1
|
Ajiboye B, Ekundayo B, Salami A, Osukoya A, Komolafe K, Gaur S, Oyinloye B, Jeje T, Ojo O. Neuroprotective effect of Lannea egregia Alkaloid-rich leaf extracts in streptozotocin-induced diabetic rats. Toxicol Rep 2024; 13:101742. [PMID: 39376468 PMCID: PMC11456890 DOI: 10.1016/j.toxrep.2024.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
Background Studies suggest that medicinal plant extracts can help reduce the neuron degeneration associated with diabetes. In this study, the neuroprotective effect of the alkaloid-rich extract from the leaves of Lannea egregia was assessed in rats with diabetes induced by streptozotocin (STZ). Methods Lannea egregia alkaloid-rich analysis was carried out via a known procedure. The rats were randomly assigned into five treatment groups (n = 8): normal control, diabetic-induced rats (45 mg/kg STZ), and diabetic rats treated with low doses of Lannea egregia leaf alkaloid-rich extract (50 mg/kg b.w, LEL) and high (100 mg/kg b.w, LEH) (300 mg/kg and 150 mg/kg), and metformin (200 mg/kg). On 22nd day of the experiment, animals were sacrificed, and their blood and brains were collected for neuro-biomarker analysis. Results Diabetic-induced rats that received metformin, LEL and LEH exhibited considerably reduced levels of dopamine, serotonin, norepinephrine, NO, MDA, and AChE, BChE activities when compared to untreated diabetic animals. Additionally, rats with diabetes that received treatment with metformin, LEL and LEH displayed a noticeable increase in ENTPDase, Na/K ATPase, GST, CAT, GPx, and SOD activities when compared to the untreated diabetic rats. Histological examination revealed improved brain architecture in the treated groups in contrast to those in diabetic-induced rats. Conclusion The alkaloid-rich extracts of Lannea egregia might be effective in normalizing brain damage caused by complications of diabetes mellitus.
Collapse
Affiliation(s)
- B.O. Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, Ado, Ekiti, Nigeria
| | - B.E. Ekundayo
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado, Ekiti, Nigeria
| | - A.W. Salami
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - A.O. Osukoya
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado, Ekiti, Nigeria
| | - K. Komolafe
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - S. Gaur
- Department of Biosciences and Biotechnology, University of Banasthali Vidyapith, India
| | - B.E. Oyinloye
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, Ado, Ekiti, Nigeria
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado, Ekiti, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, South Africa
| | - T.O. Jeje
- Biochemical Immunology and Phytomedicine Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye, Ekiti State, Nigeria
| | - O.A. Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Bowen University, Iwo, Nigeria
| |
Collapse
|
2
|
Wang R, Wang M, Fan YC, Wang WJ, Zhang DH, Andy Li P, Zhang JZ, Jing L. Hyperglycemia exacerbates cerebral ischemia/reperfusion injury by up-regulating autophagy through p53-Sesn2-AMPK pathway. Neurosci Lett 2024; 821:137629. [PMID: 38191089 DOI: 10.1016/j.neulet.2024.137629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Hyperglycemia exacerbates ischemic brain injury by up-regulating autophagy. However, the underlying mechanisms are unknown. This study aims to determine whether hyperglycemia activates autophagy through the p53-Sesn2-AMPK signaling pathway. Rats were subjected to 30-min middle cerebral artery occlusion (MCAO) with reperfusion for 1- and 3-day under normo- and hyperglycemic conditions; and HT22 cells were exposed to oxygen deprivation (OG) or oxygen-glucose deprivation and re-oxygenation (OGD/R) with high glucose. Autophagy inhibitors, 3-MA and ARI, were used both in vivo and in vitro. The results showed that, compared with the normoglycemia group (NG), hyperglycemia (HG) increased infarct volume and apoptosis in penumbra area, worsened neurological deficit, and augmented autophagy. after MCAO followed by 1-day reperfusion. Further, HG promoted the conversion of LC-3I to LC-3II, decreased p62, increased protein levels of aldose reductase, p53, P-p53ser15, Sesn2, AMPK and numbers of autophagosomes and autolysosomes, detected by transmission electron microscopy and mRFP-GFP-LC3 molecular probe, in the cerebral cortex after ischemia and reperfusion injury in animals or in cultured HT22 cells exposed to hypoxia with high glucose content. Finally, experiments with autophagy inhibitors 3-MA and aldose reductase inhibitor (ARI) revealed that while both inhibitors reduced the number of TUNEL positive neurons and reversed the effects of hyperglycemic ischemia on LC3 and p62, only ARI decreased the levels of p53, P-p53ser15. These results suggested that hyperglycemia might induce excessive autophagy to aggravate the brain injury resulted from I/R and that hyperglycemia might activate the p53-Sesn2-AMPK signaling pathway, in addition to the classical PI3K/AKT/mTOR autophagy pathway.
Collapse
Affiliation(s)
- Rui Wang
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Meng Wang
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yu-Cheng Fan
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Wen-Jun Wang
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Deng-Hai Zhang
- The Shanghai Health Commission Key Lab of Al-Based Management of Inflammation and Chronic Diseases, the Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Jian-Zhong Zhang
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Li Jing
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
3
|
Damphousse CC, Medeiros JK, Micks NE, Marrone DF. Altered pattern separation in Goto-Kakizaki rats. CURRENT RESEARCH IN NEUROBIOLOGY 2023. [DOI: 10.1016/j.crneur.2023.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
4
|
Li CY, Kuo CL, Chang YH, Lu CL, Martini S, Hou WH. Association between trajectory of severe hypoglycemia and dementia in patients with type 2 diabetes: A population-based study. J Epidemiol 2021; 32:423-430. [PMID: 33678721 PMCID: PMC9359896 DOI: 10.2188/jea.je20200518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background We aimed to investigate associations between exposure to various trajectories of severe hypoglycemic events and risk of dementia in patients with type 2 diabetes. Methods In 2002–2003, 677,618 patients in Taiwan were newly diagnosed as having type 2 diabetes. Among them, 35,720 (5.3%) experienced severe hypoglycemic events during the 3-year baseline period following diagnosis. All patients were followed from the first day after baseline period to the date of dementia diagnosis, death, or the end of 2011. A group-based trajectory model was used to classify individuals with severe hypoglycemic events during the baseline period. Cox proportional hazard models with the competing risk method were used to relate dementia risk to various severe hypoglycemia trajectories. Results After a median follow-up 6.70 and 6.10 years for patients with and without severe hypoglycemia at baseline, respectively, 1,952 (5.5%) individuals with severe hypoglycemia and 23,492 (3.7%) without developed dementia during follow-up, for incidence rates of 109.80 and 61.88 per 10,000 person-years, respectively. Four groups of severe hypoglycemia trajectory were identified with a proportion of 18.06%, 33.19%, 43.25%, and 5.50%, respectively, for Groups 1 to 4. Groups 3 (early manifestation but with later decrease) and 4 (early and sustained manifestation) were associated with a significantly increased risk of dementia diagnosis, with a covariate-adjusted subdistribution hazard ratio of 1.22 (95% confidence interval, 1.14–1.31) and 1.25 (95% confidence interval, 1.02–1.54), respectively. Conclusion Our analysis highlighted that early manifestation of severe hypoglycemic events may contribute more than does late manifestation to the risk of dementia among individuals newly diagnosed as having type 2 diabetes.
