PMID: 38479348 PMCID: PMC10988773 DOI: 10.1016/j.cortex.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 01/29/2024] [Indexed: 03/27/2024]
Abstract
Studies using frequency-tagging in electroencephalography (EEG) have dramatically increased in the past 10 years, in a variety of domains and populations. Here we used Fast Periodic Visual Stimulation (FPVS) combined with an oddball design to explore visual word recognition. Given the paradigm's high sensitivity, it is crucial for future basic research and clinical application to prove its robustness across variations of designs, stimulus types and tasks. This paradigm uses periodicity of brain responses to measure discrimination between two experimentally defined categories of stimuli presented periodically. EEG was recorded in 22 adults who viewed words inserted every 5 stimuli (at 2 Hz) within base stimuli presented at 10 Hz. Using two discrimination levels (deviant words among nonwords or pseudowords), we assessed the impact of relative frequency of item repetition (set size or item repetition controlled for deviant versus base stimuli), and of the orthogonal task (focused or deployed spatial attention). Word-selective occipito-temporal responses were robust at the individual level (significant in 95% of participants), left-lateralized, larger for the prelexical (nonwords) than lexical (pseudowords) contrast, and stronger with a deployed spatial attention task as compared to the typically used focused task. Importantly, amplitudes were not affected by item repetition. These results help understanding the factors influencing word-selective EEG responses and support the validity of FPVS-EEG oddball paradigms, as they confirm that word-selective responses are linguistic. Second, they show its robustness against design-related factors that could induce statistical (ir)regularities in item rate. They also confirm its high individual sensitivity and demonstrate how it can be optimized, using a deployed rather than focused attention task, to measure implicit word recognition processes in typical and atypical populations.
Collapse
Affiliation(s)
- Aliette Lochy
- Institute of Cognitive Science and Assessment, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Psychological Science Institute (IPSY), UCLouvain, Louvain-La-Neuve, Belgium.
| | - Bruno Rossion
- Université de Lorraine, CNRS, Nancy, France; CHRU-Nancy, Service de Neurologie, Nancy, France
| | | | - Angélique Volfart
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Australia
| | - Olaf Hauk
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Christine Schiltz
- Institute of Cognitive Science and Assessment, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
7
|
Peykarjou S, Hoehl S, Pauen S. The development of visual categorization based on high-level cues. Child Dev 2024; 95:e122-e138. [PMID: 37787438 DOI: 10.1111/cdev.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
This study investigated the development of rapid visual object categorization. N = 20 adults (Experiment 1), N = 21 five to six-year-old children (Experiment 2), and N = 140 four-, seven-, and eleven-month-old infants (Experiment 3; all predominantly White, 81 females, data collected in 2013-2020) participated in a fast periodic visual stimulation electroencephalographic task. Similar categorization of animal and furniture stimuli emerged in children and adults, with responses much reduced by phase-scrambling (R2 = .34-.73). Categorization was observed from 4 months, but only at 11 months, high-level cues enhanced performance (R2 = .11). Thus, first signs of rapid categorization were evident from 4 months, but similar categorization patterns as in adults were recorded only from 11 months on.
Collapse
Affiliation(s)
| | - Stefanie Hoehl
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Sabina Pauen
- Department of Psychology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
Kubota E, Grill-Spector K, Nordt M. Rethinking cortical recycling in ventral temporal cortex. Trends Cogn Sci 2024; 28:8-17. [PMID: 37858388 PMCID: PMC10841108 DOI: 10.1016/j.tics.2023.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
High-level visual areas in ventral temporal cortex (VTC) support recognition of important categories, such as faces and words. Word-selective regions are left lateralized and emerge at the onset of reading instruction. Face-selective regions are right lateralized and have been documented in infancy. Prevailing theories suggest that face-selective regions become right lateralized due to competition with word-selective regions in the left hemisphere. However, recent longitudinal studies examining face- and word-selective responses in childhood do not provide support for this theory. Instead, there is evidence that word representations recycle cortex previously involved in processing other stimuli, such as limbs. These findings call for more longitudinal investigations of cortical recycling and a new era of work that links visual experience and behavior with neural responses.
Collapse
Affiliation(s)
- Emily Kubota
- Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Marisa Nordt
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen and Research Centre Juelich, Juelich, Germany
| |
Collapse
|
9
|
Köster M, Brzozowska A, Bánki A, Tünte M, Ward EK, Hoehl S. Rhythmic visual stimulation as a window into early brain development: A systematic review. Dev Cogn Neurosci 2023; 64:101315. [PMID: 37948945 PMCID: PMC10663747 DOI: 10.1016/j.dcn.2023.101315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/22/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
Rhythmic visual stimulation (RVS), the periodic presentation of visual stimuli to elicit a rhythmic brain response, is increasingly applied to reveal insights into early neurocognitive development. Our systematic review identified 69 studies applying RVS in 0- to 6-year-olds. RVS has long been used to study the development of the visual system and applications have more recently been expanded to uncover higher cognitive functions in the developing brain, including overt and covert attention, face and object perception, numeral cognition, and predictive processing. These insights are owed to the unique benefits of RVS, such as the targeted frequency and stimulus-specific neural responses, as well as a remarkable signal-to-noise ratio. Yet, neural mechanisms underlying the RVS response are still poorly understood. We discuss critical challenges and avenues for future research, and the unique potentials the method holds. With this review, we provide a resource for researchers interested in the breadth of developmental RVS research and hope to inspire the future use of this cutting-edge method in developmental cognitive neuroscience.
