1
|
Zhong X, Xu L, Wang L, Chen J, Gong X, Lian J, Gong J, Shao Y. Caffeine and modafinil modulate the effects of sleep deprivation on thalamic resting-state functional connectivity: A double-blind pilot study. Sleep Med 2024; 122:71-83. [PMID: 39137663 DOI: 10.1016/j.sleep.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Studies have found that the use of clinically approved caffeine and modafinil can alleviate cognitive impairment due to sleep deprivation (SD) to some extent. However, the neural mechanisms by which these two cognitive enhancers work to counteract the effects of SD on cognitive impairment remain unclear. METHODS A double-blind within-subjects experiment using resting-state functional magnetic resonance imaging (rs-fMRI) was designed. Participants underwent three 36-h SD trials, each of which involved taking 200 mg of caffeine, modafinil, or placebo at the 28th and 32 nd h of SD. Sixteen subregions of the thalamus were selected as the regions of interest and changes in functional connectivity (FC) between the thalamus and the other brain regions were explored after the participants took caffeine or modafinil. RESULTS The subjective sleepiness of the participants increased with the duration of SD. compared with placebo, modafinil and caffeine had insignificant effects on wakefulness or sleepiness. However, in terms of neural FC, we found varying degrees of attenuation or enhancement of the FC between the thalamus and other regions. Taking caffeine during SD weakened the FC between the right rostral temporal thalamus (rTtha) subregion and the left lingual gyrus compared with placebo. Caffeine enhanced the FC between three subregions of the thalamus, namely the left sensory thalamus, the left rTtha, and the right lateral pre-frontal thalamus, and the right inferior temporal, left orbitofrontal, and right superior occipital gyris. Modafinil weakened the FC between the right posterior parietal thalamus and left middle temporal gyrus, and enhanced the FC between the left medial pre-frontal thalamus, left rTtha, and right occipital thalamus and left middle frontal gyrus. CONCLUSIONS After 36 h of total SD, modafinil and caffeine administration enhanced or attenuated the time-domain correlations between various subregions of the thalamus and brain regions of the frontal and temporal lobes in healthy adults, compared with placebo. These results provide valuable evidence for further unraveling the neuropharmacological mechanisms of caffeine and modafinil, as well as important insights for exploring effective pharmacological intervention strategies against SD.
Collapse
Affiliation(s)
- Xiao Zhong
- School of Psychology, Beijing Sport University, Beijing, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing, China
| | - Letong Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Jie Chen
- School of Psychology, Beijing Sport University, Beijing, China
| | - Xinxin Gong
- School of Psychology, Beijing Sport University, Beijing, China
| | - Jie Lian
- School of Psychology, Beijing Sport University, Beijing, China
| | - Jingjing Gong
- School of Psychology, Beijing Sport University, Beijing, China; Department of Medical Psychology, Second Medical Center, General Hospital of the People's Liberation Army, China.
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China.
| |
Collapse
|
2
|
Kim YS, Lee BK, Kim CS, Lee YS, Lee YJ, Kim KW, Lee DY, Jung YS. Sedum kamtschaticum Exerts Hypnotic Effects via the Adenosine A 2A Receptor in Mice. Nutrients 2024; 16:2611. [PMID: 39203748 PMCID: PMC11357430 DOI: 10.3390/nu16162611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Insomnia is a common sleep disorder with significant societal and economic impacts. Current pharmacotherapies for insomnia are often accompanied by side effects, necessitating the development of new therapeutic drugs. In this study, the hypnotic effects and mechanisms of Sedum kamtschaticum 30% ethanol extract (ESK) and one of its active compounds, myricitrin, were investigated using pentobarbital-induced sleep experiments, immunohistochemistry (IHC), receptor binding assays, and enzyme-linked immunosorbent assay (ELISA). The pentobarbital-induced sleep experiments revealed that ESK and myricitrin reduced sleep latency and prolonged total sleep time in a dose-dependent manner. Based on c-Fos immunostaining, ESK, and myricitrin enhanced the GABAergic neural activity in sleep-promoting ventrolateral preoptic nucleus (VLPO) GABAergic. By measuring the level of GABA released from VLPO GABAergic neurons, ESK and myricitrin were found to increase GABA release in the hypothalamus. These effects were significantly inhibited by SCH. Moreover, ESK exhibited a concentration-dependent binding affinity for the adenosine A2A receptors (A2AR). In conclusion, ESK and myricitrin have hypnotic effects, and their underlying mechanisms may be related to the activation of A2AR.
Collapse
Affiliation(s)
- Yeon-Soo Kim
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (Y.-S.K.); (B.K.L.)
| | - Bo Kyung Lee
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (Y.-S.K.); (B.K.L.)
| | - Cha Soon Kim
- Research and Development Department, Genencell Co., Ltd., Yongin 16950, Republic of Korea;
| | - Young-Seob Lee
- Development of Herbal Crop Research, Rural Development Administration (RDA), Eumseong 27709, Republic of Korea; (Y.-S.L.); (Y.J.L.); (K.-W.K.)
| | - Yoon Ji Lee
- Development of Herbal Crop Research, Rural Development Administration (RDA), Eumseong 27709, Republic of Korea; (Y.-S.L.); (Y.J.L.); (K.-W.K.)
| | - Kwan-Woo Kim
- Development of Herbal Crop Research, Rural Development Administration (RDA), Eumseong 27709, Republic of Korea; (Y.-S.L.); (Y.J.L.); (K.-W.K.)
| | - Dae Young Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Yi-Sook Jung
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (Y.-S.K.); (B.K.L.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Roy K, Zhou X, Otani R, Yuan PC, Ioka S, Vogt KE, Kondo T, Farag NHT, Ijiri H, Wu Z, Chitose Y, Amezawa M, Uygun DS, Cherasse Y, Nagase H, Li Y, Yanagisawa M, Abe M, Basheer R, Wang YQ, Saitoh T, Lazarus M. Optochemical control of slow-wave sleep in the nucleus accumbens of male mice by a photoactivatable allosteric modulator of adenosine A 2A receptors. Nat Commun 2024; 15:3661. [PMID: 38688901 PMCID: PMC11061178 DOI: 10.1038/s41467-024-47964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Optochemistry, an emerging pharmacologic approach in which light is used to selectively activate or deactivate molecules, has the potential to alleviate symptoms, cure diseases, and improve quality of life while preventing uncontrolled drug effects. The development of in-vivo applications for optochemistry to render brain cells photoresponsive without relying on genetic engineering has been progressing slowly. The nucleus accumbens (NAc) is a region for the regulation of slow-wave sleep (SWS) through the integration of motivational stimuli. Adenosine emerges as a promising candidate molecule for activating indirect pathway neurons of the NAc expressing adenosine A2A receptors (A2ARs) to induce SWS. Here, we developed a brain-permeable positive allosteric modulator of A2ARs (A2AR PAM) that can be rapidly photoactivated with visible light (λ > 400 nm) and used it optoallosterically to induce SWS in the NAc of freely behaving male mice by increasing the activity of extracellular adenosine derived from astrocytic and neuronal activity.
Collapse
Affiliation(s)
- Koustav Roy
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Xuzhao Zhou
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rintaro Otani
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ping-Chuan Yuan
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Shuji Ioka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaspar E Vogt
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tamae Kondo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nouran H T Farag
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruto Ijiri
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- PhD Program in Humanics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Youhei Chitose
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University Research Center for Photo-Drug-Delivery Systems (HiU-P-DDS), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Mao Amezawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - David S Uygun
- Department of Psychiatry, Veterans Administration Boston Healthcare System and Harvard Medical School, West Roxbury, MA, USA
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yulong Li
- New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University Research Center for Photo-Drug-Delivery Systems (HiU-P-DDS), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Radhika Basheer
- Department of Psychiatry, Veterans Administration Boston Healthcare System and Harvard Medical School, West Roxbury, MA, USA
| | - Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China.
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
4
|
Huang L, Zhu W, Li N, Zhang B, Dai W, Li S, Xu H. Functions and mechanisms of adenosine and its receptors in sleep regulation. Sleep Med 2024; 115:210-217. [PMID: 38373361 DOI: 10.1016/j.sleep.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/21/2024]
Abstract
Sleep is a natural and recurring state of life. Long-term insomnia can lead to physical and mental fatigue, inattention, memory loss, anxiety, depression and other symptoms, imposing immense public health and economic burden worldwide. The sleep and awakening regulation system is composed of many nerve nuclei and neurotransmitters in the brain, and it forms a neural network that interacts and restricts each other to regulate the occurrence and maintenance of sleep-wake. Adenosine (AD) is a neurotransmitter in the central nervous system and a driver of sleep. Meanwhile, the functions and mechanisms underlying sleep-promoting effects of adenosine and its receptors are still not entirely clear. However, in recent years, the increasing evidence indicated that adenosine can promote sleep through inhibiting arousal system and activating sleep-promoting system. At the same time, astrocyte-derived adenosine in modulating sleep homeostasis and sleep loss-induced related cognitive and memory deficits plays an important role. This review, therefore, summarizes the current research on the functions and possible mechanisms of adenosine and its receptors in the regulation of sleep and homeostatic control of sleep. Understanding these aspects will provide us better ideas on clinical problems such as insomnia, hypersomnia and other sleep disorders.
Collapse
Affiliation(s)
- Lishan Huang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Wenwen Zhu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Nanxi Li
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Bin Zhang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Wenbin Dai
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China.
| | - Houping Xu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
5
|
Su YJ, Yi PL, Chang FC. Transcranial Direct Current Stimulation (tDCS) Ameliorates Stress-Induced Sleep Disruption via Activating Infralimbic-Ventrolateral Preoptic Projections. Brain Sci 2024; 14:105. [PMID: 38275525 PMCID: PMC10813929 DOI: 10.3390/brainsci14010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) is acknowledged for its non-invasive modulation of neuronal activity in psychiatric disorders. However, its application in insomnia research yields varied outcomes depending on different tDCS types and patient conditions. Our primary objective is to elucidate its efficiency and uncover the underlying mechanisms in insomnia treatment. We hypothesized that anodal prefrontal cortex stimulation activates glutamatergic projections from the infralimbic cortex (IL) to the ventrolateral preoptic area (VLPO) to promote sleep. After administering 0.06 mA of electrical currents for 8 min, our results indicate significant non-rapid eye movement (NREM) enhancement in naïve mice within the initial 3 h post-stimulation, persisting up to 16-24 h. In the insomnia group, tDCS enhanced NREM sleep bout numbers during acute stress response and improved NREM and REM sleep duration in subsequent acute insomnia. Sleep quality, assessed through NREM delta powers, remains unaffected. Interference of the IL-VLPO pathway, utilizing designer receptors exclusively activated by designer drugs (DREADDs) with the cre-DIO system, partially blocked tDCS's sleep improvement in stress-induced insomnia. This study elucidated that the activation of the IL-VLPO pathway mediates tDCS's effect on stress-induced insomnia. These findings support the understanding of tDCS effects on sleep disturbances, providing valuable insights for future research and clinical applications in sleep therapy.
