1
|
Sze Y, Brunton PJ. How is prenatal stress transmitted from the mother to the fetus? J Exp Biol 2024; 227:jeb246073. [PMID: 38449331 DOI: 10.1242/jeb.246073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Prenatal stress programmes long-lasting neuroendocrine and behavioural changes in the offspring. Often this programming is maladaptive and sex specific. For example, using a rat model of maternal social stress in late pregnancy, we have demonstrated that adult prenatally stressed male, but not prenatally stressed female offspring display heightened anxiety-like behaviour, whereas both sexes show hyperactive hypothalamo-pituitary-adrenal (HPA) axis responses to stress. Here, we review the current knowledge of the mechanisms underpinning dysregulated HPA axis responses, including evidence supporting a role for reduced neurosteroid-mediated GABAergic inhibitory signalling in the brains of prenatally stressed offspring. How maternal psychosocial stress is signalled from the mother to the fetuses is unclear. Direct transfer of maternal glucocorticoids to the fetuses is often considered to mediate the programming effects of maternal stress on the offspring. However, protective mechanisms including attenuated maternal stress responses and placental 11β-hydroxysteroid dehydrogenase-2 (which inactivates glucocorticoids) should limit materno-fetal glucocorticoid transfer during pregnancy. Moreover, a lack of correlation between maternal stress, circulating maternal glucocorticoid levels and circulating fetal glucocorticoid levels is reported in several studies and across different species. Therefore, here we interrogate the evidence for a role for maternal glucocorticoids in mediating the effects of maternal stress on the offspring and consider the evidence for alternative mechanisms, including an indirect role for glucocorticoids and the contribution of changes in the placenta in signalling the stress status of the mother to the fetus.
Collapse
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Paula J Brunton
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
- Zhejiang University-University of Edinburgh Joint Institute, Haining, Zhejiang 314400, P.R. China
| |
Collapse
|
2
|
Vagnerová K, Gazárková T, Vodička M, Ergang P, Klusoňová P, Hudcovic T, Šrůtková D, Petr Hermanová P, Nováková L, Pácha J. Microbiota modulates the steroid response to acute immune stress in male mice. Front Immunol 2024; 15:1330094. [PMID: 38361932 PMCID: PMC10867242 DOI: 10.3389/fimmu.2024.1330094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Microbiota plays a role in shaping the HPA-axis response to psychological stressors. To examine the role of microbiota in response to acute immune stressor, we stimulated the adaptive immune system by anti-CD3 antibody injection and investigated the expression of adrenal steroidogenic enzymes and profiling of plasma corticosteroids and their metabolites in specific pathogen-free (SPF) and germ-free (GF) mice. Using UHPLC-MS/MS, we showed that 4 hours after immune challenge the plasma levels of pregnenolone, progesterone, 11-deoxycorticosterone, corticosterone (CORT), 11-dehydroCORT and their 3α/β-, 5α-, and 20α-reduced metabolites were increased in SPF mice, but in their GF counterparts, only CORT was increased. Neither immune stress nor microbiota changed the mRNA and protein levels of enzymes of adrenal steroidogenesis. In contrast, immune stress resulted in downregulated expression of steroidogenic genes (Star, Cyp11a1, Hsd3b1, Hsd3b6) and upregulated expression of genes of the 3α-hydroxysteroid oxidoreductase pathway (Akr1c21, Dhrs9) in the testes of SPF mice. In the liver, immune stress downregulated the expression of genes encoding enzymes with 3β-hydroxysteroid dehydrogenase (HSD) (Hsd3b2, Hsd3b3, Hsd3b4, Hsd3b5), 3α-HSD (Akr1c14), 20α-HSD (Akr1c6, Hsd17b1, Hsd17b2) and 5α-reductase (Srd5a1) activities, except for Dhrs9, which was upregulated. In the colon, microbiota downregulated Cyp11a1 and modulated the response of Hsd11b1 and Hsd11b2 expression to immune stress. These data underline the role of microbiota in shaping the response to immune stressor. Microbiota modulates the stress-induced increase in C21 steroids, including those that are neuroactive that could play a role in alteration of HPA axis response to stress in GF animals.
Collapse
Affiliation(s)
- Karla Vagnerová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Taťána Gazárková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czechia
| | - Martin Vodička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Petra Klusoňová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Tomáš Hudcovic
- Institute of Microbiology, Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Dagmar Šrůtková
- Institute of Microbiology, Czech Academy of Sciences, Nový Hrádek, Czechia
| | | | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czechia
| | - Jiří Pácha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
3
|
Vagnerová K, Jágr M, Mekadim C, Ergang P, Sechovcová H, Vodička M, Olša Fliegerová K, Dvořáček V, Mrázek J, Pácha J. Profiling of adrenal corticosteroids in blood and local tissues of mice during chronic stress. Sci Rep 2023; 13:7278. [PMID: 37142643 PMCID: PMC10160118 DOI: 10.1038/s41598-023-34395-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
Stress increases plasma concentrations of corticosteroids, however, their tissue levels are unclear. Using a repeated social defeat paradigm, we examined the impact of chronic stress on tissue levels of corticosterone (CORT), progesterone (PROG), 11-deoxycorticosterone (11DOC) and 11-dehydrocorticosterone (11DHC) and on gut microbiota, which may reshape the stress response. Male BALB/c mice, liquid chromatography-tandem mass spectrometry and 16S RNA gene sequencing were used to screen steroid levels and fecal microbiome, respectively. Stress induced greater increase of CORT in the brain, liver, and kidney than in the colon and lymphoid organs, whereas 11DHC was the highest in the colon, liver and kidney and much lower in the brain and lymphoid organs. The CORT/11DHC ratio in plasma was similar to the brain but much lower in other organs. Stress also altered tissue levels of PROG and 11DOC and the PROG/11DOC ratio was much higher in lymphoid organs that in plasma and other organs. Stress impacted the β- but not the α-diversity of the gut microbiota and LEfSe analysis revealed several biomarkers associated with stress treatment. Our data indicate that social defeat stress modulates gut microbiota diversity and induces tissue-dependent changes in local levels of corticosteroids, which often do not reflect their systemic levels.
Collapse
Affiliation(s)
- Karla Vagnerová
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic.
| | - Michal Jágr
- Quality and Plant Products, Crop Research Institute, Prague, Czech Republic
| | - Chahrazed Mekadim
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic
| | - Hana Sechovcová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic
| | - Martin Vodička
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic
| | | | - Václav Dvořáček
- Quality and Plant Products, Crop Research Institute, Prague, Czech Republic
| | - Jakub Mrázek
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Pácha
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Katsube M, Watanabe H, Suzuki K, Ishimoto T, Tatebayashi Y, Kato Y, Murayama N. Food-derived antioxidant ergothioneine improves sleep difficulties in humans. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
5
|
The adrenal steroid profile in adolescent depression: a valuable bio-readout? Transl Psychiatry 2022; 12:255. [PMID: 35717450 PMCID: PMC9206671 DOI: 10.1038/s41398-022-01966-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 12/05/2022] Open
Abstract
There is preliminary evidence that adrenal steroids other than cortisol may be valuable biomarkers for major depressive disorder (MDD). So far, studies have been conducted in adults only, and conclusions are limited, mainly due to small sample sizes. Therefore, the present study assessed whether adrenal steroids serve as biomarkers for adolescent MDD. In 261 depressed adolescents (170 females) treated at a single psychiatric hospital, serum adrenal steroids (progesterone, 17-hydroxyprogesterone, 21-deoxycortisol, 11-deoxycortisol, cortisol, cortisone, deoxycorticosterone, corticosterone) were determined by liquid chromatography-tandem mass spectrometry. Findings were compared to that of an age- and sex-matched reference cohort (N = 255) by nonparametric analysis of variance. Nonparametric receiver operating characteristics (ROC) analyses were conducted to evaluate the diagnostic performance of single steroids and steroid ratios to classify depression status. Sensitivity analyses considered important confounders of adrenal functioning, and ROC results were verified by cross-validation. Compared to the reference cohort, levels of deoxycorticosterone and 21-deoxycortisol were decreased (P < 0.001). All other glucocorticoid- and mineralocorticoid-related steroids were increased (P < 0.001). The corticosterone to deoxycorticosterone ratio evidenced excellent classification characteristics, especially in females (AUC: 0.957; sensitivity: 0.902; specificity: 0.891). The adrenal steroid metabolome qualifies as a bio-readout reflecting adolescent MDD by a distinct steroid pattern that indicates dysfunction of the hypothalamus-pituitary-adrenal axis. Moreover, the corticosterone to deoxycorticosterone ratio may prospectively qualify to contribute to precision medicine in psychiatry by identifying those patients who might benefit from antiglucocorticoid treatment or those at risk for recurrence when adrenal dysfunction has not resolved.