Collapse
Affiliation(s)
- Moritz Köster
- University of Regensburg, Institute of Psychology, Germany.
| | | | - Anna Bánki
- University of Vienna, Faculty of Psychology, Austria
| | - Markus Tünte
- University of Vienna, Faculty of Psychology, Austria
| | | | | |
Collapse
|
10
|
Chen NX, Wei P. Reward History Modulates the Processing of Task-Irrelevant Emotional Faces in a Demanding Task. Brain Sci 2023; 13:874. [PMID: 37371354 DOI: 10.3390/brainsci13060874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of the current study was to examine how reward-associated emotional facial distractors could capture attentional resources in a demanding visual task using event-related potentials (ERPs). In the learning phase, a high- or low-reward probability was paired with angry, happy, or neutral faces. Then, in the test phase, participants performed a face-irrelevant task with no reward at stake, in which they needed to discriminate the length of two lines presented in the center of the screen while faces that were taken from the learning phase were used as distractors presented in the periphery. The behavioral results revealed no effect of distractor emotional valence since the emotional information was task-irrelevant. The ERP results in the test phase revealed a significant main effect of distractor emotional valence for the parieto-occipital P200 (170-230 ms); the mean amplitudes in both the angry- and happy-face conditions were more positive than the neutral-face condition. Moreover, we found that the high-reward association enhanced both the N170 (140-180 ms) and EPN (260-330 ms) relative to the low-reward association condition. Finally, the N2pc (270-320 ms) also exhibited enhanced neural activity in the high-reward condition compared to the low-reward condition. The absence of emotional effects indicated that task-irrelevant emotional facial stimuli did not impact behavioral or neural responses in this highly demanding task. However, reward-associated information was processed when attention was directed elsewhere, suggesting that the processing of reward-associated information worked more in an automatic way, irrespective of the top-down task demand.
Collapse
Affiliation(s)
- Ning-Xuan Chen
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing 100048, China
| | - Ping Wei
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing 100048, China
| |
Collapse
|
11
|
Rossion B, Jacques C, Jonas J. Intracerebral Electrophysiological Recordings to Understand the Neural Basis of Human Face Recognition. Brain Sci 2023; 13:354. [PMID: 36831897 PMCID: PMC9954066 DOI: 10.3390/brainsci13020354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Understanding how the human brain recognizes faces is a primary scientific goal in cognitive neuroscience. Given the limitations of the monkey model of human face recognition, a key approach in this endeavor is the recording of electrophysiological activity with electrodes implanted inside the brain of human epileptic patients. However, this approach faces a number of challenges that must be overcome for meaningful scientific knowledge to emerge. Here we synthesize a 10 year research program combining the recording of intracerebral activity (StereoElectroEncephaloGraphy, SEEG) in the ventral occipito-temporal cortex (VOTC) of large samples of participants and fast periodic visual stimulation (FPVS), to objectively define, quantify, and characterize the neural basis of human face recognition. These large-scale studies reconcile the wide distribution of neural face recognition activity with its (right) hemispheric and regional specialization and extend face-selectivity to anterior regions of the VOTC, including the ventral anterior temporal lobe (VATL) typically affected by magnetic susceptibility artifacts in functional magnetic resonance imaging (fMRI). Clear spatial dissociations in category-selectivity between faces and other meaningful stimuli such as landmarks (houses, medial VOTC regions) or written words (left lateralized VOTC) are found, confirming and extending neuroimaging observations while supporting the validity of the clinical population tested to inform about normal brain function. The recognition of face identity - arguably the ultimate form of recognition for the human brain - beyond mere differences in physical features is essentially supported by selective populations of neurons in the right inferior occipital gyrus and the lateral portion of the middle and anterior fusiform gyrus. In addition, low-frequency and high-frequency broadband iEEG signals of face recognition appear to be largely concordant in the human association cortex. We conclude by outlining the challenges of this research program to understand the neural basis of human face recognition in the next 10 years.
Collapse
Affiliation(s)
- Bruno Rossion
- CNRS, CRAN, Université de Lorraine, F-54000 Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, F-54000 Nancy, France
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Corentin Jacques
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Jacques Jonas
- CNRS, CRAN, Université de Lorraine, F-54000 Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, F-54000 Nancy, France
| |
Collapse
|
12
|
Siddique S, Sutherland CAM, Jeffery L, Swe D, Gwinn OS, Palermo R. Children show neural sensitivity to facial trustworthiness as measured by fast periodic visual stimulation. Neuropsychologia 2023; 180:108488. [PMID: 36681187 DOI: 10.1016/j.neuropsychologia.2023.108488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Adults exhibit neural responses over the visual occipito-temporal area in response to faces that vary in how trustworthy they appear. However, it is not yet known when a mature pattern of neural sensitivity can be seen in children. Using a fast periodic visual stimulation (FPVS) paradigm, face images were presented to 8-to-9-year-old children (an age group which shows development of trust impressions; N = 31) and adult (N = 33) participants at a rate of 6 Hz (6 face images per second). Within this sequence, an 'oddball' face differing in the level of facial trustworthiness compared to the other faces, was presented at a rate of 1 Hz (once per second). Children were sensitive to variations in facial trustworthiness, showing reliable and significant neural responses at 1 Hz in the absence of instructions to respond to facial trustworthiness. Additionally, the magnitude of children's and adults' neural responses was similar, with strong Bayesian evidence that implicit neural responses to facial trustworthiness did not differ across the groups, and therefore, that visual sensitivity to differences in facial trustworthiness can show mature patterns by this age. Thus, nine or less years of social experience, perceptual and/or cognitive development may be sufficient for adult-like neural sensitivity to facial trustworthiness to emerge. We also validate the use of the FPVS methodology to examine children's implicit face-based trust processing for the first time, which is especially valuable in developmental research because this paradigm requires no explicit instructions or responses from participants.
Collapse
Affiliation(s)
- Saba Siddique
- School of Psychological Science, University of Western Australia, 35 Stirling Hwy, Crawley, 6009, Australia.
| | - Clare A M Sutherland
- School of Psychological Science, University of Western Australia, 35 Stirling Hwy, Crawley, 6009, Australia; School of Psychology, University of Aberdeen, King's College, Aberdeen, AB24 3FX, UK.
| | - Linda Jeffery
- School of Psychological Science, University of Western Australia, 35 Stirling Hwy, Crawley, 6009, Australia; School of Population Health, Curtin University, Kent St, Bentley WA 6102, Australia.
| | - Derek Swe
- School of Psychological Science, University of Western Australia, 35 Stirling Hwy, Crawley, 6009, Australia.
| | - O Scott Gwinn
- College of Education, Psychology, and Social Work, Flinders University, Sturt Rd, Bedford Park SA 5042, Australia.
| | - Romina Palermo
- School of Psychological Science, University of Western Australia, 35 Stirling Hwy, Crawley, 6009, Australia.
