1
|
Tang K, Zhong R, Li N, Li J, Zhang X, Lin W, Yang J, Li G. Psychiatric comorbidities predict seizure recurrence in newly treated adults with epilepsy. Epilepsy Behav 2025; 168:110409. [PMID: 40187141 DOI: 10.1016/j.yebeh.2025.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVE At least 30 % to 40 % of patients newly treated for epilepsy experience further seizures despite initiation of appropriate antiseizure medication (ASM) treatment. This study aimed to identify clinically useful predictors of seizure recurrence in newly treated adults with epilepsy which would have major clinical benefits. METHODS This work is a prospective cohort study conducted in Northeast China between June 2017 and May 2022. At enrolment, we collected information about demographics, clinical characteristics, and psychiatric comorbidities in newly treated adults with epilepsy. All patients were followed for 12 months for further seizures. Predictors of seizure recurrence were identified using logistic regression analyses. RESULTS A total of 836 newly treated adults with epilepsy were included in the final analysis. During follow-up, 362 (43.3 %) patients experienced at least one seizure recurrence, and 474 (56.7 %) entered seizure remission. Multivariable analysis showed that the odds of patients with depression having seizure recurrence were 1.74 times greater than those of patients without depression (Adjusted OR 1.74, 95 % CI 1.21-2.51). Similarly, the odds of patients with anxiety having seizure recurrence were 1.69 times greater than those of patients without anxiety (Adjusted OR 1.69, 95 % CI 1.21-2.37). Other Predictors of seizure recurrence included >5 seizures prior to treatment, brain MRI lesion, EEG epileptiform discharges. CONCLUSION We found that psychiatric comorbidities at baseline increase the risk of seizure recurrence in newly treated adults with epilepsy. Future studies are required to clarify the mechanisms underlying the links among psychiatric comorbidities and epilepsy. Furthermore, our findings might inform prospective studies investigating whether psychiatric treatment reduces the risk of seizure recurrence in these patients.
Collapse
Affiliation(s)
- Ke Tang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Rui Zhong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyue Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Weihong Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Yang
- School of Life Sciences, Changchun Normal University, Changchun 130021, China
| | - Guangjian Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
2
|
Okuda Y, Li D, Maruyama Y, Sonobe H, Mano T, Tainaka K, Shinohara R, Furuyashiki T. The activation of the piriform cortex to lateral septum pathway during chronic social defeat stress is crucial for the induction of behavioral disturbance in mice. Neuropsychopharmacology 2025; 50:828-840. [PMID: 39638863 PMCID: PMC11914691 DOI: 10.1038/s41386-024-02034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Chronic stress induces neural dysfunctions and risks mental illnesses. Clinical and preclinical studies have established the roles of brain regions underlying emotional and cognitive functions in stress and depression. However, neural pathways to perceive sensory stimuli as stress to cause behavioral disturbance remain unknown. Using whole-brain imaging of Arc-dVenus neuronal response reporter mice and machine learning analysis, here we unbiasedly demonstrated different patterns of contribution of widely distributed brain regions to neural responses to acute and chronic social defeat stress (SDS). Among these brain regions, multiple sensory cortices, especially the piriform (olfactory) cortex, primarily contributed to classifying neural responses to chronic SDS. Indeed, SDS-induced activation of the piriform cortex was augmented with repetition of SDS, accompanied by impaired odor discrimination. Axonal tracing and chemogenetic manipulation showed that excitatory neurons in the piriform cortex directly project to the lateral septum and activate it in response to chronic SDS, thereby inducing behavioral disturbance. These results pave the way for identifying a spatially defined sequence of neural consequences of stress and the roles of sensory pathways in perceiving chronic stress in mental illness pathology.
Collapse
Affiliation(s)
- Yuki Okuda
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Dongrui Li
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yuzuki Maruyama
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Hirokazu Sonobe
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Tomoyuki Mano
- Computational Neuroethology Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, 904-0412, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Ryota Shinohara
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
3
|
Smith J, Honig-Frand A, Antila H, Choi A, Kim H, Beier KT, Weber F, Chung S. Regulation of stress-induced sleep fragmentation by preoptic glutamatergic neurons. Curr Biol 2024; 34:12-23.e5. [PMID: 38096820 PMCID: PMC10872481 DOI: 10.1016/j.cub.2023.11.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 01/11/2024]
Abstract
Sleep disturbances are detrimental to our behavioral and emotional well-being. Stressful events disrupt sleep, in particular by inducing brief awakenings (microarousals, MAs), resulting in sleep fragmentation. The preoptic area of the hypothalamus (POA) is crucial for sleep control. However, how POA neurons contribute to the regulation of MAs and thereby impact sleep quality is unknown. Using fiber photometry in mice, we examine the activity of genetically defined POA subpopulations during sleep. We find that POA glutamatergic neurons are rhythmically activated in synchrony with an infraslow rhythm in the spindle band of the electroencephalogram during non-rapid eye movement sleep (NREMs) and are transiently activated during MAs. Optogenetic stimulation of these neurons promotes MAs and wakefulness. Exposure to acute social defeat stress fragments NREMs and significantly increases the number of transients in the calcium activity of POA glutamatergic neurons during NREMs. By reducing MAs, optogenetic inhibition during spontaneous sleep and after stress consolidates NREMs. Monosynaptically restricted rabies tracing reveals that POA glutamatergic neurons are innervated by brain regions regulating stress and sleep. In particular, presynaptic glutamatergic neurons in the lateral hypothalamus become activated after stress, and stimulating their projections to the POA promotes MAs and wakefulness. Our findings uncover a novel circuit mechanism by which POA excitatory neurons regulate sleep quality after stress.
Collapse
Affiliation(s)
- Jennifer Smith
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Honig-Frand
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanna Antila
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley Choi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah Kim
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92617, USA
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Endocannabinoid 2-Arachidonoylglycerol Levels in the Anterior Cingulate Cortex, Caudate Putamen, Nucleus Accumbens, and Piriform Cortex Were Upregulated by Chronic Restraint Stress. Cells 2023; 12:cells12030393. [PMID: 36766735 PMCID: PMC9913316 DOI: 10.3390/cells12030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Endocannabinoid 2-arachidonoylglycerol (2-AG) has been implicated in habituation to stress, and its augmentation reduces stress-induced anxiety-like behavior. Chronic restraint stress (CRS) changes the 2-AG levels in some gross brain areas, such as the forebrain. However, the detailed spatial distribution of 2-AG and its changes by CRS in stress processing-related anatomical structures such as the anterior cingulate cortex (ACC), caudate putamen (CP), nucleus accumbens (NAc), and piriform cortex (PIR) are still unclear. In this study, mice were restrained for 30 min in a 50 mL-centrifuge tube for eight consecutive days, followed by imaging of the coronal brain sections of control and stressed mice using desorption electrospray ionization mass spectrometry imaging (DESI-MSI). The results showed that from the forebrain to the cerebellum, 2-AG levels were highest in the hypothalamus and lowest in the hippocampal region. 2-AG levels were significantly (p < 0.05) upregulated and 2-AG precursors levels were significantly (p < 0.05) downregulated in the ACC, CP, NAc, and PIR of stressed mice compared with control mice. This study provided direct evidence of 2-AG expression and changes, suggesting that 2-AG levels are increased in the ACC CP, NAc, and PIR when individuals are under chronic stress.
Collapse
|
5
|
Impact of stress on inhibitory neuronal circuits, our tribute to Bruce McEwen. Neurobiol Stress 2022; 19:100460. [PMID: 35734023 PMCID: PMC9207718 DOI: 10.1016/j.ynstr.2022.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
This manuscript is dedicated to the memory of Bruce S. McEwen, to commemorate the impact he had on how we understand stress and neuronal plasticity, and the profound influence he exerted on our scientific careers. The focus of this review is the impact of stressors on inhibitory circuits, particularly those of the limbic system, but we also consider other regions affected by these adverse experiences. We revise the effects of acute and chronic stress during different stages of development and lifespan, taking into account the influence of the sex of the animals. We review first the influence of stress on the physiology of inhibitory neurons and on the expression of molecules related directly to GABAergic neurotransmission, and then focus on specific interneuron subpopulations, particularly on parvalbumin and somatostatin expressing cells. Then we analyze the effects of stress on molecules and structures related to the plasticity of inhibitory neurons: the polysialylated form of the neural cell adhesion molecule and perineuronal nets. Finally, we review the potential of antidepressants or environmental manipulations to revert the effects of stress on inhibitory circuits.