Collapse
|
6
|
Reddy DS, Thompson W, Calderara G. Does Stress Trigger Seizures? Evidence from Experimental Models. Curr Top Behav Neurosci 2021; 55:41-64. [PMID: 33547597 DOI: 10.1007/7854_2020_191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This chapter describes the experimental evidence of stress modulation of epileptic seizures and the potential role of corticosteroids and neurosteroids in regulating stress-linked seizure vulnerability. Epilepsy is a chronic neurological disorder that is characterized by repeated seizures. There are many potential causes for epilepsy, including genetic predispositions, infections, brain injury, and neurotoxicity. Stress is a known precipitating factor for seizures in individuals suffering from epilepsy. Severe acute stress and persistent exposure to stress may increase susceptibility to seizures, thereby resulting in a higher frequency of seizures. This occurs through the stress-mediated release of cortisol, which has both excitatory and proconvulsant properties. Stress also causes the release of endogenous neurosteroids from central and adrenal sources. Neurosteroids such as allopregnanolone and THDOC, which are allosteric modulators of GABA-A receptors, are powerful anticonvulsants and neuroprotectants. Acute stress increases the release of neurosteroids, while chronic stress is associated with severe neurosteroid depletion and reduced inhibition in the brain. This diminished inhibition occurs largely as a result of neurosteroid deficiencies. Thus, exogenous administration of neurosteroids (neurosteroid replacement therapy) may offer neuroprotection in epilepsy. Synthetic neurosteroid could offer a rational approach to control neurosteroid-sensitive, stress-related epileptic seizures.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.
| | - Wesley Thompson
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Gianmarco Calderara
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
7
|
Basu T, Maguire J, Salpekar JA. Hypothalamic-pituitary-adrenal axis targets for the treatment of epilepsy. Neurosci Lett 2021; 746:135618. [PMID: 33429002 DOI: 10.1016/j.neulet.2020.135618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Stress is a common seizure trigger in persons with epilepsy. The body's physiological response to stress is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and involves a hormonal cascade that includes corticotropin releasing hormone (CRH), adrenocorticotropin releasing hormone (ACTH) and the release of cortisol (in humans and primates) or corticosterone (in rodents). The prolonged exposure to stress hormones may not only exacerbate pre-existing medical conditions including epilepsy, but may also increase the predisposition to psychiatric comorbidities. Hyperactivity of the HPA axis negatively impacts the structure and function of the temporal lobe of the brain, a region that is heavily involved in epilepsy and mood disorders like anxiety and depression. Seizures themselves damage temporal lobe structures, further disinhibiting the HPA axis, setting off a vicious cycle of neuronal damage and increasing susceptibility for subsequent seizures and psychiatric comorbidity. Treatments targeting the HPA axis may be beneficial both for epilepsy and for associated stress-related comorbidities such as anxiety or depression. This paper will highlight the evidence demonstrating dysfunction in the HPA axis associated with epilepsy which may contribute to the comorbidity of psychiatric disorders and epilepsy, and propose treatment strategies that may dually improve seizure control as well as alleviate stress related psychiatric comorbidities.
Collapse
Affiliation(s)
- Trina Basu
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Jay A Salpekar
- Kennedy Krieger Institute, Johns Hopkins University Medical School, Baltimore, MD 21205, United States.
| |
Collapse
|
8
|
Sze Y, Brunton PJ. Effects of prenatal stress on neuroactive steroid responses to acute stress in adult male and female rats. J Neuroendocrinol 2021; 33:e12916. [PMID: 33270955 PMCID: PMC7900968 DOI: 10.1111/jne.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/20/2022]
Abstract
Acute swim stress results in the robust production of several neuroactive steroids, which act as mediators of the stress response. These steroids include glucocorticoids, and positive GABAA receptor modulatory steroids such as allopregnanolone and tetrahydrocorticosterone (THDOC), which potentiate inhibitory GABA signalling, thereby playing a role in the negative control of the hypothalamic-pituitary-adrenal (HPA) axis. Prenatally stressed (PNS) offspring exhibit increased vulnerability to stress-related disorders and frequently display exaggerated HPA axis responses to stressors during adulthood, which may be a result of reduced neuroactive steroid production and consequently inhibitory signalling. Here, we investigated whether exposure of rats to prenatal social stress from gestational day 16-20 altered neuroactive steroid production under non-stress conditions and in response to an acute stressor (swim stress) in adulthood. Using liquid chromatography-mass spectrometry, nine neuroactive steroids were quantified (corticosterone, deoxycorticosterone [DOC], dihydrodeoxycorticosterone, THDOC, progesterone, dihydroprogesterone, allopregnanolone, pregnenolone, testosterone) in plasma and in five brain regions (frontal cortex, hypothalamus, amygdala, hippocampus, brainstem) of male and female control and PNS rats. There was no difference in the neuroactive steroid profile between control and PNS rats under basal conditions. The increase in circulating corticosterone induced by acute swim stress was similar in control and PNS offspring. However, greater stress-induced corticosterone and DOC concentrations were observed in the brainstem of male PNS offspring, whereas DOC concentrations were lower in the hippocampus of PNS females compared to controls, following acute stress. Although PNS rats did not show deficits in allopregnanolone responses to acute stress, there were modest deficits in the production of THDOC in the brainstem, amygdala, and frontal cortex of PNS males and in the frontal cortex of PNS females. The data suggest that neuroactive steroid modulation of GABAergic signalling following stress exposure may be affected in a sex- and region-specific manner in PNS offspring.
Collapse
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- The Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Paula J. Brunton
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- The Roslin InstituteUniversity of EdinburghEdinburghUK
- Zhejiang University‐University of Edinburgh Joint InstituteHainingChina
| |
Collapse
|
9
|
Sze Y, Brunton PJ. Sex, stress and steroids. Eur J Neurosci 2019; 52:2487-2515. [DOI: 10.1111/ejn.14615] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
- Zhejiang University‐University of Edinburgh Joint Institute Haining Zhejiang China
| |
Collapse
|
10
|
Maguire J. Neuroactive Steroids and GABAergic Involvement in the Neuroendocrine Dysfunction Associated With Major Depressive Disorder and Postpartum Depression. Front Cell Neurosci 2019; 13:83. [PMID: 30906252 PMCID: PMC6418819 DOI: 10.3389/fncel.2019.00083] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Stress and previous adverse life events are well-established risk factors for depression. Further, neuroendocrine disruptions are associated with both major depressive disorder (MDD) and postpartum depression (PPD). However, the mechanisms whereby stress contributes to the underlying neurobiology of depression remains poorly understood. The hypothalamic-pituitary-adrenal (HPA) axis, which mediates the body's neuroendocrine response to stress, is tightly controlled by GABAergic signaling and there is accumulating evidence that GABAergic dysfunction contributes to the impact of stress on depression. GABAergic signaling plays a critical role in the neurobiological effects of stress, not only by tightly controlling the activity of the HPA axis, but also mediating stress effects in stress-related brain regions. Deficits in neuroactive steroids and neurosteroids, some of which are positive allosteric modulators of GABAA receptors (GABAARs), such as allopregnanolone and THDOC, have also been implicated in MDD and PPD, further supporting a role for GABAergic signaling in depression. Alterations in neurosteroid levels and GABAergic signaling are implicated as potential contributing factors to neuroendocrine dysfunction and vulnerability to MDD and PPD. Further, potential novel treatment strategies targeting these proposed underlying neurobiological mechanisms are discussed. The evidence summarized in the current review supports the notion that MDD and PPD are stress-related psychiatric disorders involving neurosteroids and GABAergic dysfunction.
Collapse
Affiliation(s)
- Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
11
|
Sze Y, Gill AC, Brunton PJ. Sex-dependent changes in neuroactive steroid concentrations in the rat brain following acute swim stress. J Neuroendocrinol 2018; 30:e12644. [PMID: 30194779 PMCID: PMC6221110 DOI: 10.1111/jne.12644] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 01/20/2023]
Abstract
Sex differences in hypothalamic-pituitary-adrenal (HPA) axis activity are well established in rodents. In addition to glucocorticoids, stress also stimulates the secretion of progesterone and deoxycorticosterone (DOC) from the adrenal gland. Neuroactive steroid metabolites of these precursors can modulate HPA axis function; however, it is not known whether levels of these steroids differ between male and females following stress. In the present study, we aimed to establish whether neuroactive steroid concentrations in the brain display sex- and/or region-specific differences under basal conditions and following exposure to acute stress. Brains were collected from male and female rats killed under nonstress conditions or following exposure to forced swimming. Liquid chromatography-mass spectrometry was used to quantify eight steroids: corticosterone, DOC, dihydrodeoxycorticosterone (DHDOC), pregnenolone, progesterone, dihydroprogesterone (DHP), allopregnanolone and testosterone in plasma, and in five brain regions (frontal cortex, hypothalamus, hippocampus, amygdala and brainstem). Corticosterone, DOC and progesterone concentrations were significantly greater in the plasma and brain of both sexes following stress; however, the responses in plasma were greater in females compared to males. This sex difference was also observed in the majority of brain regions for DOC and progesterone but not for corticosterone. Despite observing no stress-induced changes in circulating concentrations of pregnenolone, DHDOC or DHP, concentrations were significantly greater in the brain and this effect was more pronounced in females than males. Basal plasma and brain concentrations of allopregnanolone were significantly higher in females; moreover, stress had a greater impact on central allopregnanolone concentrations in females. Stress had no effect on circulating or brain concentrations of testosterone in males. These data indicate the existence of sex and regional differences in the generation of neuroactive steroids in the brain following acute stress, especially for the 5α-reduced steroids, and further suggest a sex-specific expression of steroidogenic enzymes in the brain. Thus, differential neurosteroidogenesis may contribute to sex differences in HPA axis responses to stress.
Collapse
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- The Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Andrew C. Gill
- The Roslin InstituteUniversity of EdinburghEdinburghUK
- School of ChemistryUniversity of LincolnLincolnUK
| | - Paula J. Brunton
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- The Roslin InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
12
|
Abstract
SIGNIFICANCE Social and demographic changes have led to an increased prevalence of loneliness and social isolation in modern society. Recent Advances: Population-based studies have demonstrated that both objective social isolation and the perception of social isolation (loneliness) are correlated with a higher risk of mortality and that both are clearly risk factors for cardiovascular disease (CVD). Lonely individuals have increased peripheral vascular resistance and elevated blood pressure. Socially isolated animals develop more atherosclerosis than those housed in groups. CRITICAL ISSUES Molecular mechanisms responsible for the increased cardiovascular risk are poorly understood. In recent reports, loneliness and social stress were associated with activation of the hypothalamic-pituitary-adrenocortical axis and the sympathetic nervous system. Repeated and chronic social stress leads to glucocorticoid resistance, enhanced myelopoiesis, upregulated proinflammatory gene expression, and oxidative stress. However, the causal role of these mechanisms in the development of loneliness-associated CVD remains unclear. FUTURE DIRECTIONS Elucidation of the molecular mechanisms of how CVD is induced by loneliness and social isolation requires additional studies. Understanding of the pathomechanisms is essential for the development of therapeutic strategies to prevent the detrimental effects of social stress on health. Antioxid. Redox Signal. 28, 837-851.
