1
|
Moon DU, Kim H, Jung JH, Han K, Jeon HJ. Association of age at menopause and suicide risk in postmenopausal women: a nationwide cohort study. Front Psychiatry 2024; 15:1442991. [PMID: 39742331 PMCID: PMC11686360 DOI: 10.3389/fpsyt.2024.1442991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Early age at menopause has been linked to various adverse health outcomes, but its association with suicide risk remains underexplored. This study aims to assess the relationship between age at menopause and suicide risk among postmenopausal women. Methods This retrospective cohort study analyzed data from the Korean National Health Insurance System (NHIS), covering 1,315,795 postmenopausal women aged 30 years and above, from 2009 to 2021. Menopausal age was classified as primary ovarian insufficiency (under 40 years), early menopause (40-44 years), average menopause (45-49 and 50-54 years), and late menopause (55 years and older). Suicide incidence was identified using ICD-10 codes for primary cause of death. Multivariable Cox proportional hazards models were utilized to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Results Across the 12-year follow-up, there were 2,986 suicides. Women with primary ovarian insufficiency exhibited the highest suicide risk (HR, 1.43; 95% CI, 1.14-1.78, p < 0.001), followed by those with early menopause (HR, 1.31; 95% CI, 1.15-1.50, p < 0.001), and those with menopause between 45 and 49 (HR, 1.13; 95% CI, 1.04-1.23, p < 0.001) compared to the reference group undergoing menopause at age of 50-54. Discussion Early onset of menopause, particularly primary ovarian insufficiency, is associated with a significantly elevated risk of suicide. These findings underscore the need for targeted interventions and support for women experiencing early menopause. This study highlights the importance of monitoring mental health in postmenopausal women and suggests further research to explore the underlying mechanisms linking early menopause to increased suicide risk.
Collapse
Affiliation(s)
- Daa Un Moon
- Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Psychiatric University Hospital Charité at St. Hedwig Hospital, Berlin, Germany
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyewon Kim
- Department of Psychiatry, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jin-Hyung Jung
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Department of Medical Device Management and Research, and Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
2
|
González-Flores O, Garcia-Juárez M, Tecamachaltzi-Silvarán MB, Lucio RA, Ordoñez RD, Pfaus JG. Cellular and molecular mechanisms of action of ovarian steroid hormones. I: Regulation of central nervous system function. Neurosci Biobehav Rev 2024; 167:105937. [PMID: 39510217 DOI: 10.1016/j.neubiorev.2024.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
The conventional way steroid hormones work through receptors inside cells is widely acknowledged. There are unanswered questions about what happens to the hormone in the end and why there isn't always a strong connection between how much tissue takes up and its biological effects through receptor binding. Steroid hormones can also have non-traditional effects that happen quickly but don't involve entering the cell. Several possible mechanisms for these non-traditional actions include (a) changes in membrane fluidity, (b) steroid hormones acting on receptors on the outer surface of cells, (c) steroid hormones regulating GABAA receptors on cell membranes, and (d) activation of steroid receptors by factors like EGF, IGF-1, and dopamine. Data also suggests that steroid hormones may be inserted into DNA through receptors, acting as transcription factors. These proposed new mechanisms of action should not be seen as challenging the conventional mechanism. Instead, they contribute to a more comprehensive understanding of how hormones work, allowing for rapid, short-term, and prolonged effects to meet the body's physiological needs.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico.
| | - Marcos Garcia-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico
| | | | - Rosa Angélica Lucio
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Raymundo Domínguez Ordoñez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico; Licenciatura en Ingeniería Agronómica y Zootecnia, Complejo Regional Centro, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany, Czech Republic; Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Munawar Cheema M, Macakova Kotrbova Z, Hrcka Krausova B, Adla SK, Slavikova B, Chodounska H, Kratochvil M, Vondrasek J, Sedlak D, Balastik M, Kudova E. 5β-reduced neuroactive steroids as modulators of growth and viability of postnatal neurons and glia. J Steroid Biochem Mol Biol 2024; 239:106464. [PMID: 38246201 DOI: 10.1016/j.jsbmb.2024.106464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Endogenous neurosteroids (NS) and their synthetic analogs, neuroactive steroids (NAS), are potentially useful drug-like compounds affecting the pathophysiology of miscellaneous central nervous system disorders (e.g. Alzheimer´s disease, epilepsy, depression, etc.). Additionally, NS have been shown to promote neuron viability and neurite outgrowth upon injury. The molecular, structural and physicochemical basis of the NS effect on neurons is so far not fully understood, and the development of new, biologically relevant assays is essential for their comparative analysis and for assessment of their mechanism of action. Here, we report the development of a novel, plate-based, high-content in vitro assay for screening of NS and newly synthesized, 5β-reduced NAS for the promotion of postnatal neuron survival and neurite growth using fluorescent, postnatal mixed cortical neuron cultures isolated from thy1-YFP transgenic mice. The screen allows a detailed time course analysis of different parameters, such as the number of neurons or neurite lengths of 7-day, in vitro neuron cultures. Using the screen, we identify a new NAS, compound 42, that promotes the survival and growth of postnatal neurons significantly better than several endogenous NS (dehydroepiandrosterone, progesterone, and allopregnanolone). Interestingly, we demonstrate that compound 42 also promotes the proliferation of glia (in particular oligodendrocytes) and that the glial function is critical for its neuron growth support. Computational analysis of the biological data and calculated physicochemical properties of tested NS and NAS demonstrated that their biological activity is proportional to their lipophilicity. Together, the screen proves useful for the selection of neuron-active NAS and the comparative evaluation of their biologically relevant structural and physicochemical features.
Collapse
Affiliation(s)
- Marie Munawar Cheema
- Laboratory of Molecular Neurobiology, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Zuzana Macakova Kotrbova
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Barbora Hrcka Krausova
- Laboratory of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Santosh Kumar Adla
- Dept. of Neurosteroids, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610 Prague 6, Czech Republic
| | - Barbora Slavikova
- Dept. of Neurosteroids, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610 Prague 6, Czech Republic
| | - Hana Chodounska
- Dept. of Neurosteroids, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610 Prague 6, Czech Republic
| | - Miroslav Kratochvil
- Dept. of Bioinformatics, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610 Prague 6, Czech Republic
| | - Jiri Vondrasek
- Dept. of Bioinformatics, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610 Prague 6, Czech Republic
| | - David Sedlak
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Martin Balastik
- Laboratory of Molecular Neurobiology, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
| | - Eva Kudova
- Dept. of Neurosteroids, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610 Prague 6, Czech Republic.
| |
Collapse
|
4
|
Ali M, Garcia P, Lunkes LP, Sciortino A, Thomas M, Heurtaux T, Grzyb K, Halder R, Coowar D, Skupin A, Buée L, Blum D, Buttini M, Glaab E. Single cell transcriptome analysis of the THY-Tau22 mouse model of Alzheimer's disease reveals sex-dependent dysregulations. Cell Death Discov 2024; 10:119. [PMID: 38453894 PMCID: PMC10920792 DOI: 10.1038/s41420-024-01885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Alzheimer's disease (AD) progression and pathology show pronounced sex differences, but the factors driving these remain poorly understood. To gain insights into early AD-associated molecular changes and their sex dependency for tau pathology in the cortex, we performed single-cell RNA-seq in the THY-Tau22 AD mouse model. By examining cell type-specific and cell type-agnostic AD-related gene activity changes and their sex-dimorphism for individual genes, pathways and cellular sub-networks, we identified both statistically significant alterations and interpreted the upstream mechanisms controlling them. Our results confirm several significant sex-dependent alterations in gene activity in the THY-Tau22 model mice compared to controls, with more pronounced alterations in females. Both changes shared across multiple cell types and cell type-specific changes were observed. The differential genes showed significant over-representation of known AD-relevant processes, such as pathways associated with neuronal differentiation, programmed cell death and inflammatory responses. Regulatory network analysis of these genes revealed upstream regulators that modulate many of the downstream targets with sex-dependent changes. Most key regulators have been previously implicated in AD, such as Egr1, Klf4, Chchd2, complement system genes, and myelin-associated glycoproteins. Comparing with similar data from the Tg2576 AD mouse model and human AD patients, we identified multiple genes with consistent, cell type-specific and sex-dependent alterations across all three datasets. These shared changes were particularly evident in the expression of myelin-associated genes such as Mbp and Plp1 in oligodendrocytes. In summary, we observed significant cell type-specific transcriptomic changes in the THY-Tau22 mouse model, with a strong over-representation of known AD-associated genes and processes. These include both sex-neutral and sex-specific patterns, characterized by consistent shifts in upstream master regulators and downstream target genes. Collectively, these findings provide insights into mechanisms influencing sex-specific susceptibility to AD and reveal key regulatory proteins that could be targeted for developing treatments addressing sex-dependent AD pathology.
Collapse
Affiliation(s)
- Muhammad Ali
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Pierre Garcia
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Laetitia P Lunkes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Alessia Sciortino
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Melanie Thomas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Tony Heurtaux
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 8 avenue du Swing, L-4367, Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, L-3555, Dudelange, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Djalil Coowar
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Alex Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, UMR-S1172 Lille Neuroscience & Cognition (LilNCog), Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - David Blum
- University of Lille, Inserm, CHU Lille, UMR-S1172 Lille Neuroscience & Cognition (LilNCog), Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
5
|
Kalakh S, Mouihate A. The Effects of Neuroactive Steroids on Myelin in Health and Disease. Med Princ Pract 2024; 33:198-214. [PMID: 38350432 PMCID: PMC11175611 DOI: 10.1159/000537794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/12/2024] [Indexed: 02/15/2024] Open
Abstract
Myelin plays a pivotal role in the efficient transmission of nerve impulses. Disruptions in myelin integrity are associated with numerous neurological disorders, including multiple sclerosis. In the central nervous system (CNS), myelin is formed by oligodendrocytes. Remyelination refers to the re-formation of the damaged myelin sheath by newly formed oligodendrocytes. Steroids have gained attention for their potential modulatory effects on myelin in both health and disease. Steroids are traditionally associated with endocrine functions, but their local synthesis within the nervous system has generated significant interest. The term "neuroactive steroids" refers to steroids that can act on cells of the nervous system. In the healthy state, neuroactive steroids promote myelin formation, maintenance, and repair by enhancing oligodendrocyte differentiation and maturation. In pathological conditions, such as demyelination injury, multiple neuroactive steroids have shown promise in promoting remyelination. Understanding the effects of neuroactive steroids on myelin could lead to novel therapeutic approaches for demyelinating diseases and neurodegenerative disorders. This review highlights the potential therapeutic significance of neuroactive steroids in myelin-related health and diseases. We review the synthesis of steroids by neurons and glial cells and discuss the roles of neuroactive steroids on myelin structure and function in health and disease. We emphasize the potential promyelinating effects of the varying levels of neuroactive steroids during different female physiological states such as the menstrual cycle, pregnancy, lactation, and postmenopause.
