1
|
Druga R, Mares P, Salaj M, Kubova H. Degenerative Changes in the Claustrum and Endopiriform Nucleus after Early-Life Status Epilepticus in Rats. Int J Mol Sci 2024; 25:1296. [PMID: 38279295 PMCID: PMC10816976 DOI: 10.3390/ijms25021296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
The aim of the present study was to analyze the location of degenerating neurons in the dorsal (insular) claustrum (DCL, VCL) and the dorsal, intermediate and ventral endopiriform nucleus (DEn, IEn, VEn) in rat pups following lithium-pilocarpine status epilepticus (SE) induced at postnatal days [P]12, 15, 18, 21 and 25. The presence of Fluoro-Jade B-positive neurons was evaluated at 4, 12, 24, 48 h and 1 week later. A small number of degenerated neurons was observed in the CL, as well as in the DEn at P12 and P15. The number of degenerated neurons was increased in the CL as well as in the DEn at P18 and above and was highest at longer survival intervals. The CL at P15 and 18 contained a small or moderate number of degenerated neurons mainly close to the medial and dorsal margins also designated as DCl ("shell") while isolated degenerated neurons were distributed in the VCl ("core"). In P21 and 25, a larger number of degenerated neurons occurred in both subdivisions of the dorsal claustrum. The majority of degenerated neurons in the endopiriform nucleus were found in the intermediate and caudal third of the DEn. A small number of degenerated neurons was dispersed in the whole extent of the DEn with prevalence to its medial margin. Our results indicate that degenerated neurons in the claustrum CL and endopiriform nucleus are distributed mainly in subdivisions originating from the ventral pallium; their distribution correlates with chemoarchitectonics of both nuclei and with their intrinsic and extrinsic connections.
Collapse
Affiliation(s)
- Rastislav Druga
- Institute of Anatomy, 2nd Medical Faculty, Charles University, 15006 Prague, Czech Republic;
- Laboratory of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic;
- Institute of Anatomy, 1st Medical Faculty, Charles University, 12000 Prague, Czech Republic
| | - Pavel Mares
- Laboratory of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic;
| | - Martin Salaj
- Institute of Anatomy, 2nd Medical Faculty, Charles University, 15006 Prague, Czech Republic;
| | - Hana Kubova
- Laboratory of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic;
| |
Collapse
|
2
|
Biggs LM, Hammock EAD. Oxytocin via oxytocin receptor excites neurons in the endopiriform nucleus of juvenile mice. Sci Rep 2022; 12:11401. [PMID: 35794163 PMCID: PMC9259672 DOI: 10.1038/s41598-022-15390-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
The neuropeptide oxytocin (OXT) modulates social behaviors across species and may play a developmental role for these behaviors and their mediating neural pathways. Despite having high, stable levels of OXT receptor (OXTR) ligand binding from birth, endopiriform nucleus (EPN) remains understudied. EPN integrates olfactory and gustatory input and has reciprocal connections with several limbic areas. Because the role of OXTR signaling in EPN is unknown, we sought to provide anatomical and electrophysiological information about OXTR signaling in mouse EPN neurons. Using in situ hybridization, we found that most EPN neurons co-express Oxtr mRNA and the marker for VGLUT1, a marker for glutamatergic cells. Based on high levels of OXTR ligand binding in EPN, we hypothesized that oxytocin application would modulate activity in these cells as measured by whole-cell patch-clamp electrophysiology. Bath application of OXT and an OXTR specific ligand (TGOT) increased the excitability of EPN neurons in wild-type, but not in OXTR-knockout (KO) tissue. These results show an effect of OXT on a mainly VGLUT1+ cell population within EPN. Given the robust, relatively stable OXTR expression in EPN throughout life, OXTR in this multi-sensory and limbic integration area may be important for modulating activity in response to an array of social or other salient stimuli throughout the lifespan and warrants further study.
Collapse
Affiliation(s)
- Lindsey M Biggs
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL, 32306, USA.
| | - Elizabeth A D Hammock
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
3
|
Li D, Luo D, Wang J, Wang W, Yuan Z, Xing Y, Yan J, Sha Z, Loh HH, Zhang M, Henry TR, Yang X. Electrical stimulation of the endopiriform nucleus attenuates epilepsy in rats by network modulation. Ann Clin Transl Neurol 2020; 7:2356-2369. [PMID: 33128504 PMCID: PMC7732253 DOI: 10.1002/acn3.51214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/09/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Neuromodulatory anterior thalamic deep brain stimulation (DBS) is an effective therapy for intractable epilepsy, but few patients achieve complete seizure control with thalamic DBS. Other stimulation sites may be considered for anti-seizure DBS. We investigated bilateral low-frequency stimulation of the endopiriform nuclei (LFS-EPN) to control seizures induced by intracortically implanted cobalt wire in rats. METHODS Chronic epilepsy was induced by cobalt wire implantation in the motor cortex unilaterally. Bipolar-stimulating electrodes were implanted into the EPN bilaterally. Continuous electroencephalography (EEG) was recorded using electrodes placed into bilateral motor cortex and hippocampus CA1 areas. Spontaneous seizures were monitored by long-term video-EEG, and behavioral seizures were classified based on the Racine scale. Continuous 1-Hz LFS-EPN began on the third day after electrode implantation and was controlled by a multi-channel stimulator. Stimulation continued until the rats had no seizures for three consecutive days. RESULTS Compared with the control and sham stimulation groups, the LFS-EPN group experienced significantly fewer seizures per day and the mean Racine score of seizures was lower due to fewer generalized seizures. Ictal discharges at the epileptogenic site had significantly reduced theta band power in the LFS-EPN group compared to the other groups. INTERPRETATION Bilateral LFS-EPN attenuates cobalt wire-induced seizures in rats by modulating epileptic networks. Reduced ictal theta power of the EEG broadband spectrum at the lesion site may be associated with the anti-epileptogenic mechanism of LFS-EPN. Bilateral EPN DBS may have therapeutic applications in human partial epilepsies.