Collapse
Affiliation(s)
- Yu-Jie Su
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106216, Taiwan;
| | - Pei-Lu Yi
- Department of Sport Management, College of Tourism, Leisure and Sports, Aletheia University, Taipei 251306, Taiwan
| | - Fang-Chia Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106216, Taiwan;
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 106216, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung City 404328, Taiwan
- Department of Medicine, College of Medicine, China Medical University, Taichung City 404328, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 106216, Taiwan
| |
Collapse
|
6
|
Sang D, Lin K, Yang Y, Ran G, Li B, Chen C, Li Q, Ma Y, Lu L, Cui XY, Liu Z, Lv SQ, Luo M, Liu Q, Li Y, Zhang EE. Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals. Cell 2023; 186:5500-5516.e21. [PMID: 38016470 DOI: 10.1016/j.cell.2023.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/17/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Most animals require sleep, and sleep loss induces serious pathophysiological consequences, including death. Previous experimental approaches for investigating sleep impacts in mice have been unable to persistently deprive animals of both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Here, we report a "curling prevention by water" paradigm wherein mice remain awake 96% of the time. After 4 days of exposure, mice exhibit severe inflammation, and approximately 80% die. Sleep deprivation increases levels of prostaglandin D2 (PGD2) in the brain, and we found that elevated PGD2 efflux across the blood-brain-barrier-mediated by ATP-binding cassette subfamily C4 transporter-induces both accumulation of circulating neutrophils and a cytokine-storm-like syndrome. Experimental disruption of the PGD2/DP1 axis dramatically reduced sleep-deprivation-induced inflammation. Thus, our study reveals that sleep-related changes in PGD2 in the central nervous system drive profound pathological consequences in the peripheral immune system.
Collapse
Affiliation(s)
- Di Sang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Keteng Lin
- National Institute of Biological Sciences, Beijing, China; College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yini Yang
- Peking University School of Life Sciences, Beijing, China
| | - Guangdi Ran
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Bohan Li
- Peking-Tsinghua Center for Life Sciences, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chen Chen
- National Institute of Biological Sciences, Beijing, China
| | - Qi Li
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Lihui Lu
- National Institute of Biological Sciences, Beijing, China
| | - Xi-Yang Cui
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhibo Liu
- Peking-Tsinghua Center for Life Sciences, Beijing, China; Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Chongqing, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Qinghua Liu
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Yulong Li
- Peking University School of Life Sciences, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; State Key Laboratory of Membrane Biology, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Chen Y, Xu L, Lan Y, Liang C, Liu X, Li J, Liu F, Miao J, Chen Y, Cao Y, Liu G. Four novel sleep-promoting peptides screened and identified from bovine casein hydrolysates using a patch-clamp model in vitro and Caenorhabditis elegans in vivo. Food Funct 2023. [PMID: 37334648 DOI: 10.1039/d3fo01246h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Bovine casein hydrolysates (CHs) have demonstrated sleep-promoting activities. However, only few peptides were identified from CHs with sleep-promoting effects. In this work, an in vitro model based on the electrophysiology of brain neurons was established for the evaluation of sleep-promoting effects. Based on this model, four novel peptides were systematically separated from CH. Compared with the control group, the action potential (AP) inhibitory rate of four peptides increased by 38.63%, 340.93%, 233.28%, and 900%, respectively, and the membrane potential (MP) change rate of four peptides increased by 319.78%, 503.09%, 381.22%, and 547.10%, respectively. These results suggested that four peptides have sleep-promoting activities. Furthermore, Caenorhabditis elegans (C. elegans) sleep behavior results indicated that all the four peptides could significantly increase the total sleep duration, the motionless sleep duration of C. elegans, implying that these four peptides can significantly improve sleep. The LC-MS/MS results showed that the primary structures of these novel peptides were HQGLPQEVLNENLLR (αs1-CN, f8-22), YKVPQLEIVPNSAEER (αs1-CN, f104-119), HPIKHQGLPQEVLNENLLR (αs1-CN, f4-22), and VPQLEIVPNSAEER (αs1-CN, f106-119). Overall, this study revealed that the four novel sleep-promoting peptides identified were strong candidates as potential functional ingredients in the development of sleep-promoting products.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Lu Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Caowen Liang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xingyu Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Jun Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Fei Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
8
|
Baron M, Devor M. From molecule to oblivion: dedicated brain circuitry underlies anesthetic loss of consciousness permitting pain-free surgery. Front Mol Neurosci 2023; 16:1197304. [PMID: 37305550 PMCID: PMC10248014 DOI: 10.3389/fnmol.2023.1197304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
The canonical view of how general anesthetics induce loss-of-consciousness (LOC) permitting pain-free surgery posits that anesthetic molecules, distributed throughout the CNS, suppress neural activity globally to levels at which the cerebral cortex can no longer sustain conscious experience. We support an alternative view that LOC, in the context of GABAergic anesthesia at least, results from anesthetic exposure of a small number of neurons in a focal brainstem nucleus, the mesopontine tegmental anesthesia area (MPTA). The various sub-components of anesthesia, in turn, are effected in distant locations, driven by dedicated axonal pathways. This proposal is based on the observations that microinjection of infinitesimal amounts of GABAergic agents into the MPTA, and only there, rapidly induces LOC, and that lesioning the MPTA renders animals relatively insensitive to these agents delivered systemically. Recently, using chemogenetics, we identified a subpopulation of MPTA "effector-neurons" which, when excited (not inhibited), induce anesthesia. These neurons contribute to well-defined ascending and descending axonal pathways each of which accesses a target region associated with a key anesthetic endpoint: atonia, anti-nociception, amnesia and LOC (by electroencephalographic criteria). Interestingly, the effector-neurons do not themselves express GABAA-receptors. Rather, the target receptors reside on a separate sub-population of presumed inhibitory interneurons. These are thought to excite the effectors by disinhibition, thus triggering anesthetic LOC.
Collapse
Affiliation(s)
- Mark Baron
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marshall Devor
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Sebastião AM, Ribeiro JA. Adjusting the brakes to adjust neuronal activity: Adenosinergic modulation of GABAergic transmission. Neuropharmacology 2023; 236:109600. [PMID: 37225084 DOI: 10.1016/j.neuropharm.2023.109600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/20/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
About 50 years elapsed from the publication of the first full paper on the neuromodulatory action of adenosine at a 'simple' synapse model, the neuromuscular junction (Ginsborg and Hirst, 1972). In that study adenosine was used as a tool to increase cyclic AMP and for the great surprise, it decreased rather than increased neurotransmitter release, and for a further surprise, its action was prevented by theophylline, at the time only known as inhibitor of phosphodiesterases. These intriguing observations opened the curiosity for immediate studies relating the action of adenine nucleotides, known to be released together with neurotransmitters, to that of adenosine (Ribeiro and Walker, 1973, 1975). Our understanding on the ways adenosine uses to modulate synapses, circuits, and brain activity, vastly expanded since then. However, except for A2A receptors, whose actions upon GABAergic neurons of the striatum are well known, most of the attention given to the neuromodulatory action of adenosine has been focusing upon excitatory synapses. Evidence is growing that GABAergic transmission is also a target for adenosinergic neuromodulation through A1 and A2A receptors. Some o these actions have specific time windows during brain development, and others are selective for specific GABAergic neurons. Both tonic and phasic GABAergic transmission can be affected, and either neurons or astrocytes can be targeted. In some cases, those effects result from a concerted action with other neuromodulators. Implications of these actions in the control of neuronal function/dysfunction will be the focus of this review.
Collapse
Affiliation(s)
- Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| | - Joaquim Alexandre Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|
10
|
Wright CJ, Milosavljevic S, Pocivavsek A. The stress of losing sleep: Sex-specific neurobiological outcomes. Neurobiol Stress 2023; 24:100543. [PMID: 37252645 PMCID: PMC10209346 DOI: 10.1016/j.ynstr.2023.100543] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Sleep is a vital and evolutionarily conserved process, critical to daily functioning and homeostatic balance. Losing sleep is inherently stressful and leads to numerous detrimental physiological outcomes. Despite sleep disturbances affecting everyone, women and female rodents are often excluded or underrepresented in clinical and pre-clinical studies. Advancing our understanding of the role of biological sex in the responses to sleep loss stands to greatly improve our ability to understand and treat health consequences of insufficient sleep. As such, this review discusses sex differences in response to sleep deprivation, with a focus on the sympathetic nervous system stress response and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We review sex differences in several stress-related consequences of sleep loss, including inflammation, learning and memory deficits, and mood related changes. Focusing on women's health, we discuss the effects of sleep deprivation during the peripartum period. In closing, we present neurobiological mechanisms, including the contribution of sex hormones, orexins, circadian timing systems, and astrocytic neuromodulation, that may underlie potential sex differences in sleep deprivation responses.
Collapse
Affiliation(s)
- Courtney J. Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
11
|
Korkutata M, Lazarus M. Adenosine A 2A receptors and sleep. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:155-178. [PMID: 37741690 DOI: 10.1016/bs.irn.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Adenosine, a known endogenous somnogen, induces sleep via A1 and A2A receptors. In this chapter, we review the current knowledge regarding the role of the adenosine A2A receptor and its agonists, antagonists, and allosteric modulators in sleep-wake regulation. Although many adenosine A2A receptor agonists, antagonists, and allosteric modulators have been identified, only a few have been tested to see if they can promote sleep or wakefulness. In addition, the growing popularity of natural sleep aids has led to an investigation of natural compounds that may improve sleep by activating the adenosine A2A receptor. Finally, we discuss the potential therapeutic advantage of allosteric modulators of adenosine A2A receptors over classic agonists and antagonists for treating sleep and neurologic disorders.
Collapse
Affiliation(s)
- Mustafa Korkutata
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
12
|
Scharbarg E, Walter A, Lecoin L, Gallopin T, Lemaître F, Guille-Collignon M, Rouach N, Rancillac A. Prostaglandin D 2 Controls Local Blood Flow and Sleep-Promoting Neurons in the VLPO via Astrocyte-Derived Adenosine. ACS Chem Neurosci 2023; 14:1063-1070. [PMID: 36847485 DOI: 10.1021/acschemneuro.2c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Prostaglandin D2 (PGD2) is one of the most potent endogenous sleep-promoting molecules. However, the cellular and molecular mechanisms of the PGD2-induced activation of sleep-promoting neurons in the ventrolateral preoptic nucleus (VLPO), the major nonrapid eye movement (NREM)-sleep center, still remains unclear. We here show that PGD2 receptors (DP1) are not only expressed in the leptomeninges but also in astrocytes from the VLPO. We further demonstrate, by performing real-time measurements of extracellular adenosine using purine enzymatic biosensors in the VLPO, that PGD2 application causes a 40% increase in adenosine level, via an astroglial release. Measurements of vasodilatory responses and electrophysiological recordings finally reveal that, in response to PGD2 application, adenosine release induces an A2AR-mediated dilatation of blood vessels and activation of VLPO sleep-promoting neurons. Altogether, our results unravel the PGD2 signaling pathway in the VLPO, controlling local blood flow and sleep-promoting neurons, via astrocyte-derived adenosine.