Collapse
Affiliation(s)
- Samah Kalakh
- Department of Physiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
- School of Engineering and Computing, American International University, Kuwait City, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
6
|
Asbelaoui N, Abi-Ghanem C, Schlecht-Louf G, Oukil H, Degerny C, Schumacher M, Ghoumari AM. Interplay between androgen and CXCR4 chemokine signaling in myelin repair. Acta Neuropathol Commun 2024; 12:18. [PMID: 38291527 PMCID: PMC10826258 DOI: 10.1186/s40478-024-01730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
In men, reduced levels of testosterone are associated with the prevalence and progression of multiple sclerosis (MS), a chronic and disabling demyelinating disorder. Testosterone has been shown to promote myelin repair. Here, we demonstrate that the cooperation between testosterone and CXCR4 signaling involving astrocytes is required for myelin regeneration after focal demyelination produced in the ventral mouse spinal cord by the infusion of lysolecithin. The testosterone-dependent remyelination of axons by oligodendrocytes was accompanied by an increase in astrocytes expressing CXCR4, its ligand CXCL12 and the androgen receptor (AR) within the demyelinated area. Depriving males of their testosterone or pharmacological inhibition of CXCR4, with the selective antagonist AMD3100, prevented the appearance of astrocytes expressing CXCR4, CXCL12 and AR within the demyelinated area and the concomitant recruitment of myelin forming oligodendrocytes. Conditional genetic ablation of either CXCR4 or AR in astrocytes also completely blocked the formation of new myelin by oligodendrocytes. Interestingly, the gain of function mutation in CXCR4 causing WHIM syndrome allows remyelination to take place, even in the absence of testosterone, but its potentiating effects remained observable. After testosterone deprivation or CXCR4 inhibition, the absence of astrocytes within the demyelinated area led to the incursion of Schwann cells, most likely derived from spinal nerves, and the formation of peripheral nerve type myelin. In patients with progressive MS, astrocytes expressing CXCR4 and AR surrounded myelin lesions, and their presence opposed the incursion of Schwann cells. These results highlight a mechanism of promyelinating testosterone signaling and the importance of normalizing its levels in combined myelin repair therapies.
Collapse
Affiliation(s)
- Narimène Asbelaoui
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Charly Abi-Ghanem
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Géraldine Schlecht-Louf
- INSERM UMR 996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Hania Oukil
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Cindy Degerny
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Michael Schumacher
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France.
| | - Abdel Mouman Ghoumari
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France.
| |
Collapse
|
7
|
Giatti S, Diviccaro S, Cioffi L, Cosimo Melcangi R. Post-Finasteride Syndrome And Post-Ssri Sexual Dysfunction: Two Clinical Conditions Apparently Distant, But Very Close. Front Neuroendocrinol 2024; 72:101114. [PMID: 37993021 DOI: 10.1016/j.yfrne.2023.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Post-finasteride syndrome and post-SSRI sexual dysfunction, are two poorly explored clinical conditions in which men treated for androgenetic alopecia with finasteride or for depression with SSRI antidepressants show persistent side effects despite drug suspension (e.g., sexual dysfunction, psychological complaints, sleep disorders). Because of some similarities in the symptoms, common pathological mechanisms are proposed here. Indeed, as discussed, clinical studies and preclinical data obtained so far suggest an important role for brain modulators (i.e., neuroactive steroids), neurotransmitters (i.e., serotonin, and cathecolamines), and gut microbiota in the context of the gut-brain axis. In particular, the observed interconnections of these signals in these two clinical conditions may suggest similar etiopathogenetic mechanisms, such as the involvement of the enzyme converting norepinephrine into epinephrine (i.e., phenylethanolamine N-methyltransferase). However, despite the current efforts, more work is still needed to advance the understanding of these clinical conditions in terms of diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
8
|
Mouihate A, Kalakh S. Breastfeeding promotes oligodendrocyte precursor cells division and myelination in the demyelinated corpus callosum. Brain Res 2023; 1821:148584. [PMID: 37717888 DOI: 10.1016/j.brainres.2023.148584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Demyelination alters the conduction of neuronal signals and hampers sensory-motor functions. Experimental and clinical evidence suggest that breastfeeding exerts a promyelinating impact on the maternal brain. The mechanism underlying this neuroprotective effect is not well-understood. In the present paper, we assessed the impact of rat lactation on lysolecithin-induced demyelination injury within the corpus callosum of lactating and non-lactating postpartum rats. We show that lactation enhanced the cell density of oligodendrocyte precursor cells (OPCs), but not that of activated microglia and astrocytes, within the demyelination lesion. Lactation also increased the expression of myelin markers involved in the initial stage of myelin recovery (Myelin-associated glycoprotein and 2',3'-cyclic nucleotide 3'-phosphodiesterase) and reduced the demyelination injury. Altogether, these data suggest that lactation creates a conducive promyelinating environment through increased OPCs cell division, enhanced expression of select myelin proteins, and reduced number of non-myelinated axons.
Collapse
Affiliation(s)
- Abdeslam Mouihate
- Department of Physiology, College of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | - Samah Kalakh
- Department of Physiology, College of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| |
Collapse
|
9
|
Kim H, Jung JH, Han K, Lee DY, Fava M, Mischoulon D, Jeon HJ. Ages at menarche and menopause, hormone therapy, and the risk of depression. Gen Hosp Psychiatry 2023; 83:35-42. [PMID: 37043925 DOI: 10.1016/j.genhosppsych.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
OBJECTIVE To examine the association between female reproductive factors and the risk of depression. METHOD A retrospective cohort study was performed using a national database in South Korea. Among 945,729 eligible postmenopausal women, the associations between female reproductive factors including the age at menarche, age at menopause, parity, duration of oral contraceptive (OC) use, duration of breastfeeding, and use of menopausal hormone therapy (MHT), and the occurrence of depression were investigated. RESULTS Compared to women with menarche at the age of ≤12 years, those with menarche at the age of ≥15 showed an increased risk of depression [adjusted hazard ratio (aHR) of 1.09 for 15-16 years and 1.18 for ≥17 years]. Compared to women with menopause at the age of 50-54, those with menopause at an earlier age showed an increased risk of depression (aHR of 1.20 for <40 years), and those with menopause at a later age showed a decreased risk of depression (aHR of 0.94 for ≥55 years). Use of MHT was associated with an increased risk of depression (aHR of 1.30 for ≥5 years). Duration of breastfeeding and duration of OC use had U-shaped but weak associations with depression. Whereas parity did not show a significant association with depression. CONCLUSION Late menarche, early menopause, and the use of MHT were associated with an increased risk of depression in postmenopausal women.
Collapse
Affiliation(s)
- Hyewon Kim
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jin Hyung Jung
- Department of Biostatistics, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
| | - Dong-Yun Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Maurizio Fava
- Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - David Mischoulon
- Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences & Technology, Department of Medical Device Management & Research, and Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
10
|
Milbocker KA, Smith IF, Brengel EK, LeBlanc GL, Roth TL, Klintsova AY. Exercise in Adolescence Enhances Callosal White Matter Refinement in the Female Brain in a Rat Model of Fetal Alcohol Spectrum Disorders. Cells 2023; 12:cells12070975. [PMID: 37048047 PMCID: PMC10092997 DOI: 10.3390/cells12070975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
A total of 1 in 20 infants born annually are exposed to alcohol prenatally, which disrupts neurodevelopment and results in several disorders categorized under the umbrella term Fetal Alcohol Spectrum Disorders (FASD). Children and adolescents affected by FASD exhibit delayed maturation of cerebral white matter, which contributes to deficits in executive function, visuospatial processing, sensory integration, and interhemispheric communication. Research using animal models of FASD have uncovered that oligoglia proliferation, differentiation, and survival are vulnerable to alcohol teratogenesis in the male brain due in part to the activation of the neuroimmune system during gestation and infancy. A comprehensive investigation of prenatal alcohol exposure on white matter development in the female brain is limited. This study demonstrated that the number of mature oligodendrocytes and the production of myelin basic protein were reduced first in the female corpus callosum following alcohol exposure in a rat model of FASD. Analysis of myelin-related genes confirmed that myelination occurs earlier in the female corpus callosum compared to their counterparts, irrespective of postnatal treatment. Moreover, dysregulated oligodendrocyte number and myelin basic protein production was observed in the male and female FASD brain in adolescence. Targeted interventions that support white matter development in FASD-affected youth are nonexistent. The capacity for an adolescent exercise intervention to upregulate corpus callosum myelination was evaluated: we discovered that volunteer exercise increases the number of mature oligodendrocytes in alcohol-exposed female rats. This study provides critical evidence that oligoglia differentiation is difficult but not impossible to induce in the female FASD brain in adolescence following a behavioral intervention.
Collapse
Affiliation(s)
- Katrina A Milbocker
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Ian F Smith
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Eric K Brengel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Gillian L LeBlanc
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
11
|
Pregnenolone enhances the proliferation of mouse neural stem cells and promotes oligodendrogenesis, together with Sox10, and neurogenesis, along with Notch1 and Pax6. Neurochem Int 2023; 163:105489. [PMID: 36657722 DOI: 10.1016/j.neuint.2023.105489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Pregnenolone is a precursor of various steroid hormones involved in osteoblast proliferation, microtubules polymerization and cell survival protection. Previous reports focused on the effects of pregnenolone metabolites on stem cell proliferation and differentiation; however, the effects of pregnenolone itself has not been well explored. The present study aimed to investigate the role of pregnenolone on NSC proliferation and to determine the doses required for NSC differentiation as well as the various genes involved in its mechanism of action. METHODS NSCs were isolated from the embryonic cortex of E14 mice, incubated for 5 days, and then treated with pregnenolone doses of 2, 5, 10, 15 and 20 μM for another 5 days. The number of neurospheres and neurosphere derived cells were then counted. Flow cytometry was used to evaluate the differentiation of NSCs into oligodendrocytes, astrocytes, and neurons. The expression level of Notch1, Pax6 and Sox10 genes were also measured by Real Time PCR after 5 days of treatment. RESULTS Our data suggest that treatment with 10 μM pregnenolone is optimal for NSC proliferation. In fact, this concentration caused the highest increase in the number of neurospheres and neurosphere derived cells, compared to the control group. In addition, treatment with low doses of pregnenolone (5 and 10 μM) caused a significant increase in NSC differentiation towards immature (Olig2+) and mature (MBP+) oligodendrocyte cell populations, compared to controls. However, NSC differentiation into neurons (beta III tubulin + cells) increased in all treatment groups, with the highest and most significant increase obtained at 15 μM concentration. It is worth noting that pregnenolone at the highest concentration of 15 μM decreased the number of astrocytes (GFAP+). Furthermore, there was an increase of Sox10 expression with low pregnenolone doses, leading to oligodendrogenesis, whereas Notch1 and Pax6 gene expression increased in pregnenolone groups with more neurogenesis. CONCLUSION Pregnenolone regulates NSCs proliferation in vitro. Treatment with low doses of pregnenolone caused an increase in the differentiation of NSCs into mature oligodendrocytes while higher doses increased the differentiation of NSCs into neurons. Oligodendrogenesis was accompanied by Sox10 while neurogenesis occurred together with Notch1 and Pax6 expression.