Collapse
Affiliation(s)
- Chung-Yi Li
- Department of Public Health, College of Medicine, National Cheng Kung University.,Department of Epidemiology, Faculty of Public Health, Universitas Airlangga.,Department of Public Health, College of Public Health, China Medical University.,Department of Healthcare Administration, College of Medical and Health Science, Asia University
| | - Chia-Lun Kuo
- Department of Public Health, College of Medicine, National Cheng Kung University.,Department of Psychiatry, Tsaotun Psychiatric Center, Ministry of Health and Welfare
| | - Ya-Hui Chang
- Department of Public Health, College of Medicine, National Cheng Kung University
| | - Chin-Li Lu
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University
| | - Santi Martini
- Department of Epidemiology, Faculty of Public Health, Universitas Airlangga
| | - Wen-Hsuan Hou
- School of Gerontology Health Management & Master Program in Long-Term Care, College of Nursing, Taipei Medical University.,Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University.,Center of Evidence-Based Medicine, Department of Education, Taipei Medical University Hospital
| |
Collapse
|
5
|
Tyagi A, Pugazhenthi S. Targeting Insulin Resistance to Treat Cognitive Dysfunction. Mol Neurobiol 2021; 58:2672-2691. [PMID: 33483903 DOI: 10.1007/s12035-021-02283-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Dementia is a devastating disease associated with aging. Alzheimer's disease is the most common form of dementia, followed by vascular dementia. In addition to clinically diagnosed dementia, cognitive dysfunction has been reported in diabetic patients. Recent studies are now beginning to recognize type 2 diabetes mellitus, characterized by chronic hyperglycemia and insulin resistance, as a risk factor for Alzheimer's disease and other cognitive disorders. While studies on insulin action have remained traditionally in the domain of peripheral tissues, the detrimental effects of insulin resistance in the central nervous system on cognitive dysfunction are increasingly being reported by recent clinical and preclinical studies. The findings from these studies suggest that antidiabetic drugs have the potential to be used to treat dementia. In this review, we discuss the physiological functions of insulin in the brain, studies on the evaluation of cognitive function under conditions of insulin resistance, and reports on the beneficial actions of antidiabetic drugs in the brain. This review covers clinical studies as well as investigations in animal models and will further highlight the emerging link between insulin resistance and neurodegenerative disorders.
Collapse
Affiliation(s)
- Anit Tyagi
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.,Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.,University of Denver, Denver, CO, USA
| | - Subbiah Pugazhenthi
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA. .,Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
6
|
Tomita N, Nakamura T, Sunden Y, Miyata H, Morita T. Temporal analysis of histopathology and cytokine expression in the rat cerebral cortex after insulin-induced hypoglycemia. Neuropathology 2020; 40:240-250. [PMID: 32080930 DOI: 10.1111/neup.12643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 11/30/2022]
Abstract
Hypoglycemic coma causes neuronal death in the cerebral neocortex; however, its unclear pathogenesis prevents the establishment of preventive measures. Inflammation plays a pivotal role in neuronal damage in the hypoglycemic state; however, the dynamics of glial cell activation or cytokine expression remain unknown. Here, we aimed to elucidate the spatiotemporal morphological changes of microglia and time-course cytokine expression profiles in the rat cerebral cortex after hypoglycemic coma. We performed histopathological and immunohistochemical (Iba1, neuronal nuclei, glial fibrillary acidic protein) analyses in the cingulate cortex and four areas of the neocortex: hindlimb area (HL), parietal cortex area 1 (Par1), parietal cortex area 2 (Par2), and perirhinal cortex (PRh). We measured tumor necrosis factor alpha (TNFα) and interleukin-6 messenger RNA (mRNA) expression by real-time reverse transcriptase-polymerase chain reaction. Necrotic neurons appeared in the neocortex as early as 3 h after hypoglycemic coma, while they were absent in the cingulate cortex. Neuronal nuclei-immunopositive neurons in the HL, Par2, and PRh were significantly less abundant than in the control at day 1. In Iba1 immunostaining, large rod-shaped cells were detected at 3-6 h after hypoglycemia, and commonly observed in the HL, Par2, and PRh. After 6 h, rod-shaped cells were rarely observed; instead, there was a prominent infiltration of hypertrophic and ameboid-shaped cells until day 7. The mRNA expression of TNFα was significantly higher than the control at 3-6 h after hypoglycemia in the neocortex, while it was significantly higher only at 3 h in the cingulate cortex. Our results indicate that early and transient appearance of rod-shaped microglia and persisting high TNFα expression levels characterize inflammatory responses to hypoglycemic neuronal damage in the cerebral neocortex, which might contribute to neuronal necrosis in response to transient hypoglycemic coma.