Collapse
Affiliation(s)
- Emeric Scharbarg
- Brain Plasticity Unit, CNRS, ESPCI-ParisTech, Labex Memolife, Université PSL, 75005 Paris, France
| | - Augustin Walter
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, Université PSL, 75005 Paris, France
| | - Laure Lecoin
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, Université PSL, 75005 Paris, France
| | - Thierry Gallopin
- Brain Plasticity Unit, CNRS, ESPCI-ParisTech, Labex Memolife, Université PSL, 75005 Paris, France
| | - Frédéric Lemaître
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Manon Guille-Collignon
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, Université PSL, 75005 Paris, France
| | - Armelle Rancillac
- Brain Plasticity Unit, CNRS, ESPCI-ParisTech, Labex Memolife, Université PSL, 75005 Paris, France.,Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, Université PSL, 75005 Paris, France
| |
Collapse
|
13
|
Ma WX, Yuan PC, Zhang H, Kong LX, Lazarus M, Qu WM, Wang YQ, Huang ZL. Adenosine and P1 receptors: Key targets in the regulation of sleep, torpor, and hibernation. Front Pharmacol 2023; 14:1098976. [PMID: 36969831 PMCID: PMC10036772 DOI: 10.3389/fphar.2023.1098976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Graphical AbstractAdenosine mediates sleep, torpor and hibernation through P1 receptors. Recent reasearch has shown that P1 receptors play a vital role in the regulation of sleep-wake, torpor and hibernation-like states. In this review, we focus on the roles and neurobiological mechanisms of the CNS adenosine and P1 receptors in these three states. Among them, A1 and A2A receptors are key targets for sleep-wake regulation, A1Rs and A3Rs are very important for torpor induction, and activation of A1Rs is sufficient for hibernation-like state.
Collapse
Affiliation(s)
- Wei-Xiang Ma
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Hui Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Ling-Xi Kong
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Wei-Min Qu, ; Yi-Qun Wang, ; Zhi-Li Huang,
| | - Yi-Qun Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Wei-Min Qu, ; Yi-Qun Wang, ; Zhi-Li Huang,
| | - Zhi-Li Huang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Wei-Min Qu, ; Yi-Qun Wang, ; Zhi-Li Huang,
| |
Collapse
|
14
|
Choi IS, Kim JH, Jeong JY, Lee MG, Suk K, Jang IS. Astrocyte-derived adenosine excites sleep-promoting neurons in the ventrolateral preoptic nucleus: Astrocyte-neuron interactions in the regulation of sleep. Glia 2022; 70:1864-1885. [PMID: 35638268 DOI: 10.1002/glia.24225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022]
Abstract
Although ATP and/or adenosine derived from astrocytes are known to regulate sleep, the precise mechanisms underlying the somnogenic effects of ATP and adenosine remain unclear. We selectively expressed channelrhodopsin-2 (ChR2), a light-sensitive ion channel, in astrocytes within the ventrolateral preoptic nucleus (VLPO), which is an essential brain nucleus involved in sleep promotion. We then examined the effects of photostimulation of astrocytic ChR2 on neuronal excitability using whole-cell patch-clamp recordings in two functionally distinct types of VLPO neurons: sleep-promoting GABAergic projection neurons and non-sleep-promoting local GABAergic neurons. Optogenetic stimulation of VLPO astrocytes demonstrated opposite outcomes in the two types of VLPO neurons. It led to the inhibition of non-sleep-promoting neurons and excitation of sleep-promoting neurons. These responses were attenuated by blocking of either adenosine A1 receptors or tissue-nonspecific alkaline phosphatase (TNAP). In contrast, exogenous adenosine decreased the excitability of both VLPO neuron populations. Moreover, TNAP was expressed in galanin-negative VLPO neurons, but not in galanin-positive sleep-promoting projection neurons. Taken together, these results suggest that astrocyte-derived ATP is converted into adenosine by TNAP in non-sleep-promoting neurons. In turn, adenosine decreases the excitability of local GABAergic neurons, thereby increasing the excitability of sleep-promoting GABAergic projection neurons. We propose a novel mechanism involving astrocyte-neuron interactions in sleep regulation, wherein endogenous adenosine derived from astrocytes excites sleep-promoting VLPO neurons, and thus decreases neuronal excitability in arousal-related areas of the brain.
Collapse
Affiliation(s)
- In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ji-Young Jeong
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Maan-Gee Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, South Korea.,Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
15
|
The Sleep-Promoting Ventrolateral Preoptic Nucleus: What Have We Learned over the Past 25 Years? Int J Mol Sci 2022; 23:ijms23062905. [PMID: 35328326 PMCID: PMC8954377 DOI: 10.3390/ijms23062905] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 01/09/2023] Open
Abstract
For over a century, the role of the preoptic hypothalamus and adjacent basal forebrain in sleep-wake regulation has been recognized. However, for years, the identity and location of sleep- and wake-promoting neurons in this region remained largely unresolved. Twenty-five years ago, Saper and colleagues uncovered a small collection of sleep-active neurons in the ventrolateral preoptic nucleus (VLPO) of the preoptic hypothalamus, and since this seminal discovery the VLPO has been intensively investigated by labs around the world, including our own. Herein, we first review the history of the preoptic area, with an emphasis on the VLPO in sleep-wake control. We then attempt to synthesize our current understanding of the circuit, cellular and synaptic bases by which the VLPO both regulates and is itself regulated, in order to exert a powerful control over behavioral state, as well as examining data suggesting an involvement of the VLPO in other physiological processes.
Collapse
|
16
|
Vaseghi S, Arjmandi-Rad S, Eskandari M, Ebrahimnejad M, Kholghi G, Zarrindast MR. Modulating role of serotonergic signaling in sleep and memory. Pharmacol Rep 2021; 74:1-26. [PMID: 34743316 DOI: 10.1007/s43440-021-00339-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Serotonin is an important neurotransmitter with various receptors and wide-range effects on physiological processes and cognitive functions including sleep, learning, and memory. In this review study, we aimed to discuss the role of serotonergic receptors in modulating sleep-wake cycle, and learning and memory function. Furthermore, we mentioned to sleep deprivation, its effects on memory function, and the potential interaction with serotonin. Although there are thousands of research articles focusing on the relationship between sleep and serotonin; however, the pattern of serotonergic function in sleep deprivation is inconsistent and it seems that serotonin has not a certain role in the effects of sleep deprivation on memory function. Also, we found that the injection type of serotonergic agents (systemic or local), the doses of these drugs (dose-dependent effects), and up- or down-regulation of serotonergic receptors during training with various memory tasks are important issues that can be involved in the effects of serotonergic signaling on sleep-wake cycle, memory function, and sleep deprivation-induced memory impairments. This comprehensive review was conducted in the PubMed, Scopus, and ScienceDirect databases in June and July 2021, by searching keywords sleep, sleep deprivation, memory, and serotonin.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Smith PC, Phillips DJ, Pocivavsek A, Byrd CA, Viechweg SS, Hampton B, Mong JA. Estradiol Influences Adenosinergic Signaling and NREM Sleep Need in Adult Female Rats. Sleep 2021; 45:6363599. [PMID: 34477210 DOI: 10.1093/sleep/zsab225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Gonadal steroids and gender are risk factors for sleep disruptions and insomnia in women. However, the relationship between ovarian steroids and sleep is poorly understood. In rodent models, estradiol (E2) suppresses sleep in females suggesting that E2 may reduce homeostatic sleep need. The current study investigates whether E2 decreases sleep need and the potential mechanisms that govern E2 suppression of sleep. Our previous findings suggest that the median preoptic nucleus (MnPO) is a key nexus for E2 action on sleep. Using behavioral, neurochemical and pharmacological approaches, we tested whether (1) E2 influenced the sleep homeostat and (2) E2 influenced adenosine signaling in the MnPO of adult female rats. In both unrestricted baseline sleep and recovery sleep from 6-hour sleep deprivation, E2 significantly reduced non-rapid eye movement sleep (NREM)-delta power, NREM-Slow Wave Activity (NREM-SWA, 0.5-4.0Hz), and NREM-delta energy suggesting that E2 decreases homeostatic sleep need. However, coordinate with E2-induced changes in physiological markers of homeostatic sleep was a marked increase in MnPO extracellular adenosine (a molecular marker of homeostatic sleep need) during unrestricted and recovery sleep in E2-treated but not oil control animals. While these results seemed contradictory, systemically administered E2 blocked the ability of CGS-21680 (adenosine A2A receptor agonist) microinjected into the MnPO to increase NREM sleep suggesting that E2 may block adenosine signaling. Together, these findings provide evidence that E2 may attenuate the local effects of the A2A receptors in the MnPO which in turn may underlie estrogenic suppression of sleep behavior as well as changes in homeostatic sleep need.
Collapse
Affiliation(s)
- Philip C Smith
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, Md
| | - Derrick J Phillips
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, Md
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, S. C
| | - Carissa A Byrd
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, Md
| | - Shaun S Viechweg
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, Md
| | - Brian Hampton
- Protein Analysis Laboratory, Center for Innovative Biomedical Resources, University of Maryland Baltimore, Baltimore, Md
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, Md
| |
Collapse
|
18
|
Rothhaas R, Chung S. Role of the Preoptic Area in Sleep and Thermoregulation. Front Neurosci 2021; 15:664781. [PMID: 34276287 PMCID: PMC8280336 DOI: 10.3389/fnins.2021.664781] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Sleep and body temperature are tightly interconnected in mammals: warming up our body helps to fall asleep and the body temperature in turn drops while falling asleep. The preoptic area of the hypothalamus (POA) serves as an essential brain region to coordinate sleep and body temperature. Understanding how these two behaviors are controlled within the POA requires the molecular identification of the involved circuits and mapping their local and brain-wide connectivity. Here, we review our current understanding of how sleep and body temperature are regulated with a focus on recently discovered sleep- and thermo-regulatory POA neurons. We further discuss unresolved key questions including the anatomical and functional overlap of sleep- and thermo-regulatory neurons, their pathways and the role of various signaling molecules. We suggest that analysis of genetically defined circuits will provide novel insights into the mechanisms underlying the coordinated regulation of sleep and body temperature in health and disease.