| |
Collapse
|
13
|
Chen Y, Allison O, Green HL, Kuschner ES, Liu S, Kim M, Slinger M, Mol K, Chiang T, Bloy L, Roberts TPL, Edgar JC. Maturational trajectory of fusiform gyrus neural activity when viewing faces: From 4 months to 4 years old. Front Hum Neurosci 2022; 16:917851. [PMID: 36034116 PMCID: PMC9411513 DOI: 10.3389/fnhum.2022.917851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Infant and young child electrophysiology studies have provided information regarding the maturation of face-encoding neural processes. A limitation of previous research is that very few studies have examined face-encoding processes in children 12-48 months of age, a developmental period characterized by rapid changes in the ability to encode facial information. The present study sought to fill this gap in the literature via a longitudinal study examining the maturation of a primary node in the face-encoding network-the left and right fusiform gyrus (FFG). Whole-brain magnetoencephalography (MEG) data were obtained from 25 infants with typical development at 4-12 months, and with follow-up MEG exams every ∼12 months until 3-4 years old. Children were presented with color images of Face stimuli and visual noise images (matched on spatial frequency, color distribution, and outer contour) that served as Non-Face stimuli. Using distributed source modeling, left and right face-sensitive FFG evoked waveforms were obtained from each child at each visit, with face-sensitive activity identified via examining the difference between the Non-Face and Face FFG timecourses. Before 24 months of age (Visits 1 and 2) the face-sensitive FFG M290 response was the dominant response, observed in the left and right FFG ∼250-450 ms post-stimulus. By 3-4 years old (Visit 4), the left and right face-sensitive FFG response occurred at a latency consistent with a face-sensitive M170 response ∼100-250 ms post-stimulus. Face-sensitive left and right FFG peak latencies decreased as a function of age (with age explaining greater than 70% of the variance in face-sensitive FFG latency), and with an adult-like FFG latency observed at 3-4 years old. Study findings thus showed face-sensitive FFG maturational changes across the first 4 years of life. Whereas a face-sensitive M290 response was observed under 2 years of age, by 3-4 years old, an adult-like face-sensitive M170 response was observed bilaterally. Future studies evaluating the maturation of face-sensitive FFG activity in infants at risk for neurodevelopmental disorders are of interest, with the present findings suggesting age-specific face-sensitive neural markers of a priori interest.
Collapse
Affiliation(s)
- Yuhan Chen
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Olivia Allison
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Heather L. Green
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Emily S. Kuschner
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Michelle Slinger
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kylie Mol
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Taylor Chiang
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Timothy P. L. Roberts
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - J. Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Leleu A, Rekow D. L’odeur maternelle aide le nourrisson à catégoriser des objets ressemblant à des visages. Med Sci (Paris) 2022; 38:541-544. [DOI: 10.1051/medsci/2022067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Behrmann M, Avidan G. Face perception: computational insights from phylogeny. Trends Cogn Sci 2022; 26:350-363. [PMID: 35232662 DOI: 10.1016/j.tics.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
Studies of face perception in primates elucidate the psychological and neural mechanisms that support this critical and complex ability. Recent progress in characterizing face perception across species, for example in insects and reptiles, has highlighted the ubiquity over phylogeny of this key ability for social interactions and survival. Here, we review the competence in face perception across species and the types of computation that support this behavior. We conclude that the computational complexity of face perception evinced by a species is not related to phylogenetic status and is, instead, largely a product of environmental context and social and adaptive pressures. Integrating findings across evolutionary data permits the derivation of computational principles that shed further light on primate face perception.
Collapse
Affiliation(s)
- Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Galia Avidan
- Department of Psychology, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
16
|
Lateralization of word and face processing in developmental dyslexia and developmental prosopagnosia. Neuropsychologia 2022; 170:108208. [PMID: 35278463 DOI: 10.1016/j.neuropsychologia.2022.108208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022]
Abstract
In right-handed adults, face processing is lateralized to the right hemisphere and visual word processing to the left hemisphere. According to the many-to-many account (MTMA) of functional cerebral organization this lateralization pattern is partly dependent on the acquisition of literacy. Hence, the MTMA predicts that: (i) processing of both words and faces should show no or at least less lateralization in individuals with developmental dyslexia compared with controls, and (ii) lateralization in word processing should be normal in individuals with developmental prosopagnosia whereas lateralization in face processing should be absent. To test these hypotheses, 21 right-handed adults with developmental dyslexia and 21 right-handed adults with developmental prosopagnosia performed a divided visual field paradigm with delayed matching of faces, words and cars. Contrary to the predictions, we find that lateralization effects in face processing are within the normal range for both developmental dyslexics and prosopagnosics. Moreover, the group with developmental dyslexia showed right hemisphere lateralization for word processing. We argue that these findings are incompatible with the specific predictions of the MTMA.
Collapse
|
17
|
Figueira JSB, Kutlu E, Scott LS, Keil A. The FreqTag toolbox: A principled approach to analyzing electrophysiological time series in frequency tagging paradigms. Dev Cogn Neurosci 2022; 54:101066. [PMID: 35184025 PMCID: PMC8861396 DOI: 10.1016/j.dcn.2022.101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/13/2021] [Accepted: 01/13/2022] [Indexed: 11/25/2022] Open
Abstract
Steady-state visual evoked potential (ssVEP) frequency tagging is an increasingly used method in electrophysiological studies of visual attention and perception. Frequency tagging is suitable for studies examining a wide range of populations, including infants and children. Frequency tagging involves the presentation of different elements of a visual array at different temporal rates, thus using stimulus timing to “tag” the brain response to a given element by means of a unique time signature. Leveraging the strength of the ssVEP frequency tagging method to isolate brain responses to concurrently presented and spatially overlapping visual objects requires specific signal processing methods. Here, we introduce the FreqTag suite of functions, an open source MATLAB toolbox. The purpose of the FreqTag toolbox is three-fold. First, it will equip users with a set of transparent and reproducible analytical tools for the analysis of ssVEP data. Second, the toolbox is designed to illustrate fundamental features of frequency domain and time-frequency domain approaches. Finally, decision criteria for the application of different functions and analyses are described. To promote reproducibility, raw algorithms are provided in a modular fashion, without additional hidden functions or transformations. This approach is intended to facilitate a fundamental understanding of the transformations and algorithmic steps in FreqTag, and to allow users to visualize and test each step in the toolbox.