Collapse
Affiliation(s)
- Donghong Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Deng Luo
- Department of Electronic Engineering, Institute of Microelectronics, Tsinghua University, Beijing, China
| | - Junling Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Wei Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Zhangyi Yuan
- Department of Electronic Engineering, Institute of Microelectronics, Tsinghua University, Beijing, China
| | - Yue Xing
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, China
| | - Zhiyi Sha
- Department of Neurology, University of Minnesota, Minnesota, USA
| | - Horace H Loh
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Milin Zhang
- Department of Electronic Engineering, Institute of Microelectronics, Tsinghua University, Beijing, China
| | - Thomas R Henry
- Department of Neurology, University of Minnesota, Minnesota, USA.,Center for Magnetic Resonance Research, University of Minnesota, Minnesota, USA
| | - Xiaofeng Yang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
4
|
Abstract
The gustatory system contributes to the flavor of foods and beverages and communicates information about nutrients and poisons. This system has evolved to detect and ultimately respond to hydrophilic molecules dissolved in saliva. Taste receptor cells, located in taste buds and distributed throughout the oral cavity, activate nerve afferents that project to the brainstem. From here, information propagates to thalamic, subcortical, and cortical areas, where it is integrated with information from other sensory systems and with homeostatic, visceral, and affective processes. There is considerable divergence, as well as convergence, of information between multiple regions of the central nervous system that interact with the taste pathways, with reciprocal connections occurring between the involved regions. These widespread interactions among multiple systems are crucial for the perception of food. For example, memory, hunger, satiety, and visceral changes can directly affect and can be affected by the experience of tasting. In this chapter, we review the literature on the central processing of taste with a specific focus on the anatomic and physiologic responses of single neurons. Emphasis is placed on how information is distributed along multiple systems with the goal of better understanding how the rich and complex sensations associated with flavor emerge from large-scale, systems-wide, interactions.
Collapse
|
5
|
Jiang H, Kim HF. Anatomical Inputs From the Sensory and Value Structures to the Tail of the Rat Striatum. Front Neuroanat 2018; 12:30. [PMID: 29773980 PMCID: PMC5943565 DOI: 10.3389/fnana.2018.00030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/05/2018] [Indexed: 11/17/2022] Open
Abstract
The caudal region of the rodent striatum, called the tail of the striatum (TS), is a relatively small area but might have a distinct function from other striatal subregions. Recent primate studies showed that this part of the striatum has a unique function in encoding long-term value memory of visual objects for habitual behavior. This function might be due to its specific connectivity. We identified inputs to the rat TS and compared those with inputs to the dorsomedial striatum (DMS) in the same animals. The TS directly received anatomical inputs from both sensory structures and value-coding regions, but the DMS did not. First, inputs from the sensory cortex and sensory thalamus to the TS were found; visual, auditory, somatosensory and gustatory cortex and thalamus projected to the TS but not to the DMS. Second, two value systems innervated the TS; dopamine and serotonin neurons in the lateral part of the substantia nigra pars compacta (SNc) and dorsal raphe nucleus projected to the TS, respectively. The DMS received inputs from the separate group of dopamine neurons in the medial part of the SNc. In addition, learning-related regions of the limbic system innervated the TS; the temporal areas and the basolateral amygdala selectively innervated the TS, but not the DMS. Our data showed that both sensory and value-processing structures innervated the TS, suggesting its plausible role in value-guided sensory-motor association for habitual behavior.
Collapse
Affiliation(s)
- Haiyan Jiang
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, South Korea
| | - Hyoung F Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, South Korea
| |
Collapse
|
6
|
Biskamp J, Bartos M, Sauer JF. Organization of prefrontal network activity by respiration-related oscillations. Sci Rep 2017; 7:45508. [PMID: 28349959 PMCID: PMC5368652 DOI: 10.1038/srep45508] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/01/2017] [Indexed: 02/08/2023] Open
Abstract
The medial prefrontal cortex (mPFC) integrates information from cortical and sub-cortical areas and contributes to the planning and initiation of behaviour. A potential mechanism for signal integration in the mPFC lies in the synchronization of neuronal discharges by theta (6–12 Hz) activity patterns. Here we show, using in vivo local field potential (LFP) and single-unit recordings from awake mice, that prominent oscillations in the sub-theta frequency band (1–5 Hz) emerge during awake immobility in the mPFC. These oscillation patterns are distinct from but phase-locked to hippocampal theta activity and occur synchronized with nasal respiration (hence termed prefrontal respiration rhythm [PRR]). PRR activity modulates the amplitude of prefrontal gamma rhythms with greater efficacy than theta oscillations. Furthermore, single-unit discharges of putative pyramidal cells and GABAergic interneurons are entrained by prefrontal PRR and nasal respiration. Our data thus suggest that PRR activity contributes to information processing in the prefrontal neuronal network.