Collapse
Affiliation(s)
- Rebecca Rothhaas
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
Bjorness TE, Greene RW. Interaction between cocaine use and sleep behavior: A comprehensive review of cocaine's disrupting influence on sleep behavior and sleep disruptions influence on reward seeking. Pharmacol Biochem Behav 2021; 206:173194. [PMID: 33940055 DOI: 10.1016/j.pbb.2021.173194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022]
Abstract
Dopamine, orexin (hypocretin), and adenosine systems have dual roles in reward and sleep/arousal suggesting possible mechanisms whereby drugs of abuse may influence both reward and sleep/arousal. While considerable variability exists across studies, drugs of abuse such as cocaine induce an acute sleep loss followed by an immediate recovery pattern that is consistent with a normal response to loss of sleep. Under more chronic cocaine exposure conditions, an abnormal recovery pattern is expressed that includes a retention of sleep disturbance under withdrawal and into abstinence conditions. Conversely, experimentally induced sleep disturbance can increase cocaine seeking. Thus, complementary, sleep-related therapeutic approaches may deserve further consideration along with development of non-human models to better characterize sleep disturbance-reward seeking interactions across drug experience.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, 305-8577, Japan
| |
Collapse
|
20
|
Reitz SL, Kelz MB. Preoptic Area Modulation of Arousal in Natural and Drug Induced Unconscious States. Front Neurosci 2021; 15:644330. [PMID: 33642991 PMCID: PMC7907457 DOI: 10.3389/fnins.2021.644330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
The role of the hypothalamic preoptic area (POA) in arousal state regulation has been studied since Constantin von Economo first recognized its importance in the early twentieth century. Over the intervening decades, the POA has been shown to modulate arousal in both natural (sleep and wake) as well as drug-induced (anesthetic-induced unconsciousness) states. While the POA is well known for its role in sleep promotion, populations of wake-promoting neurons within the region have also been identified. However, the complexity and molecular heterogeneity of the POA has made distinguishing these two populations difficult. Though multiple lines of evidence demonstrate that general anesthetics modulate the activity of the POA, the region's heterogeneity has also made it challenging to determine whether the same neurons involved in sleep/wake regulation also modulate arousal in response to general anesthetics. While a number of studies show that sleep-promoting POA neurons are activated by various anesthetics, recent work suggests this is not universal to all arousal-regulating POA neurons. Technical innovations are making it increasingly possible to classify and distinguish the molecular identities of neurons involved in sleep/wake regulation as well as anesthetic-induced unconsciousness. Here, we review the current understanding of the POA's role in arousal state regulation of both natural and drug-induced forms of unconsciousness, including its molecular organization and connectivity to other known sleep and wake promoting regions. Further insights into the molecular identities and connectivity of arousal-regulating POA neurons will be critical in fully understanding how this complex region regulates arousal states.
Collapse
Affiliation(s)
- Sarah L. Reitz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, United States
- Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Max B. Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, United States
- Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Masneuf S, Imbach LL, Büchele F, Colacicco G, Penner M, Moreira CG, Ineichen C, Jahanshahi A, Temel Y, Baumann CR, Noain D. Altered sleep intensity upon DBS to hypothalamic sleep-wake centers in rats. Transl Neurosci 2021; 12:611-625. [PMID: 35070444 PMCID: PMC8729228 DOI: 10.1515/tnsci-2020-0202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022] Open
Abstract
Deep brain stimulation (DBS) has been scarcely investigated in the field of sleep research. We hypothesize that DBS onto hypothalamic sleep- and wake-promoting centers will produce significant neuromodulatory effects and potentially become a therapeutic strategy for patients suffering severe, drug-refractory sleep–wake disturbances. We aimed to investigate whether continuous electrical high-frequency DBS, such as that often implemented in clinical practice, in the ventrolateral preoptic nucleus (VLPO) or the perifornical area of the posterior lateral hypothalamus (PeFLH), significantly modulates sleep–wake characteristics and behavior. We implanted healthy rats with electroencephalographic/electromyographic electrodes and recorded vigilance states in parallel to bilateral bipolar stimulation of VLPO and PeFLH at 125 Hz and 90 µA over 24 h to test the modulating effects of DBS on sleep–wake proportions, stability and spectral power in relation to the baseline. We unexpectedly found that VLPO DBS at 125 Hz deepens slow-wave sleep (SWS) as measured by increased delta power, while sleep proportions and fragmentation remain unaffected. Thus, the intensity, but not the amount of sleep or its stability, is modulated. Similarly, the proportion and stability of vigilance states remained altogether unaltered upon PeFLH DBS but, in contrast to VLPO, 125 Hz stimulation unexpectedly weakened SWS, as evidenced by reduced delta power. This study provides novel insights into non-acute functional outputs of major sleep–wake centers in the rat brain in response to electrical high-frequency stimulation, a paradigm frequently used in human DBS. In the conditions assayed, while exerting no major effects on the sleep–wake architecture, hypothalamic high-frequency stimulation arises as a provocative sleep intensity-modulating approach.
Collapse
Affiliation(s)
- Sophie Masneuf
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lukas L Imbach
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Fabian Büchele
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Marco Penner
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carlos G Moreira
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Ineichen
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, DPPP, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.,Center of Competence Sleep & Health, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Astrocytes in the Ventrolateral Preoptic Area Promote Sleep. J Neurosci 2020; 40:8994-9011. [PMID: 33067363 DOI: 10.1523/jneurosci.1486-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022] Open
Abstract
Although ventrolateral preoptic (VLPO) nucleus is regarded as a center for sleep promotion, the exact mechanisms underlying the sleep regulation are unknown. Here, we used optogenetic tools to identify the key roles of VLPO astrocytes in sleep promotion. Optogenetic stimulation of VLPO astrocytes increased sleep duration in the active phase in naturally sleep-waking adult male rats (n = 6); it also increased the extracellular ATP concentration (n = 3) and c-Fos expression (n = 3-4) in neurons within the VLPO. In vivo microdialysis analyses revealed an increase in the activity of VLPO astrocytes and ATP levels during sleep states (n = 4). Moreover, metabolic inhibition of VLPO astrocytes reduced ATP levels (n = 4) and diminished sleep duration (n = 4). We further show that tissue-nonspecific alkaline phosphatase (TNAP), an ATP-degrading enzyme, plays a key role in mediating the somnogenic effects of ATP released from astrocytes (n = 5). An appropriate sample size for all experiments was based on statistical power calculations. Our results, taken together, indicate that astrocyte-derived ATP may be hydrolyzed into adenosine by TNAP, which may in turn act on VLPO neurons to promote sleep.SIGNIFICANCE STATEMENT Glia have recently been at the forefront of neuroscience research. Emerging evidence illustrates that astrocytes, the most abundant glial cell type, are the functional determinants for fates of neurons and other glial cells in the central nervous system. In this study, we newly identified the pivotal role of hypothalamic ventrolateral preoptic (VLPO) astrocytes in the sleep regulation, and provide novel insights into the mechanisms underlying the astrocyte-mediated sleep regulation.
Collapse
|
23
|
Jou SB, Tsai CJ, Fang CY, Yi PL, Chang FC. Effects of N 6 -(4-hydroxybenzyl) adenine riboside in stress-induced insomnia in rodents. J Sleep Res 2020; 30:e13156. [PMID: 32748529 DOI: 10.1111/jsr.13156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/20/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
Adenosine exhibits a somnogenic effect; however, there is no adenosinergic hypnotic because of cardiovascular effects. This study investigated whether N6-(4-hydroxybenzyl) adenine riboside (T1-11), extracted from Gastrodia elata, produces somnogenic effects in rodents. We determined the involvement of adenosine 2A receptors (A2ARs) in GABAergic neurons of the ventrolateral preoptic area (VLPO) and the cardiovascular effects. Change of cage bedding is employed as a stressor to induce insomnia in rodents, and electroencephalograms and electromyograms were used to acquire and analyse sleep-wake activity. We found that intracerebroventricular administration of T1-11 before a dark period increased non-rapid eye movement (NREM) and rapid eye movement (REM) sleep during a dark period, and T1-11-induced sleep increases were blocked by the A2AR antagonist, SCH58261, in naïve rats. Oral administration of T1-11 increased NREM sleep during both dark and light periods. Microinjection of the A2AR antagonist, SCH58261, into the VLPO blocked sleep effects of T1-11. In addition to the somnogenic effect in naïve mice, T1-11 suppressed the stress-induced insomnia and this suppressive effect was blocked by SCH58261. C-fos expression in GABAergic neurons of VLPO was increased after administration of T1-11 in Gad2-Cre::Ai14 mice, suggesting the activation of GABAergic neurons in the VLPO. T1-11 exhibited no effects on heart rate and the low frequency/high frequency ratio of heart rate variability. We concluded that T1-11 elicited somnogenic effects and effectively ameliorated acute stress-induced insomnia. The somnogenic effect is mediated by A2ARs to activate GABAergic neurons in the VLPO. This adenosine analogue could be a potential hypnotic because of no sympathetic and parasympathetic effects on the cardiovascular system.
Collapse
Affiliation(s)
- Shuo-Bin Jou
- Department of Neurology, Mackay Medical College, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Chung-Jen Tsai
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Ying Fang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Lu Yi
- Department of Sport Management, College of Tourism, Leisure and Sports, Aletheia University, New Taipei City, Taiwan
| | - Fang-Chia Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
24
|
Chauveau F, Claverie D, Lardant E, Varin C, Hardy E, Walter A, Canini F, Rouach N, Rancillac A. Neuropeptide S promotes wakefulness through the inhibition of sleep-promoting ventrolateral preoptic nucleus neurons. Sleep 2020; 43:5547657. [PMID: 31403694 DOI: 10.1093/sleep/zsz189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
STUDY OBJECTIVES The regulation of sleep-wake cycles is crucial for the brain's health and cognitive skills. Among the various substances known to control behavioral states, intraventricular injection of neuropeptide S (NPS) has already been shown to promote wakefulness. However, the NPS signaling pathway remains elusive. In this study, we characterized the effects of NPS in the ventrolateral preoptic nucleus (VLPO) of the hypothalamus, one of the major brain structures regulating non-rapid eye movement (NREM) sleep. METHODS We combined polysomnographic recordings, vascular reactivity, and patch-clamp recordings in mice VLPO to determine the NPS mode of action. RESULTS We demonstrated that a local infusion of NPS bilaterally into the anterior hypothalamus (which includes the VLPO) significantly increases awakening and specifically decreases NREM sleep. Furthermore, we established that NPS application on acute brain slices induces strong and reversible tetrodotoxin (TTX)-sensitive constriction of blood vessels in the VLPO. This effect strongly suggests that the local neuronal network is downregulated in the presence of NPS. At the cellular level, we revealed by electrophysiological recordings and in situ hybridization that NPSR mRNAs are only expressed by non-Gal local GABAergic neurons, which are depolarized by the application of NPS. Simultaneously, we showed that NPS hyperpolarizes sleep-promoting neurons, which is associated with an increased frequency in their spontaneous IPSC inputs. CONCLUSION Altogether, our data reveal that NPS controls local neuronal activity in the VLPO. Following the depolarization of local GABAergic neurons, NPS indirectly provokes feed-forward inhibition onto sleep-promoting neurons, which translates into a decrease in NREM sleep to favor arousal.