Collapse
|
18
|
Ferrara K, Seydell-Greenwald A, Chambers CE, Newport EL, Landau B. Developmental changes in neural lateralization for visual-spatial function: Evidence from a line-bisection task. Dev Sci 2021; 25:e13217. [PMID: 34913543 DOI: 10.1111/desc.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/02/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
Studies of hemispheric specialization have traditionally cast the left hemisphere as specialized for language and the right hemisphere for spatial function. Much of the supporting evidence for this separation of function comes from studies of healthy adults and those who have sustained lesions to the right or left hemisphere. However, we know little about the developmental origins of lateralization. Recent evidence suggests that the young brain represents language bilaterally, with 4-6-year-olds activating the left-hemisphere regions known to support language in adults as well as homotopic regions in the right hemisphere. This bilateral pattern changes over development, converging on left-hemispheric activation in late childhood. In the present study, we ask whether this same developmental trajectory is observed in a spatial task that is strongly right-lateralized in adults-the line bisection (or "Landmark") task. We examined fMRI activation among children ages 5-11 years as they were asked to judge which end of a bisected vertical line was longer. We found that young children showed bilateral activation, with activation in the same areas of the right hemisphere as has been shown among adults, as well as in the left hemisphere homotopic regions. By age 10, activation was right-lateralized. This strongly resembles the developmental trajectory for language, moving from bilateral to lateralized activation. We discuss potential underlying mechanisms and suggest that understanding the development of lateralization for a range of cognitive functions can play a crucial role in understanding general principles of how and why the brain comes to lateralize certain functions.
Collapse
Affiliation(s)
- Katrina Ferrara
- Center for Brain Plasticity and Recovery, Georgetown University, Washington, District of Columbia, USA.,Intellectual and Developmental Disabilities Research Center, Children's National Health System, Washington, District of Columbia, USA
| | - Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University, Washington, District of Columbia, USA
| | - Catherine E Chambers
- Center for Brain Plasticity and Recovery, Georgetown University, Washington, District of Columbia, USA
| | - Elissa L Newport
- Center for Brain Plasticity and Recovery, Georgetown University, Washington, District of Columbia, USA
| | - Barbara Landau
- Center for Brain Plasticity and Recovery, Georgetown University, Washington, District of Columbia, USA.,Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Is human face recognition lateralized to the right hemisphere due to neural competition with left-lateralized visual word recognition? A critical review. Brain Struct Funct 2021; 227:599-629. [PMID: 34731327 DOI: 10.1007/s00429-021-02370-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
The right hemispheric lateralization of face recognition, which is well documented and appears to be specific to the human species, remains a scientific mystery. According to a long-standing view, the evolution of language, which is typically substantiated in the left hemisphere, competes with the cortical space in that hemisphere available for visuospatial processes, including face recognition. Over the last decade, a specific hypothesis derived from this view according to which neural competition in the left ventral occipito-temporal cortex with selective representations of letter strings causes right hemispheric lateralization of face recognition, has generated considerable interest and research in the scientific community. Here, a systematic review of studies performed in various populations (infants, children, literate and illiterate adults, left-handed adults) and methodologies (behavior, lesion studies, (intra)electroencephalography, neuroimaging) offers little if any support for this reading lateralized neural competition hypothesis. Specifically, right-lateralized face-selective neural activity already emerges at a few months of age, well before reading acquisition. Moreover, consistent evidence of face recognition performance and its right hemispheric lateralization being modulated by literacy level during development or at adulthood is lacking. Given the absence of solid alternative hypotheses and the key role of neural competition in the sensory-motor cortices for selectivity of representations, learning, and plasticity, a revised language-related neural competition hypothesis for the right hemispheric lateralization of face recognition should be further explored in future research, albeit with substantial conceptual clarification and advances in methodological rigor.
Collapse
|
20
|
Abstract
Understanding how the young infant brain starts to categorize the flurry of ambiguous sensory inputs coming in from its complex environment is of primary scientific interest. Here, we test the hypothesis that senses other than vision play a key role in initiating complex visual categorizations in 20 4-mo-old infants exposed either to a baseline odor or to their mother's odor while their electroencephalogram (EEG) is recorded. Various natural images of objects are presented at a 6-Hz rate (six images/second), with face-like object configurations of the same object categories (i.e., eliciting face pareidolia in adults) interleaved every sixth stimulus (i.e., 1 Hz). In the baseline odor context, a weak neural categorization response to face-like stimuli appears at 1 Hz in the EEG frequency spectrum over bilateral occipitotemporal regions. Critically, this face-like-selective response is magnified and becomes right lateralized in the presence of maternal body odor. This reveals that nonvisual cues systematically associated with human faces in the infant's experience shape the interpretation of face-like configurations as faces in the right hemisphere, dominant for face categorization. At the individual level, this intersensory influence is particularly effective when there is no trace of face-like categorization in the baseline odor context. These observations provide evidence for the early tuning of face-(like)-selective activity from multisensory inputs in the developing brain, suggesting that perceptual development integrates information across the senses for efficient category acquisition, with early maturing systems such as olfaction driving the acquisition of categories in later-developing systems such as vision.