Collapse
Affiliation(s)
- Jonatan Biskamp
- Physiologisches Institut I, Systemic and Cellular Neurophysiology, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 7, 79104 Freiburg, Germany
| | - Marlene Bartos
- Physiologisches Institut I, Systemic and Cellular Neurophysiology, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 7, 79104 Freiburg, Germany
| | - Jonas-Frederic Sauer
- Physiologisches Institut I, Systemic and Cellular Neurophysiology, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 7, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Onisawa N, Manabe H, Mori K. Temporal coordination of olfactory cortex sharp-wave activity with up- and downstates in the orbitofrontal cortex during slow-wave sleep. J Neurophysiol 2016; 117:123-135. [PMID: 27733591 DOI: 10.1152/jn.00069.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 10/11/2016] [Indexed: 11/22/2022] Open
Abstract
During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. NEW & NOTEWORTHY Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows.
Collapse
Affiliation(s)
- Naomi Onisawa
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; and.,Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Hiroyuki Manabe
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; and .,Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Kensaku Mori
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; and.,Japan Science and Technology Agency, CREST, Tokyo, Japan
| |
Collapse
|
8
|
Optical Brain Imaging: A Powerful Tool for Neuroscience. Neurosci Bull 2016; 33:95-102. [PMID: 27535148 DOI: 10.1007/s12264-016-0053-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/07/2016] [Indexed: 01/16/2023] Open
Abstract
As the control center of organisms, the brain remains little understood due to its complexity. Taking advantage of imaging methods, scientists have found an accessible approach to unraveling the mystery of neuroscience. Among these methods, optical imaging techniques are widely used due to their high molecular specificity and single-molecule sensitivity. Here, we overview several optical imaging techniques in neuroscience of recent years, including brain clearing, the micro-optical sectioning tomography system, and deep tissue imaging.
Collapse
|
9
|
Sato K, Hayashi S, Inaji M, Momose-Sato Y. Oscillations in the embryonic chick olfactory bulb: initial expression and development revealed by optical imaging with a voltage-sensitive dye. Eur J Neurosci 2016; 43:1111-21. [PMID: 26833763 DOI: 10.1111/ejn.13189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/31/2015] [Accepted: 01/26/2016] [Indexed: 11/28/2022]
Abstract
In a previous study, we applied a multiple-site optical recording technique with a voltage-sensitive dye to the embryonic chick olfactory system and showed that functional synaptic transmission in the olfactory bulb was expressed at embryonic 6-7-day stages. It is known that oscillations, i.e. stereotyped sinusoidal neural activity, appear in the olfactory system of various species. The focus of the present study is to determine whether the oscillation is also generated in the embryonic chick olfactory bulb and, if this is the case, when the oscillation appears and how its profiles change during embryogenesis. At the early stages of development (embryonic 6- to 8-day stages), postsynaptic response-related optical signals evoked by olfactory nerve stimulation exhibited a simple monophasic waveform that lasted for a few seconds. At embryonic 9-day stage, the optical signal became multi-phasic, and the oscillatory event was detected in some preparations. The oscillation was restricted to the distal half of the olfactory bulb. As development proceeded, the incidence and duration of the oscillation gradually increased, and the waveform became complicated. In some cases at embryonic 12-day stage, the oscillation lasted for nearly a minute. The frequency of the oscillation increased slightly with development, but it remained in the range of theta oscillation during the 9- to 12-day stages. We discuss the ontogenetic dynamics of the oscillation and the significance of this activity in the developing olfactory bulb.
Collapse
Affiliation(s)
- Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University, Inagi-shi, Tokyo, 206-8511, Japan
| | - Shihori Hayashi
- Department of Neurosurgery, Faculty of Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Faculty of Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama, Japan
| |
Collapse
|
10
|
Orman R. Claustrum: a case for directional, excitatory, intrinsic connectivity in the rat. J Physiol Sci 2015; 65:533-44. [PMID: 26329935 PMCID: PMC10717944 DOI: 10.1007/s12576-015-0391-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/16/2015] [Indexed: 12/21/2022]
Abstract
Claustrum, a gray matter structure that underlies the neocortex, is reciprocally connected with many neocortical and limbic cortical areas. This connectivity positions claustrum ideally for the integration or coordination of widespread cortical activity. In anatomical studies using multiple planes of section, claustrum has distinct subregions based on latexin immunohistochemistry, and an approximately rostro-caudal alignment of fusiform cells supporting a laminar intrinsic organization. Physiological studies of claustral connectivity in disinhibited brain slices demonstrate (1) intrinsic connectivity sufficient to generate spontaneous synchronized burst discharges, (2) activity spread within the oblique laminae that contained the principal cellular axis, and (3) segregation of activity as evidenced by the absence of spread within coronal planes. Activity spread depended on glutamatergic synaptic transmission, and activity restrictions did not depend on inhibitory circuits. We conclude that the claustrum has an intrinsic excitatory connectivity that is constrained in approximately rostro-caudal laminae, with minimal cross-communication between laminae. Further, claustrum has the intrinsic capability of generating synchronized population activity and facilitating its spread within laminae, a feature that may contribute to seizure generation and spread.