Collapse
Affiliation(s)
- Frédéric Chauveau
- IRBA (Armed Biomedical Research Institute), Brétigny-sur-Orge, France
| | - Damien Claverie
- IRBA (Armed Biomedical Research Institute), Brétigny-sur-Orge, France
| | - Emma Lardant
- IRBA (Armed Biomedical Research Institute), Brétigny-sur-Orge, France
| | - Christophe Varin
- Brain Plasticity Unit, CNRS, UMR 8249, ESPCI-ParisTech, PSL Research University, Paris, France.,Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Eléonore Hardy
- Neuroglial Interactions in Cerebral Physiopathology, CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Labex Memolife, PSL Research University, Paris, France
| | - Augustin Walter
- Neuroglial Interactions in Cerebral Physiopathology, CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Labex Memolife, PSL Research University, Paris, France
| | - Frédéric Canini
- IRBA (Armed Biomedical Research Institute), Brétigny-sur-Orge, France.,Ecole du Val de Grâce, Laveran, Paris
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Labex Memolife, PSL Research University, Paris, France
| | - Armelle Rancillac
- Brain Plasticity Unit, CNRS, UMR 8249, ESPCI-ParisTech, PSL Research University, Paris, France.,Neuroglial Interactions in Cerebral Physiopathology, CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Labex Memolife, PSL Research University, Paris, France
| |
Collapse
|
25
|
|
26
|
Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020; 45:6-20. [PMID: 31216564 PMCID: PMC6879642 DOI: 10.1038/s41386-019-0444-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
The principal neurons of the arousal and sleep circuits are comprised by glutamate and GABA neurons, which are distributed within the reticular core of the brain and, through local and distant projections and interactions, regulate cortical activity and behavior across wake-sleep states. These are in turn modulated by the neuromodulatory systems that are comprised by acetylcholine, noradrenaline, dopamine, serotonin, histamine, orexin (hypocretin), and melanin-concentrating hormone (MCH) neurons. Glutamate and GABA neurons are heterogeneous in their profiles of discharge, forming distinct functional cell types by selective or maximal discharge during (1) waking and paradoxical (REM) sleep, (2) during slow wave sleep, (3) during waking, or (4) during paradoxical (REM) sleep. The neuromodulatory systems are each homogeneous in their profile of discharge, the majority discharging maximally during waking and paradoxical sleep or during waking. Only MCH neurons discharge maximally during sleep. They each exert their modulatory influence upon other neurons through excitatory and inhibitory receptors thus effecting a concerted differential change in the functionally different cell groups. Both arousal and sleep circuit neurons are homeostatically regulated as a function of their activity in part through changes in receptors. The major pharmacological agents used for the treatment of wake and sleep disorders act upon GABA and neuromodulatory transmission.
Collapse
Affiliation(s)
- Barbara E. Jones
- 0000 0004 1936 8649grid.14709.3bDepartment of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
27
|
Venner A, De Luca R, Sohn LT, Bandaru SS, Verstegen AMJ, Arrigoni E, Fuller PM. An Inhibitory Lateral Hypothalamic-Preoptic Circuit Mediates Rapid Arousals from Sleep. Curr Biol 2019; 29:4155-4168.e5. [PMID: 31761703 DOI: 10.1016/j.cub.2019.10.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/10/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
Among the neuronal populations implicated in sleep-wake control, the ventrolateral preoptic (VLPO) nucleus has emerged as a key sleep-promoting center. However, the synaptic drives that regulate the VLPO to control arousal levels in vivo have not to date been identified. Here, we show that sleep-promoting galaninergic neurons within the VLPO nucleus, defined pharmacologically and by single-cell transcript analysis, are postsynaptic targets of lateral hypothalamic GABAergic (LHGABA) neurons and that activation of this pathway in vivo rapidly drives wakefulness. Ca2+ imaging from LHGABA neurons indicate that they are both wake and rapid eye movement (REM)-sleep active. Consistent with the potent arousal-promoting property of the LHGABA → VLPO pathway, presynaptic inputs to LHGABA neurons originate from several canonical stress- and arousal-related network nodes. This work represents the first demonstration that direct synaptic inhibition of the VLPO area can suppress sleep-promoting neurons to rapidly promote arousal.
Collapse
Affiliation(s)
- Anne Venner
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Roberto De Luca
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Lauren T Sohn
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Sathyajit S Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Anne M J Verstegen
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
28
|
|
29
|
Lazarus M, Oishi Y, Bjorness TE, Greene RW. Gating and the Need for Sleep: Dissociable Effects of Adenosine A 1 and A 2A Receptors. Front Neurosci 2019; 13:740. [PMID: 31379490 PMCID: PMC6650574 DOI: 10.3389/fnins.2019.00740] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022] Open
Abstract
Roughly one-third of the human lifetime is spent in sleep, yet the reason for sleep remains unclear. Understanding the physiologic function of sleep is crucial toward establishing optimal health. Several proposed concepts address different aspects of sleep physiology, including humoral and circuit-based theories of sleep-wake regulation, the homeostatic two-process model of sleep regulation, the theory of sleep as a state of adaptive inactivity, and observations that arousal state and sleep homeostasis can be dissociated in pathologic disorders. Currently, there is no model that places the regulation of arousal and sleep homeostasis in a unified conceptual framework. Adenosine is well known as a somnogenic substance that affects normal sleep-wake patterns through several mechanisms in various brain locations via A1 or A2A receptors (A1Rs or A2ARs). Many cells and processes appear to play a role in modulating the extracellular concentration of adenosine at neuronal A1R or A2AR sites. Emerging evidence suggests that A1Rs and A2ARs have different roles in the regulation of sleep. In this review, we propose a model in which A2ARs allow the brain to sleep, i.e., these receptors provide sleep gating, whereas A1Rs modulate the function of sleep, i.e., these receptors are essential for the expression and resolution of sleep need. In this model, sleep is considered a brain state established in the absence of arousing inputs.
Collapse
Affiliation(s)
- Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Theresa E Bjorness
- Research and Development, VA North Texas Health Care System, Dallas, TX, United States.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Robert W Greene
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
30
|
Ahmad AS, Ottallah H, Maciel CB, Strickland M, Doré S. Role of the L-PGDS-PGD2-DP1 receptor axis in sleep regulation and neurologic outcomes. Sleep 2019; 42:zsz073. [PMID: 30893431 PMCID: PMC6559173 DOI: 10.1093/sleep/zsz073] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/16/2019] [Indexed: 12/18/2022] Open
Abstract
To meet the new challenges of modern lifestyles, we often compromise a good night's sleep. In preclinical models as well as in humans, a chronic lack of sleep is reported to be among the leading causes of various physiologic, psychologic, and neurocognitive deficits. Thus far, various endogenous mediators have been implicated in inter-regulatory networks that collectively influence the sleep-wake cycle. One such mediator is the lipocalin-type prostaglandin D2 synthase (L-PGDS)-Prostaglandin D2 (PGD2)-DP1 receptor (L-PGDS-PGD2-DP1R) axis. Findings in preclinical models confirm that DP1R are predominantly expressed in the sleep-regulating centers. This finding led to the discovery that the L-PGDS-PGD2-DP1R axis is involved in sleep regulation. Furthermore, we showed that the L-PGDS-PGD2-DP1R axis is beneficial in protecting the brain from ischemic stroke. Protein sequence homology was also performed, and it was found that L-PGDS and DP1R share a high degree of homology between humans and rodents. Based on the preclinical and clinical data thus far pertaining to the role of the L-PGDS-PGD2-DP1R axis in sleep regulation and neurologic conditions, there is optimism that this axis may have a high translational potential in human therapeutics. Therefore, here the focus is to review the regulation of the homeostatic component of the sleep process with a special focus on the L-PGDS-PGD2-DP1R axis and the consequences of sleep deprivation on health outcomes. Furthermore, we discuss whether the pharmacological regulation of this axis could represent a tool to prevent sleep disturbances and potentially improve outcomes, especially in patients with acute brain injuries.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Haneen Ottallah
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Carolina B Maciel
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL
| | - Michael Strickland
- Division of Biology and Biomedical Sciences, Washington University in Saint Louis, Saint Louis, MO
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Psychiatry, University of Florida, Gainesville, FL
- Department of Pharmaceutics, University of Florida, Gainesville, FL
- Department of Psychology, University of Florida, Gainesville, FL
- Department of Neuroscience, University of Florida, Gainesville, FL
| |
Collapse
|
31
|
Czeisler CM, Silva TM, Fair SR, Liu J, Tupal S, Kaya B, Cowgill A, Mahajan S, Silva PE, Wang Y, Blissett AR, Göksel M, Borniger JC, Zhang N, Fernandes‐Junior SA, Catacutan F, Alves MJ, Nelson RJ, Sundaresean V, Rekling J, Takakura AC, Moreira TS, Otero JJ. The role of PHOX2B-derived astrocytes in chemosensory control of breathing and sleep homeostasis. J Physiol 2019; 597:2225-2251. [PMID: 30707772 PMCID: PMC6462490 DOI: 10.1113/jp277082] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/28/2019] [Indexed: 01/07/2023] Open
Abstract
KEY POINTS The embryonic PHOX2B-progenitor domain generates neuronal and glial cells which together are involved in chemosensory control of breathing and sleep homeostasis. Ablating PHOX2B-derived astrocytes significantly contributes to secondary hypoxic respiratory depression as well as abnormalities in sleep homeostasis. PHOX2B-derived astrocyte ablation results in axonal pathologies in the retrotrapezoid nucleus. ABSTRACT We identify in mice a population of ∼800 retrotrapezoid nucleus (RTN) astrocytes derived from PHOX2B-positive, OLIG3-negative progenitor cells, that interact with PHOX2B-expressing RTN chemosensory neurons. PHOX2B-derived astrocyte ablation during early life results in adult-onset O2 chemoreflex deficiency. These animals also display changes in sleep homeostasis, including fragmented sleep and disturbances in delta power after sleep deprivation, all without observable changes in anxiety or social behaviours. Ultrastructural evaluation of the RTN demonstrates that PHOX2B-derived astrocyte ablation results in features characteristic of degenerative neuro-axonal dystrophy, including abnormally dilated axon terminals and increased amounts of synapses containing autophagic vacuoles/phagosomes. We conclude that PHOX2B-derived astrocytes are necessary for maintaining a functional O2 chemosensory reflex in the adult, modulate sleep homeostasis, and are key regulators of synaptic integrity in the RTN region, which is necessary for the chemosensory control of breathing. These data also highlight how defects in embryonic development may manifest as neurodegenerative pathology in an adult.