Collapse
|
6
|
Lopes M, Vieira de Castro J, Pojo M, Gonçalves CS, Martins EP, Coimbra B, Sotiropoulos I, Sousa N, Rodrigues AJ, Costa BM. Chronic Stress Does Not Influence the Survival of Mouse Models of Glioblastoma. Front Oncol 2022; 12:856210. [PMID: 35402232 PMCID: PMC8990973 DOI: 10.3389/fonc.2022.856210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
The existence of a clear association between stress and cancer is still a matter of debate. Recent studies suggest that chronic stress is associated with some cancer types and may influence tumor initiation and patient prognosis, but its role in brain tumors is not known. Glioblastoma (GBM) is a highly malignant primary brain cancer, for which effective treatments do not exist. Understanding how chronic stress, or its effector hormones glucocorticoids (GCs), may modulate GBM aggressiveness is of great importance. To address this, we used both syngeneic and xenograft in vivo orthotopic mouse models of GBM, in immunocompetent C57BL/6J or immunodeficient NSG mice, respectively, to evaluate how different paradigms of stress exposure could influence GBM aggressiveness and animals’ overall survival (OS). Our results demonstrated that a previous exposure to exogenous corticosterone administration, chronic restraint stress, or chronic unpredictable stress do not impact the OS of these mice models of GBM. Concordantly, ex vivo analyses of various GBM-relevant genes showed similar intra-tumor expression levels across all experimental groups. These findings suggest that corticosterone and chronic stress do not significantly affect GBM aggressiveness in murine models.
Collapse
Affiliation(s)
- Marta Lopes
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Vieira de Castro
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marta Pojo
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Céline S Gonçalves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduarda P Martins
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
7
|
Amygdala DCX and blood Cdk14 are implicated as cross-species indicators of individual differences in fear, extinction, and resilience to trauma exposure. Mol Psychiatry 2022; 27:956-966. [PMID: 34728797 PMCID: PMC9058038 DOI: 10.1038/s41380-021-01353-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 09/18/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Doublecortin (DCX) has long been implicated in, and employed as a marker for, neurogenesis, yet little is known about its function in non-neurogenic brain regions, including the amygdala. This study sought first to explore, in rodents, whether fear learning and extinction modulate amygdala DCX expression and, second, to assess the utility of peripheral DCX correlates as predictive biomarkers of trauma response in rodents and humans. Pavlovian conditioning was found to alter DCX protein levels in mice 24 h later, resulting in higher DCX expression associated with enhanced learning in paradigms examining both the acquisition and extinction of fear (p < 0.001). This, in turn, is associated with differences in freezing on subsequent fear expression tests, and the same relationship between DCX and fear extinction was replicated in rats (p < 0.001), with higher amygdala DCX levels associated with more rapid extinction of fear. RNAseq of amygdala and blood from mice identified 388 amygdala genes that correlated with DCX (q < 0.001) and which gene ontology analyses revealed were significantly over-represented for neurodevelopmental processes. In blood, DCX-correlated genes included the Wnt signaling molecule Cdk14 which was found to predict freezing during both fear acquisition (p < 0.05) and brief extinction protocols (p < 0.001). High Cdk14 measured in blood immediately after testing was also associated with less freezing during fear expression testing (p < 0.01). Finally, in humans, Cdk14 expression in blood taken shortly after trauma was found to predict resilience in males for up to a year post-trauma (p < 0.0001). These data implicate amygdala DCX in fear learning and suggest that Cdk14 may serve as a predictive biomarker of trauma response.
Collapse
|
8
|
Perez-Rando M, Guirado R, Tellez-Merlo G, Carceller H, Nacher J. Estradiol Regulates Polysialylated Form of the Neural Cell Adhesion Molecule Expression and Connectivity of O-LM Interneurons in the Hippocampus of Adult Female Mice. Neuroendocrinology 2022; 112:51-67. [PMID: 33550289 DOI: 10.1159/000515052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022]
Abstract
The estrous cycle is caused by the changing concentration of ovarian hormones, particularly 17β-estradiol, a hormone whose effect on excitatory circuits has been extensively reported. However, fewer studies have tried to elucidate how this cycle, or this hormone, affects the plasticity of inhibitory networks and the structure of interneurons. Among these cells, somatostatin-expressing O-LM neurons of the hippocampus are especially interesting. They have a role in the modulation of theta oscillations, and they receive direct input from the entorhinal cortex, which place them in the center of hippocampal function. In this study, we report that the expression of polysialylated form of the neural cell adhesion molecule (PSA-NCAM) in the hippocampus, a molecule involved in the plasticity of somatostatin-expressing interneurons in the adult brain, fluctuated through the different stages of the estrous cycle. Likewise, these stages and the expression of PSA-NCAM affected the density of dendritic spines of O-LM cells. We also describe that 17β-estradiol replacement of adult ovariectomized female mice caused an increase in the perisomatic inhibitory puncta in O-LM interneurons as well as an increase in their axonal bouton density. Interestingly, this treatment also induced a decrease in their dendritic spine density, specifically in O-LM interneurons lacking PSA-NCAM expression. Finally, using an ex vivo real-time assay with entorhinal-hippocampal organotypic cultures, we show that this hormone decreased the dynamics in spinogenesis, altogether highlighting the modulatory effect that 17β-estradiol has on inhibitory circuits.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Ramon Guirado
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
- Dirección General de Universidades, Gobierno de Aragón, Zaragoza, Spain
| | - Guillermina Tellez-Merlo
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Hector Carceller
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
- CIBERSAM: Spanish National Network for Research in Mental Health, Valencia, Spain
| |
Collapse
|
9
|
Sharif A, Fitzsimons CP, Lucassen PJ. Neurogenesis in the adult hypothalamus: A distinct form of structural plasticity involved in metabolic and circadian regulation, with potential relevance for human pathophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:125-140. [PMID: 34225958 DOI: 10.1016/b978-0-12-819975-6.00006-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The adult brain harbors specific niches where stem cells undergo substantial plasticity and, in some regions, generate new neurons throughout life. This phenomenon is well known in the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus and has recently also been described in the hypothalamus of several rodent and primate species. After a brief overview of preclinical studies illustrating the pathophysiologic significance of hypothalamic neurogenesis in the control of energy metabolism, reproduction, thermoregulation, sleep, and aging, we review current literature on the neurogenic niche of the human hypothalamus. A comparison of the organization of the niche between humans and rodents highlights some common features, but also substantial differences, e.g., in the distribution and extent of the hypothalamic neural stem cells. Exploring the full dynamics of hypothalamic neurogenesis in humans raises a formidable challenge however, given among others, inherent technical limitations. We close with discussing possible functional role(s) of the human hypothalamic niche, and how gaining more insights into this form of plasticity could be relevant for a better understanding of pathologies associated with disturbed hypothalamic function.
Collapse
Affiliation(s)
- Ariane Sharif
- Lille Neuroscience & Cognition, University of Lille, Lille, France.
| | - Carlos P Fitzsimons
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Lopatina OL, Panina YA, Malinovskaya NA, Salmina AB. Early life stress and brain plasticity: from molecular alterations to aberrant memory and behavior. Rev Neurosci 2020; 32:131-142. [PMID: 33550784 DOI: 10.1515/revneuro-2020-0077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
Early life stress (ELS) is one of the most critical factors that could modify brain plasticity, memory and learning abilities, behavioral reactions, and emotional response in adulthood leading to development of different mental disorders. Prenatal and early postnatal periods appear to be the most sensitive periods of brain development in mammals, thereby action of various factors at these stages of brain development might result in neurodegeneration, memory impairment, and mood disorders at later periods of life. Deciphering the processes underlying aberrant neurogenesis, synaptogenesis, and cerebral angiogenesis as well as deeper understanding the effects of ELS on brain development will provide novel approaches to prevent or to cure psychiatric and neurological deficits caused by stressful conditions at the earliest stages of ontogenesis. Neuropeptide oxytocin serves as an amnesic, anti-stress, pro-angiogenic, and neurogenesis-controlling molecule contributing to dramatic changes in brain plasticity in ELS. In the current review, we summarize recent data on molecular mechanisms of ELS-driven changes in brain plasticity with the particular focus on oxytocin-mediated effects on neurogenesis and angiogenesis, memory establishment, and forgetting.