Collapse
Affiliation(s)
- Ning Xia
- 1 Department of Pharmacology, Johannes Gutenberg University Medical Center , Mainz, Germany
| | - Huige Li
- 1 Department of Pharmacology, Johannes Gutenberg University Medical Center , Mainz, Germany .,2 Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center , Mainz, Germany .,3 German Center for Cardiovascular Research (DZHK) , Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
13
|
Kiilerich P, Servili A, Péron S, Valotaire C, Goardon L, Leguen I, Prunet P. Regulation of the corticosteroid signalling system in rainbow trout HPI axis during confinement stress. Gen Comp Endocrinol 2018; 258:184-193. [PMID: 28837788 DOI: 10.1016/j.ygcen.2017.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/13/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
Abstract
This study aims to shed light on corticosteroid regulation of stress in teleost fish with focus on the corticosteroid signalling system. The role of the mineralocorticoid-like hormone 11-deoxycorticosterone (DOC) in fish is still enigmatic, as is the function of the mineralocorticoid receptor, MR. Low plasma DOC levels and ubiquitous tissue distribution of MR question the physiological relevance of the mineralocorticoid-axis. Furthermore, the particular purpose of each of the three corticosteroid receptors in fish, the glucocorticoid receptors, GR1 and GR2, and the MR, is still largely unknown. Therefore we investigate the regulation of cortisol and DOC in plasma and mRNA levels of MR, GR1 and GR2 in the HPI-axis tissues (hypothalamus, pituitary and interrenal gland) during a detailed confinement stress time-course. Here we show a sustained up-regulation of plasma DOC levels during a confinement stress time-course. However, the low DOC levels compared to cortisol measured in the plasma do not favour an activity of DOC through MR receptors. Furthermore, we show differential contribution of the CRs in regulation and control of HPI axis activity following confinement stress. Judged by the variation of mRNA levels negative feedback regulation of cortisol release occurs on the level of the pituitary via MR and on the level of the interrenal gland via GR2. Finally, asa significant effect of confinement stress on CR expressions was observed in the pituitary gland, we completed this experiment by demonstrating that corticosteroid receptors (GR1, GR2 and MR) are co-expressed in the ACTH cells located in the adenohypophysis. Overall, these data suggest the involvement of these receptors in the regulation of the HPI axis activity by cortisol.
Collapse
Affiliation(s)
- Pia Kiilerich
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France.
| | - Arianna Servili
- Ifremer, Unité de Physiologie Fonctionnelle des Organismes Marins, LEMAR UMR 6539, BP 70, Plouzané 29280, France
| | - Sandrine Péron
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France
| | - Claudiane Valotaire
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France
| | - Lionel Goardon
- INRA, UE937 Pisciculture expérimentale des Monts d'Arrée, 29450 Sizun, France
| | - Isabelle Leguen
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France
| | - Patrick Prunet
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France.
| |
Collapse
|
14
|
Reddy DS. GABA-A Receptors Mediate Tonic Inhibition and Neurosteroid Sensitivity in the Brain. VITAMINS AND HORMONES 2018; 107:177-191. [PMID: 29544630 DOI: 10.1016/bs.vh.2017.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurosteroids like allopregnanolone (AP) are positive allosteric modulators of synaptic and extrasynaptic GABA-A receptors. AP and related neurosteroids exhibit a greater potency for δ-containing extrasynaptic receptors. The δGABA-A receptors, which are expressed extrasynaptically in the dentate gyrus and other regions, contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. Levels of endogenous neurosteroids fluctuate with ovarian cycle. Natural and synthetic neurosteroids maximally potentiate tonic inhibition in the hippocampus and provide robust protection against a variety of limbic seizures and status epilepticus. Recently, a consensus neurosteroid pharmacophore model has been proposed at extrasynaptic δGABA-A receptors based on structure-activity relationship for functional activation of tonic currents and seizure protection. Aside from anticonvulsant actions, neurosteroids have been found to be powerful anxiolytic and anesthetic agents. Neurosteroids and Zn2+ have preferential affinity for δ-containing receptors. Thus, Zn2+ can prevent neurosteroid activation of extrasynaptic δGABA-A receptor-mediated tonic inhibition. Recently, we demonstrated that Zn2+ selectively inhibits extrasynaptic δGABA-A receptors and thereby fully prevents AP activation of tonic inhibition and seizure protection. We confirmed that neurosteroids exhibit greater sensitivity at extrasynaptic δGABA-A receptors. Overall, extrasynaptic GABA-A receptors are primary mediators of tonic inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurological disorders.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States.
| |
Collapse
|
15
|
Belelli D, Brown AR, Mitchell SJ, Gunn BG, Herd MB, Phillips GD, Seifi M, Swinny JD, Lambert JJ. Endogenous neurosteroids influence synaptic GABA A receptors during postnatal development. J Neuroendocrinol 2018; 30. [PMID: 28905487 DOI: 10.1111/jne.12537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 12/12/2022]
Abstract
GABA plays a key role in both embryonic and neonatal brain development. For example, during early neonatal nervous system maturation, synaptic transmission, mediated by GABAA receptors (GABAA Rs), undergoes a temporally specific form of synaptic plasticity to accommodate the changing requirements of maturing neural networks. Specifically, the duration of miniature inhibitory postsynaptic currents (mIPSCs), resulting from vesicular GABA activating synaptic GABAA Rs, is reduced, permitting neurones to appropriately influence the window for postsynaptic excitation. Conventionally, programmed expression changes to the subtype of synaptic GABAA R are primarily implicated in this plasticity. However, it is now evident that, in developing thalamic and cortical principal- and inter-neurones, an endogenous neurosteroid tone (eg, allopregnanolone) enhances synaptic GABAA R function. Furthermore, a cessation of steroidogenesis, as a result of a lack of substrate, or a co-factor, appears to be primarily responsible for early neonatal changes to GABAergic synaptic transmission, followed by further refinement, which results from subsequent alterations of the GABAA R subtype. The timing of this cessation of neurosteroid influence is neurone-specific, occurring by postnatal day (P)10 in the thalamus but approximately 1 week later in the cortex. Neurosteroid levels are not static and change dynamically in a variety of physiological and pathophysiological scenarios. Given that GABA plays an important role in brain development, abnormal perturbations of neonatal GABAA R-active neurosteroids may have not only a considerable immediate, but also a longer-term impact upon neural network activity. Here, we review recent evidence indicating that changes in neurosteroidogenesis substantially influence neonatal GABAergic synaptic transmission. We discuss the physiological relevance of these findings and how the interference of neurosteroid-GABAA R interaction early in life may contribute to psychiatric conditions later in life.
Collapse
Affiliation(s)
- D Belelli
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - A R Brown
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - S J Mitchell
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - B G Gunn
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - M B Herd
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - G D Phillips
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - M Seifi
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - J D Swinny
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - J J Lambert
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| |
Collapse
|
16
|
Chuang SH, Reddy DS. Genetic and Molecular Regulation of Extrasynaptic GABA-A Receptors in the Brain: Therapeutic Insights for Epilepsy. J Pharmacol Exp Ther 2017; 364:180-197. [PMID: 29142081 DOI: 10.1124/jpet.117.244673] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
GABA-A receptors play a pivotal role in many brain diseases. Epilepsy is caused by acquired conditions and genetic defects in GABA receptor channels regulating neuronal excitability in the brain. The latter is referred to as GABA channelopathies. In the last two decades, major advances have been made in the genetics of epilepsy. The presence of specific GABAergic genetic abnormalities leading to some of the classic epileptic syndromes has been identified. Advances in molecular cloning and recombinant systems have helped characterize mutations in GABA-A receptor subunit genes in clinical neurology. GABA-A receptors are the prime targets for neurosteroids (NSs). However, GABA-A receptors are not static but undergo rapid changes in their number or composition in response to the neuroendocrine milieu. This review describes the recent advances in the genetic and neuroendocrine control of extrasynaptic and synaptic GABA-A receptors in epilepsy and its impact on neurologic conditions. It highlights the current knowledge of GABA genetics in epilepsy, with an emphasis on the neuroendocrine regulation of extrasynaptic GABA-A receptors in network excitability and seizure susceptibility. Recent advances in molecular regulation of extrasynaptic GABA-A receptor-mediated tonic inhibition are providing unique new therapeutic approaches for epilepsy, status epilepticus, and certain brain disorders. The discovery of an extrasynaptic molecular mechanism represents a milestone for developing novel therapies such as NS replacement therapy for catamenial epilepsy.
Collapse
Affiliation(s)
- Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
17
|
Reddy DS, Estes WA. Clinical Potential of Neurosteroids for CNS Disorders. Trends Pharmacol Sci 2016; 37:543-561. [PMID: 27156439 DOI: 10.1016/j.tips.2016.04.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/02/2016] [Accepted: 04/05/2016] [Indexed: 11/27/2022]
Abstract
Neurosteroids are key endogenous molecules in the brain that affect many neural functions. We describe here recent advances in US National Institutes of Health (NIH)-sponsored and other clinical studies of neurosteroids for CNS disorders. The neuronal GABA-A receptor chloride channel is one of the prime molecular targets of neurosteroids. Allopregnanolone-like neurosteroids are potent allosteric agonists as well as direct activators of both synaptic and extrasynaptic GABA-A receptors. Hence, neurosteroids can maximally enhance synaptic phasic and extrasynaptic tonic inhibition. The resulting chloride current conductance generates a form of shunting inhibition that controls network excitability, seizures, and behavior. Such mechanisms of neurosteroids are providing innovative therapies for epilepsy, status epilepticus (SE), traumatic brain injury (TBI), fragile X syndrome (FXS), and chemical neurotoxicity. The neurosteroid field has entered a new era, and many compounds have reached advanced clinical trials. Synthetic analogs have several advantages over natural neurosteroids for clinical use because of their superior bioavailability and safety trends.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| | - William A Estes
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
18
|
Crowley SK, O’Buckley TK, Schiller CE, Stuebe A, Morrow AL, Girdler SS. Blunted neuroactive steroid and HPA axis responses to stress are associated with reduced sleep quality and negative affect in pregnancy: a pilot study. Psychopharmacology (Berl) 2016; 233:1299-310. [PMID: 26856852 PMCID: PMC4803569 DOI: 10.1007/s00213-016-4217-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/14/2016] [Indexed: 01/24/2023]
Abstract
RATIONALE Anxiety during pregnancy has been linked to adverse maternal health outcomes, including postpartum depression (PPD). However, there has been limited study of biological mechanisms underlying behavioral predictors of PPD during pregnancy. OBJECTIVES Considering the shared etiology of chronic stress amongst antenatal behavioral predictors, the primary goal of this pilot study was to examine associations among stress-related physiological factors (including GABA-ergic neurosteroids) and stress-related behavioral indices of anxiety during pregnancy. METHODS Fourteen nulliparous women in their second trimester of a singleton pregnancy underwent speech and mental arithmetic stress, following a 2-week subjective and objective recording of sleep-wake behavior. RESULTS Lower cortisol, progesterone, and a combined measure of ALLO + pregnanolone throughout the entire stressor protocol (area under the curve, AUC) were associated with greater negative emotional responses to stress, and lower cortisol AUC was associated with worse sleep quality. Lower adrenocorticotropic hormone was associated with greater anxious and depressive symptoms. Stress produced paradoxical reductions in cortisol, progesterone, and a combined measure of allopregnanolone + pregnanolone, while tetrahydrodeoxycorticosterone levels were elevated. CONCLUSIONS These data suggest that cortisol, progesterone, and ALLO + pregnanolone levels in the second trimester of pregnancy are inversely related to negative emotional symptoms, and the negative impact of acute stress challenge appears to exert its effects by reducing these steroids to further promote negative emotional responses.