Collapse
Affiliation(s)
| | - Talita M. Silva
- Department of Physiology and BiophysicsInstitute of Biomedical ScienceUniversity of Sao PauloSao PauloBrazil
| | - Summer R. Fair
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Jillian Liu
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Srinivasan Tupal
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Behiye Kaya
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Aaron Cowgill
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Salil Mahajan
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Phelipe E. Silva
- Department of Physiology and BiophysicsInstitute of Biomedical ScienceUniversity of Sao PauloSao PauloBrazil
| | - Yangyang Wang
- Department of NeuroscienceThe Ohio State University College of MedicineColumbusOHUSA
- The Ohio State University Mathematical Biosciences InstituteColumbusOHUSA
| | - Angela R. Blissett
- Department of Mechanical and Aerospace EngineeringThe Ohio State University College of EngineeringColumbusOHUSA
| | - Mustafa Göksel
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Jeremy C. Borniger
- Department of NeuroscienceThe Ohio State University College of MedicineColumbusOHUSA
| | - Ning Zhang
- Department of NeuroscienceWest Virginia UniversityWVUSA
| | - Silvio A. Fernandes‐Junior
- The Ohio State University Campus Microscopy and Imaging FacilityColumbusOHUSA
- Department of PharmacologyInstitute of Biomedical ScienceUniversity of São PauloSao PauloBrazil
| | - Fay Catacutan
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Michele J. Alves
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | | | - Vishnu Sundaresean
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Jens Rekling
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
| | - Ana C. Takakura
- Department of PharmacologyInstitute of Biomedical ScienceUniversity of São PauloSao PauloBrazil
| | - Thiago S. Moreira
- Department of Physiology and BiophysicsInstitute of Biomedical ScienceUniversity of Sao PauloSao PauloBrazil
| | - José J. Otero
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| |
Collapse
|
32
|
Devienne G, Le Gac B, Piquet J, Cauli B. Single Cell Multiplex Reverse Transcription Polymerase Chain Reaction After Patch-clamp. J Vis Exp 2018. [PMID: 29985318 DOI: 10.3791/57627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The cerebral cortex is composed of numerous cell types exhibiting various morphological, physiological, and molecular features. This diversity hampers easy identification and characterization of these cell types, prerequisites to study their specific functions. This article describes the multiplex single cell reverse transcription polymerase chain reaction (RT-PCR) protocol, which allows, after patch-clamp recording in slices, to detect simultaneously the expression of tens of genes in a single cell. This simple method can be implemented with morphological characterization and is widely applicable to determine the phenotypic traits of various cell types and their particular cellular environment, such as in the vicinity of blood vessels. The principle of this protocol is to record a cell with the patch-clamp technique, to harvest and reverse transcribe its cytoplasmic content, and to detect qualitatively the expression of a predefined set of genes by multiplex PCR. It requires a careful design of PCR primers and intracellular patch-clamp solution compatible with RT-PCR. To ensure a selective and reliable transcript detection, this technique also requires appropriate controls from cytoplasm harvesting to amplification steps. Although precautions discussed here must be strictly followed, virtually any electrophysiological laboratory can use the multiplex single cell RT-PCR technique.
Collapse
Affiliation(s)
- Gabrielle Devienne
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université
| | - Benjamin Le Gac
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université
| | - Juliette Piquet
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université
| | - Bruno Cauli
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université;
| |
Collapse
|
33
|
Monoamines Inhibit GABAergic Neurons in Ventrolateral Preoptic Area That Make Direct Synaptic Connections to Hypothalamic Arousal Neurons. J Neurosci 2018; 38:6366-6378. [PMID: 29915137 DOI: 10.1523/jneurosci.2835-17.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 05/06/2018] [Accepted: 06/11/2018] [Indexed: 01/08/2023] Open
Abstract
The hypothalamus plays an important role in the regulation of sleep/wakefulness states. While the ventrolateral preoptic nucleus (VLPO) plays a critical role in the initiation and maintenance of sleep, the lateral posterior part of the hypothalamus contains neuronal populations implicated in maintenance of arousal, including orexin-producing neurons (orexin neurons) in the lateral hypothalamic area (LHA) and histaminergic neurons in the tuberomammillary nucleus (TMN). During a search for neurons that make direct synaptic contact with histidine decarboxylase-positive (HDC+), histaminergic neurons (HDC neurons) in the TMN and orexin neurons in the LHA of male mice, we found that these arousal-related neurons are heavily innervated by GABAergic neurons in the preoptic area including the VLPO. We further characterized GABAergic neurons electrophysiologically in the VLPO (GABAVLPO neurons) that make direct synaptic contact with these hypothalamic arousal-related neurons. These neurons (GABAVLPO→HDC or GABAVLPO→orexin neurons) were both potently inhibited by noradrenaline and serotonin, showing typical electrophysiological characteristics of sleep-promoting neurons in the VLPO. This work provides direct evidence of monosynaptic connectivity between GABAVLPO neurons and hypothalamic arousal neurons and identifies the effects of monoamines on these neuronal pathways.SIGNIFICANCE STATEMENT Rabies-virus-mediated tracing of input neurons of two hypothalamic arousal-related neuron populations, histaminergic and orexinergic neurons, showed that they receive similar distributions of input neurons in a variety of brain areas, with rich innervation by GABAergic neurons in the preoptic area, including the ventrolateral preoptic area (VLPO), a region known to play an important role in the initiation and maintenance of sleep. Electrophysiological experiments found that GABAergic neurons in the VLPO (GABAVLPO neurons) that make direct input to orexin or histaminergic neurons are potently inhibited by noradrenaline and serotonin, suggesting that these monoamines disinhibit histamine and orexin neurons. This work demonstrated functional and structural interactions between GABAVLPO neurons and hypothalamic arousal-related neurons.
Collapse
|
34
|
Nucleus Accumbens, a new sleep-regulating area through the integration of motivational stimuli. Acta Pharmacol Sin 2018; 39:165-166. [PMID: 29283174 DOI: 10.1038/aps.2017.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
35
|
Abstract
Sleep in mammals is accompanied by a decrease in core body temperature (CBT). The circadian clock in the hypothalamic suprachiasmatic nucleus regulates daily rhythms in both CBT and arousal states, and these rhythms are normally coupled. Reductions in metabolic heat production resulting from behavioral quiescence and reduced muscle tone along with changes in autonomic nervous system activity and thermoeffector activity contribute to the sleep-related fall in CBT. Reductions in sympathetic tone to the peripheral vasculature resulting in heat loss through the skin are reflected in a sleep-related increase in distal skin temperature that is a prominent feature of sleep onset in humans. Within a sleep episode, patterns of autonomic nervous system and thermoeffector activity and the ability to defend against heat and cold exposure differ during nonrapid eye movement (NREM) and rapid eye movement sleep. Anatomic and functional integration of the control of arousal states and thermoregulation occur in the preoptic/anterior hypothalamus. Subsets or warm-sensing neurons in the preoptic/anterior hypothalamus implicated in CBT regulation are spontaneously activated during sleep onset and NREM sleep compared to waking and may underlie sleep-related changes in autonomic nervous system and thermoeffector activity.
Collapse
Affiliation(s)
- Ronald Szymusiak
- Research Service, VA Greater Los Angeles Healthcare System and Department of Medicine and Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
36
|
Schmidt MH, Swang TW, Hamilton IM, Best JA. State-dependent metabolic partitioning and energy conservation: A theoretical framework for understanding the function of sleep. PLoS One 2017; 12:e0185746. [PMID: 29016625 PMCID: PMC5634544 DOI: 10.1371/journal.pone.0185746] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022] Open
Abstract
Metabolic rate reduction has been considered the mechanism by which sleep conserves energy, similar to torpor or hibernation. This mechanism of energy savings is in conflict with the known upregulation (compared to wake) of diverse functions during sleep and neglects a potential role in energy conservation for partitioning of biological operations by behavioral state. Indeed, energy savings as derived from state-dependent resource allocations have yet to be examined. A mathematical model is presented based on relative rates of energy deployment for biological processes upregulated during either wake or sleep. Using this model, energy savings from sleep-wake cycling over constant wakefulness is computed by comparing stable limit cycles for systems of differential equations. A primary objective is to compare potential energy savings derived from state-dependent metabolic partitioning versus metabolic rate reduction. Additionally, energy conservation from sleep quota and the circadian system are also quantified in relation to a continuous wake condition. As a function of metabolic partitioning, our calculations show that coupling of metabolic operations with behavioral state may provide comparatively greater energy savings than the measured decrease in metabolic rate, suggesting that actual energy savings derived from sleep may be more than 4-fold greater than previous estimates. A combination of state-dependent metabolic partitioning and modest metabolic rate reduction during sleep may enhance energy savings beyond what is achievable through metabolic partitioning alone; however, the relative contribution from metabolic partitioning diminishes as metabolic rate is decreased during the rest phase. Sleep quota and the circadian system further augment energy savings in the model. Finally, we propose that state-dependent resource allocation underpins both sleep homeostasis and the optimization of daily energy conservation across species. This new paradigm identifies an evolutionary selective advantage for the upregulation of central and peripheral biological processes during sleep, presenting a unifying construct to understand sleep function.
Collapse
Affiliation(s)
- Markus H. Schmidt
- Department of Neurology, University of Bern, Inselspital, Bern, Switzerland
- Ohio Sleep Medicine and Neuroscience Institute, Dublin, Ohio, United States of America
- * E-mail:
| | - Theodore W. Swang
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| | - Ian M. Hamilton
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Janet A. Best
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
37
|
Qian Y, Cao Y, Deng B, Yang G, Li J, Xu R, Zhang D, Huang J, Rao Y. Sleep homeostasis regulated by 5HT2b receptor in a small subset of neurons in the dorsal fan-shaped body of drosophila. eLife 2017; 6:26519. [PMID: 28984573 PMCID: PMC5648528 DOI: 10.7554/elife.26519] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the molecular mechanisms underlying sleep homeostasis is limited. We have taken a systematic approach to study neural signaling by the transmitter 5-hydroxytryptamine (5-HT) in drosophila. We have generated knockout and knockin lines for Trh, the 5-HT synthesizing enzyme and all five 5-HT receptors, making it possible for us to determine their expression patterns and to investigate their functional roles. Loss of the Trh, 5HT1a or 5HT2b gene decreased sleep time whereas loss of the Trh or 5HT2b gene diminished sleep rebound after sleep deprivation. 5HT2b expression in a small subset of, probably a single pair of, neurons in the dorsal fan-shaped body (dFB) is functionally essential: elimination of the 5HT2b gene from these neurons led to loss of sleep homeostasis. Genetic ablation of 5HT2b neurons in the dFB decreased sleep and impaired sleep homeostasis. Our results have shown that serotonergic signaling in specific neurons is required for the regulation of sleep homeostasis.