Collapse
|
21
|
Van Rinsveld A, Wens V, Guillaume M, Beuel A, Gevers W, De Tiège X, Content A. Automatic Processing of Numerosity in Human Neocortex Evidenced by Occipital and Parietal Neuromagnetic Responses. Cereb Cortex Commun 2021; 2:tgab028. [PMID: 34296173 PMCID: PMC8152830 DOI: 10.1093/texcom/tgab028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 03/20/2021] [Accepted: 04/05/2021] [Indexed: 01/23/2023] Open
Abstract
Humans and other animal species are endowed with the ability to sense, represent, and mentally manipulate the number of items in a set without needing to count them. One central hypothesis is that this ability relies on an automated functional system dedicated to numerosity, the perception of the discrete numerical magnitude of a set of items. This system has classically been associated with intraparietal regions, however accumulating evidence in favor of an early visual number sense calls into question the functional role of parietal regions in numerosity processing. Targeting specifically numerosity among other visual features in the earliest stages of processing requires high temporal and spatial resolution. We used frequency-tagged magnetoencephalography to investigate the early automatic processing of numerical magnitudes and measured the steady-state brain responses specifically evoked by numerical and other visual changes in the visual scene. The neuromagnetic responses showed implicit discrimination of numerosity, total occupied area, and convex hull. The source reconstruction corresponding to the implicit discrimination responses showed common and separate sources along the ventral and dorsal visual pathways. Occipital sources attested the perceptual salience of numerosity similarly to both other implicitly discriminable visual features. Crucially, we found parietal responses uniquely associated with numerosity discrimination, showing automatic processing of numerosity in the parietal cortex, even when not relevant to the task. Taken together, these results provide further insights into the functional roles of parietal and occipital regions in numerosity encoding along the visual hierarchy.
Collapse
Affiliation(s)
- Amandine Van Rinsveld
- Center for Research in Cognition and Neurosciences (CRCN), UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1070, Belgium
- Magnetoencephalography Unit, Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB – Hôpital Erasme, Brussels 1070, Belgium
| | - Mathieu Guillaume
- Center for Research in Cognition and Neurosciences (CRCN), UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Anthony Beuel
- Center for Research in Cognition and Neurosciences (CRCN), UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Wim Gevers
- Center for Research in Cognition and Neurosciences (CRCN), UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1070, Belgium
- Magnetoencephalography Unit, Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB – Hôpital Erasme, Brussels 1070, Belgium
| | - Alain Content
- Center for Research in Cognition and Neurosciences (CRCN), UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| |
Collapse
|
22
|
The interactive effects of reward expectation and emotional interference on cognitive conflict control: An ERP study. Physiol Behav 2021; 234:113369. [PMID: 33636632 DOI: 10.1016/j.physbeh.2021.113369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/20/2022]
Abstract
The effects of reward expectation and task-irrelevant emotional content on performance and event-related potential (ERP) recordings in a cognitive conflict control task were investigated using the face-word Stroop paradigm. A precue indicating additional monetary rewards for fast and accurate responses during the upcoming trial (incentive condition; relative to a cue indicating no additional reward, i.e., nonincentive condition) was followed by the presentation of target Chinese words (male vs. female) superimposed on background emotional faces (happy vs. fearful). The face's gender was congruent or incongruent with the target Chinese words. ERP results revealed that incentive cues elicited larger P1, P3, and CNV responses compared to nonincentive cues. There was a significant three-way interaction of reward expectation, emotional content, and congruency during the target processing stage such that emotionality and congruency interacted to affect the N170 and N2 component responses during the nonincentive condition but not during the incentive condition. These results indicate that reward-induced motivation reduces the interference effect of task-irrelevant emotional information, leading to better conflict resolution.
Collapse
|
23
|
Kühn CD, Wilms IL, Dalrymple KA, Gerlach C, Starrfelt R. Face recognition in beginning readers: Investigating the potential relationship between reading and face recognition during the first year of school. VISUAL COGNITION 2021. [DOI: 10.1080/13506285.2021.1884151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Christina D. Kühn
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
- Department of Psychology, University of Southern Denmark, Odense, Denmark
| | - Inge L. Wilms
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten A. Dalrymple
- Institute of Child Development, institution>University of Minnesota, Minneapolis, MN, USA
| | - Christian Gerlach
- Department of Psychology, University of Southern Denmark, Odense, Denmark
| | - Randi Starrfelt
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
EEG signatures of cognitive and social development of preschool children-a systematic review. PLoS One 2021; 16:e0247223. [PMID: 33606804 PMCID: PMC7895403 DOI: 10.1371/journal.pone.0247223] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/03/2021] [Indexed: 01/09/2023] Open
Abstract
Background Early identification of preschool children who are at risk of faltering in their development is essential to ensuring that all children attain their full potential. Electroencephalography (EEG) has been used to measure neural correlates of cognitive and social development in children for decades. Effective portable and low-cost EEG devices increase the potential of its use to assess neurodevelopment in children at scale and particularly in low-resource settings. We conducted a systematic review aimed to synthesise EEG measures of cognitive and social development in 2-5-year old children. Our secondary aim was to identify how these measures differ across a) the course of development within this age range, b) gender and c) socioeconomic status (SES). Methods and findings A systematic literature search identified 51 studies for inclusion in this review. Data relevant to the primary and secondary aims was extracted from these studies and an assessment for risk of bias was done, which highlighted the need for harmonisation of EEG data collection and analysis methods across research groups and more detailed reporting of participant characteristics. Studies reported on the domains of executive function (n = 22 papers), selective auditory attention (n = 9), learning and memory (n = 5), processing of faces (n = 7) and emotional stimuli (n = 8). For papers investigating executive function and selective auditory attention, the most commonly reported measures were alpha power and the amplitude and latency of positive (P1, P2, P3) and negative (N1, N2) deflections of event related potential (ERPs) components. The N170 and P1 ERP components were the most commonly reported neural responses to face and emotional faces stimuli. A mid-latency negative component and positive slow wave were used to index learning and memory, and late positive potential in response to emotional non-face stimuli. While almost half the studies described changes in EEG measures across age, only eight studies disaggregated results based on gender, and six included children from low income households to assess the impact of SES on neurodevelopment. No studies were conducted in low- and middle-income countries. Conclusion This review has identified power across the EEG spectrum and ERP components to be the measures most commonly reported in studies in which preschool children engage in tasks indexing cognitive and social development. It has also highlighted the need for additional research into their changes across age and based on gender and SES.
Collapse
|
25
|
Chen Y, Slinger M, Edgar JC, Bloy L, Kuschner ES, Kim M, Green HL, Chiang T, Yount T, Liu S, Lebus J, Lam S, Stephen JM, Huang H, Roberts TPL. Maturation of hemispheric specialization for face encoding during infancy and toddlerhood. Dev Cogn Neurosci 2021; 48:100918. [PMID: 33571846 PMCID: PMC7876542 DOI: 10.1016/j.dcn.2021.100918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 11/30/2022] Open
Abstract
Using infant magnetoencephalography (MEG), study findings show maturational changes to fusiform gyrus (FFG) activity when viewing faces. Earlier right FFG activity to face stimuli is associated with better social and cognitive ability. Stronger right- than left-hemisphere FFG responses to face stimuli are most evident after 1 year of age.