Collapse
Affiliation(s)
- Shannon K. Crowley
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
| | - Crystal E. Schiller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
| | - Alison Stuebe
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
- Department of Maternal and Child Health, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
| | - A. Leslie Morrow
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
| | - Susan S. Girdler
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
| |
Collapse
|
19
|
Carver CM, Reddy DS. Neurosteroid Structure-Activity Relationships for Functional Activation of Extrasynaptic δGABA(A) Receptors. J Pharmacol Exp Ther 2016; 357:188-204. [PMID: 26857959 DOI: 10.1124/jpet.115.229302] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/05/2016] [Indexed: 01/18/2023] Open
Abstract
Synaptic GABAA receptors are primary mediators of rapid inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurologic disorders. The δ-subunit GABAA receptors are expressed extrasynaptically in the dentate gyrus and contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. However, the neurosteroid structure-function relationship at δGABA(A) receptors within the native hippocampus neurons remains unclear. Here we report a structure-activity relationship for neurosteroid modulation of extrasynaptic GABAA receptor-mediated tonic inhibition in the murine dentate gyrus granule cells. We recorded neurosteroid allosteric potentiation of GABA as well as direct activation of tonic currents using a wide array of natural and synthetic neurosteroids. Our results shows that, for all neurosteroids, the C3α-OH group remains obligatory for extrasynaptic receptor functional activity, as C3β-OH epimers were inactive in activating tonic currents. Allopregnanolone and related pregnane analogs exhibited the highest potency and maximal efficacy in promoting tonic currents. Alterations at the C17 or C20 region of the neurosteroid molecule drastically altered the transduction kinetics of tonic current activation. The androstane analogs had the weakest modulatory response among the analogs tested. Neurosteroid potentiation of tonic currents was completely (approximately 95%) diminished in granule cells from δ-knockout mice, suggesting that δ-subunit receptors are essential for neurosteroid activity. The neurosteroid sensitivity of δGABA(A) receptors was confirmed at the systems level using a 6-Hz seizure test. A consensus neurosteroid pharmacophore model at extrasynaptic δGABA(A) receptors is proposed based on a structure-activity relationship for activation of tonic current and seizure protection.
Collapse
Affiliation(s)
- Chase Matthew Carver
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
20
|
Why may allopregnanolone help alleviate loneliness? Med Hypotheses 2015; 85:947-52. [PMID: 26365247 DOI: 10.1016/j.mehy.2015.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/03/2015] [Accepted: 09/04/2015] [Indexed: 01/21/2023]
Abstract
Impaired biosynthesis of Allopregnanolone (ALLO), a brain endogenous neurosteroid, has been associated with numerous behavioral dysfunctions, which range from anxiety- and depressive-like behaviors to aggressive behavior and changes in responses to contextual fear conditioning in rodent models of emotional dysfunction. Recent animal research also demonstrates a critical role of ALLO in social isolation. Although there are likely aspects of perceived social isolation that are uniquely human, there is also continuity across species. Both human and animal research show that perceived social isolation (which can be defined behaviorally in animals and humans) has detrimental effects on physical health, such as increased hypothalamic pituitary adrenal (HPA) activity, decreased brain-derived neurotrophic factor (BDNF) expression, and increased depressive behavior. The similarities between animal and human research suggest that perceived social isolation (loneliness) may also be associated with a reduction in the synthesis of ALLO, potentially by reducing BDNF regulation and increasing HPA activity through the hippocampus, amygdala, and bed nucleus of the stria terminalis (BNST), especially during social threat processing. Accordingly, exogenous administration of ALLO (or ALLO precursor, such as pregnenolone), in humans may help alleviate loneliness. Congruent with our hypothesis, exogenous administration of ALLO (or ALLO precursors) in humans has been shown to improve various stress-related disorders that show similarities between animals and humans i.e., post-traumatic stress disorders, traumatic brain injuries. Because a growing body of evidence demonstrates the benefits of ALLO in socially isolated animals, we believe our ALLO hypothesis can be applied to loneliness in humans, as well.
Collapse
|
21
|
Neurosteroid, GABAergic and hypothalamic pituitary adrenal (HPA) axis regulation: what is the current state of knowledge in humans? Psychopharmacology (Berl) 2014; 231:3619-34. [PMID: 24756763 PMCID: PMC4135030 DOI: 10.1007/s00213-014-3572-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/06/2014] [Indexed: 11/25/2022]
Abstract
RATIONALE A robust epidemiological literature suggests an association between chronic stress and the development of affective disorders. However, the precise biological underpinnings of this relationship remain elusive. Central to the human response and adaptation to stress, activation and inhibition of the hypothalamic pituitary adrenal (HPA) axis involves a multi-level, multi-system, neurobiological stress response which is as comprehensive in its complexity as it is precarious. Dysregulation in this complex system has implications for human stress related illness. OBJECTIVES The pioneering research of Robert Purdy and colleagues has laid the groundwork for advancing our understanding of HPA axis regulation by stress-derived steroid hormones and their neuroactive metabolites (termed neurosteroids), which are potent allosteric modulators of GABAA receptor function in the central nervous system. This review will describe what is known about neurosteroid modulation of the HPA axis in response to both acute and chronic stress, particularly with respect to the current state of our knowledge of this process in humans. RESULTS Implications of this research to the development of human stress-related illness are discussed in the context of two human stress-related psychiatric disorders - major depressive disorder and premenstrual dysphoric disorder. CONCLUSIONS Neurosteroid-mediated HPA axis dysregulation is a potential pathophysiologic mechanism which may cross traditional psychiatric diagnostic classifications. Future research directions are identified.
Collapse
|
22
|
Role of GABA-active neurosteroids in the efficacy of metyrapone against cocaine addiction. Behav Brain Res 2014; 271:269-76. [PMID: 24959859 DOI: 10.1016/j.bbr.2014.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 01/29/2023]
Abstract
Previous research has demonstrated a complicated role for stress and HPA axis activation in potentiating various cocaine-related behaviors in preclinical models of drug dependence. However, the investigation of several antiglucocorticoid therapies has yielded equivocal results in reducing cocaine-related behaviors, possibly because of varying mechanisms of actions. Specifically, research suggests that metyrapone (a corticosterone synthesis inhibitor) may reduce cocaine self-administration in rats via a nongenomic, extra-adrenal mechanism without altering plasma corticosterone. In the current experiments, male rats were trained to self-administer cocaine infusions and food pellets in a multiple, alternating schedule of reinforcement. Metyrapone pretreatment dose-dependently decreased cocaine self-administration as demonstrated previously. Pharmacological inhibition of neurosteroid production by finasteride had significant effects on cocaine self-administration, regardless of metyrapone pretreatment. However, metyrapone's effects on cocaine self-administration were significantly attenuated with bicuculline pretreatment, suggesting a role for GABA-active neurosteroids in cocaine-reinforced behaviors. In vitro binding data also confirmed that metyrapone does not selectively bind to GABA-related proteins. The results of these experiments support the hypothesis that metyrapone may increase neurosteroidogenesis to produce effects on cocaine-related behaviors.
Collapse
|
23
|
Moon JY, Shin HJ, Son HH, Lee J, Jung U, Jo SK, Kim HS, Kwon KH, Park KH, Chung BC, Choi MH. Metabolic changes in serum steroids induced by total-body irradiation of female C57B/6 mice. J Steroid Biochem Mol Biol 2014; 141:52-9. [PMID: 24462676 DOI: 10.1016/j.jsbmb.2014.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 01/08/2014] [Accepted: 01/11/2014] [Indexed: 11/22/2022]
Abstract
The short- and long-term effects of a single exposure to gamma radiation on steroid metabolism were investigated in mice. Gas chromatography-mass spectrometry was used to generate quantitative profiles of serum steroid levels in mice that had undergone total-body irradiation (TBI) at doses of 0Gy, 1Gy, and 4Gy. Following TBI, serum samples were collected at the pre-dose time point and 1, 3, 6, and 9 months after TBI. Serum levels of progestins, progesterone, 5β-DHP, 5α-DHP, and 20α-DHP showed a significant down-regulation following short-term exposure to 4Gy, with the exception of 20α-DHP, which was significantly decreased at each of the time points measured. The corticosteroids 5α-THDOC and 5α-DHB were significantly elevated at each of the time points measured after exposure to either 1 or 4Gy. Among the sterols, 24S-OH-cholestoerol showed a dose-related elevation after irradiation that reached significance in the high dose group at the 6- and 9-month time points.