Collapse
|
12
|
Kolatorova L, Vitku J, Suchopar J, Hill M, Parizek A. Progesterone: A Steroid with Wide Range of Effects in Physiology as Well as Human Medicine. Int J Mol Sci 2022; 23:7989. [PMID: 35887338 PMCID: PMC9322133 DOI: 10.3390/ijms23147989] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Progesterone is a steroid hormone traditionally linked with female fertility and pregnancy. In current reproductive medicine, progesterone and its analogues play crucial roles. While the discovery of its effects has a long history, over recent decades, various novel actions of this interesting steroid have been documented, of which its neuro- and immunoprotective activities are the most widely discussed. Discoveries of the novel biological activities of progesterone have also driven research and development in the field of progesterone analogues used in human medicine. Progestogen treatment has traditionally and predominately been used in maintaining pregnancy, the prevention of preterm labor, various gynecological pathologies, and in lowering the negative effects of menopause. However, there are also various other medical fields where progesterone and its analogues could find application in the future. The aim of this work is to show the mechanisms of action of progesterone and its metabolites, the physiological and pharmacological actions of progesterone and its synthetic analogues in human medicine, as well as the impacts of its production and use on the environment.
Collapse
Affiliation(s)
- Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic; (J.V.); (M.H.)
| | - Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic; (J.V.); (M.H.)
| | - Josef Suchopar
- DrugAgency, a.s., Klokotska 833/1a, 142 00 Prague, Czech Republic;
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic; (J.V.); (M.H.)
| | - Antonin Parizek
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General Teaching Hospital, Apolinarska 18, 128 51 Prague, Czech Republic;
| |
Collapse
|
13
|
Buggio L, Barbara G, Facchin F, Ghezzi L, Dridi D, Vercellini P. The influence of hormonal contraception on depression and female sexuality: a narrative review of the literature. Gynecol Endocrinol 2022; 38:193-201. [PMID: 34913798 DOI: 10.1080/09513590.2021.2016693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Over the past decades, an increasing number of women have been using hormonal contraception. The potential role of sex hormones in regulating vegetative, psychophysiological, and cognitive functions has been highlighted in several studies, and there is a need to further understand the impact of hormonal contraception on women's quality of life, especially as regards psychological health and sexuality. METHODS We conducted a narrative review aimed at clarifying the mechanisms involved in the interaction between sex hormones and the brain, also focusing on the association between hormonal contraception and mood and sexual function. RESULTS Our findings clarified that hormonal contraception may be associated with depressive symptoms, especially among adolescents, and with sexual dysfunction. However, the evidence included in this review was conflicting and did not support the hypothesis that hormonal contraception directly causes depressive symptoms, major depressive disorder, or sexual dysfunction. CONCLUSIONS The optimal hormonal contraception should be identified in the context of shared decision making, considering the preferences and needs of each woman, as well as her physical and psychosexual conditions.
Collapse
Affiliation(s)
- Laura Buggio
- Gynecology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giussy Barbara
- Gynecology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- SVSeD, Service for Sexual and Domestic Violence and Obstetric and Gynecology Emergency Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda, Italy
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Federica Facchin
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Laura Ghezzi
- Department of Neurology, Washington University, St. Louis, MO, USA
- Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Dhouha Dridi
- Gynecology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Vercellini
- Gynecology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Diviccaro S, Cioffi L, Falvo E, Giatti S, Melcangi RC. Allopregnanolone: An overview on its synthesis and effects. J Neuroendocrinol 2022; 34:e12996. [PMID: 34189791 PMCID: PMC9285581 DOI: 10.1111/jne.12996] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022]
Abstract
Allopregnanolone, a 3α,5α-progesterone metabolite, acts as a potent allosteric modulator of the γ-aminobutyric acid type A receptor. In the present review, the synthesis of this neuroactive steroid occurring in the nervous system is discussed with respect to physiological and pathological conditions. In addition, its physiological and neuroprotective effects are also reported. Interestingly, the levels of this neuroactive steroid, as well as its effects, are sex-dimorphic, suggesting a possible gender medicine based on this neuroactive steroid for neurological disorders. However, allopregnanolone presents low bioavailability and extensive hepatic metabolism, limiting its use as a drug. Therefore, synthetic analogues or a different therapeutic strategy able to increase allopregnanolone levels have been proposed to overcome any pharmacokinetic issues.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| |
Collapse
|
15
|
Kawadkar M, Mandloi AS, Singh N, Mukharjee R, Dhote VV. Combination therapy for cerebral ischemia: do progesterone and noscapine provide better neuroprotection than either alone in the treatment? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:167-185. [PMID: 34988596 DOI: 10.1007/s00210-021-02187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
Ischemic stroke presents multifaceted pathological outcomes with overlapping mechanisms of cerebral injury. High mortality and disability with stroke warrant a novel multi-targeted therapeutic approach. The neuroprotection with progesterone (PG) and noscapine (NOS) on cerebral ischemia-reperfusion (I-R) injury was demonstrated individually, but the outcome of combination treatment to alleviate cerebral damage is still unexplored. Randomly divided groups of rats (n = 6) were Sham-operated, I-R, PG (8 mg/kg), NOS (10 mg/kg), and PG + NOS (8 mg/kg + 10 mg/kg). The rats were exposed to bilateral common carotid artery occlusion, except Sham-operated, to investigate the therapeutic outcome of PG and NOS alone and in combination on I-R injury. Besides the alterations in cognitive and motor abilities, we estimated infarct area, oxidative stress, blood-brain barrier (BBB) permeability, and histology after treatment. Pharmacokinetic parameters like Cmax, Tmax, half-life, and AUC0-t were estimated in biological samples to substantiate the therapeutic outcomes of the combination treatment. We report PG and NOS prevent loss of motor ability and improve spatial memory after cerebral I-R injury. Combination treatment significantly reduced inflammation and restricted infarction; it attenuated oxidative stress and BBB damage and improved grip strength. Histopathological analysis demonstrated a significant reduction in leukocyte infiltration with the most profound effect in the combination group. Simultaneous analysis of PG and NOS in plasma revealed enhanced peak drug concentration, improved AUC, and prolonged half-life; the drug levels in the brain have increased significantly for both. We conclude that PG and NOS have beneficial effects against brain damage and the co-administration further reinforced neuroprotection in the cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Manisha Kawadkar
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Avinash S Mandloi
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Nidhi Singh
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Rajesh Mukharjee
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Vipin V Dhote
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India.
| |
Collapse
|
16
|
Adonias GL, Duffy C, Barros MT, McCoy CE, Balasubramaniam S. Analysis of the Information Capacity of Neuronal Molecular Communications under Demyelination and Remyelination. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2765-2774. [PMID: 34932481 DOI: 10.1109/tnsre.2021.3137350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Demyelination of neurons can compromise the communication performance between the cells as the absence of myelin attenuates the action potential propagated through the axonal pathway. In this work, we propose a hybrid experimental and simulation model for analyzing the demyelination effects on neuron communication. The experiment involves locally induced demyelination using Lysolecithin and from this, a myelination index is empirically estimated from analysis of cell images. This index is then coupled with a modified Hodgkin-Huxley computational model to simulate the resulting impact that the de/myelination processes has on the signal propagation along the axon. The effects of signal degradation and transfer of neuronal information are simulated and quantified at multiple levels, and this includes (1) compartment per compartment of a single neuron, (2) bipartite synapse and the effects on the excitatory post-synaptic potential, and (3) a small network of neurons to understand how the impact of de/myelination has on the whole network. By using the myelination index in the simulation model, we can determine the level of attenuation of the action potential concerning the myelin quantity, as well as the analysis of internal signalling functions of the neurons and their impact on the overall spike firing rate. We believe that this hybrid experimental and in silico simulation model can result in a new analysis tool that can predict the gravity of the degeneration through the estimation of the spiking activity and vice-versa, which can minimize the need for specialised laboratory equipment needed for single-cell communication analysis.
Collapse
|
17
|
Al-Griw MA, Shmela ME, Elhensheri MM, Bennour EM. HDAC2/3 inhibitor MI192 mitigates oligodendrocyte loss and reduces microglial activation upon injury: A potential role of epigenetics. Open Vet J 2021; 11:447-457. [PMID: 34722210 PMCID: PMC8541718 DOI: 10.5455/ovj.2021.v11.i3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background: During development, oligodendrocyte (OL) lineage cells are susceptible to injury, leading to life-long clinical neurodevelopmental deficits, which lack effective treatments. Drugs targeting epigenetic modifications that inhibit histone deacetylases (HDACs) protect from many clinical neurodegenerative disorders. Aim: This study aimed to investigate the therapeutic potential of histone deacetylase 2/3 (HDAC2/3) inhibitor MI192 on white matter (WM) pathology in a model of neonatal rat brain injury. Methods: Wistar rats (8.5-day-old, n = 32) were used to generate brain tissues. The tissues were cultured and then randomly divided into four groups and treated as following: group I (sham); the tissues were cultured under normoxia, group II (vehicle); DMSO only, group III (injury, INJ); the tissues were exposed to 20 minutes oxygen-glucose deprivation (OGD) insult, and group IV (INJ + MI192); the tissues were subjected to the OGD insult and then treated with the MI192 inhibitor. On culture day 10, the tissues were fixed for biochemical and histological examinations. Results: The results showed that inhibition of HDAC2/3 activity alleviated WM pathology. Specifically, MI192 treatment significantly reduced cell death, minimized apoptosis, and mitigates the loss of the MBP+ OLs and their precursors (NG2+ OPCs). Additionally, MI192 decreased the density of reactive microglia (OX−42+). These findings demonstrate that the inhibition of HDAC2/3 activity post-insult alleviates WM pathology through mechanism(s) including preserving OL lineage cells and suppressing microglial activation. Conclusion: The findings of this study suggest that HDAC2/3 inhibition is a rational strategy to preserve WM or reverse its pathology upon newborn brain injury.