Little is known about the neural processes associated with attending to social stimuli during infancy and toddlerhood. Using infant magnetoencephalography (MEG), fusiform gyrus (FFG) activity while processing Face and Non-Face stimuli was examined in 46 typically developing infants 3 to 24 months old (28 males). Several findings indicated FFG maturation throughout the first two years of life. First, right FFG responses to Face stimuli decreased as a function of age. Second, hemispheric specialization to the face stimuli developed somewhat slowly, with earlier right than left FFG peak activity most evident after 1 year of age. Right FFG activity to Face stimuli was of clinical interest, with an earlier right FFG response associated with better performance on tests assessing social and cognitive ability. Building on the above, clinical studies examining maturational change in FFG activity (e.g., lateralization and speed) in infants at-risk for childhood disorders associated with social deficits are of interest to identify atypical FFG maturation before a formal diagnosis is possible.
Collapse
Affiliation(s)
- Yuhan Chen
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Michelle Slinger
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Heather L Green
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Taylor Chiang
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tess Yount
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jill Lebus
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Samantha Lam
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA
| | - Hao Huang
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
26
|
van de Walle de Ghelcke A, Rossion B, Schiltz C, Lochy A. Developmental changes in neural letter-selectivity: A 1-year follow-up of beginning readers. Dev Sci 2021; 24:e12999. [PMID: 32452594 PMCID: PMC7816260 DOI: 10.1111/desc.12999] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 03/23/2020] [Accepted: 04/29/2020] [Indexed: 01/23/2023]
Abstract
The developmental course of neural tuning to visual letter strings is unclear. Here we tested 39 children longitudinally, at the beginning of grade 1 (6.45 ± 0.33 years old) and 1 year after, with fast periodic visual stimulation in electroencephalography to assess the evolution of selective neural responses to letter strings and their relationship with emerging reading abilities. At both grades, frequency-tagged letter strings were discriminated from pseudofont strings (i.e. letter-selectivity) over the left occipito-temporal cortex, with effects observed at the individual level in 62% of children. However, visual words were not discriminated from pseudowords (lexical access) at either grade. Following 1 year of schooling, letter-selective responses showed a specific increase in amplitude, a more complex pattern of harmonics, and were located more anteriorly over the left occipito-temporal cortex. Remarkably, at both grades, neural responses were highly significant at the individual level and correlated with individual reading scores. The amplitude increase in letter-selective responses between grades was not found for discrimination responses of familiar keyboard symbols from pseudosymbols, and was not related to a general increase in visual stimulation responses. These findings demonstrate a rapid onset of left hemispheric letter selectivity, with 1 year of reading instruction resulting in increased emerging reading abilities and a clear quantitative and qualitative evolution within left hemispheric neural circuits for reading.
Collapse
Affiliation(s)
- Alice van de Walle de Ghelcke
- Psychological Sciences Research Institute and Institute of NeuroscienceUniversité Catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Bruno Rossion
- Psychological Sciences Research Institute and Institute of NeuroscienceUniversité Catholique de LouvainLouvain‐la‐NeuveBelgium
- CNRS‐CRANUniversité de LorraineNancyFrance
- Service de NeurologieCHRU‐NancyUniversité de LorraineNancyFrance
| | - Christine Schiltz
- Department of Behavioral and Cognitive SciencesInstitute of Cognitive Science and AssessmentUniversité du LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Aliette Lochy
- Department of Behavioral and Cognitive SciencesInstitute of Cognitive Science and AssessmentUniversité du LuxembourgEsch‐sur‐AlzetteLuxembourg
| |
Collapse
|
27
|
Measuring spontaneous and automatic processing of magnitude and parity information of Arabic digits by frequency-tagging EEG. Sci Rep 2020; 10:22254. [PMID: 33335293 PMCID: PMC7747728 DOI: 10.1038/s41598-020-79404-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Arabic digits (1–9) are everywhere in our daily lives. These symbols convey various semantic information, and numerate adults can easily extract from them several numerical features such as magnitude and parity. Nonetheless, since most studies used active processing tasks to assess these properties, it remains unclear whether and to what degree the access to magnitude and especially to parity is automatic. Here we investigated with EEG whether spontaneous processing of magnitude or parity can be recorded in a frequency-tagging approach, in which participants are passively stimulated by fast visual sequences of Arabic digits. We assessed automatic magnitude processing by presenting a stream of frequent small digit numbers mixed with deviant large digits (and the reverse) with a sinusoidal contrast modulation at the frequency of 10 Hz. We used the same paradigm to investigate numerical parity processing, contrasting odd digits to even digits. We found significant brain responses at the frequency of the fluctuating change and its harmonics, recorded on electrodes encompassing right occipitoparietal regions, in both conditions. Our findings indicate that both magnitude and parity are spontaneously and unintentionally extracted from Arabic digits, which supports that they are salient semantic features deeply associated to digit symbols in long-term memory.
Collapse
|
28
|
Bottari D, Bednaya E, Dormal G, Villwock A, Dzhelyova M, Grin K, Pietrini P, Ricciardi E, Rossion B, Röder B. EEG frequency-tagging demonstrates increased left hemispheric involvement and crossmodal plasticity for face processing in congenitally deaf signers. Neuroimage 2020; 223:117315. [DOI: 10.1016/j.neuroimage.2020.117315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/06/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
|
29
|
Georges C, Guillaume M, Schiltz C. A robust electrophysiological marker of spontaneous numerical discrimination. Sci Rep 2020; 10:18376. [PMID: 33110202 PMCID: PMC7591903 DOI: 10.1038/s41598-020-75307-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023] Open
Abstract
Humans have a Number Sense that enables them to represent and manipulate numerical quantities. Behavioral data suggest that the acuity of numerical discrimination is predictively associated with math ability-especially in children-but some authors argued that its assessment is problematic. In the present study, we used frequency-tagged electroencephalography to objectively measure spontaneous numerical discrimination during passive viewing of dot or picture arrays in healthy adults. During 1-min sequences, we introduced periodic numerosity changes and we progressively increased the magnitude of such changes every ten seconds. We found significant brain synchronization to the periodic numerosity changes from the 1.2 ratio over medial occipital regions, and amplitude strength increased with the numerical ratio. Brain responses were reliable across both stimulus formats. Interestingly, electrophysiological responses also mirrored performances on a number comparison task and seemed to be linked to math fluency. In sum, we present a neural marker of numerical acuity that is passively evaluated in short sequences, independent of stimulus format and that reflects behavioural performances on explicit number comparison tasks.