Collapse
Affiliation(s)
- Ju-Yeon Moon
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Hee-June Shin
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeonbuk 580-185, Republic of Korea
| | - Hyun-Hwa Son
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Jeongae Lee
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Uhee Jung
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeonbuk 580-185, Republic of Korea
| | - Sung-Kee Jo
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeonbuk 580-185, Republic of Korea
| | - Hyun Sik Kim
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kyung-Hoon Kwon
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kyu Hwan Park
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Chungcheongbuk-do 363-883, Republic of Korea
| | - Bong Chul Chung
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Man Ho Choi
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea.
| |
Collapse
|
24
|
Abstract
There is a growing public awareness that hormones can have a significant impact on most biological systems, including the control of breathing. This review will focus on the actions of two broad classes of hormones on the neuronal control of breathing: sex hormones and stress hormones. The majority of these hormones are steroids; a striking feature is that both groups are derived from cholesterol. Stress hormones also include many peptides which are produced primarily within the paraventricular nucleus of the hypothalamus (PVN) and secreted into the brain or into the circulatory system. In this article we will first review and discuss the role of sex hormones in respiratory control throughout life, emphasizing how natural fluctuations in hormones are reflected in ventilatory metrics and how disruption of their endogenous cycle can predispose to respiratory disease. These effects may be mediated directly by sex hormone receptors or indirectly by neurotransmitter systems. Next, we will discuss the origins of hypothalamic stress hormones and their relationship with the respiratory control system. This relationship is 2-fold: (i) via direct anatomical connections to brainstem respiratory control centers, and (ii) via steroid hormones released from the adrenal gland in response to signals from the pituitary gland. Finally, the impact of stress on the development of neural circuits involved in breathing is evaluated in animal models, and the consequences of early stress on respiratory health and disease is discussed.
Collapse
Affiliation(s)
- Mary Behan
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA.
| | | |
Collapse
|
25
|
The role of allopregnanolone in depression and anxiety. Prog Neurobiol 2013; 113:79-87. [PMID: 24215796 DOI: 10.1016/j.pneurobio.2013.09.003] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/21/2013] [Accepted: 09/21/2013] [Indexed: 12/22/2022]
Abstract
Neuroactive steroids such as allopregnanolone do not only act as transcriptional factors in the regulation of gene expression after intracellular back-oxidation into the 5-α pregnane steroids but may also alter neuronal excitability through interactions with specific neurotransmitter receptors. In particular, certain 3α-reduced metabolites of progesterone such as 3α,5α-tetrahydroprogesterone (allopregnanolone) and 3α,5β-tetrahydroprogesterone (pregnanolone) are potent positive allosteric modulators of the GABA(A) receptor complex. During the last years, the downregulation of neurosteroid biosynthesis has been intensively discussed to be a possible contributor to the development of anxiety and depressive disorder. Reduced levels of allopregnanolone in the peripheral blood or cerebrospinal fluid were found to be associated with major depression, anxiety disorders, premenstrual dysphoric disorder, negative symptoms in schizophrenia, or impulsive aggression. The importance of allopregnanolone for the regulation of emotion and its therapeutical use in depression and anxiety may not only involve GABAergic mechanisms, but probably also includes enhancement of neurogenesis, myelination, neuroprotection, and regulatory effects on HPA axis function. Certain pharmacokinetic obstacles limit the therapeutic use of natural neurosteroids (low bioavailability, oxidation to the ketone). Until now synthetic neuroactive steroids could not be established in the treatment of anxiety disorders or depression. However, the translocator protein (18 kDa) (TSPO) which is important for neurosteroidogenesis has been identified as a potential novel target. TSPO ligands such as XBD 173 increase neurosteroidogenesis and have anxiolytic effects with a favorable side effect profile.
Collapse
|
26
|
Carver CM, Reddy DS. Neurosteroid interactions with synaptic and extrasynaptic GABA(A) receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology (Berl) 2013; 230:151-88. [PMID: 24071826 PMCID: PMC3832254 DOI: 10.1007/s00213-013-3276-5] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/29/2013] [Indexed: 12/25/2022]
Abstract
RATIONALE Neurosteroids are steroids synthesized within the brain with rapid effects on neuronal excitability. Allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are three widely explored prototype endogenous neurosteroids. They have very different targets and functions compared to conventional steroid hormones. Neuronal γ-aminobutyric acid (GABA) type A (GABA(A)) receptors are one of the prime molecular targets of neurosteroids. OBJECTIVE This review provides a critical appraisal of recent advances in the pharmacology of endogenous neurosteroids that interact with GABA(A) receptors in the brain. Neurosteroids possess distinct, characteristic effects on the membrane potential and current conductance of the neuron, mainly via potentiation of GABA(A) receptors at low concentrations and direct activation of receptor chloride channel at higher concentrations. The GABA(A) receptor mediates two types of inhibition, now characterized as synaptic (phasic) and extrasynaptic (tonic) inhibition. Synaptic release of GABA results in the activation of low-affinity γ2-containing synaptic receptors, while high-affinity δ-containing extrasynaptic receptors are persistently activated by the ambient GABA present in the extracellular fluid. Neurosteroids are potent positive allosteric modulators of synaptic and extrasynaptic GABA(A) receptors and therefore enhance both phasic and tonic inhibition. Tonic inhibition is specifically more sensitive to neurosteroids. The resulting tonic conductance generates a form of shunting inhibition that controls neuronal network excitability, seizure susceptibility, and behavior. CONCLUSION The growing understanding of the mechanisms of neurosteroid regulation of the structure and function of the synaptic and extrasynaptic GABA(A) receptors provides many opportunities to create improved therapies for sleep, anxiety, stress, epilepsy, and other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Chase Matthew Carver
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, 2008 Medical Research and Education Building, 8447 State Highway 47, Bryan, TX, 77807-3260, USA
| | | |
Collapse
|
27
|
Reddy DS. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci 2013; 7:115. [PMID: 23914154 PMCID: PMC3728472 DOI: 10.3389/fncel.2013.00115] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/01/2013] [Indexed: 12/03/2022] Open
Abstract
This article describes the emerging evidence of hormonal influence on epileptogenesis, which is a process whereby a brain becomes progressively epileptic due to an initial precipitating event of diverse origin such as brain injury, stroke, infection, or prolonged seizures. The molecular mechanisms underlying the development of epilepsy are poorly understood. Neuroinflammation and neurodegeneration appear to trigger epileptogenesis. There is an intense search for drugs that truly prevent the development of epilepsy in people at risk. Hormones play an important role in children and adults with epilepsy. Corticosteroids, progesterone, estrogens, and neurosteroids have been shown to affect seizure activity in animal models and in clinical studies. However, the impact of hormones on epileptogenesis has not been investigated widely. There is emerging new evidence that progesterone, neurosteroids, and endogenous hormones may play a role in regulating the epileptogenesis. Corticosterone has excitatory effects and triggers epileptogenesis in animal models. Progesterone has disease-modifying activity in epileptogenic models. The antiepileptogenic effect of progesterone has been attributed to its conversion to neurosteroids, which binds to GABA-A receptors and enhances phasic and tonic inhibition in the brain. Neurosteroids are robust anticonvulsants. There is pilot evidence that neurosteroids may have antiepileptogenic properties. Future studies may generate new insight on the disease-modifying potential of hormonal agents and neurosteroids in epileptogenesis.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center Bryan, TX, USA
| |
Collapse
|
28
|
Evans J, Sun Y, McGregor A, Connor B. Allopregnanolone regulates neurogenesis and depressive/anxiety-like behaviour in a social isolation rodent model of chronic stress. Neuropharmacology 2012; 63:1315-26. [PMID: 22939998 DOI: 10.1016/j.neuropharm.2012.08.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/19/2012] [Accepted: 08/16/2012] [Indexed: 12/29/2022]
Abstract
Chronic stress has been implicated as a causal factor in depression and anxiety, and is associated with neuroendocrine dysfunction and impaired hippocampal neurogenesis. The neurosteroid allopregnanolone (3α,5α-THP; ALLO) has been shown to be reduced in depressed patients. ALLO is "stress responsive" and plays a major role in regulating hypothalamic-pituitary-adrenal (HPA) axis function. We propose that reduced ALLO levels following chronic stress leads to HPA hyperactivity due to diminished ALLO regulation. This will result in increased glucocorticoid levels and reduced BDNF expression, leading to impaired hippocampal neurogenesis and the precipitation of depression/anxiety. To investigate this, chronic stress was induced using the social isolation model and depressive/anxiety-like behaviour assessed using the novelty-suppressed feeding test and forced-swim test. The social isolation model was associated with a significant reduction in endogenous ALLO levels and a depressive/anxiety-like behavioural profile. When exogenous ALLO was administered from the onset of isolation it prevented the development of depressive/anxiety-like behaviours and impairment of hippocampal neurogenesis. When treatment was initiated following six weeks of social isolation, behavioural profile was restored and deficits in BDNF and neurogenesis were not observed. Supporting our hypothesis we observed that socially isolated animals exhibited reduced HPA responsiveness, which was either prevented or normalised with ALLO treatment. Combined, these results indicate that administration of exogenous ALLO either during or following a period of chronic stress can prevent or normalise HPA dysfunction and impairment of hippocampal neurogenesis respectively, precluding the establishment of depressive/anxiety-like behaviours. ALLO may therefore provide a novel therapeutic target for the treatment of depression/anxiety.