Collapse
Affiliation(s)
- Rena Orman
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, MSC 31, Brooklyn, NY, 11203, USA.
| |
Collapse
|
11
|
Gauvin DV, Abernathy MM, Tapp RL, Yoder JD, Dalton JA, Baird TJ. The failure to detect drug-induced sensory loss in standard preclinical studies. J Pharmacol Toxicol Methods 2015; 74:53-74. [DOI: 10.1016/j.vascn.2015.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 12/19/2022]
|
12
|
Pazart L, Comte A, Magnin E, Millot JL, Moulin T. An fMRI study on the influence of sommeliers' expertise on the integration of flavor. Front Behav Neurosci 2014; 8:358. [PMID: 25360093 PMCID: PMC4199283 DOI: 10.3389/fnbeh.2014.00358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/26/2014] [Indexed: 11/13/2022] Open
Abstract
Flavors guide consumers' choice of foodstuffs, preferring those that they like and meet their needs, and dismissing those for which they have a conditioned aversion. Flavor affects the learning and consumption of foods and drinks; what is already well-known is favored and what is new is apprehended. The flavor of foodstuffs is also crucial in explaining some eating behaviors such as overconsumption. The "blind" taste test of wine is a good model for assessing the ability of people to convert mouth feelings into flavor. To determine the relative importance of memory and sensory capabilities, we present the results of an fMRI neuro-imaging study involving 10 experts and 10 matched control subjects using wine as a stimulus in a blind taste test, focusing primarily on the assessment of flavor integration. The results revealed activations in the brain areas involved in sensory integration, both in experts and control subjects (insula, frontal operculum, orbitofrontal cortex, amygdala). However, experts were mainly characterized by a more immediate and targeted sensory reaction to wine stimulation with an economic mechanism reducing effort than control subjects. Wine experts showed brainstem and left-hemispheric activations in the hippocampal and parahippocampal formations and the temporal pole, whereas control subjects showed activations in different associative cortices, predominantly in the right hemisphere. These results also confirm that wine experts work simultaneously on sensory quality assessment and on label recognition of wine.
Collapse
Affiliation(s)
- Lionel Pazart
- Inserm Clinical Investigation Centre 1431, Clinical Investigation Centre, Besançon University Hospital Besancon, France
| | - Alexandre Comte
- Inserm Clinical Investigation Centre 1431, Clinical Investigation Centre, Besançon University Hospital Besancon, France ; Laboratoire de Neurosciences, (EA-481), University of Franche-Comté Besancon, France ; Département de Recherche en Imagerie Fonctionnelle, Besançon University Hospital Besancon, France
| | - Eloi Magnin
- Laboratoire de Neurosciences, (EA-481), University of Franche-Comté Besancon, France ; Département de Recherche en Imagerie Fonctionnelle, Besançon University Hospital Besancon, France
| | - Jean-Louis Millot
- Laboratoire de Neurosciences, (EA-481), University of Franche-Comté Besancon, France
| | - Thierry Moulin
- Inserm Clinical Investigation Centre 1431, Clinical Investigation Centre, Besançon University Hospital Besancon, France ; Laboratoire de Neurosciences, (EA-481), University of Franche-Comté Besancon, France ; Département de Recherche en Imagerie Fonctionnelle, Besançon University Hospital Besancon, France
| |
Collapse
|
13
|
King CT, Garcea M, Spector AC. Restoration of quinine-stimulated Fos-immunoreactive neurons in the central nucleus of the amygdala and gustatory cortex following reinnervation or cross-reinnervation of the lingual taste nerves in rats. J Comp Neurol 2014; 522:2498-517. [PMID: 24477770 PMCID: PMC4157664 DOI: 10.1002/cne.23546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 01/18/2014] [Accepted: 01/22/2014] [Indexed: 11/12/2022]
Abstract
Remarkably, when lingual gustatory nerves are surgically rerouted to inappropriate taste fields in the tongue, some taste functions recover. We previously demonstrated that quinine-stimulated oromotor rejection reflexes and neural activity (assessed by Fos immunoreactivity) in subregions of hindbrain gustatory nuclei were restored if the posterior tongue, which contains receptor cells that respond strongly to bitter compounds, was cross-reinnervated by the chorda tympani nerve. Such functional recovery was not seen if instead, the anterior tongue, where receptor cells are less responsive to bitter compounds, was cross-reinnervated by the glossopharyngeal nerve, even though this nerve typically responds robustly to bitter substances. Thus, recovery depended more on the taste field being reinnervated than on the nerve itself. Here, the distribution of quinine-stimulated Fos-immunoreactive neurons in two taste-associated forebrain areas was examined in these same rats. In the central nucleus of the amygdala (CeA), a rostrocaudal gradient characterized the normal quinine-stimulated Fos response, with the greatest number of labeled cells situated rostrally. Quinine-stimulated neurons were found throughout the gustatory cortex, but a "hot spot" was observed in its anterior-posterior center in subregions approximating the dysgranular/agranular layers. Fos neurons here and in the rostral CeA were highly correlated with quinine-elicited gapes. Denervation of the posterior tongue eliminated, and its reinnervation by either nerve restored, numbers of quinine-stimulated labeled cells in the rostralmost CeA and in the subregion approximating the dysgranular gustatory cortex. These results underscore the remarkable plasticity of the gustatory system and also help clarify the functional anatomy of neural circuits activated by bitter taste stimulation.