Collapse
Affiliation(s)
- Olga L Lopatina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Biophysics, Siberian Federal University, Krasnoyarsk, Russia
| | - Yulia A Panina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Natalia A Malinovskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
11
|
Giacometti LL, Huang F, Hamilton BS, Barker JM. Brain region-dependent alterations in polysialic acid immunoreactivity across the estrous cycle in mice. Horm Behav 2020; 126:104851. [PMID: 32941849 PMCID: PMC7725886 DOI: 10.1016/j.yhbeh.2020.104851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 11/27/2022]
Abstract
N-glycosylation is a posttranslational modification that plays significant roles in regulating protein function. One form of N-glycosylation, polysialylation, has been implicated in many processes including learning and memory, addiction, and neurodegenerative disease. Polysialylation appears to be modulated by the estrous cycle in the hypothalamus in rat, but this has not been assessed in other brain regions. To determine if polysialylation was similarly estrous phase-dependent in other neuroanatomical structures, the percent area of polysialic acid (PSA) immunoreactivity in subregions of the medial prefrontal cortex, hippocampus, and nucleus accumbens was assessed in each of the four phases in adult female mice. In this study, we found that PSA immunoreactivity fluctuated across the estrous cycle in a subregion-specific manner. In the prefrontal cortex, PSA immunoreactivity was significantly lower in proestrus phase compared to estrus in the prelimbic cortex, but did not differ across the estrous cycle in the infralimbic cortex. In the hippocampus, PSA immunoreactivity was significantly increased in proestrus compared to metestrus in the CA1 and CA2 and compared to diestrus in CA3, but remain unchanged in the dentate gyrus. PSA immunoreactivity did not vary across the estrous cycle in the nucleus accumbens core or shell. These findings may have implications for estrous cycle-dependent alterations in behavior.
Collapse
Affiliation(s)
- Laura L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Fangyi Huang
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Brianna S Hamilton
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America.
| |
Collapse
|
12
|
Coviello S, Gramuntell Y, Castillo-Gomez E, Nacher J. Effects of Dopamine on the Immature Neurons of the Adult Rat Piriform Cortex. Front Neurosci 2020; 14:574234. [PMID: 33122993 PMCID: PMC7573248 DOI: 10.3389/fnins.2020.574234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/14/2020] [Indexed: 11/26/2022] Open
Abstract
The layer II of the adult piriform cortex (PCX) contains a numerous population of immature neurons. Interestingly, in both mice and rats, most, if not all, these cells have an embryonic origin. Moreover, recent studies from our laboratory have shown that they progressively mature into typical excitatory neurons of the PCX layer II. Therefore, the adult PCX is considered a “non-canonical” neurogenic niche. These immature neurons express the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a molecule critical for different neurodevelopmental processes. Dopamine (DA) is a relevant neurotransmitter in the adult CNS, which also plays important roles in neural development and adult plasticity, including the regulation of PSA-NCAM expression. In order to evaluate the hypothetical effects of pharmacological modulation of dopaminergic neurotransmission on the differentiation of immature neurons of the adult PCX, we studied dopamine D2 receptor (D2r) expression in this region and the relationship between dopaminergic fibers and immature neurons (defined by PSA-NCAM expression). In addition, we analyzed the density of immature neurons after chronic treatments with an antagonist and an agonist of D2r: haloperidol and PPHT, respectively. Many dopaminergic fibers were observed in close apposition to PSA-NCAM-expressing neurons, which also coexpressed D2r. Chronic treatment with haloperidol significantly increased the number of PSA-NCAM immunoreactive cells, while PPHT treatment decreased it. These results indicate a prominent role of dopamine, through D2r and PSA-NCAM, on the regulation of the final steps of development of immature neurons in the adult PCX.
Collapse
Affiliation(s)
- Simona Coviello
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Esther Castillo-Gomez
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castellón de la Plana, Spain.,Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| |
Collapse
|
13
|
Saini V, Kaur T, Kalotra S, Kaur G. The neuroplasticity marker PSA-NCAM: Insights into new therapeutic avenues for promoting neuroregeneration. Pharmacol Res 2020; 160:105186. [DOI: 10.1016/j.phrs.2020.105186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
|
14
|
Sarkar T, Patro N, Patro IK. Neuronal changes and cognitive deficits in a multi-hit rat model following cumulative impact of early life stressors. Biol Open 2020; 9:bio054130. [PMID: 32878878 PMCID: PMC7522020 DOI: 10.1242/bio.054130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
Perinatal protein malnourishment (LP) is a leading cause for mental and physical retardation in children from poor socioeconomic conditions. Such malnourished children are vulnerable to additional stressors that may synergistically act to cause neurological disorders in adulthood. In this study, the above mentioned condition was mimicked via a multi-hit rat model in which pups born to LP mothers were co-injected with polyinosinic:polycytidylic acid (Poly I:C; viral mimetic) at postnatal day (PND) 3 and lipopolysaccharide (LPS; bacterial mimetic) at PND 9. Individual exposure of Poly I:C and LPS was also given to LP pups to correlate chronicity of stress. Similar treatments were also given to control pups. Hippocampal cellular apoptosis, β III tubulin catastrophe, altered neuronal profiling and spatial memory impairments were assessed at PND 180, using specific immunohistochemical markers (active caspase 3, β III tubulin, doublecortin), golgi studies and cognitive mazes (Morris water maze and T maze). Increase in cellular apoptosis, loss of dendritic arborization and spatial memory impairments were higher in the multi-hit group, than the single-hit groups. Such impairments observed due to multi-hit stress mimicked conditions similar to many neurological disorders and hence, it is hypothesized that later life neurological disorders might be an outcome of multiple early life hits.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tiyasha Sarkar
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| |
Collapse
|
15
|
Maternal stress in Shank3ex4-9 mice increases pup-directed care and alters brain white matter in male offspring. PLoS One 2019; 14:e0224876. [PMID: 31703095 PMCID: PMC6839842 DOI: 10.1371/journal.pone.0224876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/23/2019] [Indexed: 11/19/2022] Open
Abstract
Gene-environment interactions contribute to the risk for Autism Spectrum Disorder (ASD). Among environmental factors, prenatal exposure to stress may increase the risk for ASD. To examine if there is an interaction between exposure to maternal stress and reduced dosage or loss of Shank3, wild-type (WT), heterozygous (HET) and homozygous (HOM) female mice carrying a deletion of exons four through nine of Shank3 (Shank3ex4-9) were exposed to chronic unpredictable mild stress (CUMS) from prior to conception throughout gestation. This study examined maternal care of these dams and the white matter microstructure in the brains of their adult male offspring. Overall, our findings suggest that maternal exposure to CUMS increased pup-directed care for dams of all three genotypes. Compared to WT and HET dams, HOM dams also exhibited increased maternal care behaviors with increased time spent in the nest and reduced cage exploration, regardless of exposure to CUMS. Diffusion tensor imaging showed higher mean fractional anisotropy in the hippocampal stratum radiatum of WT and HOM male offspring from dams exposed to CUMS and HOM offspring from unexposed dams, compared to WT male offspring from unexposed dams. These data support that CUMS in Shank3-mutant dams results in subtle maternal care alterations and long-lasting changes in the white matter of the hippocampus of their offspring.
Collapse
|
16
|
Acute stress-induced change in polysialic acid levels mediated by sialidase in mouse brain. Sci Rep 2019; 9:9950. [PMID: 31289315 PMCID: PMC6616613 DOI: 10.1038/s41598-019-46240-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/25/2019] [Indexed: 12/23/2022] Open
Abstract
Stress is an important environmental factor influencing human behaviour and causing several mental disorders. Alterations in the structure of polysialic acid (polySia/PSA) due to genetic alterations in ST8SIA2, which encodes a polySia-synthesizing enzyme, are related to certain mental disorders. However, whether stress as an environmental factor leads to changes in polySia structure is unknown. Here we studied the effects of acute stress on polySia expression and found reductions in both the quantity and quality of polySia in the olfactory bulb and prefrontal cortex, even with short-term exposure to acute stress. The use of inhibitors for sialidase, microglia and astrocytes revealed that these declines were due to a transient action of sialidase from microglia and astrocytes in the olfactory bulb and prefrontal cortex, respectively. These data suggest that sialidase dynamically regulates polySia expression in a brain region-specific manner.
Collapse
|
17
|
Lack of MeCP2 leads to region-specific increase of doublecortin in the olfactory system. Brain Struct Funct 2019; 224:1647-1658. [PMID: 30923887 DOI: 10.1007/s00429-019-01860-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
Abstract
The protein doublecortin is mainly expressed in migrating neuroblasts and immature neurons. The X-linked gene MECP2, associated to several neurodevelopmental disorders such as Rett syndrome, encodes the protein methyl-CpG-binding protein 2 (MeCP2), a regulatory protein that has been implicated in neuronal maturation and refinement of olfactory circuits. Here, we explored doublecortin immunoreactivity in the brain of young adult female Mecp2-heterozygous and male Mecp2-null mice and their wild-type littermates. The distribution of doublecortin-immunoreactive somata in neurogenic brain regions was consistent with previous reports in rodents, and no qualitative differences were found between genotypes or sexes. Quantitatively, we found a significant increase in doublecortin cell density in the piriform cortex of Mecp2-null males as compared to WT littermates. A similar increase was seen in a newly identified population of doublecortin cells in the olfactory tubercle. In these olfactory structures, however, the percentage of doublecortin immature neurons that also expressed NeuN was not different between genotypes. By contrast, we found no significant differences between genotypes in doublecortin immunoreactivity in the olfactory bulbs. Nonetheless, in the periglomerular layer of Mecp2-null males, we observed a specific decrease of immature neurons co-expressing doublecortin and NeuN. Overall, no differences were evident between Mecp2-heterozygous and WT females. In addition, no differences could be detected between genotypes in the density of doublecortin-immunoreactive cells in the hippocampus or striatum of either males or females. Our results suggest that MeCP2 is involved in neuronal maturation in a region-dependent manner.