Collapse
Affiliation(s)
- Jane Evans
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | | | | | | |
Collapse
|
29
|
Schmidt S, Fleischmann R, Picht T. Recovery of motor function after intensive navigated transcranial magnetic stimulation: a case report of unexpected therapeutic effects. Clin Neurol Neurosurg 2012; 115:215-7. [PMID: 22621860 DOI: 10.1016/j.clineuro.2012.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 02/24/2012] [Accepted: 04/29/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Sein Schmidt
- Department of Neurology, Charité University Hospital, Berlin, Germany.
| | | | | |
Collapse
|
30
|
Girdler SS, Lindgren M, Porcu P, Rubinow D, Johnson JL, Morrow AL. A history of depression in women is associated with an altered GABAergic neuroactive steroid profile. Psychoneuroendocrinology 2012; 37:543-53. [PMID: 21890277 PMCID: PMC3233657 DOI: 10.1016/j.psyneuen.2011.08.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 06/30/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
Abstract
The 3α,5α- and 3α,5β-reduced metabolites of progesterone, deoxycorticosterone, and dehydroepiandrosterone (DHEA) have potent effects on neurotransmission mediated by GABA(A) receptors, and dysregulation of these receptors has been implicated in depression. Using gas chromatography-mass spectrometry, we compared neuroactive steroid concentrations in women with a history of depressive disorders, but who were in full remission at the time of testing (n=11) to never depressed women (n=17) both before and after a challenge with oral micronized progesterone (300 mg). Serum concentrations of the following were obtained: four progesterone-derived GABAergic neuroactive steroids, the precursor pregnenolone, androstenedione-derived neuroactive steroids, and the precursor DHEA. As an index of conversion of progesterone to neuroactive steroids, we also examined ratios of neuroactive steroids to progesterone following the oral progesterone challenge. Results indicated that both before and after oral progesterone, women with histories of depression showed lower concentrations of all GABAergic neuroactive steroids than never depressed women. Those with a history of depression also had lower cortisol concentrations. Because serum neuroactive steroids are mainly synthesized in the adrenals, we hypothesize that histories of depression may be associated with persistent adrenal suppression. Following the progesterone challenge, ratios of the progesterone-derived neuroactive steroids to plasma progesterone concentrations were elevated in women with depression histories, suggesting there may be an adaptive shift in the metabolism of progesterone that compensates for lower circulating neuroactive steroid concentrations.
Collapse
Affiliation(s)
- Susan S. Girdler
- Corresponding Author: Susan S. Girdler, Ph.D., University of North Carolina at Chapel Hill, CB#7175, Medical School Wing D, Chapel Hill, NC 27599-7175. ; Phone: 919-966-2179; FAX: 919-966-0708
| | | | | | | | | | | |
Collapse
|
31
|
Gunn BG, Brown AR, Lambert JJ, Belelli D. Neurosteroids and GABA(A) Receptor Interactions: A Focus on Stress. Front Neurosci 2011; 5:131. [PMID: 22164129 PMCID: PMC3230140 DOI: 10.3389/fnins.2011.00131] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/14/2011] [Indexed: 11/13/2022] Open
Abstract
Since the pioneering discovery of the rapid CNS depressant actions of steroids by the "father of stress," Hans Seyle 70 years ago, brain-derived "neurosteroids" have emerged as powerful endogenous modulators of neuronal excitability. The majority of the intervening research has focused on a class of naturally occurring steroids that are metabolites of progesterone and deoxycorticosterone, which act in a non-genomic manner to selectively augment signals mediated by the main inhibitory receptor in the CNS, the GABA(A) receptor. Abnormal levels of such neurosteroids associate with a variety of neurological and psychiatric disorders, suggesting that they serve important physiological and pathophysiological roles. A compelling case can be made to implicate neurosteroids in stress-related disturbances. Here we will critically appraise how brain-derived neurosteroids may impact on the stress response to acute and chronic challenges, both pre- and postnatally through to adulthood. The pathological implications of such actions in the development of psychiatric disturbances will be discussed, with an emphasis on the therapeutic potential of neurosteroids for the treatment of stress-associated disorders.
Collapse
Affiliation(s)
- Benjamin G Gunn
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, Ninewells Hospital, University of Dundee Dundee, UK
| | | | | | | |
Collapse
|
32
|
Abdel-Wahab BA, Salama RH. Venlafaxine protects against stress-induced oxidative DNA damage in hippocampus during antidepressant testing in mice. Pharmacol Biochem Behav 2011; 100:59-65. [PMID: 21835191 DOI: 10.1016/j.pbb.2011.07.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/17/2011] [Accepted: 07/21/2011] [Indexed: 01/08/2023]
Abstract
UNLABELLED Venlafaxine (VLF) is an approved antidepressant that is claimed to have superior clinical efficacy to comparable drugs. Recently, many studies showed the relationship between depression and increased oxidative stress. This study investigated the relationship between the antidepressant effect of VLF and its ability to protect animals against stress-induced oxidative lipid peroxidation and DNA damage induced during antidepressant testing. METHODS The antidepressant effect of long-term treatment (21 days) of VLF in doses 5, 10 and 20mg/kg/day, i.p. was tested using forced swimming test (FST) and tail suspension test (TST). The effects of VLF on hippocampal lipid peroxidation (MDA), nitric oxide (NO), glutathione (GSH), total antioxidant (TAC) levels and glutathione-S-transferase (GST) activity were tested. Furthermore, the corresponding changes in serum and hippocampal 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured. RESULTS Long-term VLF treatment showed a significant, antidepressant effect in both FST and TST. VLF could decrease the hippocampal MDA and NO and to increase hippocampal GSH and TAC levels and GST activity in the tested animals. Only GSH and TAC levels were increased by VLF in the non-tested animals. In addition, both serum and hippocampal 8-OHdG levels were significantly reduced by VLF in animals exposed to antidepressant tests. CONCLUSION Long-term VLF treatment in the effective antidepressant doses can protect against stress-induced oxidative cellular and DNA damage. This action may be through antagonizing the oxidative stress and enhancing the antioxidant defense mechanisms. Consequently, pharmacological modulation of stress-induced oxidative DNA damage as a possible stress-management approach should be an important avenue of further research.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, Egypt.
| | | |
Collapse
|
33
|
Turkmen S, Backstrom T, Wahlstrom G, Andreen L, Johansson IM. Tolerance to allopregnanolone with focus on the GABA-A receptor. Br J Pharmacol 2011; 162:311-27. [PMID: 20883478 DOI: 10.1111/j.1476-5381.2010.01059.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Many studies have suggested a relationship between stress, sex steroids, and negative mental and mood changes in humans. The progesterone metabolite allopregnanolone is a potent endogenous ligand of the γ-amino butyric acid -A (GABA-A) receptor, and the most discussed neuroactive steroid. Variations in the levels of neuroactive steroids that influence the activity of the GABA-A receptor cause a vulnerability to mental and emotional pathology. There are physiological conditions in which allopregnanolone production increases acutely (e.g. stress) or chronically (e.g. menstrual cycle, pregnancy), thus exposing the GABA-A receptor to high and continuous allopregnanolone concentrations. In such conditions, tolerance to allopregnanolone may develop. We have shown that both acute and chronic tolerances can develop to the effects of allopregnanolone. Following the development of acute allopregnanolone tolerance, there is a decrease in the abundance of the GABA-A receptor α4 subunit and the expression of the α4 subunit mRNA in the ventral-posteriomedial nucleus of the thalamus. Little is known about the mechanism behind allopregnanolone tolerance and its effects on assembly of the GABA-A receptor composition. The exact mechanism of the allopregnanolone tolerance phenomena remains unclear. The purpose of this review is to summarize certain aspects of current knowledge concerning allopregnanolone tolerance and changes in the GABA-A receptors.
Collapse
Affiliation(s)
- Sahruh Turkmen
- Department of Obstetrics & Gynaecology, Sundsvall County Hospital, Sweden.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Human studies show a link between stress and epilepsy, with stress causing an increase in seizure frequency and severity in patients with epilepsy. Many different animal model systems have been used to better understand this connection and the possible mechanisms involved. This review highlights the results of such studies relating stress and seizure susceptibility, with a focus on the hypothalamic-pituitary-adrenal axis and its relationship to seizure generation. The effects of hypothalamic-pituitary-adrenal axis mediators, acute stress, chronic stress, and early life stress on the seizure phenotype are summarized. Results suggest that stress has both anticonvulsive and proconvulsive properties, depending on the animal strain and the stress/seizure induction paradigm used. Attempts to interpret the stress-epilepsy literature must take these variables into account. The growing availability of genetically modified mice that carry either human epilepsy mutations or mutations in stress pathway genes now provide the opportunity to examine the relationship between stress and epilepsy more directly.
Collapse
|
35
|
Drouet JB, Michel V, Peinnequin A, Alonso A, Fidier N, Maury R, Buguet A, Cespuglio R, Canini F. Metyrapone blunts stress-induced hyperthermia and increased locomotor activity independently of glucocorticoids and neurosteroids. Psychoneuroendocrinology 2010; 35:1299-310. [PMID: 20338692 DOI: 10.1016/j.psyneuen.2010.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 03/01/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
Metyrapone, a cytochrome P(450) inhibitor used to inhibit corticosterone synthesis, triggers biological markers of stress and also reduces stress-induced anxiety-like behaviors. To address these controversial effects, 6 separate investigations were carried out. In a first set of investigations, abdominal temperature (T(abd)), spontaneous locomotor activity (A(S)) and electroencephalogram (EEG) were recorded in freely moving rats treated with either saline or 150 mg kg(-1) metyrapone. An increase in T(abd) and A(S) occurred in saline rats, while, metyrapone rats exhibited an immediate decrease, both variables returning to basal values 5h later. Concomitantly, the EEG spectral power increased in the gamma and beta 2 bands and decreased in the alpha frequency band, and the EMG spectral power increased. This finding suggests that metyrapone depressed stress-induced physiological response while arousing the animal. In a second step, restraint stress was applied 5h after injection. Metyrapone significantly blunted the stress-induced T(abd) and A(S) rise, without affecting the brain c-fos mRNA increase. Corticosterone (5 and 40 mg kg(-1)) injected concomitantly to metyrapone failed to reverse the observed metyrapone-induced effects in T(abd) and A(S). Finasteride (50 mg kg(-1)), which blocks neurosteroid production, was also unable to block these effects. In conclusion, metyrapone acutely reduced stress-induced physiological response in freely behaving rats independently from glucocorticoids and neurosteroids.