Collapse
Affiliation(s)
| | - Mircea Garcea
- Department of Psychology and Center for Smell and Taste, University of Florida, Gainesville, Florida 32611
| | - Alan C. Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee FL 32306
| |
Collapse
|
14
|
Kawabe M, Yoshimura H. Influences of multiple tooth-loss on signal travel in the insular cortex of rats. Eur J Oral Sci 2014; 122:175-80. [PMID: 24666099 DOI: 10.1111/eos.12123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2014] [Indexed: 11/27/2022]
Abstract
The insular cortex (IC) processes various kinds of sensory and emotional information. Multiple tooth-loss induces impairment of oral sensory and motor functions, which might result in the up- or down-regulation of signal processing in the IC. In the present study, we investigated how multiple tooth-loss affects neural activities in the IC. Slices of the IC were prepared from control (untreated) rats and rats raised following the loss of their upper molar teeth, and optical recordings with voltage-sensitive dye were made. Electrical stimulation was delivered to the agranular IC (AIC). The velocity of optical signal from the AIC to the granular IC (GIC) decreased in multiple tooth-loss rats compared with control rats. Field potentials from the GIC were recorded. Onset times of evoked response at the GIC recorded from multiple tooth-loss rats were prolonged compared with those recorded from control rats, suggesting that signal velocity in multiple tooth-loss rats had decreased. A reduced signal velocity was accompanied by neuronal loss in the GIC, which was confirmed by counting the cell numbers on Nissl-stained sections. Thus, multiple tooth-loss may have influences on the GIC where signal processing speed decreases.
Collapse
Affiliation(s)
- Mamichi Kawabe
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Uchinada-cho, Japan
| | | |
Collapse
|
15
|
Yoshimura H, Hasumoto-Honjo M, Sugai T, Segami N, Kato N. Enhancement of oscillatory activity in the endopiriform nucleus of rats raised under abnormal oral conditions. Neurosci Lett 2014; 561:162-5. [PMID: 24406147 DOI: 10.1016/j.neulet.2013.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/26/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
Endopiriform nucleus (EPN) is located deep to the piriform cortex, and has neural connections with not only neighboring sensory areas but also subcortical areas where emotional and nociceptive information is processed. Well-balanced oral condition might play an important role in stability of brain activities. When the oral condition is impaired, several areas in the brain might be affected. In the present study, we investigated whether abnormal conditions of oral region influence neural activities in the EPN. Orthodontic appliance that generates continuous force and chronic pain-related stress was fixed to maxillary incisors of rats, and raised. Field potential recordings were made from the EPN of brain slices. We previously reported that the EPN has an ability to generate membrane potential oscillation. In the present study, we have applied the same methods to assess activities of neuron clusters in the EPN. In the case of normal rats, stable field potential oscillations were induced in the EPN by application of low-frequency electrical stimulation under the medium with caffeine. In the case of rats with the orthodontic appliance, stable field potential oscillations were also induced, but both duration of oscillatory activities and wavelet number were increased. The enhanced oscillations were depressed by blockade of NMDA receptors. Thus, impairment of oral health under application of continuous orthodontic force and chronic pain-related stress enhanced neural activities in the EPN, in which up-regulation of NMDA receptors may be concerned. These findings suggest that the EPN might be involved in information processing with regard to abnormal conditions of oral region.
Collapse
Affiliation(s)
- Hiroshi Yoshimura
- Department of Molecular Oral Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan; Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Ishikawa, Japan; Department of Physiology, Kanazawa Medical University, Uchinada-cho 920-0293, Japan.
| | - Miho Hasumoto-Honjo
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Ishikawa, Japan; Department of Physiology, Kanazawa Medical University, Uchinada-cho 920-0293, Japan
| | - Tokio Sugai
- Department of Physiology, Kanazawa Medical University, Uchinada-cho 920-0293, Japan
| | - Natsuki Segami
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Uchinada-cho 920-0293, Japan
| |
Collapse
|
16
|
Yoshimura H, Sugai T, Hasegawa T, Yao C, Akamatsu T, Kato N. Age-dependent emergence of caffeine-assisted voltage oscillations in the endopiriform nucleus of rats. Neurosci Res 2013; 76:16-21. [DOI: 10.1016/j.neures.2013.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 02/12/2013] [Accepted: 02/22/2013] [Indexed: 02/03/2023]
|
17
|
Abstract
Food perception and preference formation relies on the ability to combine information from both the taste and olfactory systems. Accordingly, psychophysical investigations in humans and behavioral work in animals has shown that the taste system plays an integral role in odor processing. However, the neural basis for the influence of taste (gustation) on odor (olfaction) remains essentially unknown. Here we tested the hypothesis that gustatory influence on olfactory processing occurs at the level of primary olfactory cortex. We recorded activity from single neurons in posterior olfactory (piriform) cortex (pPC) of awake rats while presenting basic taste solutions directly to the tongue. A significant portion of pPC neurons proved to respond selectively to taste stimuli. These taste responses were significantly reduced by blockade of the gustatory epithelium, were unaffected by blockade of the olfactory epithelium, and were independent of respiration behavior. In contrast, responses to olfactory stimuli, recorded from the same area, were reduced by nasal epithelial deciliation and phase-locked to the respiration cycle. These results identify pPC as a likely site for gustatory influences on olfactory processing, which play an important role in food perception and preference formation.