Collapse
Affiliation(s)
- Nagi Tomita
- Laboratory of Veterinary Pathology, Tottori University, Tottori, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Tomoki Nakamura
- Laboratory of Veterinary Pathology, Tottori University, Tottori, Japan
| | - Yuji Sunden
- Laboratory of Veterinary Pathology, Tottori University, Tottori, Japan
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Takehito Morita
- Laboratory of Veterinary Pathology, Tottori University, Tottori, Japan
| |
Collapse
|
7
|
Sandström J, Kratschmar DV, Broyer A, Poirot O, Marbet P, Chantong B, Zufferey F, Dos Santos T, Boccard J, Chrast R, Odermatt A, Monnet-Tschudi F. In vitro models to study insulin and glucocorticoids modulation of trimethyltin (TMT)-induced neuroinflammation and neurodegeneration, and in vivo validation in db/db mice. Arch Toxicol 2019; 93:1649-1664. [PMID: 30993381 DOI: 10.1007/s00204-019-02455-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
Brain susceptibility to a neurotoxic insult may be increased in a compromised health status, such as metabolic syndrome. Both metabolic syndrome and exposure to trimethyltin (TMT) are known to promote neurodegeneration. In combination the two factors may elicit additive or compensatory/regulatory mechanisms. Combined effects of TMT exposure (0.5-1 μM) and mimicked metabolic syndrome-through modulation of insulin and glucocorticoid (GC) levels-were investigated in three models: tridimensional rat brain cell cultures for neuron-glia effects; murine microglial cell line BV-2 for a mechanistic analysis of microglial reactivity; and db/db mice as an in vivo model of metabolic syndrome. In 3D cultures, low insulin condition significantly exacerbated TMT's effect on GABAergic neurons and promoted TMT-induced neuroinflammation, with increased expression of cytokines and of the regulator of intracellular GC activity, 11β-hydroxysteroid dehydrogenase 1 (11β-Hsd1). Microglial reactivity increased upon TMT exposure in medium combining low insulin and high GC. These results were corroborated in BV-2 microglial cells where lack of insulin exacerbated the TMT-induced increase in 11β-Hsd1 expression. Furthermore, TMT-induced microglial reactivity seems to depend on mineralocorticoid receptor activation. In diabetic BKS db mice, a discrete exacerbation of TMT neurotoxic effects on GABAergic neurons was observed, together with an increase of interleukin-6 (IL-6) and of basal 11β-Hsd1 expression as compared to controls. These results suggest only minor additive effects of the two brain insults, neurotoxicant TMT exposure and metabolic syndrome conditions, where 11β-Hsd1 appears to play a key role in the regulation of neuroinflammation and of its protective or neurodegenerative consequences.
Collapse
Affiliation(s)
- Jenny Sandström
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Denise V Kratschmar
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Alexandra Broyer
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland
| | - Olivier Poirot
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Philippe Marbet
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Boonrat Chantong
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Fanny Zufferey
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Tania Dos Santos
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland
| | - Julien Boccard
- Swiss Centre for Applied Human Toxicology, Basel, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Roman Chrast
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Florianne Monnet-Tschudi
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland. .,Swiss Centre for Applied Human Toxicology, Basel, Switzerland.
| |
Collapse
|
8
|
Ampel BC, Muraven M, McNay EC. Mental Work Requires Physical Energy: Self-Control Is Neither Exception nor Exceptional. Front Psychol 2018; 9:1005. [PMID: 30026710 PMCID: PMC6041938 DOI: 10.3389/fpsyg.2018.01005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/30/2018] [Indexed: 01/30/2023] Open
Abstract
The brain’s reliance on glucose as a primary fuel source is well established, but psychological models of cognitive processing that take energy supply into account remain uncommon. One exception is research on self-control depletion, where debate continues over a limited-resource model. This model argues that a transient reduction in self-control after the exertion of prior self-control is caused by the depletion of brain glucose, and that self-control processes are special, perhaps unique, in this regard. This model has been argued to be physiologically implausible in several recent reviews. This paper attempts to correct some inaccuracies that have occurred during debate over the physiological plausibility of this model. We contend that not only is such limitation of cognition by constraints on glucose supply plausible, it is well established in the neuroscience literature across several cognitive domains. Conversely, we argue that there is no evidence that self-control is special in regard to its metabolic cost. Mental processes require physical energy, and the body is limited in its ability to supply the brain with sufficient energy to fuel mental processes. This article reviews current findings in brain metabolism and seeks to resolve the current conflict in the field regarding the physiological plausibility of the self-control glucose-depletion hypothesis.
Collapse
Affiliation(s)
- Benjamin C Ampel
- Department of Psychology, University at Albany, State University of New York, Albany, NY, United States
| | - Mark Muraven
- Department of Psychology, University at Albany, State University of New York, Albany, NY, United States
| | - Ewan C McNay
- Behavioral Neuroscience, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
9
|
Hei C, Liu P, Yang X, Niu J, Li PA. Inhibition of mTOR signaling Confers Protection against Cerebral Ischemic Injury in Acute Hyperglycemic Rats. Int J Biol Sci 2017; 13:878-887. [PMID: 28808420 PMCID: PMC5555105 DOI: 10.7150/ijbs.18976] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/28/2017] [Indexed: 01/04/2023] Open
Abstract
Hyperglycemia is known to exacerbate neuronal death resulted from cerebral ischemia. The mechanisms are not fully understood. The mammalian target of rapamycin (mTOR) pathway regulates cell growth, division and apoptosis. Recent studies suggest that activation of mTOR may mediate ischemic brain damage. The objective of the present experiment is to explore whether mTOR mediates ischemic brain damage in acute hyperglycemic animals. Rats were subjected to 10 min of forebrain ischemia under euglycemic, hyperglycemic and rapamycin-treated hyperglycemic conditions. The rat brain samples were collected from the cortex and hippocampi after 3h and 16h of reperfusion. The results showed that hyperglycemia significantly increased neuronal death in the cortex and hippocampus and the exacerbation effect of hyperglycemia was associated with further activation of mTOR under control and/or ischemic conditions. Inhibition of mTOR with rapamycin ameliorated the damage and suppressed hyperglycemia-elevated p-MTOR, p-P70S6K and p-S6. In addition, hyperglycemia per se increased the levels of cytosolic cytochrome c and autophagy marker LC3-II, while rapamycin alleviated these alterations. It is concluded that activation of mTOR signaling may play a detrimental role in mediating the aggravating effect of hyperglycemia on cerebral ischemia.