Collapse
Affiliation(s)
- Mohamed A Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Mansur E Shmela
- Department of Preventive Medicine, Genetics & Animal Breeding, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | | | - Emad M Bennour
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| |
Collapse
|
18
|
Belonwu SA, Li Y, Bunis D, Rao AA, Solsberg CW, Tang A, Fragiadakis GK, Dubal DB, Oskotsky T, Sirota M. Sex-Stratified Single-Cell RNA-Seq Analysis Identifies Sex-Specific and Cell Type-Specific Transcriptional Responses in Alzheimer's Disease Across Two Brain Regions. Mol Neurobiol 2021; 59:276-293. [PMID: 34669146 PMCID: PMC8786804 DOI: 10.1007/s12035-021-02591-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer’s disease (AD) is a pervasive neurodegenerative disorder that disproportionately affects women. Since neural anatomy and disease pathophysiology differ by sex, investigating sex-specific mechanisms in AD pathophysiology can inform new therapeutic approaches for both sexes. Previous bulk human brain RNA sequencing studies have revealed sex differences in dysregulated molecular pathways related to energy production, neuronal function, and immune response; however, the sex differences in disease mechanisms are yet to be examined comprehensively on a single-cell level. We leveraged nearly 74,000 cells from human prefrontal and entorhinal cortex samples from the first two publicly available single-cell RNA sequencing AD datasets to perform a case versus control sex-stratified differential gene expression analysis and pathway network enrichment in a cell type-specific manner for each brain region. Our examination at the single-cell level revealed sex differences in AD prominently in glial cells of the prefrontal cortex. In the entorhinal cortex, we observed the same genes and networks to be perturbed in opposing directions between sexes in AD relative to healthy state. Our findings contribute to growing evidence of sex differences in AD-related transcriptomic changes, which can fuel the development of therapies that may prove more effective at reversing AD pathophysiology.
Collapse
Affiliation(s)
- Stella A Belonwu
- Bakar Computational Health Sciences Institute, University of California San Francisco, 490 Illinois St, San Francisco, CA, 94143, USA.,Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Yaqiao Li
- Bakar Computational Health Sciences Institute, University of California San Francisco, 490 Illinois St, San Francisco, CA, 94143, USA.,Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Bunis
- Bakar Computational Health Sciences Institute, University of California San Francisco, 490 Illinois St, San Francisco, CA, 94143, USA.,CoLabs, University of California, San Francisco, San Francisco, CA, USA.,Bakar ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Arjun Arkal Rao
- CoLabs, University of California, San Francisco, San Francisco, CA, USA.,Bakar ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA.,Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Caroline Warly Solsberg
- Bakar Computational Health Sciences Institute, University of California San Francisco, 490 Illinois St, San Francisco, CA, 94143, USA.,Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Alice Tang
- Bakar Computational Health Sciences Institute, University of California San Francisco, 490 Illinois St, San Francisco, CA, 94143, USA.,Bioengineering Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Gabriela K Fragiadakis
- CoLabs, University of California, San Francisco, San Francisco, CA, USA.,Bakar ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA.,Department of Medicine, Division of Rheumatology, University of California, San Francisco, San Francisco, CA, USA
| | - Dena B Dubal
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.,Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Tomiko Oskotsky
- Bakar Computational Health Sciences Institute, University of California San Francisco, 490 Illinois St, San Francisco, CA, 94143, USA.,Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, 490 Illinois St, San Francisco, CA, 94143, USA. .,Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Shin H, Kawai HD. Sensitive timing of undifferentiation in oligodendrocyte progenitor cells and their enhanced maturation in primary visual cortex of binocularly enucleated mice. PLoS One 2021; 16:e0257395. [PMID: 34534256 PMCID: PMC8448312 DOI: 10.1371/journal.pone.0257395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
Sensory experience modulates proliferation, differentiation, and migration of oligodendrocyte progenitor cells (OPCs). In the mouse primary visual cortex (V1), visual deprivation-dependent modulation of OPCs has not been demonstrated. Here, we demonstrate that undifferentiated OPCs developmentally peaked around postnatal day (P) 25, and binocular enucleation (BE) from the time of eye opening (P14-15) elevated symmetrically-divided undifferentiated OPCs in a reversible G0/G1 state even more at the bottom lamina of the cortex by reducing maturing oligodendrocyte (OL) lineage cells. Experiments using the sonic hedgehog (Shh) signaling inhibitor cyclopamine in vivo suggested that Shh signaling pathway was involved in the BE-induced undifferentiation process. The undifferentiated OPCs then differentiated within 5 days, independent of the experience, becoming mostly quiescent cells in control mice, while altering the mode of sister cell symmetry and forming quiescent as well as maturing cells in the enucleated mice. At P50, BE increased mature OLs via symmetric and asymmetric modes of cell segregation, resulting in more populated mature OLs at the bottom layer of the cortex. These data suggest that fourth postnatal week, corresponding to the early critical period of ocular dominance plasticity, is a developmentally sensitive period for OPC state changes. Overall, the visual loss promoted undifferentiation at the early period, but later increased the formation of mature OLs via a change in the mode of cell type symmetry at the bottom layer of mouse V1.
Collapse
Affiliation(s)
- Hyeryun Shin
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Hideki Derek Kawai
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
| |
Collapse
|
20
|
Shin H, Kawai HD. Visual deprivation induces transient upregulation of oligodendrocyte progenitor cells in the subcortical white matter of mouse visual cortex. IBRO Neurosci Rep 2021; 11:29-41. [PMID: 34286312 PMCID: PMC8273201 DOI: 10.1016/j.ibneur.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Sensory experience influences proliferation and differentiation of oligodendrocyte progenitor cells (OPCs). Enhanced sensorimotor experience promoted the lineage progression of OPCs and myelination in the gray matter and white matter (WM) of sensorimotor cortex. In the visual cortex, reduced experience reportedly delayed the maturation of myelination in the gray matter, but whether and how such experience alters the subcortical WM is unclear. Here we investigated if binocular enucleation from the onset of eye opening (i.e., P15) affects the cell state of OPCs in mouse primary visual cortex (V1). Proliferative cells in the WM declined nearly half over 3 days from postnatal day (P) 25. A 3-day BrdU-labeling showed gradual decline in proliferation rates from P19 to P28. Binocular enucleation resulted in an increase in the cycling state of the OPCs that were proliferated from P22 to P25 but not before or after this period. This increase in proliferative OPCs was not associated with lineage progression toward differentiated oligodendrocytes. Proliferative OPCs arose mostly due to symmetric cell division but also asymmetric formation of proliferative and quiescent OPCs. By P30, almost all the proliferated cells exited the cell cycle. Maturing oligodendrocytes among the proliferated cells increased at this age, but most of them disappeared over 25 days. The cell density of the maturing oligodendrocytes was unaffected by binocular enucleation, however. These data suggest that binocular enucleation transiently elevates proliferative OPCs in the subcortical WM of V1 during a specific period of the fourth postnatal week without subsequently affecting the number of maturing oligodendrocytes several days later. Binocular enucleation increased proliferative OPCs during P22-25 in the V1 WM. Proliferative OPCs decrease in half from P25 over 3 days. P22-25 proliferated cells nearly all exited the cell cycle by P30. Some P22-25 proliferated OPCs matured over 5 days but disappeared over 25 days. Visual loss did not influence oligodendrocyte maturation or its disappearance.
Collapse
Affiliation(s)
- Hyeryun Shin
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | - Hideki Derek Kawai
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
21
|
Jolivel V, Brun S, Binamé F, Benyounes J, Taleb O, Bagnard D, De Sèze J, Patte-Mensah C, Mensah-Nyagan AG. Microglial Cell Morphology and Phagocytic Activity Are Critically Regulated by the Neurosteroid Allopregnanolone: A Possible Role in Neuroprotection. Cells 2021; 10:698. [PMID: 33801063 PMCID: PMC8004004 DOI: 10.3390/cells10030698] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Microglial cells are key players in neural pathogenesis and microglial function regulation appears to be pivotal in controlling neuroinflammatory/neurological diseases. Here, we investigated the effects and mechanism of action of neurosteroid allopregnanolone (ALLO) on murine microglial BV-2 cells and primary microglia in order to determine ALLO-induced immunomodulatory potential and to provide new insights for the development of both natural and safe neuroprotective strategies targeting microglia. Indeed, ALLO-treatment is increasingly suggested as beneficial in various models of neurological disorders but the underlying mechanisms have not been elucidated. Therefore, the microglial cells were cultured with various serum concentrations to mimic the blood-brain-barrier rupture and to induce their activation. Proliferation, viability, RT-qPCR, phagocytosis, and morphology analyzes, as well as migration with time-lapse imaging and quantitative morphodynamic methods, were combined to investigate ALLO actions on microglia. BV-2 cells express subunits of GABA-A receptor that mediates ALLO activity. ALLO (10µM) induced microglial cell process extension and decreased migratory capacity. Interestingly, ALLO modulated the phagocytic activity of BV-2 cells and primary microglia. Our results, which show a direct effect of ALLO on microglial morphology and phagocytic function, suggest that the natural neurosteroid-based approach may contribute to developing effective strategies against neurological disorders that are evoked by microglia-related abnormalities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 1 rue Eugène Boeckel, 67000 Strasbourg, France; (V.J.); (S.B.); (F.B.); (J.B.); (O.T.); (D.B.); (J.D.S.); (C.P.-M.)
| |
Collapse
|
22
|
Mancino DN, Leicaj ML, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF, Garay LI. Developmental expression of genes involved in progesterone synthesis, metabolism and action during the post-natal cerebellar myelination. J Steroid Biochem Mol Biol 2021; 207:105820. [PMID: 33465418 DOI: 10.1016/j.jsbmb.2021.105820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Progesterone is involved in dendritogenesis, synaptogenesis and maturation of cerebellar Purkinge cells, major sites of steroid synthesis in the brain. To study a possible time-relationship between myelination, neurosteroidogenesis and steroid receptors during development of the postnatal mouse cerebellum, we determined at postnatal days 5 (P5),18 (P18) and 35 (P35) the expression of myelin basic protein (MBP), components of the steroidogenic pathway, levels of endogenous steroids and progesterone's classical and non-classical receptors. In parallel with myelin increased expression during development, P18 and P35 mice showed higher levels of cerebellar progesterone and its reduced derivatives, higher expression of steroidogenic acute regulatory protein (StAR) mRNA, cholesterol side chain cleavage enzyme (P450scc) and 5α-reductase mRNA vs. P5 mice. Other steroids such as corticosterone and its reduced derivatives and 3β-androstanodiol (ADIOL) showed a peak increase at P18 compared to P5. Progesterone membrane receptors and binding proteins (PGRMC1, mPRα, mPRβ, mPRγ, and Sigma1 receptors) mRNAs levels increased during development while that of classical progesterone receptors (PR) remained invariable. PRKO mice showed similar MBP levels than wild type. Thus, these data suggests that progesterone and its neuroactive metabolites may play a role in postnatal cerebellar myelination.