Collapse
|
18
|
Neural processing of gustatory information in insular circuits. Curr Opin Neurobiol 2012; 22:709-16. [PMID: 22554880 DOI: 10.1016/j.conb.2012.04.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 01/09/2023]
Abstract
The insular cortex is the primary cortical site devoted to taste processing. A large body of evidence is available for how insular neurons respond to gustatory stimulation in both anesthetized and behaving animals. Most of the reports describe broadly tuned neurons that are involved in processing the chemosensory, physiological and psychological aspects of gustatory experience. However little is known about how these neural responses map onto insular circuits. Particularly mysterious is the functional role of the three subdivisions of the insular cortex: the granular, the dysgranular and the agranular insular cortices. In this article we review data on the organization of the local and long-distance circuits in the three subdivisions. The functional significance of these results is discussed in light of the latest electrophysiological data. A view of the insular cortex as a functionally integrated system devoted to processing gustatory, multimodal, cognitive and affective information is proposed.
Collapse
|
19
|
Abdul Wahab N, Jones RD, Huckabee ML. Effects of olfactory and gustatory stimuli on neural excitability for swallowing. Physiol Behav 2010; 101:568-75. [PMID: 20849867 DOI: 10.1016/j.physbeh.2010.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/16/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
This project evaluated the effects of olfactory and gustatory stimuli on the amplitude and latency of motor-evoked potentials (MEPs) from the submental muscles when evoked by transcranial magnetic stimulation (TMS). Sixteen healthy volunteers (8 males; age range 19-43) participated in the study. Lemon concentrate at 100% and diluted in water to 25% were presented separately as odor and tastant stimuli. Tap water was used as control. 15 trials of TMS-evoked MEPs triggered by volitional contraction of the submental muscles and volitional swallowing were measured at baseline, during control condition, during stimulus presentation, and immediately, 30-, 60-, and 90-min poststimulation for each of the four stimulus presentations. Experiments were repeated using the combined odor and tastant concentrations that most influenced the MEP independently. Differences in MEP amplitude measured during swallowing were seen at 30-, 60-, and 90-min poststimulation for simultaneous olfactory and gustatory stimulation as opposed to no differences seen at any point for stimuli presented separately. This study has shown that combined odor and tastant stimulation (i.e., flavor) can increase MEP amplitude during swallowing and that this enhancement of MEP can persist for at least 90min following stimulation. As increased MEP amplitude has been associated with improved swallowing performance, a follow-up study is underway to determine the biomechanical changes produced by altered MEPs to facilitate translation of these data to clinical dysphagia management.
Collapse
Affiliation(s)
- Norsila Abdul Wahab
- Van der Veer Institute for Parkinson's and Brain Research, Christchurch 8011, New Zealand.
| | | | | |
Collapse
|
20
|
Wesson DW, Wilson DA. Sniffing out the contributions of the olfactory tubercle to the sense of smell: hedonics, sensory integration, and more? Neurosci Biobehav Rev 2010; 35:655-68. [PMID: 20800615 DOI: 10.1016/j.neubiorev.2010.08.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 11/28/2022]
Abstract
Since its designation in 1896 as a putative olfactory structure, the olfactory tubercle has received little attention in terms of elucidating its role in the processing and perception of odors. Instead, research on the olfactory tubercle has mostly focused on its relationship with the reward system. Here we provide a comprehensive review of research on the olfactory tubercle-with an emphasis on the likely role of this region in olfactory processing and its contributions to perception. Further, we propose several testable hypotheses regarding the likely involvement of the olfactory tubercle in both basic (odor detection, discrimination, parallel processing of olfactory information) and higher-order (social odor processing, hedonics, multi-modal integration) functions. Together, the information within this review highlights an understudied yet potentially critical component in central odor processing.
Collapse
Affiliation(s)
- Daniel W Wesson
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
21
|
Fortis-Santiago Y, Rodwin BA, Neseliler S, Piette CE, Katz DB. State dependence of olfactory perception as a function of taste cortical inactivation. Nat Neurosci 2009; 13:158-9. [PMID: 20023656 PMCID: PMC2834247 DOI: 10.1038/nn.2463] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 11/09/2009] [Indexed: 11/22/2022]
Abstract
As anyone who has suffered through a head cold knows, food eaten when the olfactory system is impaired tastes “wrong”–an experience that leads many to conclude that taste stimuli are processed normally only when the olfactory system is unimpaired. Evidence that taste system function influences olfactory perception, meanwhile, has been vanishingly rare. Here, we demonstrate just such an influence, showing that if taste cortex is inactivated when an odor is first presented, later presentations are properly appreciated only if taste cortex is again inactivated.