Collapse
Affiliation(s)
- Changchun Hei
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region and Department Human Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China.,Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Ping Liu
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China.,Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Xiao Yang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA.,Neuroscience Center, General Hospital of Ningxia Medical University, and Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 750004, China
| | - Jianguo Niu
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region and Department Human Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| |
Collapse
|
10
|
Candeias E, Duarte AI, Sebastião I, Fernandes MA, Plácido AI, Carvalho C, Correia S, Santos RX, Seiça R, Santos MS, Oliveira CR, Moreira PI. Middle-Aged Diabetic Females and Males Present Distinct Susceptibility to Alzheimer Disease-like Pathology. Mol Neurobiol 2016; 54:6471-6489. [PMID: 27730513 DOI: 10.1007/s12035-016-0155-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2D) is a highly concerning public health problem of the twenty-first century. Currently, it is estimated that T2D affects 422 million people worldwide with a rapidly increasing prevalence. During the past two decades, T2D has been widely shown to have a major impact in the brain. This, together with the cognitive decline and increased risk for dementia upon T2D, may arise from the complex interaction between normal brain aging and central insulin signaling dysfunction. Among the several features shared between T2D and some neurodegenerative disorders (e.g., Alzheimer disease (AD)), the impairment of insulin signaling may be a key link. However, these may also involve changes in sex hormones' function and metabolism, ultimately contributing to the different susceptibilities between females and males to some pathologies. For example, female sex has been pointed as a risk factor for AD, particularly after menopause. However, less is known on the underlying molecular mechanisms or even if these changes start during middle-age (perimenopause). From the above, we hypothesized that sex differentially affects hormone-mediated intracellular signaling pathways in T2D brain, ultimately modulating the risk for neurodegenerative conditions. We aimed to evaluate sex-associated alterations in estrogen/insulin-like growth factor-1 (IGF-1)/insulin-related signaling, oxidative stress markers, and AD-like hallmarks in middle-aged control and T2D rat brain cortices. We used brain cortices homogenates obtained from middle-aged (8-month-old) control Wistar and non-obese, spontaneously T2D Goto-Kakizaki (GK) male and female rats. Peripheral characterization of the animal models was done by standard biochemical analyses of blood, plasma, or serum. Steroid sex hormones, oxidative stress markers, and AD-like hallmarks were given by specific ELISA kits and colorimetric techniques, whereas the levels of intracellular signaling proteins were determined by Western blotting. Albeit the high levels of plasma estradiol and progesterone observed in middle-aged control females suggested that they were still under their reproductive phase, some gonadal dysfunction might be already occurring in T2D ones, hence, anticipating their menopause. Moreover, the higher blood and lower brain cholesterol levels in female rats suggested that its dysfunctional uptake into the brain cortex may also hamper peripheral estrogen uptake and/or its local brain steroidogenic metabolism. Despite the massive drop in IGF-1 levels in females' brains, particularly upon T2D, they might have developed some compensatory mechanisms towards the maintenance of estrogen, IGF-1, and insulin receptors function and of the subsequent Akt- and ERK1/2-mediated signaling. These may ultimately delay the deleterious AD-like brain changes (including oxidative damage to lipids and DNA, amyloidogenic processing of amyloid precursor protein and increased tau protein phosphorylation) associated with T2D and/or age (reproductive senescence) in female rats. By demonstrating that differential sex steroid hormone profiles/action may play a pivotal role in brain over T2D progression, the present study reinforces the need to establish sex-specific preventive and/or therapeutic approaches and an appropriate time window for the efficient treatment against T2D and AD.
Collapse
Affiliation(s)
- E Candeias
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - A I Duarte
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal.
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal.
| | - I Sebastião
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
| | - M A Fernandes
- Life Sciences Department, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
- Instituto do Mar, Life Sciences Department, University of Coimbra, 3004-517, Coimbra, Portugal
| | - A I Plácido
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - C Carvalho
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - S Correia
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - R X Santos
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Life Sciences Department, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
| | - R Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - M S Santos
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Instituto do Mar, Life Sciences Department, University of Coimbra, 3004-517, Coimbra, Portugal
| | - C R Oliveira
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - P I Moreira
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal.
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
11
|
Impairment of synaptic development in the hippocampus of diabetic Goto-Kakizaki rats. Int J Dev Neurosci 2016; 53:58-67. [PMID: 27444810 DOI: 10.1016/j.ijdevneu.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/30/2016] [Accepted: 07/17/2016] [Indexed: 12/28/2022] Open
Abstract
Insulin receptor signaling has been shown to regulate essential aspects of CNS function such as synaptic plasticity and neuronal survival. To elucidate its roles during CNS development in vivo, we examined the synaptic and cognitive development of the spontaneously diabetic Goto-Kakizaki (GK) rats in the present study. GK rats are non-obese models of type 2 diabetes established by selective inbreeding of Wistar rats based on impaired glucose tolerance. Though they start exhibiting only moderate hyperglycemia without changes in plasma insulin levels from 3 weeks postnatally, behavioral alterations in the open-field as well as significant impairments in memory retention compared with Wistar rats were observed at 10 weeks and were worsened at 20 weeks. Alterations in insulin receptor signaling and signs of insulin resistance were detected in the GK rat hippocampus at 3 weeks, as early as in other insulin-responsive peripheral tissues. Significant reduction of an excitatory postsynaptic scaffold protein, PSD95, was found at 5w and later in the hippocampus of GK rats due to the absence of a two-fold developmental increase of this protein observed in Wistar control rats between 3 and 20w. In the GK rat hippocampus, NR2A which is a NMDA receptor subunit selectively anchored to PSD95 was also reduced. In contrast, both NR2B and its anchoring protein, SAP102, showed similar developmental profiles in Wistar and GK rats with expression peaks at 2 and 3w. The results suggest that early alterations in insulin receptor signaling in the GK rat hippocampus may affect cognitive performance by suppressing synaptic maturation.