Collapse
Affiliation(s)
- Jean-Baptiste Drouet
- Département des environnements opérationnels, Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), La Tronche, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
11-Deoxycortisol impedes GABAergic neurotransmission and induces drug-resistant status epilepticus in mice. Neuropharmacology 2010; 60:1098-108. [PMID: 20883706 DOI: 10.1016/j.neuropharm.2010.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/15/2010] [Accepted: 09/20/2010] [Indexed: 11/21/2022]
Abstract
Systemic injection of high doses of 11-deoxycortisol succinate had been reported to induce status epilepticus in rats and cats that was associated with paroxysmal epileptiform activity refractory to first generation antiepileptic drugs (AEDs). Using patch clamp recordings we have investigated the mechanisms of 11-deoxycortisol-induced excitability and we have discovered that this molecule accelerates the decay time of the inhibitory postsynaptic currents (IPSCs) mediated by GABA(A) receptors, both in neuronal cultures and in hippocampal slices. In addition, it reduces the amplitude and frequency of IPSCs. Thus, 11-deoxycortisol action on GABAergic neurotransmission may be one of the underlying causes of convulsive seizures that had been observed in rats. In the present study, we have reproduced the ability of 11-deoxycortisol to induce convulsive seizures after intravenous infusion in mice. The threshold dose of 11-deoxycortisol necessary for seizure induction was also determined (0.95 mmol/kg). Furthermore, we have established that these seizures are completely refractory to several AEDs such as phenytoin (up to 100 mg/kg), carbamazepine (up to 56 mg/kg), and valproate (up to 300 mg/kg). Levetiracetam and diazepam afforded only limited protection at high doses, 540 and 3-10 mg/kg, respectively. Interestingly, long-lasting seizures induced by 11-deoxycortisol in mice were not associated with typical neuropathological changes observed in other models of status epilepticus. We propose that 11-deoxycortisol-induced seizures may be an advantageous experimental model of drug-resistant epilepsy. Finally, better understanding of the pro-epileptic properties of 11-deoxycortisol is very important, because this endogenous steroid precursor may play a role in the pathophysiology of epilepsy. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
|
37
|
Darbra S, Pallarès M. Alterations in neonatal neurosteroids affect exploration during adolescence and prepulse inhibition in adulthood. Psychoneuroendocrinology 2010; 35:525-35. [PMID: 19775818 DOI: 10.1016/j.psyneuen.2009.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/31/2009] [Accepted: 08/27/2009] [Indexed: 11/27/2022]
Abstract
Allopregnanolone (AlloP) is a neurosteroid that plays an important role during neural development. Alterations of endogenous neonatal allopregnanolone levels alter the localisation and function of GABA neurons in the adult brain and affect behaviour in adulthood. We have carried out research into the effects of an increase (AlloP administration) or a decrease (administration of finasteride, inhibitor of the AlloP synthesis) of neonatal AlloP levels during the fifth to ninth postnatal days in male Wistar rats on the novelty exploration (Boissier test) at adolescent ages (40 and 60 days old), and on the prepulse inhibition achievement in adulthood (85 days). We also investigated the role of a GABA(A) modulator (midazolam, 1, 1.75 or 2.5mg/kg body weight) in the long-lasting behavioural changes in adulthood (85 days). Results indicate that neonatal finasteride decreases both novelty-exploration (head-dipping and locomotion) and anxiety-relevant scores (the distance travelled in and the number of entries into the central zone) at adolescent age, along with a reduction in body weight and general locomotion. Also, neonatal AlloP administration decreases prepulse inhibition in adulthood. Prepulse inhibition disruption was only partially reproduced decreasing the neonatal AlloP levels by means of finasteride administration. Although there was no interaction between neonatal neurosteroid manipulation and adult benzodiazepine treatments, the effects of midazolam were dose-dependent: the lowest dose of midazolam increased whereas the highest disrupted the expected progressive reduction of the startle response (and the consequent improvement of the PPI percentage) after the gradual increase in prepulse intensity. Reduced prepulse inhibition of startle provides evidence of deficient sensorimotor gating in several disorders, including schizophrenia. Alterations of AlloP levels during maturation could partly explain the inter-individual differences shown by adult subjects in response to novelty (exploration) and in the sensorimotor gating and prepulse inhibition. Also, abrupt changes in neonatal levels of AlloP could be related to a susceptibility to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sònia Darbra
- Departament de Psicobiologia i Metodologia en Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | |
Collapse
|
38
|
Abstract
This chapter provides an overview of neurosteroids, especially their impact on the brain, sex differences and their therapeutic potentials. Neurosteroids are synthesized within the brain and rapidly modulate neuronal excitability. They are classified as pregnane neurosteroids, such as allopregnanolone and allotetrahydrodeoxycorticosterone, androstane neurosteroids, such as androstanediol and etiocholanolone, and sulfated neurosteroids such as pregnenolone sulfate. Neurosteroids such as allopregnanolone are positive allosteric modulators of GABA-A receptors with powerful anti-seizure activity in diverse animal models. Neurosteroids increase both synaptic and tonic inhibition. They are endogenous regulators of seizure susceptibility, anxiety, and stress. Sulfated neurosteroids such as pregnenolone sulfate, which are negative GABA-A receptor modulators, are memory-enhancing agents. Sex differences in susceptibility to brain disorders could be due to neurosteroids and sexual dimorphism in specific structures of the human brain. Synthetic neurosteroids that exhibit better bioavailability and efficacy and drugs that enhance neurosteroid synthesis have therapeutic potential in anxiety, epilepsy, and other brain disorders. Clinical trials with the synthetic neurosteroid analog ganaxolone in the treatment of epilepsy have been encouraging. Neurosteroidogenic agents that lack benzodiazepine-like side effects show promise in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
39
|
Reddy DS. The role of neurosteroids in the pathophysiology and treatment of catamenial epilepsy. Epilepsy Res 2009; 85:1-30. [PMID: 19406620 PMCID: PMC2696558 DOI: 10.1016/j.eplepsyres.2009.02.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 01/14/2023]
Abstract
Catamenial epilepsy is a multifaceted neuroendocrine condition in which seizures are clustered around specific points in the menstrual cycle, most often around perimenstrual or periovulatory period. Generally, a twofold or greater increase in seizure frequency during a particular phase of the menstrual cycle could be considered as catamenial epilepsy. Based on this criteria, recent clinical studies indicate that catamenial epilepsy affects 31-60% of the women with epilepsy. Three types of catamenial seizures (perimenstrual, periovulatory and inadequate luteal) have been identified. However, there is no specific drug available today for catamenial epilepsy, which has not been successfully treated with conventional antiepileptic drugs. Elucidation of the pathophysiology of catamenial epilepsy is a prerequisite to develop specific targeted approaches for treatment or prevention of the disorder. Cyclical changes in the circulating levels of estrogens and progesterone play a central role in the development of catamenial epilepsy. There is emerging evidence that endogenous neurosteroids with anticonvulsant or proconvulsant effects could play a critical role in catamenial epilepsy. It is thought that perimenstrual catamenial epilepsy is associated with the withdrawal of anticonvulsant neurosteroids. Progesterone and other hormonal agents have been shown in limited trials to be moderately effective in catamenial epilepsy, but may cause endocrine side effects. Synthetic neurosteroids, which enhance the tonic GABA-A receptor function, might provide an effective approach for the catamenial epilepsy therapy without producing hormonal side effects.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, 228 Reynolds Medical Building, College Station, TX 77843-1114, USA.
| |
Collapse
|
40
|
Neonatal allopregnanolone increases novelty‐directed locomotion and disrupts behavioural responses to GABA
A
receptor modulators in adulthood. Int J Dev Neurosci 2009; 27:617-25. [DOI: 10.1016/j.ijdevneu.2009.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 05/07/2009] [Accepted: 05/18/2009] [Indexed: 11/18/2022] Open
|
41
|
Jacobs MP, Leblanc GG, Brooks-Kayal A, Jensen FE, Lowenstein DH, Noebels JL, Spencer DD, Swann JW. Curing epilepsy: progress and future directions. Epilepsy Behav 2009; 14:438-45. [PMID: 19341977 PMCID: PMC2822433 DOI: 10.1016/j.yebeh.2009.02.036] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 02/14/2009] [Indexed: 01/10/2023]
Abstract
During the past decade, substantial progress has been made in delineating clinical features of the epilepsies and the basic mechanisms responsible for these disorders. Eleven human epilepsy genes have been identified and many more are now known from animal models. Candidate targets for cures are now based upon newly identified cellular and molecular mechanisms that underlie epileptogenesis. However, epilepsy is increasingly recognized as a group of heterogeneous syndromes characterized by other conditions that co-exist with seizures. Cognitive, emotional and behavioral co-morbidities are common and offer fruitful areas for study. These advances in understanding mechanisms are being matched by the rapid development of new diagnostic methods and therapeutic approaches. This article reviews these areas of progress and suggests specific goals that once accomplished promise to lead to cures for epilepsy.
Collapse
Affiliation(s)
- Margaret P. Jacobs
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Rockville, MD, USA
| | - Gabrielle G. Leblanc
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Rockville, MD, USA
| | - Amy Brooks-Kayal
- Neurology and Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Dan H. Lowenstein
- Department of Neurology, Box 0114, University of California, San Francisco, San Francisco, CA, USA
| | | | - Dennis D. Spencer
- Department of Neurosurgery, Yale University, School of Medicine, New Haven, CT, USA
| | - John W. Swann
- Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
42
|
Abstract
Stress is among the most frequently self-reported precipitants of seizures in patients with epilepsy. This review considers how important stress mediators like corticotropin-releasing hormone, corticosteroids, and neurosteroids could contribute to this phenomenon. Cellular effects of stress mediators in the rodent hippocampus are highlighted. Overall, corticosterone--with other stress hormones--rapidly enhances CA1/CA3 hippocampal activity shortly after stress. At the same time, corticosterone starts gene-mediated events, which enhance calcium influx several hours later. This later effect serves to normalize activity but also imposes a risk for neuronal injury if and when neurons are concurrently strongly depolarized, for example, during epileptic activity. In the dentate gyrus, stress-induced elevations in corticosteroid level are less effective in changing membrane properties such as calcium influx; here, enhanced inhibitory tone mediated through neurosteroid effects on gamma-aminobutyric acid (GABA) receptors might dominate. Under conditions of repetitive stress (e.g., caused from experiencing repetitive and unpredictable seizures) and/or early life stress, hormonal influences on the inhibitory tone, however, are diminished; instead, enhanced calcium influx and increased excitation become more important. In agreement, perinatal stress and elevated steroid levels accelerate epileptogenesis and lower seizure threshold in various animal models for epilepsy. It will be interesting to examine how curtailing the effects of stress in adults, for example, by brief treatment with antiglucocorticoids, may be beneficial to the treatment of epilepsy.