Collapse
Affiliation(s)
- Dalila Nj Mancino
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - María Luz Leicaj
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Rachida Guennoun
- U1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina
| | - Laura I Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina.
| |
Collapse
|
23
|
Long KLP, Breton JM, Barraza MK, Perloff OS, Kaufer D. Hormonal Regulation of Oligodendrogenesis I: Effects across the Lifespan. Biomolecules 2021; 11:biom11020283. [PMID: 33672939 PMCID: PMC7918364 DOI: 10.3390/biom11020283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
The brain’s capacity to respond to changing environments via hormonal signaling is critical to fine-tuned function. An emerging body of literature highlights a role for myelin plasticity as a prominent type of experience-dependent plasticity in the adult brain. Myelin plasticity is driven by oligodendrocytes (OLs) and their precursor cells (OPCs). OPC differentiation regulates the trajectory of myelin production throughout development, and importantly, OPCs maintain the ability to proliferate and generate new OLs throughout adulthood. The process of oligodendrogenesis, the creation of new OLs, can be dramatically influenced during early development and in adulthood by internal and environmental conditions such as hormones. Here, we review the current literature describing hormonal regulation of oligodendrogenesis within physiological conditions, focusing on several classes of hormones: steroid, peptide, and thyroid hormones. We discuss hormonal regulation at each stage of oligodendrogenesis and describe mechanisms of action, where known. Overall, the majority of hormones enhance oligodendrogenesis, increasing OPC differentiation and inducing maturation and myelin production in OLs. The mechanisms underlying these processes vary for each hormone but may ultimately converge upon common signaling pathways, mediated by specific receptors expressed across the OL lineage. However, not all of the mechanisms have been fully elucidated, and here, we note the remaining gaps in the literature, including the complex interactions between hormonal systems and with the immune system. In the companion manuscript in this issue, we discuss the implications of hormonal regulation of oligodendrogenesis for neurological and psychiatric disorders characterized by white matter loss. Ultimately, a better understanding of the fundamental mechanisms of hormonal regulation of oligodendrogenesis across the entire lifespan, especially in vivo, will progress both basic and translational research.
Collapse
Affiliation(s)
- Kimberly L. P. Long
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
- Correspondence:
| | - Jocelyn M. Breton
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
| | - Matthew K. Barraza
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA;
| | - Olga S. Perloff
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
24
|
Reis de Assis D, Szabo A, Requena Osete J, Puppo F, O’Connell KS, A. Akkouh I, Hughes T, Frei E, A. Andreassen O, Djurovic S. Using iPSC Models to Understand the Role of Estrogen in Neuron-Glia Interactions in Schizophrenia and Bipolar Disorder. Cells 2021; 10:209. [PMID: 33494281 PMCID: PMC7909800 DOI: 10.3390/cells10020209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia (SCZ) and bipolar disorder (BIP) are severe mental disorders with a considerable disease burden worldwide due to early age of onset, chronicity, and lack of efficient treatments or prevention strategies. Whilst our current knowledge is that SCZ and BIP are highly heritable and share common pathophysiological mechanisms associated with cellular signaling, neurotransmission, energy metabolism, and neuroinflammation, the development of novel therapies has been hampered by the unavailability of appropriate models to identify novel targetable pathomechanisms. Recent data suggest that neuron-glia interactions are disturbed in SCZ and BIP, and are modulated by estrogen (E2). However, most of the knowledge we have so far on the neuromodulatory effects of E2 came from studies on animal models and human cell lines, and may not accurately reflect many processes occurring exclusively in the human brain. Thus, here we highlight the advantages of using induced pluripotent stem cell (iPSC) models to revisit studies of mechanisms underlying beneficial effects of E2 in human brain cells. A better understanding of these mechanisms opens the opportunity to identify putative targets of novel therapeutic agents for SCZ and BIP. In this review, we first summarize the literature on the molecular mechanisms involved in SCZ and BIP pathology and the beneficial effects of E2 on neuron-glia interactions. Then, we briefly present the most recent developments in the iPSC field, emphasizing the potential of using patient-derived iPSCs as more relevant models to study the effects of E2 on neuron-glia interactions.
Collapse
Affiliation(s)
- Denis Reis de Assis
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Attila Szabo
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Jordi Requena Osete
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Francesca Puppo
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin S. O’Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
| | - Ibrahim A. Akkouh
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Timothy Hughes
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Evgeniia Frei
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0372 Oslo, Norway
| | - Srdjan Djurovic
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- NORMENT, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
25
|
Shaw JC, Crombie GK, Palliser HK, Hirst JJ. Impaired Oligodendrocyte Development Following Preterm Birth: Promoting GABAergic Action to Improve Outcomes. Front Pediatr 2021; 9:618052. [PMID: 33634057 PMCID: PMC7901941 DOI: 10.3389/fped.2021.618052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Preterm birth is associated with poor long-term neurodevelopmental and behavioral outcomes, even in the absence of obvious brain injury at the time of birth. In particular, behavioral disorders characterized by inattention, social difficulties and anxiety are common among children and adolescents who were born moderately to late preterm (32-37 weeks' gestation). Diffuse deficits in white matter microstructure are thought to play a role in these poor outcomes with evidence suggesting that a failure of oligodendrocytes to mature and myelinate axons is responsible. However, there remains a major knowledge gap over the mechanisms by which preterm birth interrupts normal oligodendrocyte development. In utero neurodevelopment occurs in an inhibitory-dominant environment due to the action of placentally derived neurosteroids on the GABAA receptor, thus promoting GABAergic inhibitory activity and maintaining the fetal behavioral state. Following preterm birth, and the subsequent premature exposure to the ex utero environment, this action of neurosteroids on GABAA receptors is greatly reduced. Coinciding with a reduction in GABAergic inhibition, the preterm neonatal brain is also exposed to ex utero environmental insults such as periods of hypoxia and excessive glucocorticoid concentrations. Together, these insults may increase levels of the excitatory neurotransmitter glutamate in the developing brain and result in a shift in the balance of inhibitory: excitatory activity toward excitatory. This review will outline the normal development of oligodendrocytes, how it is disrupted under excitation-dominated conditions and highlight how shifting the balance back toward an inhibitory-dominated environment may improve outcomes.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
26
|
Sitruk-Ware R, Bonsack B, Brinton R, Schumacher M, Kumar N, Lee JY, Castelli V, Corey S, Coats A, Sadanandan N, Gonzales-Portillo B, Heyck M, Shear A, Blaise C, Zhang H, Sheyner M, García-Sánchez J, Navarro L, El-Etr M, De Nicola AF, Borlongan CV. Progress in progestin-based therapies for neurological disorders. Neurosci Biobehav Rev 2020; 122:38-65. [PMID: 33359391 DOI: 10.1016/j.neubiorev.2020.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022]
Abstract
Hormone therapy, primarily progesterone and progestins, for central nervous system (CNS) disorders represents an emerging field of regenerative medicine. Following a failed clinical trial of progesterone for traumatic brain injury treatment, attention has shifted to the progestin Nestorone for its ability to potently and selectively transactivate progesterone receptors at relatively low doses, resulting in robust neurogenetic, remyelinating, and anti-inflammatory effects. That CNS disorders, including multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), spinal cord injury (SCI), and stroke, develop via demyelinating, cell death, and/or inflammatory pathological pathways advances Nestorone as an auspicious candidate for these disorders. Here, we assess the scientific and clinical progress over decades of research into progesterone, progestins, and Nestorone as neuroprotective agents in MS, ALS, SCI, and stroke. We also offer recommendations for optimizing timing, dosage, and route of the drug regimen, and identifying candidate patient populations, in advancing Nestorone to the clinic.
Collapse
Affiliation(s)
| | - Brooke Bonsack
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Vanessa Castelli
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alexandreya Coats
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Bella Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Matt Heyck
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alex Shear
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cozene Blaise
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Henry Zhang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michael Sheyner
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Julián García-Sánchez
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Lisset Navarro
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
27
|
Schumacher M, Liere P, Ghoumari A. Progesterone and fetal-neonatal neuroprotection. Best Pract Res Clin Obstet Gynaecol 2020; 69:50-61. [PMID: 33039311 DOI: 10.1016/j.bpobgyn.2020.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023]
Abstract
The role of progesterone goes beyond the maintenance of pregnancy. The hormone, indeed, protects the developing fetal brain and influences its maturation. Metabolomes analyzed by mass spectrometric methods have revealed the great diversity of steroids in maternal plasma and fetal fluids, but their developmental significance remains to be investigated. Progesterone and its metabolites reach highest levels during the third trimester, when the brain growth spurt occurs: its volume triples, synaptogenesis is particularly active, and axons start to be myelinated. This developmental stage coincides with a period of great vulnerability. Studies in sheep have shown that progesterone and its metabolite allopregnanolone protect the vulnerable fetal brain. Work in rats and mice have demonstrated that progesterone plays an important role in myelin formation. These experimental studies are discussed in relation to preterm birth. Influences of progesterone on very early stages of neural development at the beginning of pregnancy are yet to be explored.
Collapse
Affiliation(s)
- Michael Schumacher
- U1195 "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue Du Général Leclerc, 94276, Kremlin-Bicêtre, France.
| | - Philippe Liere
- U1195 "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue Du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Abdelmoumen Ghoumari
- U1195 "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue Du Général Leclerc, 94276, Kremlin-Bicêtre, France
| |
Collapse
|
28
|
B T, W Z, H C, S C, X L, Dm H. Sex-specific differences in rim appearance of multiple sclerosis lesions on quantitative susceptibility mapping. Mult Scler Relat Disord 2020; 45:102317. [PMID: 32615504 DOI: 10.1016/j.msard.2020.102317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/11/2020] [Accepted: 06/16/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Susceptibility MRI techniques, such as phase and quantitative susceptibility mapping (QSM) reveal lesion heterogeneity in MS, including the presence of lesions with outer rims suggestive of iron accumulation in macrophages and microglia, indicative of chronic-active inflammatory white matter lesions (WMLs). OBJECTIVE To evaluate the in vivo relationship between chronic-active WMLs (as visualized by rimmed lesions on QSM) and several clinical metrics. METHODS 39 patients (15 men, 24 women) with MS underwent 7 Tesla brain MRIs and clinical evaluation. Contrast patterns of lesions identified on FLAIR and quantitative susceptibility maps were reviewed and compared to demographic characteristics and disability scores. RESULTS 1279 lesions were identified on FLAIR MRI; 846 (66.2%) of these were visible on QSM, 119 (14.1%) of which had visible rims. Lesions visible on QSM were more likely to have rims in men (16.1%, vs 4.9% in women, p=0.009). In a logistic regression model accounting for several factors, male sex conferred a >10-fold risk of having ≥1 rimmed lesion(s) (p=0.026). CONCLUSION Our findings provide in vivo support for the body of histopathologic literature indicating sex-specific differences in MS WML formation and suggest that QSM can be used to study these sex differences in the future.