Collapse
|
12
|
Zhang X, Yan X, Gorman J, Hoffman SN, Zhang L, Boscarino JA. Perioperative hyperglycemia is associated with postoperative neurocognitive disorders after cardiac surgery. Neuropsychiatr Dis Treat 2014; 10:361-70. [PMID: 24570589 PMCID: PMC3933727 DOI: 10.2147/ndt.s57761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Neurocognitive disorders commonly occur following cardiac surgery. However, the underlying etiology of these disorders is not well understood. The current study examined the association between perioperative glucose levels and other risk factors and the onset of neurocognitive disorders in adult patients following coronary artery bypass and/or valvular surgery. METHODS Adult patients who underwent their first cardiac surgery at a large tertiary care medical center were identified and those with neurocognitive disorders prior to surgery were excluded. Demographic, perioperative, and postoperative neurocognitive outcome data were extracted from the Society for Thoracic Surgery database, and from electronic medical records, between January 2004 and June 2009. Multiple clinical risk factors and measures associated with insulin resistance, such as hyperglycemia, were assessed. Multivariable Cox competing risk survival models were used to assess hyperglycemia and postoperative neurocognitive disorders at follow up, adjusting for other risk factors and confounding variables. RESULTS Of the 855 patients included in the study, 271 (31.7%) had new onset neurocognitive disorders at follow-up. Age, sex, New York Heart Failure (NYHF) Class, length of postoperative intensive care unit stay, perioperative blood product transfusion, and other key factors were identified and assessed as potential risk factors (or confounders) for neurocognitive disorders at follow-up. Bivariate analyses suggested that new onset neurocognitive disorders were associated with NYHF Class, cardiopulmonary bypass, history of diabetes, intraoperative blood product use, and number of diseased coronary vessels, which are commonly-accepted risk factors in cardiac surgery. In addition, higher first glucose level (median =116 mg/dL) and higher peak glucose >169 mg/dL were identified as risk factors. Male sex and nonuse of intra-operative blood products appeared to be protective. Controlling for potential risk factors and confounders, multivariable Cox survival models suggested that increased perioperative first glucose measured in 20 unit increments, was significantly associated with the onset of postoperative neurocognitive disorders at follow-up (hazard ratio [HR] =1.16, P<0.001) and that women had an elevated risk for this outcome (HR =4.18, P=0.01). CONCLUSION Our study suggests that perioperative hyperglycemia was associated with new onset of postoperative neurocognitive disorders in adult patients after cardiac surgery, and that men tended to be protected from these outcomes. These findings may suggest a need for the revision of clinical protocols for perioperative insulin therapy to prevent long-term neurocognitive complications.
Collapse
Affiliation(s)
- Xiaopeng Zhang
- Department of Anesthesiology, Geisinger Medical Center, Danville, PA, USA
| | - Xiaowei Yan
- Center for Health Research, Geisinger Clinic, Danville, PA, USA
| | - Jennifer Gorman
- Center for Health Research, Geisinger Clinic, Danville, PA, USA
| | - Stuart N Hoffman
- Department of Neurology, Geisinger Medical Center, Danville, PA, USA
| | - Li Zhang
- Department of Anesthesiology, Geisinger Medical Center, Danville, PA, USA
| | | |
Collapse
|
13
|
Maheandiran M, Mylvaganam S, Wu C, El-Hayek Y, Sugumar S, Hazrati L, del Campo M, Giacca A, Zhang L, Carlen PL. Severe hypoglycemia in a juvenile diabetic rat model: presence and severity of seizures are associated with mortality. PLoS One 2013; 8:e83168. [PMID: 24386156 PMCID: PMC3875447 DOI: 10.1371/journal.pone.0083168] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/31/2013] [Indexed: 01/05/2023] Open
Abstract
It is well accepted that insulin-induced hypoglycemia can result in seizures. However, the effects of the seizures, as well as possible treatment strategies, have yet to be elucidated, particularly in juvenile or insulin-dependent diabetes mellitus (IDDM). Here we establish a model of diabetes in young rats, to examine the consequences of severe hypoglycemia in this age group; particularly seizures and mortality. Diabetes was induced in post-weaned 22-day-old Sprague-Dawley rats by streptozotocin (STZ) administered intraperitoneally (IP). Insulin IP (15 U/kg), in rats fasted (14-16 hours), induced hypoglycemia, defined as <3.5 mM blood glucose (BG), in 68% of diabetic (STZ) and 86% of control rats (CON). Seizures occurred in 86% of STZ and all CON rats that reached hypoglycemic levels with mortality only occurring post-seizure. The fasting BG levels were significantly higher in STZ (12.4 ± 1.3 mM) than in CON rodents (6.3 ± 0.3 mM), resulting in earlier onset of hypoglycemia and seizures in the CON group. However, the BG at seizure onset was statistically similar between STZ (1.8 ± 0.2 mM) and CON animals (1.6 ± 0.1 mM) as well as between those that survived (S+S) and those that died (S+M) post-seizure. Despite this, the S+M group underwent a significantly greater number of seizure events than the S+S group. 25% glucose administered at seizure onset and repeated with recurrent seizures was not sufficient to mitigate these continued convulsions. Combining glucose with diazepam and phenytoin significantly decreased post-treatment seizures, but not mortality. Intracranial electroencephalograms (EEGs) were recorded in 10 CON and 9 STZ animals. Predictive EEG changes were not observed in these animals that underwent seizures. Fluorojade staining revealed damaged cells in non-seizing STZ animals and in STZ and CON animals post-seizure. In summary, this model of hypoglycemia and seizures in juvenile diabetic rats provides a paradigm for further study of underlying mechanisms. Our data demonstrate that severe hypoglycemia (<2.0 mM) is a necessary precondition for seizures, and the increased frequency of these seizures is associated with mortality.