Collapse
|
22
|
Meis S, Bergado-Acosta JR, Yanagawa Y, Obata K, Stork O, Munsch T. Identification of a neuropeptide S responsive circuitry shaping amygdala activity via the endopiriform nucleus. PLoS One 2008; 3:e2695. [PMID: 18628994 PMCID: PMC2442874 DOI: 10.1371/journal.pone.0002695] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 06/19/2008] [Indexed: 11/29/2022] Open
Abstract
Neuropeptide S (NPS) and its receptor are thought to define a set of specific brain circuits involved in fear and anxiety. Here we provide evidence for a novel, NPS-responsive circuit that shapes neural activity in the mouse basolateral amygdala (BLA) via the endopiriform nucleus (EPN). Using slice preparations, we demonstrate that NPS directly activates an inward current in 20% of EPN neurons and evokes an increase of glutamatergic excitation in this nucleus. Excitation of the EPN is responsible for a modulation of BLA activity through NPS, characterized by a general increase of GABAergic inhibition and enhancement of spike activity in a subset of BLA projection neurons. Finally, local injection of NPS to the EPN interferes with the expression of contextual, but not auditory cued fear memory. Together, these data suggest the existence of a specific NPS-responsive circuitry between EPN and BLA, likely involved in contextual aspects of fear memory.
Collapse
Affiliation(s)
- Susanne Meis
- Institut für Physiologie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Jorge Ricardo Bergado-Acosta
- Institut für Physiologie, Otto-von-Guericke-Universität, Magdeburg, Germany
- Abteilung für Molekulare Neurobiologie, Institut für Biologie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kunihiko Obata
- Neuronal Circuit Mechanisms Research Group, Obata Research Unit, RIKEN Brain Science Institute, Wako, Japan
| | - Oliver Stork
- Institut für Physiologie, Otto-von-Guericke-Universität, Magdeburg, Germany
- Abteilung für Molekulare Neurobiologie, Institut für Biologie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Thomas Munsch
- Institut für Physiologie, Otto-von-Guericke-Universität, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
23
|
Santiago AC, Shammah-Lagnado SJ. Afferent connections of the amygdalopiriform transition area in the rat. J Comp Neurol 2008; 489:349-71. [PMID: 16025448 DOI: 10.1002/cne.20637] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The amygdalopiriform transition area (APir) is often considered part of the lateral entorhinal cortex (Entl). However, in contrast to Entl, APir densely innervates the central extended amygdala (EAc) and does not project to the dentate gyrus. In order to gain a more comprehensive understanding of these territories, the afferent connections of APir were examined in the rat with retrograde (cholera toxin B subunit or FluoroGold) and anterograde tracers (Phaseolus vulgaris leucoagglutinin) and compared to those of the neighboring Entl. The results suggest that APir and Entl are interconnected and receive topographically organized hippocampal projections. Both are targeted by the olfactory bulb, the piriform, posterior agranular insular and perirhinal cortices, the ventral tegmental area, dorsal raphe nucleus, and locus coeruleus. Most importantly, the data reveal that APir and Entl also have specific inputs and should be viewed as separate anatomical entities. The APir receives robust projections from structures affiliated with the EAc, including the anterior basomedial and posterior basolateral amygdaloid nuclei, the gustatory thalamic region, parasubthalamic nucleus, and parabrachial area. The Entl is a major recipient for amygdaloid projections from the medial part of the lateral nucleus and the caudomedial part of the basolateral nucleus. Moreover, the medial septum, subicular complex, nucleus reuniens, supramammillary region, and nucleus incertus, which are associated with the hippocampal system, preferentially innervate the Entl. These data underscore that APir processes olfactory and gustatory information and is tightly linked to EAc operations, suggesting that it may play a role in reward mechanisms, particularly in hedonic aspects of feeding.
Collapse
Affiliation(s)
- Adriana C Santiago
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo SP 05508-900, Brazil
| | | |
Collapse
|
24
|
Abstract
The role of the insular cortex (IC) in learning to associate orosensory cues with the oral and post-oral properties of carbohydrate was examined. Rats with either small (gustatory region) or large (gustatory and visceral regions) ibotenic acid lesions of the IC learned to prefer flavors (Experiments 1 and 3) and taste mixtures (Experiments 2 and 4) paired with intragastric infusions of maltodextrin. The rats with large IC lesions also learned a preference for a flavor cue paired with the sweet taste of fructose (Experiment 5). In fact, they showed enhanced conditioning and retarded extinction compared with controls. Collectively, these data provided no evidence that IC is essential for flavor preference learning based on associations between the orosensory cues and the oral and post-oral reinforcing properties of nutrients.
Collapse
Affiliation(s)
- Khalid Touzani
- Department of Psychology, Brooklyn College and The Graduate School, City University of New York, Brooklyn, NY 11210, USA.
| | | |
Collapse
|
25
|
Sato K, Kinoshita M, Momose-Sato Y. Optical mapping of spatiotemporal emergence of functional synaptic connections in the embryonic chick olfactory pathway. Neuroscience 2007; 144:1334-46. [PMID: 17184922 DOI: 10.1016/j.neuroscience.2006.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 10/31/2006] [Accepted: 11/02/2006] [Indexed: 11/26/2022]
Abstract
In order to understand the functional maturation of the CNS, it is essential to first describe the functional maturation of sensory processing. We have approached this topic by following the ontogenetic patterning of neural circuit formation related to cranial and spinal sensory input using voltage-sensitive dye imaging. In previous studies, we have described the functional maturation of synapses in brainstem/midbrain neural circuits. Here, we elucidate the functional maturation of forebrain circuits by investigating neural networks related to the olfactory nerve (N. I) of chicken embryo. In the isolated N. I-olfactory bulb-forebrain preparation, application of electrical stimulation to N. I elicited excitatory postsynaptic potential (EPSP)-related slow optical signals in the olfactory bulb. The slow signal was mainly mediated by glutamate, and was easily fatigued with repetitive stimuli because of the immaturity of synapses in the embryonic CNS. Ontogenetically, the slow signal was detected from the 6-day embryonic stage, suggesting that functional synaptic connections between N. I and olfactory bulb emerge around this stage. In addition, from the 8-day embryonic stage, another response area was discriminated within the forebrain, which corresponded to the higher-ordered nucleus of the olfactory pathway. In comparison with our previous studies concerning the functional development of other cranial nerve-related sensory nuclei in the embryonic brainstem and midbrain, these results suggest that the olfactory pathway is functionally generated in the early stages of development when neural networks related to other visceral and somatic sensory inputs are also in the process of developing.