Collapse
Affiliation(s)
- Tolaymat B
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Zheng W
- Department of Neurology, Greater Baltimore Medical Center, Baltimore, MD, United States
| | - Chen H
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Choi S
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Li X
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harrison Dm
- University of Maryland School of Medicine, Baltimore, MD, United States; Department of Neurology Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, University of Maryland School of Medicine, 110 South Paca Street, 3(rd) Floor, Baltimore, Maryland 201201.
| |
Collapse
|
29
|
Roles of Progesterone, Testosterone and Their Nuclear Receptors in Central Nervous System Myelination and Remyelination. Int J Mol Sci 2020; 21:ijms21093163. [PMID: 32365806 PMCID: PMC7246940 DOI: 10.3390/ijms21093163] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Progesterone and testosterone, beyond their roles as sex hormones, are neuroactive steroids, playing crucial regulatory functions within the nervous system. Among these, neuroprotection and myelin regeneration are important ones. The present review aims to discuss the stimulatory effects of progesterone and testosterone on the process of myelination and remyelination. These effects have been demonstrated in vitro (i.e., organotypic cultures) and in vivo (cuprizone- or lysolecithin-induced demyelination and experimental autoimmune encephalomyelitis (EAE)). Both steroids stimulate myelin formation and regeneration by acting through their respective intracellular receptors: progesterone receptors (PR) and androgen receptors (AR). Activation of these receptors results in multiple events involving direct transcription and translation, regulating general homeostasis, cell proliferation, differentiation, growth and myelination. It also ameliorates immune response as seen in the EAE model, resulting in a significant decrease in inflammation leading to a fast recovery. Although natural progesterone and testosterone have a therapeutic potential, their synthetic derivatives—the 19-norprogesterone (nestorone) and 7α-methyl-nortestosterone (MENT), already used as hormonal contraception or in postmenopausal hormone replacement therapies, may offer enhanced benefits for myelin repair. We summarize here a recent advancement in the field of myelin biology, to treat demyelinating disorders using the natural as well as synthetic analogs of progesterone and testosterone.
Collapse
|
30
|
González-Orozco JC, Moral-Morales AD, Camacho-Arroyo I. Progesterone through Progesterone Receptor B Isoform Promotes Rodent Embryonic Oligodendrogenesis. Cells 2020; 9:cells9040960. [PMID: 32295179 PMCID: PMC7226962 DOI: 10.3390/cells9040960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS). These cells arise during the embryonic development by the specification of the neural stem cells to oligodendroglial progenitor cells (OPC); newly formed OPC proliferate, migrate, differentiate, and mature to myelinating oligodendrocytes in the perinatal period. It is known that progesterone promotes the proliferation and differentiation of OPC in early postnatal life through the activation of the intracellular progesterone receptor (PR). Progesterone supports nerve myelination after spinal cord injury in adults. However, the role of progesterone in embryonic OPC differentiation as well as the specific PR isoform involved in progesterone actions in these cells is unknown. By using primary cultures obtained from the embryonic mouse spinal cord, we showed that embryonic OPC expresses both PR-A and PR-B isoforms. We found that progesterone increases the proliferation, differentiation, and myelination potential of embryonic OPC through its PR by upregulating the expression of oligodendroglial genes such as neuron/glia antigen 2 (NG2), sex determining region Y-box9 (SOX9), myelin basic protein (MBP), 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNP1), and NK6 homeobox 1 (NKX 6.1). These effects are likely mediated by PR-B, as they are blocked by the silencing of this isoform. The results suggest that progesterone contributes to the process of oligodendrogenesis during prenatal life through specific activation of PR-B.
Collapse
|
31
|
Giatti S, Diviccaro S, Falvo E, Garcia-Segura LM, Melcangi RC. Physiopathological role of the enzymatic complex 5α-reductase and 3α/β-hydroxysteroid oxidoreductase in the generation of progesterone and testosterone neuroactive metabolites. Front Neuroendocrinol 2020; 57:100836. [PMID: 32217094 DOI: 10.1016/j.yfrne.2020.100836] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
The enzymatic complex 5α-reductase (5α-R) and 3α/3β-hydroxysteroid oxidoreductase (HSOR) is expressed in the nervous system, where it transforms progesterone (PROG) and testosterone (T) into neuroactive metabolites. These metabolites regulate myelination, brain maturation, neurotransmission, reproductive behavior and the stress response. The expression of 5α-R and 3α-HSOR and the levels of PROG and T reduced metabolites show regional and sex differences in the nervous system and are affected by changing physiological conditions as well as by neurodegenerative and psychiatric disorders. A decrease in their nervous tissue levels may negatively impact the course and outcome of some pathological events. However, in other pathological conditions their increased levels may have a negative impact. Thus, the use of synthetic analogues of these steroids or 5α-R modulation have been proposed as therapeutic approaches for several nervous system pathologies. However, further research is needed to fully understand the consequences of these manipulations, in particular with 5α-R inhibitors.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
32
|
Giatti S, Diviccaro S, Serafini MM, Caruso D, Garcia-Segura LM, Viviani B, Melcangi RC. Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Front Neuroendocrinol 2020; 56:100804. [PMID: 31689419 DOI: 10.1016/j.yfrne.2019.100804] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The nervous system, in addition to be a target for steroid hormones, is the source of a variety of neuroactive steroids, which are synthesized and metabolized by neurons and glial cells. Recent evidence indicates that the expression of neurosteroidogenic proteins and enzymes and the levels of neuroactive steroids are different in the nervous system of males and females. We here summarized the state of the art of neuroactive steroids, particularly taking in consideration sex differences occurring in the synthesis and levels of these molecules. In addition, we discuss the consequences of sex differences in neurosteroidogenesis for the function of the nervous system under healthy and pathological conditions and the implications of neuroactive steroids and neurosteroidogenesis for the development of sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Melania Maria Serafini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
33
|
González SL, Coronel MF, Raggio MC, Labombarda F. Progesterone receptor-mediated actions and the treatment of central nervous system disorders: An up-date of the known and the challenge of the unknown. Steroids 2020; 153:108525. [PMID: 31634489 DOI: 10.1016/j.steroids.2019.108525] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 01/04/2023]
Abstract
Progesterone has been shown to exert a wide range of remarkable protective actions in experimental models of central nervous system injury or disease. However, the intimate mechanisms involved in each of these beneficial effects are not fully depicted. In this review, we intend to give the readers a thorough revision on what is known about the participation of diverse receptors and signaling pathways in progesterone-mediated neuroprotective, pro-myelinating and anti-inflammatory outcomes, as well as point out to novel regulatory mechanisms that could open new perspectives in steroid-based therapies.
Collapse
Affiliation(s)
- Susana L González
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| | - María F Coronel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Presidente Perón 1500, B1629AHJ Pilar, Buenos Aires, Argentina
| | - María C Raggio
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratorio de Bioquímica Neuroendócrina, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
34
|
Giatti S, Diviccaro S, Garcia-Segura LM, Melcangi RC. Sex differences in the brain expression of steroidogenic molecules under basal conditions and after gonadectomy. J Neuroendocrinol 2019; 31:e12736. [PMID: 31102564 DOI: 10.1111/jne.12736] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 01/19/2023]
Abstract
The brain is a steroidogenic tissue. It expresses key molecules involved in the synthesis and metabolism of neuroactive steroids, such as steroidogenic acute regulatory protein (StAR), translocator protein 18 kDa (TSPO), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenases (3β-HSD), 5α-reductases (5α-R) and 3α-hydroxysteroid oxidoreductases (3α-HSOR). Previous studies have shown that the levels of brain steroids are different in male and female rats under basal conditions and after gonadectomy. In the present study, we assessed gene expression of key neurosteroidogenic molecules in the cerebral cortex and cerebellum of gonadally intact and gonadectomised adult male and female rats. In the cerebellum, the basal mRNA levels of StAR and 3α-HSOR were significantly higher in females than in males. By contrast, the mRNA levels of TSPO and 5α-R were significantly higher in males. In the cerebral cortex, all neurosteroidogenic molecules analysed showed similar mRNA levels in males and females. Gonadectomy increased the expression of 5α-R in the brain of both sexes, although it affected the brain expression of StAR, TSPO, P450scc and 3α-HSOR in females only and with regional differences. Although protein levels were not investigated in the present study, our findings indicate that mRNA expression of steroidogenic molecules in the adult rat brain is sexually dimorphic and presents regional specificity, both under basal conditions and after gonadectomy. Thus, local steroidogenesis may contribute to the reported sex and regional differences in the levels of brain neuroactive steroids and may be involved in the generation of sex differences in the adult brain function.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
35
|
Kalakh S, Mouihate A. Enhanced remyelination during late pregnancy: involvement of the GABAergic system. Sci Rep 2019; 9:7728. [PMID: 31118452 PMCID: PMC6531481 DOI: 10.1038/s41598-019-44050-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 05/08/2019] [Indexed: 11/08/2022] Open
Abstract
Pregnant women with MS experience fewer relapses, especially during the third trimester. In this study, we explore the cellular and molecular events that bring about the protective effect of late pregnancy on the course of de/remyelination in rats. Using cellular, molecular, and ultrastructural methods, we explored remyelination in response to a focal demyelination in the corpus callosum of late pregnant, virgin, and postpartum rats. We further explored the role of GABAA receptor (GABAAR) in the promyelinating effect observed during late pregnancy. Remyelination in response to a gliotoxin-induced demyelination in the corpus callosum was enhanced in late pregnant rats when compared to that seen in virgin and postpartum rats. This pregnancy-associated promyelinating effect was lost when either the GABAAR was blocked or when 5α-reductase, the rate limiting enzyme for the endogenous GABAAR activator allopregnanolone, was inhibited. Taken together, these data suggest that the pregnancy-associated pro-myelination operates, at least in part, through a GABAergic activated system.
Collapse
Affiliation(s)
- Samah Kalakh
- Department of Physiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Safat, 13110, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Safat, 13110, Kuwait.
| |
Collapse
|
36
|
González-Orozco JC, Camacho-Arroyo I. Progesterone Actions During Central Nervous System Development. Front Neurosci 2019; 13:503. [PMID: 31156378 PMCID: PMC6533804 DOI: 10.3389/fnins.2019.00503] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
Although progesterone is a steroid hormone mainly associated with female reproductive functions, such as uterine receptivity and maintenance of pregnancy, accumulating data have shown its physiological actions to extend to several non-reproductive functions in the central nervous system (CNS) both in males and females. In fact, progesterone is de novo synthesized in specific brain regions by neurons and glial cells and is involved in the regulation of various molecular and cellular processes underlying myelination, neuroprotection, neuromodulation, learning and memory, and mood. Furthermore, progesterone has been reported to be implicated in critical developmental events, such as cell differentiation and neural circuits formation. This view is supported by the increase in progesterone synthesis observed during pregnancy in both the placenta and the fetal brain. In the present review, we will focus on progesterone actions during CNS development.