Collapse
Affiliation(s)
- Carrie Georges
- Department of Behavioural and Cognitive Sciences (DBCS), Faculty of Humanities, Education and Social Sciences (FHSE), Institute of Cognitive Science and Assessment (COSA), University of Luxembourg, Campus Belval, Maison des Sciences Humaines, Porte des Sciences 11, 4366, Esch-sur-Alzette, Luxembourg.
| | - Mathieu Guillaume
- Center for Research in Cognitive Neuroscience (CRCN), Université Libre de Bruxelles, Avenue Franklin Roosevelt 50 (CP 191), 1050, Brussels, Belgium
| | - Christine Schiltz
- Department of Behavioural and Cognitive Sciences (DBCS), Faculty of Humanities, Education and Social Sciences (FHSE), Institute of Cognitive Science and Assessment (COSA), University of Luxembourg, Campus Belval, Maison des Sciences Humaines, Porte des Sciences 11, 4366, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
30
|
Rekow D, Leleu A, Poncet F, Damon F, Rossion B, Durand K, Schaal B, Baudouin JY. Categorization of objects and faces in the infant brain and its sensitivity to maternal odor: further evidence for the role of intersensory congruency in perceptual development. COGNITIVE DEVELOPMENT 2020. [DOI: 10.1016/j.cogdev.2020.100930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Lochy A, Schiltz C, Rossion B. The right hemispheric dominance for face perception in preschool children depends on the visual discrimination level. Dev Sci 2020; 23:e12914. [PMID: 31618490 PMCID: PMC7379294 DOI: 10.1111/desc.12914] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 10/08/2019] [Indexed: 01/08/2023]
Abstract
The developmental origin of human adults' right hemispheric dominance in response to face stimuli remains unclear, in particular because young infants' right hemispheric advantage in face-selective response is no longer present in preschool children, before written language acquisition. Here we used fast periodic visual stimulation (FPVS) with scalp electroencephalography (EEG) to test 52 preschool children (5.5 years old) at two different levels of face discrimination: discrimination of faces against objects, measuring face-selectivity, or discrimination between individual faces. While the contrast between faces and nonface objects elicits strictly bilateral occipital responses in children, strengthening previous observations, discrimination of individual faces in the same children reveals a strong right hemispheric lateralization over the occipitotemporal cortex. Picture-plane inversion of the face stimuli significantly decreases the individual discrimination response, although to a much smaller extent than in older children and adults tested with the same paradigm. However, there is only a nonsignificant trend for a decrease in right hemispheric lateralization with inversion. There is no relationship between the right hemispheric lateralization in individual face discrimination and preschool levels of readings abilities. The observed difference in the right hemispheric lateralization obtained in the same population of children with two different paradigms measuring neural responses to faces indicates that the level of visual discrimination is a key factor to consider when making inferences about the development of hemispheric lateralization of face perception in the human brain.
Collapse
Affiliation(s)
- Aliette Lochy
- Cognitive Science and Assessment InstituteEducation, Culture, Cognition, and Society Research UnitUniversity of LuxemburgEsch‐sur AlzetteLuxembourg
| | - Christine Schiltz
- Cognitive Science and Assessment InstituteEducation, Culture, Cognition, and Society Research UnitUniversity of LuxemburgEsch‐sur AlzetteLuxembourg
| | - Bruno Rossion
- IPSYUniversité Catholique de LouvainLouvain‐La‐NeuveBelgium
- CNRSCRANUniversité de LorraineNancyFrance
- CHRU‐NancyUniversité de LorraineNancyFrance
| |
Collapse
|
32
|
Vettori S, Dzhelyova M, Van der Donck S, Jacques C, Steyaert J, Rossion B, Boets B. Frequency-Tagging Electroencephalography of Superimposed Social and Non-Social Visual Stimulation Streams Reveals Reduced Saliency of Faces in Autism Spectrum Disorder. Front Psychiatry 2020; 11:332. [PMID: 32411029 PMCID: PMC7199527 DOI: 10.3389/fpsyt.2020.00332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/02/2020] [Indexed: 12/30/2022] Open
Abstract
Individuals with autism spectrum disorder (ASD) have difficulties with social communication and interaction. The social motivation hypothesis states that a reduced interest in social stimuli may partly underlie these difficulties. Thus far, however, it has been challenging to quantify individual differences in social orientation and interest, and to pinpoint the neural underpinnings of it. In this study, we tested the neural sensitivity for social versus non-social information in 21 boys with ASD (8-12 years old) and 21 typically developing (TD) control boys, matched for age and IQ, while children were engaged in an orthogonal task. We recorded electroencephalography (EEG) during fast periodic visual stimulation (FPVS) of social versus non-social stimuli to obtain an objective implicit neural measure of relative social bias. Streams of variable images of faces and houses were superimposed, and each stream of stimuli was tagged with a particular presentation rate (i.e., 6 and 7.5 Hz or vice versa). This frequency-tagging method allows disentangling the respective neural responses evoked by the different streams of stimuli. Moreover, by using superimposed stimuli, we controlled for possible effects of preferential looking, spatial attention, and disengagement. Based on four trials of 60 s, we observed a significant three-way interaction. In the control group, the frequency-tagged neural responses to faces were larger than those to houses, especially in lateral occipito-temporal channels, while the responses to houses were larger over medial occipital channels. In the ASD group, however, faces and houses did not elicit significantly different neural responses in any of the regions. Given the short recording time of the frequency-tagging paradigm with multiple simultaneous inputs and the robustness of the individual responses, the method could be used as a sensitive marker of social preference in a wide range of populations, including younger and challenging populations.