Collapse
Affiliation(s)
- K Sato
- Department of Physiology, Tokyo Medical and Dental University, Graduate School and Faculty of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | |
Collapse
|
26
|
Couégnas A, Schweitzer A, Andrieux A, Ghandour MS, Boehm N. Expression pattern of stop lacZ reporter gene in adult and developing mouse brain. J Neurosci Res 2007; 85:1515-27. [PMID: 17394261 DOI: 10.1002/jnr.21278] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Stable tubulin-only polypeptide (STOP) proteins are microtubule-associated proteins responsible for microtubule stabilization in neurons. STOP null mice show apparently normal cerebral anatomy but display synaptic defects associated with neuroleptic-sensitive behavioral disorders. STOP null mice have therefore been proposed as an animal model for the study of schizophrenia. In the present study, the expression pattern of STOP gene in developing and adult brain has been examined by using lacZ gene inserted in the STOP locus, as a reporter gene. beta-Galactosidase (beta-gal) immunostaining was confined to neuronal cells and projections. Strong labeling was observed in the whole olfactory system, cortical layer VII, hippocampus, hypothalamus, cerebellum, habenula, fasciculus retroflexus, and interpeduncular nucleus in adults. Additionally, ventral thalamic nucleus, clusters of positive cells in striatum, and Cajal-Retzius cells of cortical layer I were labeled in young mice. The strong expression of STOP lacZ reporter gene observed in brain is confined to areas that may be involved in the schizophrenia-related symptoms observed in STOP-deficient mice.
Collapse
Affiliation(s)
- Alice Couégnas
- INSERM U666 and Institut d'Histologie, Faculté de Médecine, Strasbourg, France
| | | | | | | | | |
Collapse
|
27
|
Jones LM, Fontanini A, Katz DB. Gustatory processing: a dynamic systems approach. Curr Opin Neurobiol 2006; 16:420-8. [PMID: 16842991 DOI: 10.1016/j.conb.2006.06.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/16/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Recent gustatory studies have provided a growing body of evidence that taste processing is dynamic and distributed, and the taste system too complex to be adequately described by traditional feed-forward models of taste coding. Current research demonstrates that neuronal responses throughout the gustatory neuroaxis are broad, variable and temporally structured, as a result of the fact that the taste network is extensive and heavily interconnected, containing modulatory pathways, many of which are reciprocal. Multimodal influences (e.g. olfactory and somatosensory) and effects of internal state (e.g. attention and expectation), shown in both behavioral and neuronal responses to taste stimuli, add further complexity to neural taste responses. Future gustatory research should extend to more brain regions, incorporate more connections, and analyze behaviors and neuronal responses in both time- and state-dependent manners.
Collapse
Affiliation(s)
- Lauren M Jones
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | |
Collapse
|
28
|
Yoshimura H, Sugai T, Honjo M, Segami N, Onoda N. NMDA receptor-dependent oscillatory signal outputs from the retrosplenial cortex triggered by a non-NMDA receptor-dependent signal input from the visual cortex. Brain Res 2005; 1045:12-21. [PMID: 15910758 DOI: 10.1016/j.brainres.2005.02.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 02/11/2005] [Accepted: 02/23/2005] [Indexed: 11/25/2022]
Abstract
The retrosplenial cortex is located at a critical juncture between the visual cortex and hippocampal formation. Functions of the retrosplenial cortex at the local circuit level, however, remain unclear. Herein, we show how signals traveling from the visual cortex behave in local circuits of the retrosplenial cortex, using optical recording methods and application of caffeine to rat brain slices. Electrical signals evoked in the primary visual cortex penetrated into the deep layer of the retrosplenial granular a cortex (RSGa) and propagated further toward postsubiculum and upper layer. Non-N-methyl-D-aspartate (NMDA) receptor-dependent initial traveling signal from the visual cortex triggered NMDA receptor-dependent neural oscillation in the RSGa. Oscillatory signals originated from the local area in the deep layer of the RSGa, and the signal spread back and forth toward the visual cortex and postsubiculum, in addition to spreading toward the upper layer. From the perspective of the RSGa, extrinsic signal inputs from the visual cortex switched on neural oscillators in the RSGa that deliver NMDA receptor-dependent intrinsic signal outputs. Opening and strengthening of non-NMDA receptor-dependent input pathways from the visual cortex required NMDA receptor-dependent oscillatory neural activities. These input and output relationships indicate that the retrosplenial cortex may represent an important relay station between the visual cortex and hippocampal formation.
Collapse
Affiliation(s)
- Hiroshi Yoshimura
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Uchinada-cho 920-0293, Japan.
| | | | | | | | | |
Collapse
|