Collapse
Affiliation(s)
- Juan Carlos González-Orozco
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
37
|
Shaw JC, Berry MJ, Dyson RM, Crombie GK, Hirst JJ, Palliser HK. Reduced Neurosteroid Exposure Following Preterm Birth and Its' Contribution to Neurological Impairment: A Novel Avenue for Preventative Therapies. Front Physiol 2019; 10:599. [PMID: 31156466 PMCID: PMC6529563 DOI: 10.3389/fphys.2019.00599] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Children born preterm are at an increased risk of developing cognitive problems and neuro-behavioral disorders such as attention deficit hyperactivity disorder (ADHD) and anxiety. Whilst neonates born at all gestational ages, even at term, can experience poor cognitive outcomes due to birth-complications such as birth asphyxia, it is becoming widely known that children born preterm in particular are at significant risk for learning difficulties with an increased utilization of special education resources, when compared to their healthy term-born peers. Additionally, those born preterm have evidence of altered cerebral myelination with reductions in white matter volumes of the frontal cortex, hippocampus and cerebellum evident on magnetic resonance imaging (MRI). This disruption to myelination may underlie some of the pathophysiology of preterm-associated brain injury. Compared to a fetus of the same post-conceptional age, the preterm newborn loses access to in utero factors that support and promote healthy brain development. Furthermore, the preterm ex utero environment is hostile to the developing brain with a myriad of environmental, biochemical and excitotoxic stressors. Allopregnanolone is a key neuroprotective fetal neurosteroid which has promyelinating effects in the developing brain. Preterm birth leads to an abrupt loss of the protective effects of allopregnanolone, with a dramatic drop in allopregnanolone concentrations in the preterm neonatal brain compared to the fetal brain. This occurs in conjunction with reduced myelination of the hippocampus, subcortical white matter and cerebellum; thus, damage to neurons, astrocytes and especially oligodendrocytes of the developing nervous system can occur in the vulnerable developmental window prior to term as a consequence reduced allopregnanolone. In an effort to prevent preterm-associated brain injury a number of therapies have been considered, but to date, other than antenatal magnesium sulfate and corticosteroid therapy, none have become part of standard clinical care for vulnerable infants. Therefore, there remains an urgent need for improved therapeutic options to prevent brain injury in preterm neonates. The actions of the placentally derived neurosteroid allopregnanolone on GABAA receptor signaling has a major role in late gestation neurodevelopment. The early loss of this intrauterine neurotrophic support following preterm birth may be pivotal to development of neurodevelopmental morbidity. Thus, restoring the in utero neurosteroid environment for preterm neonates may represent a new and clinically feasible treatment option for promoting better trajectories of myelination and brain development, and therefore reducing neurodevelopmental disorders in children born preterm.
Collapse
Affiliation(s)
- Julia C. Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Mary J. Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, Wellington, New Zealand
| | - Rebecca M. Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, Wellington, New Zealand
| | - Gabrielle K. Crombie
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Jonathan J. Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Hannah K. Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
38
|
Sex-Dependent Effects of Perinatal Inflammation on the Brain: Implication for Neuro-Psychiatric Disorders. Int J Mol Sci 2019; 20:ijms20092270. [PMID: 31071949 PMCID: PMC6539135 DOI: 10.3390/ijms20092270] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022] Open
Abstract
Individuals born preterm have higher rates of neurodevelopmental disorders such as schizophrenia, autistic spectrum, and attention deficit/hyperactivity disorders. These conditions are often sexually dimorphic and with different developmental trajectories. The etiology is likely multifactorial, however, infections both during pregnancy and in childhood have emerged as important risk factors. The association between sex- and age-dependent vulnerability to neuropsychiatric disorders has been suggested to relate to immune activation in the brain, including complex interactions between sex hormones, brain transcriptome, activation of glia cells, and cytokine production. Here, we will review sex-dependent effects on brain development, including glia cells, both under normal physiological conditions and following perinatal inflammation. Emphasis will be given to sex-dependent effects on brain regions which play a role in neuropsychiatric disorders and inflammatory reactions that may underlie early-life programming of neurobehavioral disturbances later in life.
Collapse
|
39
|
Pluchino N, Ansaldi Y, Genazzani AR. Brain intracrinology of allopregnanolone during pregnancy and hormonal contraception. Horm Mol Biol Clin Investig 2019; 37:hmbci-2018-0032. [PMID: 30739099 DOI: 10.1515/hmbci-2018-0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/20/2019] [Indexed: 02/01/2023]
Abstract
Allopregnanolone (ALLO) has a crucial role in brain development and remodeling. Reproductive transitions associated with endocrine changes affect synthesis and activity of ALLO with behavioral/affective consequences. Pregnancy is characterized by an increased synthesis of progesterone/ALLO by the placenta, maternal and fetal brains. This suggests the critical role of these steroids in maternal brain adaptation during pregnancy and the development of the fetal brain. ALLO is brain protective during complications of pregnancy, such as preterm delivery or intrauterine growth restriction (IUGR), reducing the impact of hypoxia, and excitotoxic brain damage. Negative behavioral consequences of altered progesterone/ALLO maternal brain adaptation have been also hypothesized in the post-partum and targeting ALLO is a promising treatment. Hormonal contraception may alter ALLO action, although the effects are mostly related to a specific class of progestins. Understanding the interactions between ALLO and the endocrine environment is crucial for more effective and tailored hormonal treatments.
Collapse
Affiliation(s)
- Nicola Pluchino
- University Hospital of Geneva, Division of Gynecology and Obstetrics, Genéve, Switzerland
| | - Yveline Ansaldi
- University Hospital of Geneva, Division of Gynecology and Obstetrics, Genéve, Switzerland
| | | |
Collapse
|
40
|
Zhu X, Fréchou M, Schumacher M, Guennoun R. Cerebroprotection by progesterone following ischemic stroke: Multiple effects and role of the neural progesterone receptors. J Steroid Biochem Mol Biol 2019; 185:90-102. [PMID: 30031789 DOI: 10.1016/j.jsbmb.2018.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022]
Abstract
Treatment with progesterone limits brain damage after stroke. However, the cellular bases of the cerebroprotective effects of progesterone are not well documented. The aims of this study were to determine neural cells and functions that are affected by progesterone treatment and the role of neural progesterone receptors (PR) after stroke. Adult male PRNesCre mice, selectively lacking PR in the central nervous system, and their control PRloxP/loxP littermates were subjected to transient ischemia by middle cerebral artery occlusion (MCAO) for 30 min. Mice received either progesterone (8 mg/kg) or vehicle at 1-, 6- and 24- hrs post-MCAO and outcomes were analyzed at 48 h post-MCAO. In PRloxP/loxP mice, progesterone exerted multiple effects on different neural cell types, improved motor functional outcomes and reduced total infarct volumes. In the peri-infarct, progesterone increased the density of neurons (NeuN+ cells), of cells of the oligodendroglial lineage (Olig2+ cells) and of oligodendrocyte progenitors (OP, NG2+ cells). Progesterone decreased the density of activated astrocytes (GFAP+ cells) and reactive microglia (Iba1+ cells) coexpressing the mannose receptor type 1 CD206 marker. Progesterone also reduced the expression of aquaporin 4 (AQP4), the water channel involved in both edema formation and resorption. The beneficial effects of progesterone were not observed in PRNesCre mice. Our findings show that progesterone treatment exerts beneficial effects on neurons, oligodendroglial cells and neuroinflammatory responses via PR. These findings demonstrate that progesterone is a pleiotropic cerebroprotective agent and that neural PR represent a therapeutic target for stroke cerebroprotection.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Magalie Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| |
Collapse
|
41
|
Jure I, De Nicola AF, Labombarda F. Progesterone effects on the oligodendrocyte linage: all roads lead to the progesterone receptor. Neural Regen Res 2019; 14:2029-2034. [PMID: 31397329 PMCID: PMC6788243 DOI: 10.4103/1673-5374.262570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A new role has emerged for progesterone after discovering its potent actions away from reproduction in both the central and the peripheral nervous system. The aim of the present report is to discuss progesterone’s mechanisms of action involved in myelination, remyelination and neuroinflammation. The pivotal role of the classic progesterone receptor is described and evidence is compiled about progesterone’s direct effects on oligodendrocyte linage and its indirect effects on oligodendrocyte precursor cell differentiation by decreasing the neuroinflammatory environment.
Collapse
Affiliation(s)
- Ignacio Jure
- Laboratorio de Bioquímica Neuroendocrina, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratorio de Bioquímica Neuroendocrina, Instituto de Biología y Medicina Experimental, CONICET; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratorio de Bioquímica Neuroendocrina, Instituto de Biología y Medicina Experimental, CONICET; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
42
|
Leicaj ML, Pasquini LA, Lima A, Gonzalez Deniselle MC, Pasquini JM, De Nicola AF, Garay LI. Changes in neurosteroidogenesis during demyelination and remyelination in cuprizone-treated mice. J Neuroendocrinol 2018; 30:e12649. [PMID: 30303567 DOI: 10.1111/jne.12649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 12/28/2022]
Abstract
Changes of neurosteroids may be involved in the pathophysiology of multiple sclerosis (MS). The present study investigated whether changes of neurosteroidogenesis also occurred in the grey and white matter regions of the brain in mice subjected to cuprizone-induced demyelination. Accordingly, we compared the expression of neurosteroidogenic proteins, including steroidogenic acute regulatory protein (StAR), voltage-dependent anion channel (VDAC) and 18 kDa translocator protein (TSPO), as well as neurosteroidogenic enzymes, including the side chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase/isomerase and 5α-reductase (5α-R), during the demyelination and remyelination periods. Using immunohistochemistry and a quantitative polymerase chain reaction, we demonstrated a decreased expression of StAR, P450scc and 5α-R with respect to an increase astrocytic and microglial reaction and elevated levels of tumor necrosis factor (TNF)α during the cuprizone demyelination period in the hippocampus, cortex and corpus callosum. These parameters, as well as the glial reaction, were normalised after 2 weeks of spontaneous remyelination in regions containing grey matter. Conversely, persistent elevated levels of TNFα and low levels of StAR and P450scc were observed during remyelination in corpus callosum white matter. We conclude that neurosteroidogenesis/myelination status and glial reactivity are inversely related in the hippocampus and neocortex. Establishing a cause and effect relationship for the measured variables remains a future challenge for understanding the pathophysiology of MS.