Collapse
|
18
|
Fan Y, Chen P, Raza MU, Szebeni A, Szebeni K, Ordway GA, Stockmeier CA, Zhu MY. Altered Expression of Phox2 Transcription Factors in the Locus Coeruleus in Major Depressive Disorder Mimicked by Chronic Stress and Corticosterone Treatment In Vivo and In Vitro. Neuroscience 2018; 393:123-137. [PMID: 30315878 DOI: 10.1016/j.neuroscience.2018.09.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022]
Abstract
Phox2a and Phox2b are two homeodomain transcription factors playing a pivotal role in the development of noradrenergic neurons during the embryonic period. However, their expression and function in adulthood remain to be elucidated. Using human postmortem brain tissues, rat stress models and cultured cells, this study aimed to examine the alteration of Phox2a and Phox2b expression. The results show that Phox2a and Phox2b are normally expressed in the human locus coeruleus (LC) in adulthood. Furthermore, the levels of Phox2a protein and mRNA and protein levels of Phox2b were significantly elevated in the LC of brain donors that suffered from the major depressive disorder, as compared to age-matched and psychiatrically normal control donors. Fischer 344 rats subjected to chronic social defeat showed higher mRNA and protein levels of Phox2a and Phox2b in the LC, as compared to non-stressed control rats. In rats chronically administered oral corticosterone, mRNA and protein levels of Phox2b, but not Phox2a, in the LC were significantly increased. In addition, the corticosterone-induced increase in Phox2b protein was reversed by simultaneous treatment with either mifepristone or spironolactone. Exposing SH-SY5Y cells to corticosterone significantly increased expression of Phox2a and Phox2b, which was blocked by corticosteroid receptor antagonists. Taken together, these experiments reveal that Phox2 genes are expressed throughout the lifetime in the LC of humans and Fischer 344 rats. Alterations in their expression may play a role in major depressive disorder and possibly other stress-related disorders through their modulatory effects on the noradrenergic phenotype.
Collapse
Affiliation(s)
- Yan Fan
- Department of Biochemistry, Nantong University College of Medicine, Nantong, China
| | - Ping Chen
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Muhammad U Raza
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Attila Szebeni
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Katalin Szebeni
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Gregory A Ordway
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Meng-Yang Zhu
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| |
Collapse
|
19
|
Beyond good and evil: A putative continuum-sorting hypothesis for the functional role of proBDNF/BDNF-propeptide/mBDNF in antidepressant treatment. Neurosci Biobehav Rev 2018; 90:70-83. [PMID: 29626490 DOI: 10.1016/j.neubiorev.2018.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Depression and posttraumatic stress disorder are assumed to be maladaptive responses to stress and antidepressants are thought to counteract such responses by increasing BDNF (brain-derived neurotrophic factor) levels. BDNF acts through TrkB (tropomyosin-related receptor kinase B) and plays a central role in neuroplasticity. In contrast, both precursor proBDNF and BDNF propeptide (another metabolic product from proBDNF cleavage) have a high affinity to p75 receptor (p75R) and usually convey apoptosis and neuronal shrinkage. Although BDNF and proBDNF/propeptide apparently act in opposite ways, neuronal turnover and remodeling might be a final common way that both act to promote more effective neuronal networking, avoiding neuronal redundancy and the misleading effects of environmental contingencies. This review aims to provide a brief overview about the BDNF functional role in antidepressant action and about p75R and TrkB signaling to introduce the "continuum-sorting hypothesis." The resulting hypothesis suggests that both BDNF/proBDNF and BDNF/propeptide act as protagonists to fine-tune antidepressant-dependent neuroplasticity in crucial brain structures to modulate behavioral responses to stress.
Collapse
|
20
|
Zalewska K, Pietrogrande G, Ong LK, Abdolhoseini M, Kluge M, Johnson SJ, Walker FR, Nilsson M. Sustained administration of corticosterone at stress-like levels after stroke suppressed glial reactivity at sites of thalamic secondary neurodegeneration. Brain Behav Immun 2018; 69:210-222. [PMID: 29162554 DOI: 10.1016/j.bbi.2017.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 01/05/2023] Open
Abstract
Secondary neurodegeneration (SND) is an insidious and progressive condition involving the death of neurons in regions of the brain that were connected to but undamaged by the initial stroke. Our group have published compelling evidence that exposure to psychological stress can significantly exacerbate the severity SND, a finding that has considerable clinical implications given that stroke-survivors often report experiencing high and unremitting levels of psychological stress. It may be possible to use one or more targeted pharmacological approaches to limit the negative effects of stress on the recovery process but in order to move forward with this approach the most critical stress signals have to be identified. Accordingly, in the current study we have directed our attention to examining the potential effects of corticosterone, delivered orally at stress-like levels. Our interest is to determine how similar the effects of corticosterone are to stress on repair and remodelling that is known to occur after stroke. The study involved 4 groups, sham and stroke, either administered corticosterone or normal drinking water. The functional impact was assessed using the cylinder task for paw asymmetry, grid walk for sensorimotor function, inverted grid for muscle strength and coordination and open field for anxiety-like behaviour. Biochemically and histologically, we considered disturbances in main cellular elements of the neurovascular unit, including microglia, astrocytes, neurons and blood vessels using both immunohistochemistry and western blotting. In short, we identified that corticosterone delivery after stroke results in significant suppression of key microglial and astroglial markers. No changes were observed on the vasculature and in neuronal specific markers. No changes were identified for sensorimotor function or anxiety-like behaviour. We did, however, observe a significant change in motor function as assessed using the inverted grid walk test. Collectively, these results suggest that pharmacologically targeting corticosterone levels in the future may be warranted but that such an approach is unlikely to limit all the negative effects associated with exposure to chronic stress.
Collapse
Affiliation(s)
- Katarzyna Zalewska
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Giovanni Pietrogrande
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| | - Mahmoud Abdolhoseini
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Murielle Kluge
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Sarah J Johnson
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia.
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| |
Collapse
|
21
|
Sadeghi M, Reisi P, Radahmadi M. The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:1368-1376. [PMID: 29238473 PMCID: PMC5722998 DOI: 10.22038/ijbms.2017.9619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objectives Cholecystokinin (CCK) has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Materials and Methods Male Wistar rats were divided into 4 groups: the control, the control-CCK, the stress and the stress-CCK. Restraint stress was induced 6 hr per day, for 24 days. Cholecystokinin sulfated octapeptide (CCK-8S) was injected (1.6 µg/kg, IP) before each session of stress induction. Spatial memory was evaluated by Morris water maze test. Long-term potentiation (LTP) in Schaffer collateral-CA1 synapses was assessed (by 100 Hz tetanization) in order to investigate synaptic plasticity. Results Stress impaired spatial memory significantly (P<0.01). CCK in the control rats improved memory (P<0.05), and prevented the impairments in the stress group. With respect to the control group, both fEPSP amplitude and slope were significantly (P<0.05) decreased in the stress group. However, there were no differences between responses of the control-CCK and Stress-CCK groups compared to the control group. Conclusion The present results suggest that high levels of CCK-8S during induction of stress can modulate the destructive effects of stress on hippocampal synaptic plasticity and memory. Therefore, the mediatory effects of CCK in stress are likely as compensatory responses.