Collapse
Affiliation(s)
- Margaret Maheandiran
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Shanthini Mylvaganam
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Chiping Wu
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Youssef El-Hayek
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Sonia Sugumar
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lili Hazrati
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario Canada
| | - Martin del Campo
- Department of Neurology, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Adria Giacca
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Liang Zhang
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Peter L. Carlen
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Neurology, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Villapol S, Wang Y, Adams M, Symes AJ. Smad3 deficiency increases cortical and hippocampal neuronal loss following traumatic brain injury. Exp Neurol 2013; 250:353-65. [PMID: 24120438 DOI: 10.1016/j.expneurol.2013.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/11/2013] [Accepted: 10/03/2013] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β (TGF-β) signaling is involved in pathological processes following brain injury. TGF-β signaling through Smad3 contributes significantly to the immune response and glial scar formation after brain injury. However, TGF-β is also neuroprotective, suggesting that Smad3 signaling may also be involved in neuroprotection after injury. We found expression of the TGF-β type II receptor (TβRII) and Smad3 protein to be strongly and rapidly induced in neurons in the ipsilateral cortex and CA1 region of the hippocampus after stab wound injury. In contrast, astrocytic expression of TβRII and Smad3 was induced more slowly. Comparison of the response of wild-type and Smad3 null mice to cortical stab wound injury showed a more pronounced loss of neuronal viability in Smad3 null mice. Neuronal density was more strongly reduced in Smad3 null mice than in wild-type mice at 1 and 3days post lesion in both the ipsilateral cortex and hippocampal CA1 region. Fluoro-Jade B, TUNEL staining, and cleaved caspase-3 staining also demonstrated increased neuronal degeneration at early time points after injury in the ipsilateral hemisphere in Smad3 null mice. Taken together, our results suggest that TGF-β cytokine family signaling through Smad3 protects neurons in the damaged cortex and hippocampus at early time points after injury.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
15
|
Reno CM, Tanoli T, Bree A, Daphna-Iken D, Cui C, Maloney SE, Wozniak DF, Fisher SJ. Antecedent glycemic control reduces severe hypoglycemia-induced neuronal damage in diabetic rats. Am J Physiol Endocrinol Metab 2013; 304:E1331-7. [PMID: 23592483 PMCID: PMC3680694 DOI: 10.1152/ajpendo.00084.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain damage due to severe hypoglycemia occurs in insulin-treated people with diabetes. This study tests the hypothesis that chronic insulin therapy that normalizes elevated blood glucose in diabetic rats would be neuroprotective against brain damage induced by an acute episode of severe hypoglycemia. Male Sprague-Dawley rats were split into three groups: 1) control, non-diabetic; 2) STZ-diabetic; and 3) insulin-treated STZ-diabetic. After 3 wk of chronic treatment, unrestrained awake rats underwent acute hyperinsulinemic severe hypoglycemic (10-15 mg/dl) clamps for 1 h. Rats were subsequently analyzed for brain damage and cognitive function. Severe hypoglycemia induced 15-fold more neuronal damage in STZ-diabetic rats compared with nondiabetic rats. Chronic insulin treatment of diabetic rats, which nearly normalized glucose levels, markedly reduced neuronal damage induced by severe hypoglycemia. Fortunately, no cognitive defects associated with the hypoglycemia-induced brain damage were observed in any group. In conclusion, antecedent blood glucose control represents a major modifiable therapeutic intervention that can afford diabetic subjects neuroprotection against severe hypoglycemia-induced brain damage.
Collapse
Affiliation(s)
- Candace M Reno
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ankolekar S, Rewell S, Howells DW, Bath PMW. The Influence of Stroke Risk Factors and Comorbidities on Assessment of Stroke Therapies in Humans and Animals. Int J Stroke 2012; 7:386-97. [DOI: 10.1111/j.1747-4949.2012.00802.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The main driving force behind the assessment of novel pharmacological agents in animal models of stroke is to deliver new drugs to treat the human disease rather than to increase knowledge of stroke pathophysiology. There are numerous animal models of the ischaemic process and it appears that the same processes operate in humans. Yet, despite these similarities, the drugs that appear effective in animal models have not worked in clinical trials. To date, tissue plasminogen activator is the only drug that has been successfully used at the bedside in hyperacute stroke management. Several reasons have been put forth to explain this, but the failure to consider comorbidities and risk factors common in older people is an important one. In this article, we review the impact of the risk factors most studied in animal models of acute stroke and highlight the parallels with human stroke, and, where possible, their influence on evaluation of therapeutic strategies.
Collapse
Affiliation(s)
| | - Sarah Rewell
- Florey Neuroscience Institutes, Melbourne Brain Centre, Heidelberg, Australia
| | - David W. Howells
- Florey Neuroscience Institutes, Melbourne Brain Centre, Heidelberg, Australia
| | | |
Collapse
|
17
|
Abstract
Diabetics are at greater risk of having a stroke and are less likely to recover from it. To understand this clinically relevant problem, we induced an ischemic stroke in the primary forelimb somatosensory (FLS1) cortex of diabetic mice and then examined sensory-evoked changes in cortical membrane potentials and behavioral recovery of forelimb sensory-motor function. Consistent with previous studies, focal stroke in non-diabetic mice was associated with acute deficits in forelimb sensorimotor function and a loss of forelimb evoked cortical depolarizations in peri-infarct cortex that gradually recovered over several weeks time. In addition, we discovered that damage to FLS1 cortex led to an enhancement of forelimb evoked depolarizations in secondary forelimb somatosensory (FLS2) cortex. Enhanced FLS2 cortical responses appeared to play a role in stroke recovery given that silencing this region was sufficient to reinstate forelimb impairments. By contrast, the functional reorganization of FLS1 and FLS2 cortex was largely absent in diabetic mice and could not be explained by more severe cortical infarctions. Diabetic mice also showed persistent behavioral deficits in sensorimotor function of the forepaw, which could not be rescued by chronic insulin therapy after stroke. Collectively these results indicate that diabetes has a profound effect on brain plasticity, especially when challenged, as is often the case, by an ischemic event. Further, our data suggest that secondary cortical regions play an important role in the restoration of sensorimotor function when primary cortical regions are damaged.
Collapse
|
18
|
Portha B, Giroix MH, Tourrel-Cuzin C, Le-Stunff H, Movassat J. The GK rat: a prototype for the study of non-overweight type 2 diabetes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 933:125-59. [PMID: 22893405 DOI: 10.1007/978-1-62703-068-7_9] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2D) arises when the endocrine pancreas fails to secrete sufficient insulin to cope with the metabolic demand because of β-cell secretory dysfunction and/or decreased β-cell mass. Defining the nature of the pancreatic islet defects present in T2D has been difficult, in part because human islets are inaccessible for direct study. This review is aimed to illustrate to what extent the Goto Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved to be a valuable tool offering sufficient commonalities to study this aspect. A comprehensive compendium of the multiple functional GK abnormalities so far identified is proposed in this perspective, together with their time-course and interactions. A special focus is given toward the pathogenesis of defective β-cell number and function in the GK model. It is proposed that the development of T2D in the GK model results from the complex interaction of multiple events: (1) several susceptibility loci containing genes responsible for some diabetic traits; (2) gestational metabolic impairment inducing an epigenetic programming of the offspring pancreas and the major insulin target tissues; and (3) environmentally induced loss of β-cell differentiation due to chronic exposure to hyperglycemia/hyperlipidemia, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Bernard Portha
- Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), Université Paris-Diderot, CNRS EAC 4413, Paris, France.