Collapse
Affiliation(s)
- María L Leicaj
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental and National Research Council (CONICET), Buenos Aires, Argentina
| | - Laura A Pasquini
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), University of Buenos Aires and National Research Council (CONICET), Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental and National Research Council (CONICET), Buenos Aires, Argentina
| | - Maria C Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental and National Research Council (CONICET), Buenos Aires, Argentina
- Department of Physiological Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Juana M Pasquini
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), University of Buenos Aires and National Research Council (CONICET), Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental and National Research Council (CONICET), Buenos Aires, Argentina
- Department of Human Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Laura I Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental and National Research Council (CONICET), Buenos Aires, Argentina
- Department of Human Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
43
|
Kaidonis G, Rao AN, Ouyang YB, Stary CM. Elucidating sex differences in response to cerebral ischemia: immunoregulatory mechanisms and the role of microRNAs. Prog Neurobiol 2018; 176:73-85. [PMID: 30121237 DOI: 10.1016/j.pneurobio.2018.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/04/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia remains a major cause of death and disability worldwide, yet therapeutic options remain limited. Differences in sex and age play an important role in the final outcome in response to cerebral ischemia in both experimental and clinical studies: males have a higher risk and worse outcome than females at younger ages and this trend reverses in older ages. Although the molecular mechanisms underlying sex dimorphism are complex and are still not well understood, studies suggest steroid hormones, sex chromosomes, differential cell death and immune pathways, and sex-specific microRNAs may contribute to the outcome following cerebral ischemia. This review focuses on differential effects between males and females on cell death and immunological pathways in response to cerebral ischemia, the central role of innate sex differences in steroid hormone signaling, and upstreamregulation of sexually dimorphic gene expression by microRNAs.
Collapse
Affiliation(s)
- Georgia Kaidonis
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States; Stanford University School of Medicine, Department of Ophthalmology, United States
| | - Anand N Rao
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States
| | - Yi-Bing Ouyang
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States
| | - Creed M Stary
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States.
| |
Collapse
|
44
|
Rafiee Zadeh A, Ghadimi K, Mohammadi B, Hatamian H, Naghibi SN, Danaeiniya A. Effects of Estrogen and Progesterone on Different Immune Cells Related to Multiple Sclerosis. CASPIAN JOURNAL OF NEUROLOGICAL SCIENCES 2018. [DOI: 10.29252/cjns.4.13.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
45
|
Céspedes Rubio ÁE, Pérez-Alvarez MJ, Lapuente Chala C, Wandosell F. Sex steroid hormones as neuroprotective elements in ischemia models. J Endocrinol 2018; 237:R65-R81. [PMID: 29654072 DOI: 10.1530/joe-18-0129] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
Among sex steroid hormones, progesterone and estradiol have a wide diversity of physiological activities that target the nervous system. Not only are they carried by the blood stream, but also they are locally synthesized in the brain and for this reason, estradiol and progesterone are considered 'neurosteroids'. The physiological actions of both hormones range from brain development and neurotransmission to aging, illustrating the importance of a deep understanding of their mechanisms of action. In this review, we summarize key roles that estradiol and progesterone play in the brain. As numerous reports have confirmed a substantial neuroprotective role for estradiol in models of neurodegenerative disease, we focus this review on traumatic brain injury and stroke models. We describe updated data from receptor and signaling events triggered by both hormones, with an emphasis on the mechanisms that have been reported as 'rapid' or 'cytoplasmic actions'. Data showing the therapeutic effects of the hormones, used alone or in combination, are also summarized, with a focus on rodent models of middle cerebral artery occlusion (MCAO). Finally, we draw attention to evidence that neuroprotection by both hormones might be due to a combination of 'cytoplasmic' and 'nuclear' signaling.
Collapse
Affiliation(s)
- Ángel Enrique Céspedes Rubio
- Departamento de Sanidad AnimalGrupo de Investigación en Enfermedades Neurodegenerativas, Universidad del Tolima, Ibagué, Colombia
| | - Maria José Pérez-Alvarez
- Departamento de Biología (Fisiología Animal)Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular 'Severo Ochoa'Departamento de Neuropatología Molecular CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| | - Catalina Lapuente Chala
- Grupo de Investigación en Enfermedades NeurodegenerativasInvestigador Asociado Universidad del Tolima, Ibagué, Colombia
| | - Francisco Wandosell
- Centro de Biología Molecular 'Severo Ochoa'Departamento de Neuropatología Molecular CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| |
Collapse
|
46
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2018. [PMID: 29311911 DOI: 10.3389/fnagi.2017.00430/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
47
|
Allen RS, Sayeed I, Oumarbaeva Y, Morrison KC, Choi PH, Pardue MT, Stein DG. Progesterone treatment shows greater protection in brain vs. retina in a rat model of middle cerebral artery occlusion: Progesterone receptor levels may play an important role. Restor Neurol Neurosci 2018; 34:947-963. [PMID: 27802245 DOI: 10.3233/rnn-160672] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND/OBJECTIVE To determine whether inflammation increases in retina as it does in brain following middle cerebral artery occlusion (MCAO), and whether the neurosteroid progesterone, shown to have protective effects in both retina and brain after MCAO, reduces inflammation in retina as well as brain. METHODS MCAO rats treated systemically with progesterone or vehicle were compared with shams. Protein levels of cytosolic NF-κB, nuclear NF-κB, phosphorylated NF-κB, IL-6, TNF-α, CD11b, progesterone receptor A and B, and pregnane X receptor were assessed in retinas and brains at 24 and 48 h using western blots. RESULTS Following MCAO, significant increases were observed in the following inflammatory markers: pNF-κB and CD11b at 24 h in both brain and retina, nuclear NF-κB at 24 h in brain and 48 h in retina, and TNF-α at 24 h in brain.Progesterone treatment in MCAO animals significantly attenuated levels of the following markers in brain: pNF-κB, nuclear NF-κB, IL-6, TNF-α, and CD11b, with significantly increased levels of cytosolic NF-κB. Retinas from progesterone-treated animals showed significantly reduced levels of nuclear NF-κB and IL-6 and increased levels of cytosolic NF-κB, with a trend for reduction in other markers. Post-MCAO, progesterone receptors A and B were upregulated in brain and downregulated in retina. CONCLUSION Inflammatory markers increased in both brain and retina after MCAO, with greater increases observed in brain. Progesterone treatment reduced inflammation, with more dramatic reductions observed in brain than retina. This differential effect may be due to differences in the response of progesterone receptors in brain and retina after injury.
Collapse
Affiliation(s)
- Rachael S Allen
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA.,Department of Ophthalmology, Emory University, Atlanta, GA, USA.,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA
| | - Yuliya Oumarbaeva
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA
| | | | - Paul H Choi
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA
| | - Machelle T Pardue
- Department of Ophthalmology, Emory University, Atlanta, GA, USA.,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Donald G Stein
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
48
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2017; 9:430. [PMID: 29311911 PMCID: PMC5743731 DOI: 10.3389/fnagi.2017.00430] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
49
|
Spychala MS, Honarpisheh P, McCullough LD. Sex differences in neuroinflammation and neuroprotection in ischemic stroke. J Neurosci Res 2017; 95:462-471. [PMID: 27870410 DOI: 10.1002/jnr.23962] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 12/22/2022]
Abstract
Stroke is not only a leading cause of mortality and morbidity worldwide it also disproportionally affects women. There are currently over 500,000 more women stroke survivors in the US than men, and elderly women bear the brunt of stroke-related disability. Stroke has dropped to the fifth leading cause of death in men, but remains the third in women. This review discusses sex differences in common stroke risk factors, the efficacy of stroke prevention therapies, acute treatment responses, and post-stroke recovery in clinical populations. Women have an increased lifetime risk of stroke compared to men, largely due to a steep increase in stroke incidence in older postmenopausal women, yet most basic science studies continue to only evaluate young male animals. Women also have an increased lifetime prevalence of many common stroke risk factors, including hypertension and atrial fibrillation, as well as abdominal obesity and metabolic syndrome. None of these age-related risk factors have been well modeled in the laboratory. Evidence from the bench has implicated genetic and epigenetic factors, differential activation of cell-death programs, cell-cell signaling pathways, and systemic immune responses as contributors to sex differences in ischemic stroke. The most recent basic scientific findings have been summarized in this review, with an emphasis on factors that differ between males and females that are pertinent to stroke outcomes. Identification and understanding of the underlying biological factors that contribute to sex differences will be critical to the development of translational targets to improve the treatment of women after stroke. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monica S Spychala
- Department of Neurology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030
| | - Pedram Honarpisheh
- Department of Neurology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030
| | - Louise D McCullough
- Department of Neurology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030
| |
Collapse
|
50
|
Abi Ghanem C, Degerny C, Hussain R, Liere P, Pianos A, Tourpin S, Habert R, Macklin WB, Schumacher M, Ghoumari AM. Long-lasting masculinizing effects of postnatal androgens on myelin governed by the brain androgen receptor. PLoS Genet 2017; 13:e1007049. [PMID: 29107990 PMCID: PMC5690690 DOI: 10.1371/journal.pgen.1007049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/16/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022] Open
Abstract
The oligodendrocyte density is greater and myelin sheaths are thicker in the adult male mouse brain when compared with females. Here, we show that these sex differences emerge during the first 10 postnatal days, precisely at a stage when a late wave of oligodendrocyte progenitor cells arises and starts differentiating. Androgen levels, analyzed by gas chromatography/tandem-mass spectrometry, were higher in males than in females during this period. Treating male pups with flutamide, an androgen receptor (AR) antagonist, or female pups with 5α-dihydrotestosterone (5α-DHT), revealed the importance of postnatal androgens in masculinizing myelin and their persistent effect into adulthood. A key role of the brain AR in establishing the sexual phenotype of myelin was demonstrated by its conditional deletion. Our results uncover a new persistent effect of postnatal AR signaling, with implications for neurodevelopmental disorders and sex differences in multiple sclerosis. Sex differences in brain structure are of great scientific and medical interest because the incidence and progress of many neurological and psychiatric disorders differ between males and females. They affect neural networks and also the myelin sheaths that insulate and protect axons and thus allow the rapid conduction of electrical impulses. In the central nervous system, myelin is formed by a particular type of cells named oligodendrocytes. In the male mouse brain, the density of oligodendrocytes is greater and myelin sheaths are thicker when compared with females. We show that these sex differences in myelin result from the long-lasting actions of androgens in males during their first 10 postnatal days. Importantly, the postnatal masculinizing effects of androgens involve brain androgen receptors as shown by the use of pharmacological and genetic tools. These findings are important for understanding sex-related differences in the susceptibility and progression of demyelinating diseases such as multiple sclerosis. They also reveal a so far unknown role of androgen receptor signaling in sexual differentiation of the brain.
Collapse
Affiliation(s)
- Charly Abi Ghanem
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
| | - Cindy Degerny
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
| | - Rashad Hussain
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
- Department of Neurosurgery, Institute for Translational Neuromedicine, University of Rochester, Rochester, NY, United States of America
| | - Philippe Liere
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
| | - Antoine Pianos
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
| | - Sophie Tourpin
- U566 Inserm, CEA, Universities Paris-Diderot and Paris-Sud, Fontenay aux Roses, France
| | - René Habert
- U566 Inserm, CEA, Universities Paris-Diderot and Paris-Sud, Fontenay aux Roses, France
| | - Wendy B. Macklin
- Department of Cell and Developmental Biology, University of Colorado, Aurora, CO, United States of America
| | - Michael Schumacher
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
- * E-mail: (AMG); (MS)
| | - Abdel M. Ghoumari
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
- * E-mail: (AMG); (MS)
| |
Collapse
|