Collapse
Affiliation(s)
- Malihe Sadeghi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Development of Odor Hedonics: Experience-Dependent Ontogeny of Circuits Supporting Maternal and Predator Odor Responses in Rats. J Neurosci 2017; 36:6634-50. [PMID: 27335397 DOI: 10.1523/jneurosci.0632-16.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED A major component of perception is hedonic valence: perceiving stimuli as pleasant or unpleasant. Here, we used early olfactory experiences that shape odor preferences and aversions to explore developmental plasticity in circuits mediating odor hedonics. We used 2-deoxyglucose autoradiographic mapping of neural activity to identify circuits differentially activated by biologically relevant preferred and avoided odors across rat development. We then further probed this system by increasing or decreasing hedonic value. Using both region of interest and functional connectivity analyses, we identified regions within primary olfactory, amygdala/hippocampal, and prefrontal cortical networks that were activated differentially by maternal and male odors. Although some activated regions remained stable across development (postnatal days 7-23), there was a developmental emergence of others that resulted in an age-dependent elaboration of hedonic-response-specific circuitry despite stable behavioral responses (approach/avoidance) to the odors across age. Hedonic responses to these biologically important odors were modified through diet suppression of the maternal odor and co-rearing with a male. This allowed assessment of hedonic circuits in isolation of the specific odor quality and/or intensity. Early experience significantly modified odor-evoked circuitry in an age-dependent manner. For example, co-rearing with a male, which induced pup attraction to male odor, reduced activity in amygdala regions normally activated by the unfamiliar avoided male odor, making this region more consistent with maternal odor. Understanding the development of odor hedonics, particularly within the context of altered early life experience, provides insight into the development of sensory processes, food preferences, and the formation of social affiliations, among other behaviors. SIGNIFICANCE STATEMENT Odor hedonic valence controls approach-avoidance behaviors, but also modulates ongoing behaviors ranging from food preferences and social affiliation with the caregiver to avoidance of predator odors. Experiences can shape hedonic valence. This study explored brain circuitry involved in odor hedonic encoding throughout development using maternal and predator odors and assessed the effects of early life experience on odor hedonic encoding by increasing/decreasing the hedonic value of these odors. Understanding the role of changing brain circuitry during development and its impact on behavioral function is critical for understanding sensory processing across development. These data converge with exciting literature on the brain's hedonic network and highlight the significant role of early life experience in shaping the neural networks of highly biologically relevant stimuli.
Collapse
|
23
|
Baldin E, Hauser WA, Pack A, Hesdorffer DC. Stress is associated with an increased risk of recurrent seizures in adults. Epilepsia 2017; 58:1037-1046. [DOI: 10.1111/epi.13741] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Elisa Baldin
- Gertrude H. Sergievsky Center; Columbia University; New York New York U.S.A
- IRCCS Institute of Neurological Sciences of Bologna; Bologna Italy
| | - W. Allen Hauser
- Gertrude H. Sergievsky Center; Columbia University; New York New York U.S.A
- Department of Neurology; College of Physicians and Surgeons; Columbia University; New York New York U.S.A
- Department of Epidemiology; Mailman School of Public Health; Columbia University; New York New York U.S.A
| | - Alison Pack
- Department of Neurology; College of Physicians and Surgeons; Columbia University; New York New York U.S.A
| | - Dale C. Hesdorffer
- Gertrude H. Sergievsky Center; Columbia University; New York New York U.S.A
- Department of Epidemiology; Mailman School of Public Health; Columbia University; New York New York U.S.A
| |
Collapse
|
24
|
Manchanda S, Kaur G. Withania somnifera leaf alleviates cognitive dysfunction by enhancing hippocampal plasticity in high fat diet induced obesity model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:136. [PMID: 28253924 PMCID: PMC5335828 DOI: 10.1186/s12906-017-1652-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/24/2017] [Indexed: 01/07/2023]
Abstract
Background Sedentary lifestyle, psychological stress and labor saving devices in this current society often disrupts the energy gain and expenditure balance leading to obesity. High caloric diet is associated with the high prevalence of cognitive dysfunction and neuropsychiatric disorders in addition to cardiovascular and metabolic abnormalities. The present study was aimed to elucidate the potential beneficial effect of dry leaf powder of Withania somnifera (Ashwagandha) in preventing the cognitive decline associated with diet induced obesity. Methods Experiments were performed on four groups of young adult female rats: [Low fat diet (LFD) rats fed on regular low fat chow, High fat diet (HFD) rats on feed containing 30% fat by weight, Low fat diet extract (LFDE) rats given regular chow and dry leaf powder of Ashwagandha 1 mg/g of body weight (ASH) and high fat diet extract (HFDE) rats fed on diet containing high fat and dry leaf powder of ASH. All the rats were kept on their respective diet regimen for 12 weeks. Results ASH treated rats showed significant improvement in their working memory and locomotor coordination during behavioral studies as compared to HFD rats. At the molecular level, ASH treatment was observed to restore the levels of BDNF and its receptor TRKB as well as the expression of other synaptic regulators, which are highly implicated in synaptic plasticity. Further, ASH triggered the activation of PI3/AKT pathway of cell survival and plasticity by enhancing the levels of phosphorylated Akt-1 and immediate early genes viz. c-Jun and c-fos. Conclusions ASH could be a key regulator in maintaining the synaptic plasticity in HFD induced obesity and can serve as a nootropic candidate against obesity induced cognitive impairments.
Collapse
|
25
|
Vadodaria KC, Yanpallewar SU, Vadhvani M, Toshniwal D, Liles LC, Rommelfanger KS, Weinshenker D, Vaidya VA. Noradrenergic regulation of plasticity marker expression in the adult rodent piriform cortex. Neurosci Lett 2017; 644:76-82. [PMID: 28237805 DOI: 10.1016/j.neulet.2017.02.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/20/2023]
Abstract
The adult rodent piriform cortex has been reported to harbor immature neurons that express markers associated with neurodevelopment and plasticity, namely polysialylated neural cell adhesion molecule (PSA-NCAM) and doublecortin (DCX). We characterized the expression of PSA-NCAM and DCX across the rostrocaudal axis of the rat piriform cortex and observed higher numbers of PSA-NCAM and DCX positive cells in the posterior subdivision. As observed in the rat piriform cortex, Nestin-GFP reporter mice also revealed a similar gradient of GFP-positive cells with an increasing rostro-caudal gradient of expression. Given the extensive noradrenergic innervation of the piriform cortex and its role in regulating piriform cortex function and synaptic plasticity, we addressed the influence of norepinephrine (NE) on piriform cortex plasticity marker expression. Depletion of NE by treatment with the noradrenergic neurotoxin DSP-4 significantly increased the number of DCX and PSA-NCAM immunopositive cells in the piriform cortex of adult rats. Similarly, DSP-4 treated Nestin-GFP reporter mice revealed a robust induction of GFP-positive cells within the piriform cortex following NE depletion. Genetic loss of NE in dopamine β-hydroxylase knockout (Dbh -/-) mice phenocopied the effects of DSP-4, with an increase noted in PSA-NCAM and DCX positive cells in the piriform cortex. Further, chronic α2-adrenergic receptor stimulation with the agonist guanabenz increased PSA-NCAM and DCX positive cells in the piriform cortex of adult rats and GFP-positive cells in the piriform cortex of Nestin-GFP mice. By contrast, chronic α2-adrenergic receptor blockade with the antagonist yohimbine reduced PSA-NCAM and DCX positive cells in the piriform cortex of adult rats. Our results provide novel evidence for a role of NE in regulating the expression of plasticity markers, including PSA-NCAM, DCX, and nestin, within the adult mouse and rat piriform cortex.
Collapse
Affiliation(s)
- Krishna C Vadodaria
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India, India
| | - Sudhirkumar U Yanpallewar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India, India
| | - Mayur Vadhvani
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India, India
| | - Devyani Toshniwal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India, India
| | - L Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA, USA
| | - Karen S Rommelfanger
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA, USA
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India, India.
| |
Collapse
|
26
|
McCormick CM, Green MR, Simone JJ. Translational relevance of rodent models of hypothalamic-pituitary-adrenal function and stressors in adolescence. Neurobiol Stress 2017; 6:31-43. [PMID: 28229107 PMCID: PMC5314422 DOI: 10.1016/j.ynstr.2016.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022] Open
Abstract
Elevations in glucocorticoids that result from environmental stressors can have programming effects on brain structure and function when the exposure occurs during sensitive periods that involve heightened neural development. In recent years, adolescence has gained increasing attention as another sensitive period of development, a period in which pubertal transitions may increase the vulnerability to stressors. There are similarities in physical and behavioural development between humans and rats, and rats have been used effectively as an animal model of adolescence and the unique plasticity of this period of ontogeny. This review focuses on benefits and challenges of rats as a model for translational research on hypothalamic-pituitary-adrenal (HPA) function and stressors in adolescence, highlighting important parallels and contrasts between adolescent rats and humans, and we review the main stress procedures that are used in investigating HPA stress responses and their consequences in adolescence in rats. We conclude that a greater focus on timing of puberty as a factor in research in adolescent rats may increase the translational relevance of the findings.