Collapse
Affiliation(s)
- Yongjun Qian
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Yue Cao
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China
| | - Bowen Deng
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Guang Yang
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China
| | - Jiayun Li
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China
| | - Rui Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Dandan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Juan Huang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yi Rao
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
38
|
Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron 2017; 93:747-765. [PMID: 28231463 DOI: 10.1016/j.neuron.2017.01.014] [Citation(s) in RCA: 540] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/29/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
Sleep remains one of the most mysterious yet ubiquitous animal behaviors. We review current perspectives on the neural systems that regulate sleep/wake states in mammals and the circadian mechanisms that control their timing. We also outline key models for the regulation of rapid eye movement (REM) sleep and non-REM sleep, how mutual inhibition between specific pathways gives rise to these distinct states, and how dysfunction in these circuits can give rise to sleep disorders.
Collapse
Affiliation(s)
- Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Neurology, Boston Children's Hospital, Boston, MA 02215, USA.
| | - Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jonathan O Lipton
- Department of Neurology, Boston Children's Hospital, Boston, MA 02215, USA; F.M. Kirby Neurobiology Center, Boston, MA 02215, USA
| |
Collapse
|
39
|
Adult Brain Serotonin Deficiency Causes Hyperactivity, Circadian Disruption, and Elimination of Siestas. J Neurosci 2017; 36:9828-42. [PMID: 27656022 DOI: 10.1523/jneurosci.1469-16.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/03/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Serotonin (5-HT) is a crucial neuromodulator linked to many psychiatric disorders. However, after more than 60 years of study, its role in behavior remains poorly understood, in part because of a lack of methods to target 5-HT synthesis specifically in the adult brain. Here, we have developed a genetic approach that reproducibly achieves near-complete elimination of 5-HT synthesis from the adult ascending 5-HT system by stereotaxic injection of an adeno-associated virus expressing Cre recombinase (AAV-Cre) into the midbrain/pons of mice carrying a loxP-conditional tryptophan hydroxylase 2 (Tph2) allele. We investigated the behavioral effects of deficient brain 5-HT synthesis and discovered a unique composite phenotype. Surprisingly, adult 5-HT deficiency did not affect anxiety-like behavior, but resulted in a robust hyperactivity phenotype in novel and home cage environments. Moreover, loss of 5-HT led to an altered pattern of circadian behavior characterized by an advance in the onset and a delay in the offset of daily activity, thus revealing a requirement for adult 5-HT in the control of daily activity patterns. Notably, after normalizing for hyperactivity, we found that the normal prolonged break in nocturnal activity (siesta), a period of rapid eye movement (REM) and non-REM sleep, was absent in all animals in which 5-HT deficiency was verified. Our findings identify adult 5-HT as a requirement for siestas, implicate adult 5-HT in sleep-wake homeostasis, and highlight the importance of our adult-specific 5-HT-synthesis-targeting approach in understanding 5-HT's role in controlling behavior. SIGNIFICANCE STATEMENT Serotonin (5-HT) is a crucial neuromodulator, yet its role in behavior remains poorly understood, in part because of a lack of methods to target specifically adult brain 5-HT synthesis. We developed an approach that reproducibly achieves near-complete elimination of 5-HT synthesis from the adult ascending 5-HT system. Using this technique, we discovered that adult 5-HT deficiency led to a novel compound phenotype consisting of hyperactivity, disrupted circadian behavior patterns, and elimination of siestas, a period of increased sleep during the active phase. These findings highlight the importance of our approach in understanding 5-HT's role in behavior, especially in controlling activity levels, circadian behavior, and sleep-wake homeostasis, behaviors that are disrupted in many psychiatric disorders such as attention deficit hyperactivity disorder.
Collapse
|
40
|
Abstract
Sleep homeostasis is a fundamental property of vigilance state regulation that is highly conserved across species. Neuronal systems and circuits that underlie sleep homeostasis are not well understood. In Drosophila, a neuronal circuit involving neurons in the ellipsoid body and in the dorsal Fan-shaped body is a candidate for both tracing sleep need during waking and translating it to increased sleep drive and expression. Sleep homeostasis in rats and mice involves multiple neuromodulators acting on multiple wake- and sleep-promoting neuronal systems. A functional central homeostat emerges from A1 receptor mediated actions of adenosine on wake-promoting neurons in the basal forebrain and hypothalamus, and A2A adenosine receptor-mediated actions on sleep-promoting neurons in the preoptic hypothalamus and nucleus accumbens.
Collapse
|
41
|
Luppi PH, Peyron C, Fort P. Not a single but multiple populations of GABAergic neurons control sleep. Sleep Med Rev 2017; 32:85-94. [DOI: 10.1016/j.smrv.2016.03.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/15/2022]
|
42
|
Weber F, Dan Y. Circuit-based interrogation of sleep control. Nature 2016; 538:51-59. [PMID: 27708309 DOI: 10.1038/nature19773] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/17/2016] [Indexed: 12/20/2022]
Abstract
Sleep is a fundamental biological process observed widely in the animal kingdom, but the neural circuits generating sleep remain poorly understood. Understanding the brain mechanisms controlling sleep requires the identification of key neurons in the control circuits and mapping of their synaptic connections. Technical innovations over the past decade have greatly facilitated dissection of the sleep circuits. This has set the stage for understanding how a variety of environmental and physiological factors influence sleep. The ability to initiate and terminate sleep on command will also help us to elucidate its functions within and beyond the brain.
Collapse
Affiliation(s)
- Franz Weber
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
43
|
Monoi N, Matsuno A, Nagamori Y, Kimura E, Nakamura Y, Oka K, Sano T, Midorikawa T, Sugafuji T, Murakoshi M, Uchiyama A, Sugiyama K, Nishino H, Urade Y. Japanese sake yeast supplementation improves the quality of sleep: a double-blind randomised controlled clinical trial. J Sleep Res 2016; 25:116-23. [PMID: 26354605 DOI: 10.1111/jsr.12336] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 07/03/2015] [Indexed: 11/28/2022]
Abstract
Activation of adenosine A2a receptors in cerebral neurons induces sleep in various mammals. It was previously found that Japanese sake yeast enriched in adenosine analogues activates A2a receptors in vitro and induces sleep in mice. Here it is reported that sake yeast activated A2a receptors in a cultured human cell line and improved human sleep quality in a clinical trial. Sake yeast activated A2a receptors in HEK cells in a dose-dependent manner with an EC50 of 40 μg mL(-1), and the activation was attenuated almost completely by the A2a receptor antagonist ZM241385 with an IC50 of 73 nm. In a double-blind placebo-controlled crossover clinical study, 68 healthy participants ingested tablets containing either 500 mg of sake yeast powder or a placebo (cellulose) 1 h before sleep for 4 days. Electroencephalograms were recorded during sleep at home with a portable device for 4 week days. Electroencephalogram analyses revealed that sake yeast supplementation significantly (P = 0.03) increased delta power during the first cycle of slow-wave sleep by 110%, without changing other sleep parameters. Sake yeast supplementation also significantly increased growth hormone secretion in the urine on awakening by 137% from 3.17 ± 0.41 (placebo) to 4.33 ± 0.62 (sake yeast) pg mg(-1) creatinine (P = 0.03). Subjective sleepiness (P = 0.02) and fatigue (P = 0.06) in the morning were improved by sake yeast. Given these benefits and the absence of adverse effects during the study period, it was concluded that sake yeast supplementation is an effective and safe way to support daily high-quality, deep sleep.
Collapse
|
44
|
Gvilia I, Suntsova N, Kostin A, Kalinchuk A, McGinty D, Basheer R, Szymusiak R. The role of adenosine in the maturation of sleep homeostasis in rats. J Neurophysiol 2016; 117:327-335. [PMID: 27784808 DOI: 10.1152/jn.00675.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023] Open
Abstract
Sleep homeostasis in rats undergoes significant maturational changes during postweaning development, but the underlying mechanisms of this process are unknown. In the present study we tested the hypothesis that the maturation of sleep is related to the functional emergence of adenosine (AD) signaling in the brain. We assessed postweaning changes in 1) wake-related elevation of extracellular AD in the basal forebrain (BF) and adjacent lateral preoptic area (LPO), and 2) the responsiveness of median preoptic nucleus (MnPO) sleep-active cells to increasing homeostatic sleep drive. We tested the ability of exogenous AD to augment homeostatic responses to sleep deprivation (SD) in newly weaned rats. In groups of postnatal day (P)22 and P30 rats, we collected dialysate from the BF/LPO during baseline (BSL) wake-sleep, SD, and recovery sleep (RS). HPLC analysis of microdialysis samples revealed that SD in P30 rats results in significant increases in AD levels compared with BSL. P22 rats do not exhibit changes in AD levels in response to SD. We recorded neuronal activity in the MnPO during BSL, SD, and RS at P22/P30. MnPO neurons exhibited adult-like increases in waking neuronal discharge across SD on both P22 and P30, but discharge rates during enforced wake were higher on P30 vs. P22. Central administration of AD (1 nmol) during SD on P22 resulted in increased sleep time and EEG slow-wave activity during RS compared with saline control. Collectively, these findings support the hypothesis that functional reorganization of an adenosinergic mechanism of sleep regulation contributes to the maturation of sleep homeostasis. NEW & NOTEWORTHY Brain mechanisms that regulate the maturation of sleep are understudied. The present study generated first evidence about a potential mechanistic role for adenosine in the maturation of sleep homeostasis. Specifically, we demonstrate that early postweaning development in rats, when homeostatic response to sleep loss become adult like, is characterized by maturational changes in wake-related production/release of adenosine in the brain. Pharmacologically increased adenosine signaling in developing brain facilitates homeostatic responses to sleep deprivation.