Collapse
Affiliation(s)
- Sofie Vettori
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Milena Dzhelyova
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
- Institute of Research in Psychological Science, Institute of Neuroscience, University of Louvain, Louvain-La-Neuve, Belgium
| | - Stephanie Van der Donck
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Corentin Jacques
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Institute of Research in Psychological Science, Institute of Neuroscience, University of Louvain, Louvain-La-Neuve, Belgium
| | - Jean Steyaert
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Bruno Rossion
- Institute of Research in Psychological Science, Institute of Neuroscience, University of Louvain, Louvain-La-Neuve, Belgium
- Université de Lorraine, CNRS, CRAN-UMR 7039, Nancy, France
- Université de Lorraine, CHRU-Service de Neurologie, Nancy, France
| | - Bart Boets
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Behrmann M, Plaut DC. Hemispheric Organization for Visual Object Recognition: A Theoretical Account and Empirical Evidence. Perception 2020; 49:373-404. [PMID: 31980013 PMCID: PMC9944149 DOI: 10.1177/0301006619899049] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Despite the similarity in structure, the hemispheres of the human brain have somewhat different functions. A traditional view of hemispheric organization asserts that there are independent and largely lateralized domain-specific regions in ventral occipitotemporal (VOTC), specialized for the recognition of distinct classes of objects. Here, we offer an alternative account of the organization of the hemispheres, with a specific focus on face and word recognition. This alternative account relies on three computational principles: distributed representations and knowledge, cooperation and competition between representations, and topography and proximity. The crux is that visual recognition results from a network of regions with graded functional specialization that is distributed across both hemispheres. Specifically, the claim is that face recognition, which is acquired relatively early in life, is processed by VOTC regions in both hemispheres. Once literacy is acquired, word recognition, which is co-lateralized with language areas, primarily engages the left VOTC and, consequently, face recognition is primarily, albeit not exclusively, mediated by the right VOTC. We review psychological and neural evidence from a range of studies conducted with normal and brain-damaged adults and children and consider findings which challenge this account. Last, we offer suggestions for future investigations whose findings may further refine this account.
Collapse
Affiliation(s)
- Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - David C. Plaut
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
34
|
The neural signature of numerosity by separating numerical and continuous magnitude extraction in visual cortex with frequency-tagged EEG. Proc Natl Acad Sci U S A 2020; 117:5726-5732. [PMID: 32123113 PMCID: PMC7084102 DOI: 10.1073/pnas.1917849117] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The ability to handle approximate quantities, or number sense, has been recurrently linked to mathematical skills, although the nature of the mechanism allowing to extract numerical information (i.e., numerosity) from environmental stimuli is still debated. A set of objects is indeed not only characterized by its numerosity but also by other features, such as the summed area occupied by the elements, which often covary with numerosity. These intrinsic relations between numerosity and nonnumerical magnitudes led some authors to argue that numerosity is not independently processed but extracted through a weighting of continuous magnitudes. This view cannot be properly tested through classic behavioral and neuroimaging approaches due to these intrinsic correlations. The current study used a frequency-tagging EEG approach to separately measure responses to numerosity as well as to continuous magnitudes. We recorded occipital responses to numerosity, total area, and convex hull changes but not to density and dot size. We additionally applied a model predicting primary visual cortex responses to the set of stimuli. The model output was closely aligned with our electrophysiological data, since it predicted discrimination only for numerosity, total area, and convex hull. Our findings thus demonstrate that numerosity can be independently processed at an early stage in the visual cortex, even when completely isolated from other magnitude changes. The similar implicit discrimination for numerosity as for some continuous magnitudes, which correspond to basic visual percepts, shows that both can be extracted independently, hence substantiating the nature of numerosity as a primary feature of the visual scene.
Collapse
|
35
|
Leleu A, Rekow D, Poncet F, Schaal B, Durand K, Rossion B, Baudouin J. Maternal odor shapes rapid face categorization in the infant brain. Dev Sci 2019; 23:e12877. [DOI: 10.1111/desc.12877] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/07/2019] [Accepted: 06/04/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Arnaud Leleu
- Developmental Ethology and Cognitive Psychology group, Centre des Sciences du Goût et de l’Alimentation Université Bourgogne Franche‐Comté, CNRSInra, AgroSup Dijon Dijon France
| | - Diane Rekow
- Developmental Ethology and Cognitive Psychology group, Centre des Sciences du Goût et de l’Alimentation Université Bourgogne Franche‐Comté, CNRSInra, AgroSup Dijon Dijon France
| | - Fanny Poncet
- Developmental Ethology and Cognitive Psychology group, Centre des Sciences du Goût et de l’Alimentation Université Bourgogne Franche‐Comté, CNRSInra, AgroSup Dijon Dijon France
| | - Benoist Schaal
- Developmental Ethology and Cognitive Psychology group, Centre des Sciences du Goût et de l’Alimentation Université Bourgogne Franche‐Comté, CNRSInra, AgroSup Dijon Dijon France
| | - Karine Durand
- Developmental Ethology and Cognitive Psychology group, Centre des Sciences du Goût et de l’Alimentation Université Bourgogne Franche‐Comté, CNRSInra, AgroSup Dijon Dijon France
| | - Bruno Rossion
- Psychological Sciences Research Institute, Institute of Neuroscience University of Louvain Louvain‐la‐Neuve Belgium
- Université de Lorraine, CNRS, CRAN Nancy France
- Université de Lorraine, CHRU‐Nancy Nancy France
| | - Jean‐Yves Baudouin
- Developmental Ethology and Cognitive Psychology group, Centre des Sciences du Goût et de l’Alimentation Université Bourgogne Franche‐Comté, CNRSInra, AgroSup Dijon Dijon France
- Laboratoire Développement Département Psychologie du Développement, de l'Éducation et des Vulnérabilités (PsyDÉV), Institut de psychologie Université de Lyon (Lumière Lyon 2) Individu, Processus Handicap, Éducation (DIPHE) Bron cedex France
| |
Collapse
|