Collapse
Affiliation(s)
- Cheryl M. McCormick
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Matthew R. Green
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Jonathan J. Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
27
|
Olesen MV, Wörtwein G, Folke J, Pakkenberg B. Electroconvulsive stimulation results in long-term survival of newly generated hippocampal neurons in rats. Hippocampus 2016; 27:52-60. [DOI: 10.1002/hipo.22670] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Mikkel Vestergaard Olesen
- Department of Neurology, Research Laboratory for Stereology and Neuroscience; Bispebjerg-Frederiksberg Hospital; Copenhagen Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology; University of Copenhagen and Mental Health Center Copenhagen; Copenhagen Denmark
- Section of Environmental Health, Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | - Jonas Folke
- Department of Neurology, Research Laboratory for Stereology and Neuroscience; Bispebjerg-Frederiksberg Hospital; Copenhagen Denmark
| | - Bente Pakkenberg
- Department of Neurology, Research Laboratory for Stereology and Neuroscience; Bispebjerg-Frederiksberg Hospital; Copenhagen Denmark
- Department of Health and Medical Sciences, Institute of Clinical Medicine; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
28
|
Radahmadi M, Hosseini N, Alaei H, Sharifi MR. The Effect of Preventive, Therapeutic and Protective Exercises on Hippocampal Memory Mediators in Stressed Rats. Malays J Med Sci 2016; 23:29-37. [PMID: 27904422 DOI: 10.21315/mjms2016.23.5.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/14/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Exercise plays a significant role in learning and memory. The present study focuses on the hippocampal corticosterone (CORT), interleukin-1 beta (IL-1β), glucose, and brain-derived neurotrophic factor (BDNF) levels in preventive, therapeutic, and protective exercises in stressful conditions. METHODS Forty male rats were randomly divided into four groups: the control group and the preventive, therapeutic, and protective exercise groups. The treadmill running was applied at a speed of 20-21m/min and a chronic stress of 6 hours/day for 21 days. Subsequently, the variables were measured in the hippocampus. RESULTS The findings revealed that the hippocampal CORT levels in the preventive exercise group had a significant enhancement compared to the control group. In the protective and particularly the therapeutic exercise groups, the hippocampal CORT levels declined. Furthermore, the hippocampal BDNF levels in the preventive and the therapeutic exercise groups indicated significantly decreased and increased, respectively, in comparison with the control group. In the preventive exercise group, however, the hippocampal glucose level turned out to be substantially higher than that in the control group. CONCLUSION It appears that the therapeutic exercise group had the best exercise protocols for improving the hippocampal memory mediators in the stress conditions. By contrast, the preventive exercise group could not improve these mediators that had been altered by stress. It is suggested that exercise time, compared to stress, can be considered as a crucial factor in the responsiveness of memory mediators.
Collapse
Affiliation(s)
- Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Hosseini
- Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Sharifi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
29
|
Roles of monoaminergic, antioxidant defense and neuroendocrine systems in antidepressant-like effect of Cnestis ferruginea Vahl ex DC (Connaraceae) in rats. Biomed Pharmacother 2016; 83:340-348. [DOI: 10.1016/j.biopha.2016.06.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/26/2016] [Accepted: 06/28/2016] [Indexed: 02/04/2023] Open
|
30
|
Zborowski VA, Sari MH, Heck SO, Stangherlin EC, Neto JS, Nogueira CW, Zeni G. p-Chloro-diphenyl diselenide reverses memory impairment-related to stress caused by corticosterone and modulates hippocampal [3H]glutamate uptake in mice. Physiol Behav 2016; 164:25-33. [DOI: 10.1016/j.physbeh.2016.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/08/2016] [Accepted: 05/16/2016] [Indexed: 01/13/2023]
|
31
|
Sato C, Hane M, Kitajima K. Relationship between ST8SIA2, polysialic acid and its binding molecules, and psychiatric disorders. Biochim Biophys Acta Gen Subj 2016; 1860:1739-52. [PMID: 27105834 DOI: 10.1016/j.bbagen.2016.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/21/2022]
Abstract
Polysialic acid (polySia, PSA) is a unique and functionally important glycan, particularly in vertebrate brains. It is involved in higher brain functions such as learning, memory, and social behaviors. Recently, an association between several genetic variations and single nucleotide polymorphisms (SNPs) of ST8SIA2/STX, one of two polysialyltransferase genes in vertebrates, and psychiatric disorders, such as schizophrenia (SZ), bipolar disorder (BD), and autism spectrum disorder (ASD), was reported based on candidate gene approaches and genome-wide studies among normal and mental disorder patients. It is of critical importance to determine if the reported mutations and SNPs in ST8SIA2 lead to impairments of the structure and function of polySia, which is the final product of ST8SIA2. To date, however, only a few such forward-directed studies have been conducted. In addition, the molecular mechanisms underlying polySia-involved brain functions remain unknown, although polySia was shown to have an anti-adhesive effect. In this report, we review the relationships between psychiatric disorders and polySia and/or ST8SIA2, and describe a new function of polySia as a regulator of neurologically active molecules, such as brain-derived neurotrophic factor (BDNF) and dopamine, which are deeply involved in psychiatric disorders. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | - Masaya Hane
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
32
|
Kott J, Mooney-Leber S, Shoubah F, Brummelte S. Effectiveness of different corticosterone administration methods to elevate corticosterone serum levels, induce depressive-like behavior, and affect neurogenesis levels in female rats. Neuroscience 2016; 312:201-14. [DOI: 10.1016/j.neuroscience.2015.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022]
|
33
|
Lee B, Sur B, Cho SG, Yeom M, Shim I, Lee H, Hahm DH. Effect of Beta-Asarone on Impairment of Spatial Working Memory and Apoptosis in the Hippocampus of Rats Exposed to Chronic Corticosterone Administration. Biomol Ther (Seoul) 2015; 23:571-81. [PMID: 26535083 PMCID: PMC4624074 DOI: 10.4062/biomolther.2015.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 02/02/2023] Open
Abstract
β-asarone (BAS) is an active component of Acori graminei rhizoma, a traditional medicine used clinically in treating dementia and chronic stress in Korea. However, the cognitive effects of BAS and its mechanism of action have remained elusive. The purpose of this study was to examine whether BAS improved spatial cognitive impairment induced in rats following chronic corticosterone (CORT) administration. CORT administration (40 mg/kg, i.p., 21 days) resulted in cognitive impairment in the avoidance conditioning test (AAT) and the Morris water maze (MWM) test that was reversed by BAS (200 mg/kg, i.p). Additionally, as assessed by immunohistochemistry and RT-PCR analysis, the administration of BAS significantly alleviated memory-associated decreases in the expression levels of brain-derived neurotrophic factor (BDNF) and cAMP-response element-binding protein (CREB) proteins and mRNAs in the hippocampus. Also, BAS administration significantly restored the expression of Bax and Bcl-2 mRNAs in the hippocampus. Thus, BAS may be an effective therapeutic for learning and memory disturbances, and its neuroprotective effect was mediated, in part, by normalizing the CORT response, resulting in regulation of BDNF and CREB functions and anti-apoptosis in rats.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Bongjun Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Seong-Guk Cho
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
| |
Collapse
|
34
|
Paredes MF, Sorrells SF, Garcia-Verdugo JM, Alvarez-Buylla A. Brain size and limits to adult neurogenesis. J Comp Neurol 2015; 524:646-64. [PMID: 26417888 DOI: 10.1002/cne.23896] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 12/31/2022]
Abstract
The walls of the cerebral ventricles in the developing embryo harbor the primary neural stem cells from which most neurons and glia derive. In many vertebrates, neurogenesis continues postnatally and into adulthood in this region. Adult neurogenesis at the ventricle has been most extensively studied in organisms with small brains, such as reptiles, birds, and rodents. In reptiles and birds, these progenitor cells give rise to young neurons that migrate into many regions of the forebrain. Neurogenesis in adult rodents is also relatively widespread along the lateral ventricles, but migration is largely restricted to the rostral migratory stream into the olfactory bulb. Recent work indicates that the wall of the lateral ventricle is highly regionalized, with progenitor cells giving rise to different types of neurons depending on their location. In species with larger brains, young neurons born in these spatially specified domains become dramatically separated from potential final destinations. Here we hypothesize that the increase in size and topographical complexity (e.g., intervening white matter tracts) in larger brains may severely limit the long-term contribution of new neurons born close to, or in, the ventricular wall. We compare the process of adult neuronal birth, migration, and integration across species with different brain sizes, and discuss how early regional specification of progenitor cells may interact with brain size and affect where and when new neurons are added.