Collapse
Affiliation(s)
- Irma Gvilia
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, North Hills, California; .,Department of Medicine, University of California, Los Angeles, California.,Ilia State University, Tbilisi, Georgia; and
| | - Natalia Suntsova
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, North Hills, California.,Department of Medicine, University of California, Los Angeles, California
| | - Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, North Hills, California
| | - Anna Kalinchuk
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Dennis McGinty
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, North Hills, California.,Department of Psychology, University of California, Los Angeles, California
| | - Radhika Basheer
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Ronald Szymusiak
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, North Hills, California.,Department of Medicine, University of California, Los Angeles, California
| |
Collapse
|
45
|
Dubourget R, Sangare A, Geoffroy H, Gallopin T, Rancillac A. Multiparametric characterization of neuronal subpopulations in the ventrolateral preoptic nucleus. Brain Struct Funct 2016; 222:1153-1167. [DOI: 10.1007/s00429-016-1265-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
46
|
Sangare A, Dubourget R, Geoffroy H, Gallopin T, Rancillac A. Serotonin differentially modulates excitatory and inhibitory synaptic inputs to putative sleep-promoting neurons of the ventrolateral preoptic nucleus. Neuropharmacology 2016; 109:29-40. [PMID: 27238836 DOI: 10.1016/j.neuropharm.2016.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/01/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022]
Abstract
The role of serotonin (5-HT) in sleep-wake regulation has been a subject of intense debate and remains incompletely understood. In the ventrolateral preoptic nucleus (VLPO), the main structure that triggers non-rapid eye movement (NREM) sleep, putative sleep-promoting (PSP) neurons were shown ex vivo to be either inhibited (Type-1) or excited (Type-2) by 5-HT application. To determine the complex action of this neurotransmitter on PSP neurons, we recorded spontaneous and miniature excitatory and inhibitory postsynaptic currents (sEPSCs, sIPSCs, mEPSCs and mIPSCs) in response to bath application of 5-HT. We established in mouse acute VLPO slices that 5-HT reduces spontaneous and miniature EPSC and IPSC frequencies to Type-1 neurons, whereas 5-HT selectively increases sIPSC and mIPSC frequencies to Type-2 VLPO neurons. We further determined that Type-1 neurons display a lower action potential threshold and a smaller soma size than Type-2 neurons. Finally, single-cell RT-PCR designed to identify the 13 serotonergic receptor subtypes revealed the specific mRNA expression of the 5-HT1A,B,D,F receptors by Type-1 neurons. Furthermore, the 5-HT2A-C,4,7 receptors were found to be equivalently expressed by both neuronal types. Altogether, our results establish that the excitatory and inhibitory inputs to Type-1 and Type-2 VLPO PSP neurons are differentially regulated by 5-HT. Electrophysiological, morphological and molecular differences were also identified between these two neuronal types. Our results provide new insights regarding the orchestration of sleep regulation by 5-HT release, and strongly suggest that Type-2 neurons could play a permissive role, whereas Type-1 neurons could have an executive role in sleep induction and maintenance.
Collapse
Affiliation(s)
- Aude Sangare
- Brain Plasticity Unit, ESPCI ParisTech, Paris, France; Centre National de la Recherche Scientifique, UMR 8249, France
| | - Romain Dubourget
- Brain Plasticity Unit, ESPCI ParisTech, Paris, France; Centre National de la Recherche Scientifique, UMR 8249, France
| | - Hélène Geoffroy
- Brain Plasticity Unit, ESPCI ParisTech, Paris, France; Centre National de la Recherche Scientifique, UMR 8249, France
| | - Thierry Gallopin
- Brain Plasticity Unit, ESPCI ParisTech, Paris, France; Centre National de la Recherche Scientifique, UMR 8249, France
| | - Armelle Rancillac
- Brain Plasticity Unit, ESPCI ParisTech, Paris, France; Centre National de la Recherche Scientifique, UMR 8249, France.
| |
Collapse
|
47
|
Scharbarg E, Daenens M, Lemaître F, Geoffroy H, Guille-Collignon M, Gallopin T, Rancillac A. Astrocyte-derived adenosine is central to the hypnogenic effect of glucose. Sci Rep 2016; 6:19107. [PMID: 26755200 PMCID: PMC4709579 DOI: 10.1038/srep19107] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022] Open
Abstract
Sleep has been hypothesised to maintain a close relationship with metabolism. Here we focus on the brain structure that triggers slow-wave sleep, the ventrolateral preoptic nucleus (VLPO), to explore the cellular and molecular signalling pathways recruited by an increase in glucose concentration. We used infrared videomicroscopy on ex vivo brain slices to establish that glucose induces vasodilations specifically in the VLPO via the astrocytic release of adenosine. Real-time detection by in situ purine biosensors further revealed that the adenosine level doubles in response to glucose, and triples during the wakefulness period. Finally, patch-clamp recordings uncovered the depolarizing effect of adenosine and its A2A receptor agonist, CGS-21680, on sleep-promoting VLPO neurons. Altogether, our results provide new insights into the metabolically driven release of adenosine. We hypothesise that adenosine adjusts the local energy supply to local neuronal activity in response to glucose. This pathway could contribute to sleep-wake transition and sleep intensity.
Collapse
Affiliation(s)
- Emeric Scharbarg
- Brain Plasticity Unit, ESPCI-ParisTech, PSL Research University, Paris, F-75005, France
- CNRS, UMR 8249, Paris, F-75005, France
| | - Marion Daenens
- Brain Plasticity Unit, ESPCI-ParisTech, PSL Research University, Paris, F-75005, France
- CNRS, UMR 8249, Paris, F-75005, France
| | - Frédéric Lemaître
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, Paris, F-75005, France
- CNRS, UMR 8640 Pasteur, Paris, F-75005, France
| | - Hélène Geoffroy
- Brain Plasticity Unit, ESPCI-ParisTech, PSL Research University, Paris, F-75005, France
- CNRS, UMR 8249, Paris, F-75005, France
| | - Manon Guille-Collignon
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, Paris, F-75005, France
- CNRS, UMR 8640 Pasteur, Paris, F-75005, France
| | - Thierry Gallopin
- Brain Plasticity Unit, ESPCI-ParisTech, PSL Research University, Paris, F-75005, France
- CNRS, UMR 8249, Paris, F-75005, France
| | - Armelle Rancillac
- Brain Plasticity Unit, ESPCI-ParisTech, PSL Research University, Paris, F-75005, France
- CNRS, UMR 8249, Paris, F-75005, France
| |
Collapse
|
48
|
Glucose Induces Slow-Wave Sleep by Exciting the Sleep-Promoting Neurons in the Ventrolateral Preoptic Nucleus: A New Link between Sleep and Metabolism. J Neurosci 2015; 35:9900-11. [PMID: 26156991 DOI: 10.1523/jneurosci.0609-15.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Sleep-active neurons located in the ventrolateral preoptic nucleus (VLPO) play a crucial role in the induction and maintenance of slow-wave sleep (SWS). However, the cellular and molecular mechanisms responsible for their activation at sleep onset remain poorly understood. Here, we test the hypothesis that a rise in extracellular glucose concentration in the VLPO can promote sleep by increasing the activity of sleep-promoting VLPO neurons. We find that infusion of a glucose concentration into the VLPO of mice promotes SWS and increases the density of c-Fos-labeled neurons selectively in the VLPO. Moreover, we show in patch-clamp recordings from brain slices that VLPO neurons exhibiting properties of sleep-promoting neurons are selectively excited by glucose within physiological range. This glucose-induced excitation implies the catabolism of glucose, leading to a closure of ATP-sensitive potassium (KATP) channels. The extracellular glucose concentration monitors the gating of KATP channels of sleep-promoting neurons, highlighting that these neurons can adapt their excitability according to the extracellular energy status. Together, these results provide evidence that glucose may participate in the mechanisms of SWS promotion and/or consolidation. SIGNIFICANCE STATEMENT Although the brain circuitry underlying vigilance states is well described, the molecular mechanisms responsible for sleep onset remain largely unknown. Combining in vitro and in vivo experiments, we demonstrate that glucose likely contributes to sleep onset facilitation by increasing the excitability of sleep-promoting neurons in the ventrolateral preoptic nucleus (VLPO). We find here that these neurons integrate energetic signals such as ambient glucose directly to regulate vigilance states accordingly. Glucose-induced excitation of sleep-promoting VLPO neurons should therefore be involved in the drowsiness that one feels after a high-sugar meal. This novel mechanism regulating the activity of VLPO neurons reinforces the fundamental and intimate link between sleep and metabolism.
Collapse
|
49
|
Huang ZL, Zhang Z, Qu WM. Roles of adenosine and its receptors in sleep-wake regulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 119:349-71. [PMID: 25175972 DOI: 10.1016/b978-0-12-801022-8.00014-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This chapter summarizes the current knowledge about the role of adenosine in the sleep-wake regulation with a focus on adenosine in the brain, regulation of adenosine levels, adenosine receptors, and manipulations of the adenosine system by the use of pharmacological and molecular biological tools. Adenosine is neither stored nor released as a classical neurotransmitter and is thought to be formed inside cells or on their surface, mostly by breakdown of adenine nucleotides. The extracellular level of adenosine increases in the cortex and basal forebrain (BF) during prolonged wakefulness and decreases during the sleep-recovery period. Therefore, adenosine is proposed to act as a homeostatic regulator of sleep. The endogenous somnogen prostaglandin (PG) D2 increases the extracellular level of adenosine under the subarachnoid space of the BF and promotes physiological sleep. There are four adenosine receptor subtypes: adenosine A1 receptor (R, A1R), A2AR, A2BR, and A3R. Both the A1R and the A2AR have been reported to be involved in sleep induction. The A2AR plays an important role in the somnogenic effects of PGD2. Activation of A2AR by its agonist infused into the brain potently increases sleep and the arousal effect of caffeine, an A1R and A2AR antagonist, was shown to be dependent on the A2AR. On the other hand, inhibition of wake-promoting neurons via the A1R also mediates the sleep-inducing effects of adenosine, whereas activation of A1R in the lateral preoptic area induces wakefulness. These findings indicate that A2AR plays a predominant role in sleep induction, whereas A1R regulates the sleep-wake cycle in a site-dependent manner.
Collapse
Affiliation(s)
- Zhi-Li Huang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, Institute of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Ze Zhang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, Institute of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, Institute of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
50
|
α2-Adrenergic stimulation of the ventrolateral preoptic nucleus destabilizes the anesthetic state. J Neurosci 2015; 34:16385-96. [PMID: 25471576 DOI: 10.1523/jneurosci.1135-14.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The sleep-promoting ventrolateral preoptic nucleus (VLPO) shares reciprocal inhibitory inputs with wake-active neuronal nuclei, including the locus ceruleus. Electrophysiologically, sleep-promoting neurons in the VLPO are directly depolarized by the general anesthetic isoflurane and hyperpolarized by norepinephrine, a wake-promoting neurotransmitter. However, the integration of these competing influences on the VLPO, a sleep- and anesthetic-active structure, has yet to be evaluated in either brain slices in vitro or the intact organism. Single-cell multiplex RT-PCR conducted on both isoflurane-activated, putative sleep-promoting VLPO neurons and neighboring, state-indifferent VLPO neurons in mouse brain slices revealed widespread expression of α2A-, α2B- and α2C-adrenergic receptors in both populations. Indeed, both norepinephrine and the highly selective α2 agonist dexmedetomidine each reversed the VLPO depolarization induced by isoflurane in slices in vitro. When microinjected directly into the VLPO of a mouse lightly anesthetized with isoflurane, dexmedetomidine increased behavioral arousal and reduced the depressant effects of isoflurane on barrel cortex somatosensory-evoked potentials but failed to elicit spectral changes in spontaneous EEG. Based on these observations, we conclude that local modulation of α-adrenergic activity in the VLPO destabilizes, but does not fully antagonize, the anesthetic state, thus priming the brain for anesthetic emergence.
Collapse
|