| | | | | | | | | |
Collapse
|
19
|
Abstract
Cortical compression can be a significant problem in many types of brain injuries, such as brain trauma, localized brain edema, hematoma, focal cerebral ischemia, or brain tumors. Mechanical and cellular alterations can result in global changes in excitation and inhibition on the neuronal network level even in the absence of histologically significant cell injury, often manifesting clinically as seizures. Despite the importance and prevalence of this problem, however, the precise electrophysiological effects of brain injury have not been well characterized. In this study, the changes in electrophysiology were characterized following sustained cortical compression using large-scale, multielectrode measurement of multiunit activity in primary somatosensory cortex in a sensory-evoked, in vivo animal model. Immediately following the initiation of injury at a distal site, there was a period of suppression of the evoked response in the rat somatosensory cortex, followed by hyper-excitability that was accompanied by an increase in the spatial extent of cortical activation. Paired-pulse tactile stimulation revealed a dramatic shift in the excitatory/inhibitory dynamics, suggesting a longer term hyperexcitability of the cortical circuit following the initial suppression that could be linked to the disruption of one or more inhibitory mechanisms of the thalamocortical circuit. Together, our results showed that the use of a sensory-evoked response provided a robust and repeatable functional marker of the evolution of the consequences of mild injury, serving as an important step toward in vivo quantification of alterations in excitation and inhibition in the cortex in the setting of traumatic brain injury.
Collapse
|
20
|
Stranahan AM, Mattson MP. Bidirectional metabolic regulation of neurocognitive function. Neurobiol Learn Mem 2011; 96:507-16. [PMID: 21236352 DOI: 10.1016/j.nlm.2011.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 01/04/2011] [Indexed: 12/16/2022]
Abstract
The efficiency of somatic energy metabolism is correlated with cognitive change over the lifespan. This relationship is bidirectional, with improved overall fitness associated with enhanced synaptic function and neuroprotection, and synaptic endangerment occurring in the context of impaired energy metabolism. In this review, we discuss recent advancements in the fields of exercise, dietary energy intake and diabetes, as they relate to neuronal function in the hippocampus. Because hippocampal neurons have energy requirements that are relatively higher than those of other brain regions, they are uniquely poised to benefit from exercise, and to be harmed by diabetes. We view exercise and dietary energy restriction as being associated with enhanced hippocampal plasticity at one end of a continuum, with obesity and diabetes accompanied by cognitive impairment at the other end of the continuum. Understanding the mechanisms for this continuum may yield novel therapeutic targets for the prevention and treatment of cognitive decline following aging, disease, or injury.
Collapse
Affiliation(s)
- Alexis M Stranahan
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
21
|
|
22
|
Moreira TJTP, Pierre K, Maekawa F, Repond C, Cebere A, Liljequist S, Pellerin L. Enhanced cerebral expression of MCT1 and MCT2 in a rat ischemia model occurs in activated microglial cells. J Cereb Blood Flow Metab 2009; 29:1273-83. [PMID: 19401710 DOI: 10.1038/jcbfm.2009.50] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monocarboxylate transporters (MCTs) are essential for the use of lactate, an energy substrate known to be overproduced in brain during an ischemic episode. The expression of MCT1 and MCT2 was investigated at 48 h of reperfusion from focal ischemia induced by unilateral extradural compression in Wistar rats. Increased MCT1 mRNA expression was detected in the injured cortex and hippocampus of compressed animals compared to sham controls. In the contralateral, uncompressed hemisphere, increases in MCT1 mRNA level in the cortex and MCT2 mRNA level in the hippocampus were noted. Interestingly, strong MCT1 and MCT2 protein expression was found in peri-lesional macrophages/microglia and in an isolectin B4+/S100beta+ cell population in the corpus callosum. In vitro, MCT1 and MCT2 protein expression was observed in the N11 microglial cell line, whereas an enhancement of MCT1 expression by tumor necrosis factor-alpha (TNF-alpha) was shown in these cells. Modulation of MCT expression in microglia suggests that these transporters may help sustain microglial functions during recovery from focal brain ischemia. Overall, our study indicates that changes in MCT expression around and also away from the ischemic area, both at the mRNA and protein levels, are a part of the metabolic adaptations taking place in the brain after ischemia.
Collapse
|
23
|
Bree AJ, Puente EC, Daphna-Iken D, Fisher SJ. Diabetes increases brain damage caused by severe hypoglycemia. Am J Physiol Endocrinol Metab 2009; 297:E194-201. [PMID: 19435850 PMCID: PMC2711670 DOI: 10.1152/ajpendo.91041.2008] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insulin-induced severe hypoglycemia causes brain damage. The hypothesis to be tested was that diabetes portends to more extensive brain tissue damage following an episode of severe hypoglycemia. Nine-week-old male streptozotocin-diabetic (DIAB; n = 10) or vehicle-injected control (CONT; n = 7) Sprague-Dawley rats were subjected to hyperinsulinemic (0.2 U.kg(-1).min(-1)) severe hypoglycemic (10-15 mg/dl) clamps while awake and unrestrained. Groups were precisely matched for depth and duration (1 h) of severe hypoglycemia (CONT 11 +/- 0.5 and DIAB 12 +/- 0.2 mg/dl, P = not significant). During severe hypoglycemia, an equal number of episodes of seizure-like activity were noted in both groups. One week later, histological analysis demonstrated extensive neuronal damage in regions of the hippocampus, especially in the dentate gyrus and CA1 regions and less so in the CA3 region (P < 0.05), although total hippocampal damage was not different between groups. However, in the cortex, DIAB rats had significantly (2.3-fold) more dead neurons than CONT rats (P < 0.05). There was a strong correlation between neuronal damage and the occurrence of seizure-like activity (r(2) > 0.9). Separate studies conducted in groups of diabetic (n = 5) and nondiabetic (n = 5) rats not exposed to severe hypoglycemia showed no brain damage. In summary, under the conditions studied, severe hypoglycemia causes brain damage in the cortex and regions within the hippocampus, and the extent of damage is closely correlated to the presence of seizure-like activity in nonanesthetized rats. It is concluded that, in response to insulin-induced severe hypoglycemia, diabetes uniquely increases the vulnerability of specific brain areas to neuronal damage.