Collapse
Affiliation(s)
- Mercedes F Paredes
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA
| | - Shawn F Sorrells
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA.,University of California, San Francisco, CA, 94143, USA
| | - Jose M Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, CIBERNED, 46980 Valencia, Spain
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
35
|
Job MO, Cooke BM. PSA-NCAM in the posterodorsal medial amygdala is necessary for the pubertal emergence of attraction to female odors in male hamsters. Horm Behav 2015; 75:91-9. [PMID: 26335887 DOI: 10.1016/j.yhbeh.2015.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/19/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
During puberty, attention turns away from same-sex socialization to focus on the opposite sex. How the brain mediates this change in perception and motivation is unknown. Polysialylated neural cell adhesion molecule (PSA-NCAM) virtually disappears from most of the central nervous system after embryogenesis, but it remains elevated in discrete regions of the adult brain. One such brain area is the posterodorsal subnucleus of the medial amygdala (MePD). The MePD has been implicated in male sexual attraction, measured here as the preference to investigate female odors. We hypothesize that PSA-NCAM gates hormone-dependent plasticity necessary for the emergence of males' attraction to females. To evaluate this idea, we first measured PSA-NCAM levels across puberty in several brain regions, and identified when female odor preference normally emerges in male Syrian hamsters. We found that MePD PSA-NCAM staining peaks shortly before the surge of pubertal androgen and the emergence of preference. To test the necessity of PSA-NCAM for female odor preference, we infused endo-neuraminidase-N into the MePD to deplete it of PSAs before female odor preference normally appears. This blocked female odor preference, which suggests that PSA-NCAM facilitates behaviorally relevant, hormone-driven plasticity.
Collapse
Affiliation(s)
- Martin O Job
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Bradley M Cooke
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
36
|
Lee B, Sur B, Shim I, Lee H, Hahm DH. Angelica gigas ameliorate depression-like symptoms in rats following chronic corticosterone injection. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:210. [PMID: 26138544 PMCID: PMC4490640 DOI: 10.1186/s12906-015-0746-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/24/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Repeated injection of corticosterone (CORT) induces dysregulation in the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depression. We examined the effects of Angelica gigas extract (AGN) treatment in a rat model of depressive and anxiety-like behaviors, induced by chronic CORT exposure. METHODS Male rats received 10, 20, or 50 mg/kg AGN (i.p.) 30 min prior to a daily injection of CORT for 21 consecutive days. Activation of the HPA axis in response to the repeated CORT injections was confirmed by measuring serum levels of CORT and the expression of corticotropin-releasing factor in the hypothalamus. RESULTS Daily AGN administration significantly reversed the depression and anxiety-like behavioral abnormalities. It also blocked increases in tyrosine hydroxylase expression in the locus coeruleus, and suppressed the decreased expression levels of brain-derived neurotrophic factor (BDNF) and its receptor TrkB mRNAs in the hippocampus. CONCLUSIONS These findings indicate that administration of AGN prior to high-dose exogenous CORT significantly improved helpless behaviors, possibly by modulating the central noradrenergic system and regulation of BDNF expression in rats. Thus, AGN may be a useful agent for the treatment or alleviation of psychiatric disorders associated with depression and anxiety disorders.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
| | - Bongjun Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
- BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
- BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea.
| |
Collapse
|
37
|
Castillo-Gómez E, Coviello S, Perez-Rando M, Curto Y, Carceller H, Salvador A, Nacher J. Streptozotocin diabetic mice display depressive-like behavior and alterations in the structure, neurotransmission and plasticity of medial prefrontal cortex interneurons. Brain Res Bull 2015; 116:45-56. [DOI: 10.1016/j.brainresbull.2015.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/05/2015] [Accepted: 06/10/2015] [Indexed: 12/15/2022]
|
38
|
Nacher J, Bonfanti L. New neurons from old beliefs in the adult piriform cortex? A Commentary on: "Occurrence of new neurons in the piriform cortex". Front Neuroanat 2015; 9:62. [PMID: 26052272 PMCID: PMC4440910 DOI: 10.3389/fnana.2015.00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/06/2015] [Indexed: 02/04/2023] Open
Affiliation(s)
- Juan Nacher
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de València Valencia, Spain ; CIBERSAM: Spanish National Network for Research in Mental Health Spain ; Fundación Investigación Hospital Clínico de Valencia, INCLIVA Valencia, Spain
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi Orbassano, Italy ; Department of Veterinary Sciences, University of Turin Torino, Italy
| |
Collapse
|
39
|
Yuan TF, Liang YX, So KF. Occurrence of new neurons in the piriform cortex. Front Neuroanat 2015; 8:167. [PMID: 25653597 PMCID: PMC4301012 DOI: 10.3389/fnana.2014.00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/30/2014] [Indexed: 01/06/2023] Open
Abstract
Adult neurogenesis has been well studied in hippocampus and subventricular zone (SVZ); while this is much less appreciated in other brain regions, including amygdala, hypothalamus, and piriform cortex (PC). The present review aims at summarizing recent advances on the occurrence of new neurons in the PC, their potential origin, and migration route from the SVZ. We further discuss the relevant implications in olfactory dysfunction accompanying the neurodegenerative diseases.
Collapse
Affiliation(s)
- Ti-Fei Yuan
- School of Psychology, Nanjing Normal University Nanjing, China ; Department of Ophthalmology, The University of Hong Kong Hong Kong, China
| | - Yu-Xiang Liang
- Department of Ophthalmology, The University of Hong Kong Hong Kong, China ; Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong China ; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong Hong Kong, China
| | - Kwok-Fai So
- Department of Ophthalmology, The University of Hong Kong Hong Kong, China ; Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong China ; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong Hong Kong, China ; GHM Institute of CNS Regeneration, Jinan University Guangzhou, China
| |
Collapse
|
40
|
Lehner M, Wisłowska-Stanek A, Skórzewska A, Płaźnik A. Chronic restraint increases apoptosis in the hippocampus of rats with high responsiveness to fear stimuli. Neurosci Lett 2015; 586:55-9. [DOI: 10.1016/j.neulet.2014.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/18/2014] [Accepted: 12/03/2014] [Indexed: 02/06/2023]
|
41
|
Lee B, Sur B, Shin S, Baik JE, Shim I, Lee H, Hahm DH. Polygala tenuifoliaprevents anxiety-like behaviors in mice exposed to repeated restraint stress. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.982176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
42
|
Mo C, Renoir T, Hannan AJ. Ethological endophenotypes are altered by elevated stress hormone levels in both Huntington's disease and wildtype mice. Behav Brain Res 2014; 274:118-27. [DOI: 10.1016/j.bbr.2014.07.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 01/05/2023]
|
43
|
Effect of chronic stress on short and long-term plasticity in dentate gyrus; Study of recovery and adaptation. Neuroscience 2014; 280:121-9. [DOI: 10.1016/j.neuroscience.2014.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/03/2014] [Indexed: 12/31/2022]
|
44
|
Olesen MV, Wörtwein G, Pakkenberg B. Electroconvulsive stimulation, but not chronic restraint stress, causes structural alterations in adult rat hippocampus-A stereological study. Hippocampus 2014; 25:72-80. [DOI: 10.1002/hipo.22351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Mikkel V. Olesen
- Research Laboratory for Stereology and Neuroscience; Bispebjerg and Frederiksberg Hospital; Bispebjerg Bakke 23 DK-2400 Copenhagen Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry; Department of Neuroscience and Pharmacology; University of Copenhagen and Mental Health Center Copenhagen; Blegdamsvej 9 DK-2100 Copenhagen Denmark
- Section of Environmental Health; Department of Public Health; University of Copenhagen; Øster Farimagsgade 5 DK-1014 Copenhagen Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience; Bispebjerg and Frederiksberg Hospital; Bispebjerg Bakke 23 DK-2400 Copenhagen Denmark
| |
Collapse
|
45
|
Lee B, Sur B, Yeom M, Shim I, Lee H, Hahm DH. Alpha-Asarone, a Major Component of Acorus gramineus, Attenuates Corticosterone-Induced Anxiety-Like Behaviours via Modulating TrkB Signaling Process. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:191-200. [PMID: 24976758 PMCID: PMC4071171 DOI: 10.4196/kjpp.2014.18.3.191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/18/2014] [Accepted: 04/12/2014] [Indexed: 11/27/2022]
Abstract