Collapse
Affiliation(s)
- Marian Joëls
- SILS-CNS, University of Amsterdam, The Netherlands
| |
Collapse
|
43
|
Lösel RM, Wehling M. Classic versus non-classic receptors for nongenomic mineralocorticoid responses: emerging evidence. Front Neuroendocrinol 2008; 29:258-67. [PMID: 17976711 DOI: 10.1016/j.yfrne.2007.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 09/16/2007] [Accepted: 09/25/2007] [Indexed: 01/03/2023]
Abstract
Mineralocorticoids, which are synthesized locally in the central nervous system in addition to their adrenal production, trigger both genomic and nongenomic responses. Several functions of mineralocorticoids in the CNS are known to date, which are reviewed along with nongenomic responses in other tissues. A controversy regarding the identity of receptors that mediate nongenomic, transcription-independent cellular responses to steroids is presently attracting considerable scientific interest. While there is strong evidence for classic receptors belonging to the nuclear receptor superfamily to mediate nongenomic steroid effects in some cases, it does not exist for others. Recent findings on new and unexpected properties of classic receptors have partially withdrawn the interest from novel, non-classic membrane receptors, which are being progressively identified at present. This has been facilitated by the robust and elaborate toolkit for classic receptor studies in contrast to the comparably immature research tools for alternative receptors. To know the nature of receptors involved may be the key to beneficial medical translation of specific and targeted steroid responses.
Collapse
Affiliation(s)
- Ralf M Lösel
- Clinical Pharmacology Mannheim, University of Heidelberg, Mannheim, Germany
| | | |
Collapse
|
44
|
Peričić D, Štrac DŠ, Vlainić J. Interaction of diazepam and swim stress. Brain Res 2007; 1184:81-7. [DOI: 10.1016/j.brainres.2007.09.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/13/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
|
45
|
Reddy DS. Mass spectrometric assay and physiological-pharmacological activity of androgenic neurosteroids. Neurochem Int 2007; 52:541-53. [PMID: 17624627 PMCID: PMC2390862 DOI: 10.1016/j.neuint.2007.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 05/15/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
Steroid hormones play a key role in the pathophysiology of several brain disorders. Testosterone modulates neuronal excitability, but the underlying mechanisms are obscure. There is emerging evidence that testosterone-derived "androgenic neurosteroids", 3alpha-androstanediol and 17beta-estradiol, mediate the testosterone effects on neural excitability and seizure susceptibility. Testosterone undergoes metabolism to neurosteroids via two distinct pathways. Aromatization of the A-ring converts testosterone into 17beta-estradiol. Reduction of testosterone by 5alpha-reductase generates 5alpha-dihydrotestosterone, which is then converted to 3alpha-androstanediol, a powerful GABA(A) receptor-modulating neurosteroid with anticonvulsant properties. Although the 3alpha-androstanediol is an emerging neurosteroid in the brain, there is no specific and sensitive assay for determination of 3alpha-androstanediol in biological samples. This article describes the development and validation of mass spectrometric assay of 3alpha-androstanediol, and the molecular mechanisms underlying the testosterone modulation of seizure susceptibility. A liquid chromatography-tandem mass spectrometry assay to measure 3alpha-androstanediol is validated with excellent linearity, specificity, sensitivity, and reproducibility. Testosterone modulation of seizure susceptibility is demonstrated to occur through its conversion to neurosteroids with "anticonvulsant" and "proconvulsant" actions and hence the net effect of testosterone on neural excitability and seizure activity depends on the levels of distinct testosterone metabolites. The proconvulsant effect of testosterone is associated with increases in plasma 17beta-estradiol concentrations. The 5alpha-reduced metabolites of testosterone, 5alpha-dihydrotestosterone and 3alpha-androstanediol, had powerful anticonvulsant activity. Overall, the testosterone-derived neurosteroids 3alpha-androstanediol and 17beta-estradiol could contribute to the net cellular actions of testosterone in the brain. Because 3alpha-androstanediol is a potent positive allosteric modulator of GABA(A) receptors, it could serve as an endogenous neuromodulator of neuronal excitability in men. The 3alpha-androstanediol assay is an important tool in this area because of the growing interest in the potential to use adjuvant aromatase inhibitor therapy to improve treatment of epilepsy.
Collapse
Affiliation(s)
- Doodipala S Reddy
- North Carolina State University, Department of Molecular Biomedical Sciences, Raleigh, NC 27606, USA.
| |
Collapse
|
46
|
Abstract
Animal models indicate that the neuroactive steroids 3alpha,5alpha-THP (allopregnanolone) and 3alpha,5alpha-THDOC (allotetrahydroDOC) are stress responsive, serving as homeostatic mechanisms in restoring normal GABAergic and hypothalamic-pituitary-adrenal (HPA) function following stress. While neurosteroid increases to stress are adaptive in the short term, animal models of chronic stress and depression find lower brain and plasma neurosteroid concentrations and alterations in neurosteroid responses to acute stressors. It has been suggested that disruption in this homeostatic mechanism may play a pathogenic role in some psychiatric disorders related to stress. In humans, neurosteroid depletion is consistently documented in patients with current depression and may reflect their greater chronic stress. Women with the depressive disorder, premenstrual dysphoric disorder (PMDD), have greater daily stress and a greater rate of traumatic stress. While results on baseline concentrations of neuroactive steroids in PMDD are mixed, PMDD women have diminished functional sensitivity of GABA(A) receptors and our laboratory has found blunted allopregnanolone responses to mental stress relative to non-PMDD controls. Similarly, euthymic women with histories of clinical depression, which may represent a large proportion of PMDD women, show more severe dysphoric mood symptoms and blunted allopregnanolone responses to stress versus never-depressed women. It is suggested that failure to mount an appropriate allopregnanolone response to stress may reflect the price of repeated biological adaptations to the increased life stress that is well documented in depressive disorders and altered allopregnanolone stress responsivity may also contribute to the dysregulation seen in HPA axis function in depression.
Collapse
Affiliation(s)
- Susan S Girdler
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, United States.
| | | |
Collapse
|
47
|
Tabb K, Boss-Williams KA, Weiss JM, Weinshenker D. Rats bred for susceptibility to depression-like phenotypes have higher kainic acid-induced seizure mortality than their depression-resistant counterparts. Epilepsy Res 2007; 74:140-6. [PMID: 17400428 PMCID: PMC1940038 DOI: 10.1016/j.eplepsyres.2007.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 01/30/2007] [Accepted: 02/26/2007] [Indexed: 11/23/2022]
Abstract
Epidemiological evidence suggests that epilepsy and depression are comorbid diseases. In fact, depression is the most common neuropsychiatric disorder associated with epilepsy, particularly temporal lobe epilepsy, and individuals with a history of depression are at a higher risk for developing epilepsy than the general population. Despite the epidemiological evidence for this link, there has been little experimental evidence to support the connection or elucidate possible underlying mechanisms. In an effort to address this problem and develop an animal model of epilepsy and depression comorbidity, we assessed seizure susceptibility and severity parameters in rats selectively bred for either susceptibility (the SwLo, SUS, and HYPER lines) or resistance (the SwHi, RES, and MON RES lines) to depression-like phenotypes. We found that rats bred for susceptibility to depression-like phenotypes experienced higher mortality following kainic acid-induced seizures than their resistant counterparts. In contrast, most line differences were not recapitulated when flurothyl was used to elicit seizures. Stress reduced kainic acid-induced mortality rates in all lines except the HYPER rats, supporting previously established indications that the stress response of HYPER rats is abnormal. These combined results support a neurobiological link between epilepsy and depression, advancing us towards an animal model of their comorbidity.
Collapse
Affiliation(s)
- Kroshona Tabb
- Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
48
|
Maguire J, Mody I. Neurosteroid synthesis-mediated regulation of GABA(A) receptors: relevance to the ovarian cycle and stress. J Neurosci 2007; 27:2155-62. [PMID: 17329412 PMCID: PMC6673487 DOI: 10.1523/jneurosci.4945-06.2007] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/08/2007] [Accepted: 01/15/2007] [Indexed: 01/25/2023] Open
Abstract
Recently, we demonstrated cyclic alterations in GABA(A) receptor (GABA(A)R) subunit composition over the ovarian cycle correlated with fluctuations in progesterone levels. However, it remains unclear whether this physiological regulation of GABA(A)Rs is directly mediated by hormones. Here, we show that both ovarian and stress hormones are capable of reorganizing GABA(A)Rs by actions through neurosteroid metabolites. The cyclic alterations in GABA(A)Rs demonstrated in female mice can be mimicked with exogenous progesterone treatment in males or in ovariectomized females. Progesterone (5 mg/kg, twice daily) upregulates the expression of GABA(A)R delta subunits and enhances the tonic inhibition mediated by these receptors in dentate gyrus granule cells (DGGCs). These changes in males as well as ovarian cycle-induced changes in females can be blocked by finasteride, an antagonist of neurosteroid synthesis from progesterone. The altered GABA(A)R expression is unaffected by the progesterone receptor antagonist RU486 [mifepristone (11beta-[p-(dimethylamino)phenyl]-17beta-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one)], suggesting that neurosteroid synthesis and not progesterone receptor activation underlies the hormone-mediated effects on GABA(A)R expression. Neurosteroids can alter GABA(A)R expression on a rapid timescale, because GABA(A)R upregulation can be induced in brain slices maintained in vitro after a short (30 min) treatment with the neurosteroid 3alpha,5alpha-tetrahydrodeoxycorticosterone (THDOC) (100 nM). Consistent with these rapid alterations, acute stress, a condition known to quickly raise THDOC levels, within 30 min induces upregulation of GABA(A)R delta subunit expression and increase tonic inhibition in DGGCs. These results reveal that several physiological conditions characterized by elevations in neurosteroid levels induce a reorganization of GABA(A)Rs through the action of neurosteroids.
Collapse
Affiliation(s)
- Jamie Maguire
- Departments of Neurology and Physiology, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Istvan Mody
- Departments of Neurology and Physiology, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|