Collapse
Affiliation(s)
- Adam J Bree
- Division of Endocrinology, Metabolism, & Lipid Research, Washington University in St. Louis, Campus Box 8127, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
24
|
Zhang T, Pan BS, Zhao B, Zhang LM, Huang YL, Sun FY. Exacerbation of poststroke dementia by type 2 diabetes is associated with synergistic increases of β-secretase activation and β-amyloid generation in rat brains. Neuroscience 2009; 161:1045-56. [DOI: 10.1016/j.neuroscience.2009.04.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/13/2009] [Accepted: 04/13/2009] [Indexed: 01/21/2023]
|
25
|
Moreira TJTP, Cebere A, Cebers G, Ostenson CG, Efendic S, Liljequist S. Reduced HO-1 protein expression is associated with more severe neurodegeneration after transient ischemia induced by cortical compression in diabetic Goto-Kakizaki rats. J Cereb Blood Flow Metab 2007; 27:1710-23. [PMID: 17406657 DOI: 10.1038/sj.jcbfm.9600479] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pronounced hyperglycemia provoked by extradural compression (EC) of the sensorimotor cortex was recently described in the non-insulin dependent Goto-Kakizaki (GK) diabetic rat. Compared with control Wistar rats, GK rats exhibited more extensive brain damage after cortical ischemia at 48 h of reperfusion (Moreira et al, 2007). We hypothesized that the enhanced brain injury in GK rats could be caused by differential regulation of the heme degrading enzyme heme oxygenase (HO)-1, known to interact with the expression of other target genes implicated in antioxidant defense, inflammation and neurodegeneration, such as superoxide dismutase (SOD)-1, -2, inducible nitric oxide synthase (iNOS), and tumor necrosis factor-alpha (TNFalpha). At 48 h after ischemia, relative mRNA expression of such target genes was compared between ipsilateral (compressed) and contralateral (uncompressed) hemispheres of GK rats, along with baseline comparison of sham, uncompressed GK and Wistar rats. Immunohistochemistry was performed to detect cellular and regional localization of HO-1 at this time point. Baseline expression of HO-1, iNOS, and TNFalpha mRNA was increased in the cortex of sham GK rats. GK rats showed pronounced hyperglycemia during EC and transient attenuation of regional cerebral blood flow recovery. At 48 h after reperfusion, HO-1 mRNA expression was 7- to 8-fold higher in the ischemic cortex of both strains, being the most upregulated gene under study. Heme oxygenase-1 protein expression was significantly reduced in diabetic rats and was found in perilesional astrocytes and rare microglial cells, in both strains. The reduced HO-1 protein expression in GK rats at 48 h after reperfusion combined with more extensive neurodegeneration induced by EC, provides further in vivo evidence for a neuroprotective role of HO after brain ischemia.
Collapse
Affiliation(s)
- Tiago J T P Moreira
- Division of Drug Dependence Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
Yang H, Chopp M, Weiland B, Zhang X, Tepley N, Jiang F, Schallert T. Sensorimotor deficits associated with brain tumor progression and tumor-induced brain plasticity mechanisms. Exp Neurol 2007; 207:357-67. [PMID: 17706196 DOI: 10.1016/j.expneurol.2007.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Revised: 06/13/2007] [Accepted: 07/05/2007] [Indexed: 01/07/2023]
Abstract
The objective of this study was to investigate functional deficits and reactive peri-tumoral brain plasticity events in glioma-bearing rats. 9L gliosarcoma cells were implanted into the forelimb region of the sensorimotor cortex in Fischer rats. Control animals underwent the same operation without tumor implantation. Sensitive tests for detecting sensorimotor dysfunction, including forelimb-use asymmetry, somatosensory asymmetry, and vibrissae-evoked forelimb placing tests, were conducted. We found that tumor-bearing animals exhibited significant composite behavioral deficits on day 14 post-tumor injection compared to surgical controls. With the assistance of magnetic resonance imaging, we demonstrated a significant correlation between tumor volume and magnitude of somatosensory asymmetry, indicating that the somatosensory asymmetry test can provide an effective and efficient means to measure and predict tumor progression. Histopathological assessments were performed after the rats were sacrificed 14 days following tumor implantation. Immunostaining revealed that densities of microtubule-associated protein 2, glial fibrillary acid protein, von Willebrand factor, and synaptophysin were all significantly upregulated in the peri-tumoral area, compared to the corresponding region in surgical controls, suggesting synaptic plasticity, astrocyte activation and angiogenesis in response to tumor insult. Understanding the behavioral and bystander cellular events associated with tumor progression may lead to improved evaluation and development of new brain tumor treatments that promote, or at least do not interfere with, functional adaptation.
Collapse
Affiliation(s)
- Hongyan Yang
- Institute for Neuroscience and Department of Psychology, University of Texas at Austin, 1 University Station, #A8000, Austin, TX 78712, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Moreira T, Malec E, Ostenson CG, Efendic S, Liljequist S. Diabetic type II Goto-Kakizaki rats show progressively decreasing exploratory activity and learning impairments in fixed and progressive ratios of a lever-press task. Behav Brain Res 2007; 180:28-41. [PMID: 17408764 DOI: 10.1016/j.bbr.2007.02.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 02/12/2007] [Accepted: 02/16/2007] [Indexed: 10/23/2022]
Abstract
Learning and memory impairments associated with diabetes have been reproduced in rodent models of diabetes type I, but few studies have been performed in spontaneously type II diabetic rodents. The study of type II diabetic rats such as the Goto-Kakizaki (GK) rat is of advantage when characterizing the development of cognitive impairments specifically caused by the progression of the disease and not by its treatment. We thus hypothesized that GK rats might display learning impairments when compared to non-diabetic Wistar rats. In the present study, we employed a lever-press task, a behavioural paradigm which allows the study of response-reinforcement learning, discrimination of a rewarding lever (using a two-choice positional discrimination task), and the ability to increase operant behaviour when requirements for reward increase (using a progressive ratio [PR]). In parallel, locomotor activity was compared between strains to assess exploratory activity and behavioural habituation to a novel environment. Diabetic GK rats made significantly less lever-presses with increasing fixed ratios and, throughout the sessions, a trend for increased selection errors was observed in these animals. In addition, a significant reduction in the maximum number of lever-presses made by GK rats was observed during the PR sessions. Locomotor activity of GK rats was higher on the first day of exploration but significantly decreased with familiarization to the environment. The present results suggest that the diabetic-like symptomatology in GK rats led to a reduction of exploratory activity and of lever-pressing during fixed and progressive ratio schedules, likely caused by learning impairments.
Collapse
Affiliation(s)
- Tiago Moreira
- Department of Clinical Neuroscience, Division of Drug Dependence Research, Building L4a:00, Karolinska Institutet, SE-17176 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|