We investigated the anxiolytic-like activity of α-asarone (AAS) from Acorus gramineus in an experimental rat model of anxiety induced by repeated administration of the exogenous stress hormone corticosterone (CORT). The putative anxiolytic effect of AAS was studied in behavioral tests of anxiety, such as the elevated plus maze (EPM) test and the hole-board test (HBT) in rats. For 21 consecutive days, male rats received 50, 100, or 200 mg/kg AAS (i.p.) 30 min prior to a daily injection of CORT. Dysregulation of the HPA axis in response to the repeated CORT injections was confirmed by measuring serum levels of CORT and the expression of corticotrophin-releasing factor (CRF) in the hypothalamus. Daily AAS (200 mg/kg) administration increased open-arm exploration significantly in the EPM test, and it increased the duration of head dipping activity in the HBT. It also blocked the increase in tyrosine hydroxylase (TH) expression in the locus coeruleus (LC) and decreased mRNA expression of brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, in the hippocampus. These results indicated that the administration of AAS prior to high-dose exogenous CORT significantly improved anxiety-like behaviors, which are associated with modification of the central noradrenergic system and with BDNF function in rats. The current finding may improve understanding of the neurobiological mechanisms responsible for changes in emotions induced by repeated administration of high doses of CORT or by elevated levels of hormones associated with chronic stress. Thus, AAS did exhibit an anxiolytic-like effects in animal models of anxiety.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Bongjun Sur
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea. ; The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea. ; The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea. ; The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
46
|
Fan Y, Chen P, Li Y, Cui K, Noel DM, Cummins ED, Brown RW, Zhu MY. Corticosterone administration up-regulated expression of norepinephrine transporter and dopamine β-hydroxylase in rat locus coeruleus and its terminal regions. J Neurochem 2014; 128:445-58. [PMID: 24111919 PMCID: PMC3924588 DOI: 10.1111/jnc.12459] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 12/22/2022]
Abstract
Stress has been reported to activate the locus coeruleus (LC)-noradrenergic system. In this study, corticosterone (CORT) was orally administrated to rats for 21 days to mimic stress status. In situ hybridization measurements showed that CORT ingestion significantly increased mRNA levels of norepinephrine transporter (NET) and dopamine β-hydroxylase (DBH) in the LC region. Immunofluorescence staining and western blotting revealed that CORT treatment also increased protein levels of NET and DBH in the LC, as well as NET protein levels in the hippocampus, the frontal cortex and the amygdala. However, CORT-induced increase in DBH protein levels only appeared in the hippocampus and the amygdala. Elevated NET and DBH expression in most of these areas (except for NET protein levels in the LC) was abolished by simultaneous treatment with combination of corticosteroid receptor antagonist mifepristone and spironolactone (s.c. for 21 days). Also, treatment with mifepristone alone prevented CORT-induced increases of NET expression and DBH protein levels in the LC. In addition, behavioral tasks showed that CORT ingestion facilitated escape in avoidance trials using an elevated T-maze, but interestingly, there was no significant effect on the escape trial. Corticosteroid receptor antagonists failed to counteract this response in CORT-treated rats. In the open-field task, CORT treatment resulted in less activity in a defined central zone compared to controls and corticosteroid receptor antagonist treatment alleviated this increase. In conclusion, this study demonstrates that chronic exposure to CORT results in a phenotype that mimics stress-induced alteration of noradrenergic phenotypes, but the effects on behavior are task dependent. As the sucrose consumption test strongly suggests CORT ingestion-induced depression-like behavior, further elucidation of underlying mechanisms may improve our understanding of the correlation between stress and the development of depression.
Collapse
Affiliation(s)
- Yan Fan
- Departments of Biomedical Sciences, Quillen College of Medicine
| | - Ping Chen
- Departments of Biomedical Sciences, Quillen College of Medicine
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ying Li
- Departments of Biomedical Sciences, Quillen College of Medicine
| | - Kui Cui
- Departments of Biomedical Sciences, Quillen College of Medicine
| | - Daniel M. Noel
- Department of Psychology, College of Arts and Sciences; East Tennessee State University, Johnson City, TN, USA
| | - Elizabeth D. Cummins
- Department of Psychology, College of Arts and Sciences; East Tennessee State University, Johnson City, TN, USA
| | - Russell W. Brown
- Department of Psychology, College of Arts and Sciences; East Tennessee State University, Johnson City, TN, USA
| | - Meng-Yang Zhu
- Departments of Biomedical Sciences, Quillen College of Medicine
| |
Collapse
|
47
|
Lee B, Sur B, Park J, Kim SH, Kwon S, Yeom M, Shim I, Lee H, Hahm DH. Chronic administration of baicalein decreases depression-like behavior induced by repeated restraint stress in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:393-403. [PMID: 24227939 PMCID: PMC3823951 DOI: 10.4196/kjpp.2013.17.5.393] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/12/2013] [Accepted: 08/06/2013] [Indexed: 11/15/2022]
Abstract
Baicalein (BA), a plant-derived active flavonoid present in the root of Scutellaria baicalensis, has been widely used for the treatment of stress-related neuropsychiatric disorders including depression. Previous studies have demonstrated that repeated restraint stress disrupts the activity of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depression. The behavioral and neurochemical basis of the BA effect on depression remain unclear. The present study used the forced swimming test (FST) and changes in brain neurotransmitter levels to confirm the impact of BA on repeated restraint stress-induced behavioral and neurochemical changes in rats. Male rats received 10, 20, or 40 mg/kg BA (i.p.) 30 min prior to daily exposure to repeated restraint stress (2 h/day) for 14 days. Activation of the HPA axis in response to repeated restraint stress was confirmed by measuring serum corticosterone levels and the expression of corticotrophin-releasing factor in the hypothalamus. Daily BA administration significantly decreased the duration of immobility in the FST, increased sucrose consumption, and restored the stress-related decreases in dopamine concentrations in the hippocampus to near normal levels. BA significantly inhibited the stress-induced decrease in neuronal tyrosine hydroxylase immunoreactivity in the ventral tegmental area and the expression of brain-derived neurotrophic factor (BDNF) mRNA in the hippocampus. Taken together, these findings indicate that administration of BA prior to the repeated restraint stress significantly improves helpless behaviors and depressive symptoms, possibly by preventing the decrease in dopamine and BDNF expression. Thus, BA may be a useful agent for the treatment or alleviation of the complex symptoms associated with depression.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Green MR, McCormick CM. Effects of stressors in adolescence on learning and memory in rodent models. Horm Behav 2013; 64:364-79. [PMID: 23998678 DOI: 10.1016/j.yhbeh.2012.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/04/2012] [Accepted: 09/23/2012] [Indexed: 02/07/2023]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". Learning and memory is affected by a myriad of factors, including exposure to stressors and the corresponding rise in circulating glucocorticoids. Nevertheless, the effects of stressors depend on the sex, species, the type of stressor used, the duration of exposure, as well as the developmental time-point in which stressors are experienced. Effects of stress in adolescence, however, have received less attention than other developmental periods. In adolescence, the hypothalamic-pituitary-adrenal axis and brain regions involved in learning and memory, which also richly express corticosteroid receptors, are continuing to develop, and thus the effects of stress exposures would be expected to differ from those in adulthood. We conclude from a review of the available literature in animal models that hippocampal function is particularly sensitive to adolescent stressors, and the effects tend to be most evident several weeks after the exposure, suggesting stressors alter the developmental trajectory of the hippocampus.
Collapse
Affiliation(s)
- Matthew R Green
- Department of Psychology, Brock University, 500 Glenridge Ave., St. Catharines, Ontario, Canada
| | | |
Collapse
|
49
|
Lee B, Sur B, Shim I, Lee H, Hahm DH. Baicalin improves chronic corticosterone-induced learning and memory deficits via the enhancement of impaired hippocampal brain-derived neurotrophic factor and cAMP response element-binding protein expression in the rat. J Nat Med 2013; 68:132-43. [DOI: 10.1007/s11418-013-0782-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 05/16/2013] [Indexed: 11/29/2022]
|
50
|
The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus. Neural Plast 2013; 2013:805497. [PMID: 23691371 PMCID: PMC3649690 DOI: 10.1155/2013/805497] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/13/2013] [Indexed: 01/01/2023] Open
Abstract
Depression is a devastating and prevalent disease, with profound effects on neural structure and function; however the etiology and neuropathology of depression remain poorly understood. Though antidepressant drugs exist, they are not ideal, as only a segment of patients are effectively treated, therapeutic onset is delayed, and the exact mechanism of these drugs remains to be elucidated. Several theories of depression do exist, including modulation of monoaminergic neurotransmission, alterations in neurotrophic factors, and the upregulation of adult hippocampal neurogenesis, and are briefly mentioned in the review. However none of these theories sufficiently explains the pathology and treatment of depression unto itself. Recently, neural plasticity theories of depression have postulated that multiple aspects of brain plasticity, beyond neurogenesis, may bridge the prevailing theories. The term “neural plasticity” encompasses an array of mechanisms, from the birth, survival, migration, and integration of new neurons to neurite outgrowth, synaptogenesis, and the modulation of mature synapses. This review critically assesses the role of adult hippocampal neurogenesis and the cell adhesion molecule, PSA-NCAM (which is known to be involved in many facets of neural plasticity), in depression and antidepressant treatment.
Collapse
|